
Scatter Search for the Cutwidth Minimization Problem

JUAN J. PANTRIGO

Departamento de Ciencias de la Computación
Universidad Rey Juan Carlos, Spain
juanjose.pantrigo@urjc.es

RAFAEL MARTÍ

Departamento de Estadística e Investigación Operativa
Universidad de Valencia, Spain
rafael.marti@uv.es

ABRAHAM DUARTE

Departamento de Ciencias de la Computación
Universidad Rey Juan Carlos, Spain
abraham.duarte@urjc.es

EDUARDO G. PARDO

Departamento de Ciencias de la Computación
Universidad Rey Juan Carlos, Spain
eduardo.pardo@urjc.es

July 28, 2010

Abstract — The cutwidth minimization problem consists of finding a linear layout of a graph

so that the maximum linear cut of edges is minimized. This NP-hard problem has applications

in network scheduling, automatic graph drawing and information retrieval. We propose a

heuristic method based on the Scatter Search (SS) methodology for finding approximate

solutions to this optimization problem. This metaheuristic explores solution space by evolving

a set of reference points. Our SS method is based on a GRASP constructive algorithm, a local

search strategy based on insertion moves and voting-based combination methods. We also

introduce a new measure to control the diversity in the search process. Empirical results with

252 previously reported instances indicate that the proposed procedure compares favorably to

previous metaheuristics for this problem, such as Simulated Annealing and Evolutionary Path

Relinking.

KeyWords: Cutwidth, Metaheuristics, Scatter Search.

SS for the Cutwidth Problem

2

1. Introduction

The cutwidth minimization problem consists of finding a linear layout of a graph so that the

maximum linear cut of edges (i.e., the number of edges that cut a line between consecutive

vertices) is minimized. An interesting application of this NP-hard problem (Gavril 1977)

appears in telecommunication to migrate an old network to a new one. Andrade and Resende

(2007a) described in detail this application called Network Migration Scheduling Problem, in

which all traffic originated or terminating at a given node in the old network is moved to a

specific node in a new network. Other applications can be traced back 35 years (Adolphson

and Hu 1973) to establish the number of channels in an optimal layout of a circuit (see also

Makedon and Sudborough, 1989). Recent developments include network reliability (Karger

1999) and information retrieval (Botafogo, 1993).

The cutwidth minimization problem can be easily described in mathematical terms. Given a

graph � � ��, �� with � � |�| and
 � |�|, a labeling or linear arrangement � of � assigns

the integers �1,2, … , �� to the vertices in �, where each vertex receives a different label. The

cutwidth of a vertex � with respect to �, ������, is the number of edges ��, �� � � satisfying ���� � ���� � ����. The cutwidth of the graph, ������, is the maximum of the cutwidth of

its vertices:

������ �
����� ������

The cutwidth minimization problem (CMP) consists of finding a labeling � that minimizes ������. This optimization problem is NP-hard in even for graphs with a maximum degree of

three (Makedon et al., 1985).

Figure 1: (a) Graph example, (b) Cutwidth of G for a labeling f.

Figure 1.a shows an example of an undirected graph with 6 vertices and 7 edges. Figure 1.b

shows a labeling, �, of the graph in Figure 1.a, setting the vertices in a line with the order of

the labeling, as commonly represented in the CMP. In this way, since ���� � 1, vertex C comes

first, followed by vertex A (�� � � 2) and so on. We represent f with the ordering (C, A, D, E, B,

F) meaning that vertex C is located in the first position (label 1), vertex A is located in the

SS for the Cutwidth Problem

3

second position (label 2) and so on. In Figure 1.b, the cutwidth of each vertex is represented as

a dashed line with its corresponding value. For example, the cutwidth of vertex C is CWf (C) = 1,

because the edge (C,B) has and endpoint in C labeled with 1 and the other endpoint in a vertex

labeled with a value larger than 1. In a similar way, we can compute the cutwidth of vertex A, ���� � � 4, by counting the appropriate number of edges ((C,B), (A,B), (A,E), and (A,D)).

Then, since the cutwidth of the graph G, ������, is the maximum of the cutwidth of all

vertices in �, in this particular example we obtain ������ � ����"� � 5.

In spite of the practical applicability of the CMP, which is well-documented in a patent recently

filed by Resende and Andrade (2009), researchers on heuristic optimization have paid little

attention to it. We have only found three references concerning heuristic methods for this

problem. Cohoon and Sahni (1987) tackled a generalization of the cutwidth called Board

Permutation Problem. They proposed different constructive methods, local search procedures,

and two metaheuristics based on Simulated Annealing. Extensive experimentation permitted

them to conclude that the best procedure combines two constructive methods with Simulated

Annealing.

Andrade and Resende (2007a) proposed a GRASP with Path Relinking for the CMP. The

constructive procedure starts with an initial ordering of the vertices based on a randomized

depth-first search. Then, according to this ordering, vertices are placed in the position where

the increase in the objective function is minimized. The local search procedure is based on

swaps, searching for the first improvement in the objective function. The local search stops

when all swaps have been performed without improvement. The Path Relinking post-

processing (PR) evaluates, at each step, all possible moves from the current solution to the

guiding solution generating a set of intermediate solutions. The procedure stops when the

current solution reaches the guiding solution, returning the best solution found in the path.

The same authors presented an extension of this method (Andrade and Resende, 2007b) in

which the main contribution is the introduction of a new methodology called Evolutionary Path

Relinking, where a set of elite solutions populated with GRASP evolves by applying PR to its

solutions.

In this paper we propose a Scatter Search procedure for the cutwidth minimization problem.

Section 2 is devoted to describe the outline of our Scatter Search method, starting with an

overview of the method. Then we describe in the following sections the main elements of the

algorithm. Section 3 is devoted to the constructive method, Section 4 to the improvement

methods and finally, Section 5 to the combination methods. Computational experiments are

described in Section 6 and associated concluding remarks are made in Section 7.

2. Scatter Search

Scatter Search (SS) is a metaheuristic that explores solution spaces by evolving a set of

reference points (Laguna and Martí, 2003). To turn this principle approach into an effective

algorithm five methods and their associated strategies have to be defined. The search starts by

applying the diversification generation method, obtaining as a result a population of points

from which a subset is selected as the initial reference set (RefSet). The RefSet is evolved

SS for the Cutwidth Problem

4

through the application of four additional methods: subset generation, combination,

improvement and update. Figure 2, taken from Laguna and Martí (2003), depicts the basic

scheme of SS, showing how the five methods interact.

Figure 2. Illustration of the SS design.

In Figure 2, the diversification generation and improvement methods are initially applied until

the cardinality of P reaches PSize solutions that are different from each other. The darker

circles represent improved solutions resulting from the application of the improvement

method. The main search loop appears to the left of the box containing the reference

solutions and labeled RefSet. The subset generation method takes reference solutions as input

to produce solution subsets to be combined. Solution subsets contain two or more solutions.

The new trial solutions resulting from the application of the combination method are subjected

to the improvement method and handed to the reference set update method. This method

applies rules regarding the admission to the reference set of solutions coming from P or from

the application of the combination and improvement methods.

We refer the reader to Laguna and Martí (2003) for a detailed description of the method. We

follow the standard SS design in our implementation for the cutwidth minimization problem

with the exception of the reference set update method. Solutions in RefSet are ordered

according to quality, where the best solution �$ is the first one in the list and �% is the worst

one (both in terms of the value of objective function). Given a new solution � generated by

combination, let &' be the closest solution to � in RefSet. The solution � is admitted to RefSet

if it improves upon the best solution in it, �$, or alternatively, if it improves upon the worst

solution, �%, and its distance with &' is larger than a pre-established threshold ()*+,-*. If

solution � qualifies to enter RefSet (i.e., if it satisfies this criteria), then it replaces &'.

P

RefSet

Diversification Generation
Method

Repeat until |P| = PSize

Subset Generation
Method

Improvement
Method

Solution Combination
Method

Improvement
Method

Stop if no more
new solutions

Reference Set
Update Method

SS for the Cutwidth Problem

5

As shown above, the definition of distance between solutions is a key design issue in Scatter

Search. In our implementation for the CMP, given two solutions �1 and �2, their distance, (��1, �2�, is computed as follows:

(��1, �2� �
.� /0|�1��� 1 �2���|
���

, 0|�1��� 1 �22���|
���

 3

where �22 is the reverse permutation of �2 computed as �22��� � � 1 �2��� 4 1. As it is

customary in SS, the distance from a solution to a set of solutions is computed as the minimum

distance to any solution in the set.

3. Diversification Generation Methods

In this section we propose four different solution generation methods based on the GRASP

methodology (Feo and Resende, 1989; 1995 and Resende and Ribeiro, 2003). Figure 3 shows

the pseudocode of the constructive procedure C1. It starts by creating a list of unlabeled

vertices 5 (initially 5 � V). The constructive algorithm selects the vertex � with minimum

degree in � (step 3) and labels it with 1 (step 4). In case of ties (several vertices with minimum

degree), one of them is randomly selected. In subsequent construction steps, the rest of labels

are assigned in lexicographical order to the rest of vertices in 5. The key point of the method is

therefore the order in which the vertices are selected for label assignment.

PROCEDURE C1

1. Let 7 and 5 be the sets of labeled and unlabeled vertices of the graph respectively

2. Initially 7 � Ø and 5 � �

3. � � �+9
.�����|:���|�

4. Assign the label ; � 1 to � (���� � 1)

5. 7 � ���, 5 � 5 \ ���

 WHILE (5 = Ø)

 6. ; � ; 4 1

 7. Construct �> � ��∈ 5 / ��, ��∈ � ∀ �∈ 7�

 8. Calculate ������ ∀ � ∈ �> considering that � is labeled with ; (i.e. ���� � ;)

 9. Compute ��@AB �
.�C�DE ������ and ��@F' �
��C�DE ������

 10. Construct G�> � ��∈ �> / ������ � ��@AB 4 H���@F' 1 ��@AB��

 11. Select a vertex �I randomly in RCL

 12. ���I� � ;

 13. 5 � 5 \ ��I�, 7 � 7 ∪ ��I�

Figure 3. Pseudocode of the constructive method C1.

The candidate list CL is formed with all the vertices in 5 that are adjacent to one or more

labeled vertices. For each vertex � in CL the evaluation of � is directly computed as its

cutwidth ������ considering that � is labeled with the next label ;; i.e. ���� � ;. In

mathematical terms:

������ � ������ 1 |:JF%KJKL���| 4 |:CBJF%KJKL���|

SS for the Cutwidth Problem

6

where ������ is the cutwidth of the last labeled vertex � in �, :JF%KJKL��� is the set of labeled

adjacent vertices to �, and :CBJF%KJKL��� is the set of unlabeled adjacent vertices to �. Note

that a greedy selection would label in this step the vertex � with minimum ������ value.

Instead of that, C1 computes in step 10 a restricted candidate list, RCL, with good candidates

(according to a search parameter H). As it is customary in GRASP, it is based on a threshold on

the objective function value, ��@AB 4 H���@F' 1 ��@AB�. Then C1 selects in step 11 one

element at random in RCL and labels it in step 12. The method continues as long as the set of

unlabeled elements U is not empty. The value of H is randomly selected in [0,1] each time C1 is

call.

We also consider an alternative construction procedure introduced in Resende and Werneck

(2004). In this procedure, called C2, we first choose candidates randomly and then evaluate

them according to a greedy function to make the greedy choice. Figure 4 shows a pseudocode

of C2. In each iteration, the algorithm randomly selects size elements from the candidate list

CL (step 6), where the value of size is computed as a percentage H of the number of elements

in CL. Then, the element, �I, with the smallest CWf-value is selected (step 11) to become part

of the partial solution under construction. The evaluation of the elements u in CL, ������, is

computed in the same way as in C1. Similarly, the value of H is randomly selected in [0,1] each

time C2 is call.

PROCEDURE C2

1. Let 7 and 5 be the sets of labeled and unlabeled vertices of the graph respectively

2. Initially 7 � Ø and 5 � �

3. � � �+9
.�����|:���|�

4. Assign the label ; � 1 to �. 7 � ���, 5 � 5 \ ���

 WHILE (5 = Ø)

 5. ; � ; 4 1

 6. Construct �> � ��∈5 / ��, ��∈� ∀ �∈7�

 7. 7.M, � HN|�>|
8. Construct RCL by randomly selecting size vertices from CL

9. Compute ������ ∀ �∈G�>

 10. Select a vertex �I
∈ G�> / �I � argminC ∈ 2DE������� �

 11. Label �I with the label ;

 12. 5 � 5 \ ��I�, 7 � 7 ∪ ��I�

Figure 4. Pseudocode of the constructive method C2.

The third constructive procedure, C3, is similar to C1, but replacing the evaluation ������

based on the objective function with |:JF%KJKL���|, the number of adjacent labeled vertices.

This strategy is based on the fact that if ���� takes a value close to ���� for a given edge ��, ��, then we are reducing the number of vertices � such that ���� � ���� � ����. In other

words, C3 tries to reduce the number of vertices affected by the edge ��, �� labeling adjacent

vertices with close labels. Finally, the constructive procedure C4 is a variant of C3 in which the

random and greedy selections are alternated (as we did with C1 and C2). C4 randomly chooses

candidates and then it evaluates each candidate according to the same greedy function in C3,

selecting finally the best evaluated candidate.

SS for the Cutwidth Problem

7

4. Improvement Method

We propose a local search strategy, LS_Insert, for the CMP based on insertion moves.

Specifically, given a labeling �, we define UV�,��, W, �A� consisting of deleting �A from its

current position . � ���A� and inserting it in position W. This operation results in the ordering �‘, as follows:

� If . Y W, then � � Z… , �[\$, �[, �[]$, … , �A\$, �A, �A]$, … ^ and the vertex �A is inserted

just before the vertex �[, obtaining �‘ � �… , �[\$, �A, �[, �[]$, … , �A\$, �A]$, … �.

� If . � W then � � �… , �A\$, �A , �A]$, … , �[\$, �[, �[]$, … � and the vertex �A is inserted

just after the vertex �[, obtaining �‘ � �… , �A\$, �A]$, … , �[\$, �[, �A , �[]$, … �.

The objective of the CMP consists in minimizing a maximum value. Consequently, there may be

many different solutions with the same objective function value. In other words, the solution

space presents a “flat landscape”, which usually is a problem for local search based methods,

where the search is based on movements and most of them have a null value. Considering

that for a given labeling � there may be multiple vertices with cutwidth value equal to ������,

changing a labeling to decrease the cutwidth ������ of a particular vertex � does not

necessarily imply that ������ also decreases. Additionally, vertices with cutwidth values close

to ������ do not determine the value of the objective function in the current labeling, but

they are considered likely to do so in subsequent iterations. Therefore, following the candidate

list strategy introduced in Piñana et al. (2004), we define the set of critical vertices �� as those

with a cutwidth value equal or close to the cutwidth of the graph. In mathematical terms, the

set of critical vertices is defined as:

�� � _ 7A
A`a bDcd�e�f

where 7A � �� ∈ � / ������ � .� is the set of vertices with a cutwidth value equal to . and

the threshold value is computed as a percentage g � 0 � g � 1 � of the current objective

function value ������, a g������f. In our computational experimentation we study the

impact of g on the search procedure.

The local search method first constructs the set of critical vertices ��. Then, the 7A sets are

scanned in descending order of ., starting with . � ������, and the first improvement move

is performed. Specifically, in each iteration, it selects a vertex � in 7A to evaluate UV�,��, iV-, �� where the position iV- in which � is inserted is computed as the median of

the positions of its adjacent vertices. If this results in an improving move, it is performed.

Otherwise, we consider UV�,��, W, �� with W � jiV- 1 �, iV- 4 � k, where � is a search

parameter, and perform the first improving move. To overcome the lack of information

provided by the move value in terms of the objective function, we extend here the meaning of

“improving”. Given a vertex �, we consider that a move improves the current solution if it is

able to reduce the cardinality of any set 7A l �� with . m ������.
In order to improve the efficiency of the procedure, �� is not updated after performing a

single move. As suggested in Glover and Laguna (1997), we do not update the candidate list

SS for the Cutwidth Problem

8

�� every iteration but only when all the vertices have been scanned. This strategy is

particularly useful when move value updates are computationally expensive, as in our context.

In a straightforward implementation, the complexity of computing the cutwidth of each vertex

������ in the graph is Θ�
� because the method should scan all the edges in the graph.

Additionally, the computation of ������ is Θ��� since it requires to compute the maximum of

������ for each vertex. However, it is clear that the cutwidth of some vertices does not

change when we perform a move and therefore we can save their computation. The following

example illustrates it on the graph depicted in Figure 1.a. Let � � ��, , ", �, o, p� be a

solution of the cutwidth problem. Suppose that we perform UV�,��, 2, o�, obtaining solution �q � ��, o, , ", �, p�. Figure 5 graphically shows the solutions before and after the move.

Figure 5. Insertion move example.

Figure 5 shows that vertices � and p are not affected by UV�,��, 2, o� and we do not need to

re-compute their cutwidth.

When we perform UV�,��, W, ��, where for example W � ����, it is clear that for any vertex �

such that ���� � W or ���� Y ����, its cutwidth does not change. On the contrary, those

vertices placed in positions between W and ���� change their cutwidth value. Let :AE��� be

the set of vertices adjacent to � placed in any previous position to . and let :A2��� be the set

of vertices adjacent to � placed in any subsequent position to .. In mathematical terms:

:AE��� � �� � �, ��, �� � � / ���� � .�

:A2��� � �� � �, ��, �� � � / ���� Y .�

For example, in Figure 5.a the set :rE�"� � � , �� because both vertices � , �� are adjacent to " and both are placed in a previous position to 4. Analogously :r2�"� � �p� since p is the

only adjacent to " placed in a subsequent position to 4.

When we perform UV�,��, W, �� the resulting cutwidth value of a vertex � with ���� � . and W � . � ���� can be computed as:

 ���s��� 1 ������ � tu:AE���u 1 u:A2���u, if W � ���� � ����
u:A2���u 1 u:AE���u, if W Y ���� Y ���� w

We therefore compute the cutwidth of the vertices after a move in an incremental way.

Moreover, to compute the value of the objective function, we store in a set all the vertices �

SS for the Cutwidth Problem

9

satisfying ������ � ������. After a move, if this set is not empty the objective function

does not change. Otherwise, we need to update ������ scanning the vertices in the set of

critical vertices ��, selecting the maximum cutwidth among them. Then, the update of ������ is O��� instead of Θ��� as in a straightforward implementation.

5. Combination Methods

We introduce now three different combination methods for the CMP. They are applied on the

subsets created with the subset generation method (see Figure 2) to combine the two solutions

in each subset to create a new trial solution. These methods are based on the “voting

strategy” described in Laguna and Martí (2003) where each solution votes for its first

component not included in the combined solution. Each method considers a different

selection criterion to determine the element to be assigned to the next “free position” in the

combined solution. Specifically, the combination method CM1 selects in each step the vertex

with the lowest label between those voted for each solution. Figure 6 shows the first three

steps of CM1, where solutions �$ and �N are combined in order to produce �$N.

Figure 6. Combination method CM1.

Figure 6.a represents the first step of the algorithm. In this case, each solution votes for

including its first vertex in the ordering. Considering that the selection criterion is given by the

position in the ordering, we are facing a tie in this situation. The tie-breaking rule is

implemented as a random selection. Let us consider that vertex C is selected (the bottom-right

on the figure illustrates this selection). Then, this vertex is no longer available in subsequent

iterations. In the second step (see Figure 6.b), solution �$ votes for vertex A and solution �N

votes for vertex F. Vertex F is selected to be included in the combined solution because it has a

lower label than A (and therefore F is no longer available for selection). Figure 6.c shows the

third step, where solution �$ votes for vertex A (with label 2) and solution �N votes for vertex E

(with label 3), being selected vertex A. This procedure ends when all vertices have been

scanned.

SS for the Cutwidth Problem

10

The combination method CM2 follows the same logic, but the selection criterion is based on

the cutwidth of each vertex, solving ties at random as CM1. Figures 7 shows the first three

steps of the combination of �$ and �N using CM2 to produce �$N.

Figure 7.a depicts the first step of CM2 where each solution votes for including their first vertex

in the ordering. In this example, �$ votes for vertex C with ���$��� � 1 and �N votes for

vertex F with ���N�p� � 2. Consequently, vertex C is selected and no longer considered in the

combination process. Figure 7.b shows step 2, where vertex F is selected since ���$� � � 4

and ���N�p� � 2. In the third step (Figure 7.c), a tie is produced, selecting vertex E at

random.

Figure 7. Combination method CM2.

The combination method CM3 considers as the selection criterion the value of the objective

function of the combined solution. As in previous combination methods, �$ and �N vote for its

first vertex not included in the combined solution �$N. Let �$ and �N be the voted vertices of �$

and �N, respectively. CM3 computes ���$N��$� and ���$N��N�, selecting the one with the

minimum value. As pointed above, ties are broken at random.

6. Computational Experiments

This section describes the computational experiments that we performed to test the efficiency

of our Scatter Search procedure as well as to compare it to state-of-the-art methods for solving

the CMP. We have implemented the Scatter Search procedure in Java SE 6 and all the

experiments were conducted on an Intel Core 2 Quad CPU and 6 GB RAM.

We have employed three sets of instances in our experimentation, totalizing 252 instances.

The first one, Small, was introduced in Martí et al. (2008), the second one, Grids, was

introduced in Rolim et al. (1995) and the third one, Harwell-Boeing, is a subset of the public-

domain Matrix Market library (available at http://math.nist.gov/MatrixMarket/data/Harwell-

Boeing/). All these instances are available at http://heur.uv.es/optsicom/cutwidth.

SS for the Cutwidth Problem

11

Small: This data set consists of 84 graphs introduced in the context of the bandwidth

reduction problem. The number of vertices ranges from 16 to 24, and the

number of edges ranges from 18 to 49.

Grids: This data set consists of 81 matrices constructed as the Cartesian product of

two paths (Raspaud et al., 2009). They are also called two dimensional meshes

and, as documented in Raspaud et al. (2009), the optimal solution of the

cutwidth problem for these types of instances is known by construction. For this

set of instances, the vertices are arranged on a grid with a dimension width ×

height where width, height are selected from the set {3, 6, 9, 12, 15, 18, 21, 24,

27}.

HB: We derived 87 instances from the Harwell-Boeing Sparse Matrix Collection. This

collection consists of a set of standard test matrices U � �UA[� arising from

problems in linear systems, least squares, and eigenvalue calculations from a

wide variety of scientific and engineering disciplines. Graphs are derived from

these matrices by considering an edge �., W� for every element UA[= 0. From

the original set we have selected the 87 graphs with n ≤ 700. Their number of

vertices ranges from 30 to 700 and the number of edges from 46 to 41686.

In the initial set of preliminary experimentation we study the performance of the constructive,

improvement and combination methods by experimentally varying their key search

parameters, to establish the best configuration of the Scatter Search procedure. We have

selected 10 Grid and 10 HB representative instances, with different sizes and densities, to

perform the preliminary experimentation. Specifically, we consider bcsstm07, dwt__361,

dwt__592, fs_680_1, lund_a, lund_b, pores_3, saylr3, steam1, steam2, Grid6x21, Grid9x21,

Grid9x24, Grid9x27, Grid12x24, Grid12x27, Grid21x9, Grid24x12, Grid27x9, Grid27x12. We

then compare the entire Scatter Search procedure with previous algorithms in the complete

set of 252 instances.

Avg. Q. Best Q. Avg. D. CPU Time

C1+LS_Insert 80.1 62.6 3746.4 287.34

C2+LS_Insert 84.3 61.8 3993.5 295.25

C3+LS_Insert 112.9 81.3 5555.8 435.41

C4+LS_Insert 114.1 79.0 5811.3 388.41

Table 1. Constructive methods.

In our first preliminary experiment we compare the four constructive methods for the CMP

described in Section 2.1 (C1, C2, C3 and C4) coupled with the improvement method, LS_Insert,

based on their quality and diversity. It is well documented (see for example Laguna and Martí,

2003) that initial solutions in Scatter Search must be of a reasonable quality and sufficiently

scattered in the solution space to allow the local search and combination methods to reach

different local optima. To test this point, we generate 100 solutions with each constructive plus

local search method and compute their quality by simply calculating their objective function

value. Then, we compute the average (Avg. Q.) and the minimum (Best Q.) of these values.

SS for the Cutwidth Problem

12

The diversity value of each method is computed as the average distance (Avg. D.) between all

the pairs of solutions generated (where the distance between two solutions is computed with

the expression given in Section 2). Table 2 shows these three values, Avg. Q., Best Q. and Avg.

D. as well as the associated CPU Time in seconds for each method. Since we study in this

experiment the combination of the constructive and the improvement methods, we set the

parameters g to 0 and � to �, for a broader exploration (i.e., all vertices and positions are

explored in each iteration).

The results in Table 1 clearly indicate that the C1 and C2 methods coupled with the local search

obtain the best solutions with respect to the quality. On the other hand, C3 and C4 are the

bests with respect to the diversity and they consume longer running times. C2+LS_Insert is

quite balanced, with an average quality of 84.3 (better than C3+LS_insert and C4+LS_Insert)

and an average diversity of 3993.5 (better than C1+LS_Insert). We therefore select

C2+LS_Insert as the diversification generation method of our SS procedure.

The second preliminary experiment is devoted to adjust the local search parameters g (which

determines the number of elements in the candidate list) and � (which determines the

number of positions tested). We consider three levels of each parameter: low level of

exploration (g � 0.8, � � 0.1�, medium level of exploration (g � 0.5, � � 0.3� and high level

of exploration (g � 0.2, � � 0.5�. Table 2 reports for each level, the average of the objective

function (Avg.) and the CPU Time in seconds (CPU).

 g low medium high �

low

Avg. 89.08 86.53 85.82

CPU 28.65 58.67 66.06

medium Avg. 88.88 86.01 85.31

 CPU 82.24 161.17 179.67

High Avg. 88.88 85.98 85.28

 CPU 115.52 229.14 230.31

Table 2. Local search parameters.

As expected, the lower the g and the larger the �, the better the objective function and the

larger the CPU Time. Table 2 clearly shows that we can save a significant amount of running

time varying the values of these two parameters with a moderate degradation of the objective

function value. Moreover, we can observe that � has a larger impact in the CPU Time than in

the objective function, while the behavior of g is more complex. As a compromise selection,

we set � � 0.1 (low) and g � 0.5 (medium) in the rest of our experimentation.

In the third experiment, we compare the three different combination methods described in

Section 5. For this experiment, we execute the Scatter Search algorithm for 20 iterations

(G,�7,) update or reconstruction) over each instance using C2 as a Diversification Generation

Method and LS_Insert with g � 0.5 and � � 0.1. Table 3 reports the average percent

deviation from the best-known solution, Dev(%), the number of best known solutions (in HB

instances) or optima (in Grid instances) found in this experiment, #Best, and CPU Time in

seconds.

SS for the Cutwidth Problem

13

 CM1 CM2 CM3

Dev(%) 6.08% 5.58% 4.33%

#Best 8 9 10

CPU Time (s) 351.63 298.54 241.02

Table 3. Combination methods.

The results summarized in Table 3 show that, with respect to the average percentage deviation

and number of best solutions, CM3 provides the best results, since it exhibits a value of 4.33%

and 10 respectively, which compare favorably with the values obtained with the other

methods. Moreover, this variant consumes slightly lower running times than the others.

The objective of next experiment is to test the selective application of the improvement

method as well as the percentage of quality-diversity solutions in the G,�7,). In Scatter

Search every solution generated by the Diversification Generation Method or by the

Combination Method is typically submitted to the Improvement Method. Since the execution

of the improvement method is computationally expensive, applying it to every solution may

prevent the search from visiting additional solutions during the allotted search time. Therefore,

in this experiment, we test the selective application of the improvement method to a subset of

the solutions that are generated by the diversification generation and combination methods.

Specifically, we only apply the improvement method to the best { constructed or combined

solutions (where { � |G,�7,)|). Table 4 summarizes the results of this experiment using

different values of {.

Improve All Selective Improvement

|b| Avg.Dev. #Best CPU Time Avg.Dev. #Best CPU Time

5 5.14% 9 100.45 8.07% 6 12.45

10 4.33% 10 241.02 7.65% 6 22.73

15 4.59% 10 502.33 7.35% 7 37.01

Table 4. Selective improvement method.

Table 4 reveals that, in the context of the cutwidth problem, the selective improvement is not a

good strategy since the “Improve All” strategy systematically obtains better results (in both

percentage deviation and number of best solutions) than the “Selective Improvement” strategy

although, as expected, the former employs larger CPU Time. On the other hand, the standard

value of the RefSet cardinality, { � 10, provides the best results in the “Improve All” strategy,

although it is not conclusive in the “Selective Improvement”.

In our next preliminary experiment we apply a full-factorial design to determine whether

differences exist in the results of the algorithm for the values of the key search parameters.

Specifically, we employ a multifactor ANOVA with the four parameters and the three levels

shown in Table 5. The first three parameters, g, { and the combination method, CM, have been

identified in the previous experiments. To complement them, we also investigate different

percentages of quality versus diversity in the G,�7,) initial composition. In the Scatter Search

literature this percentage, q, is usually set to 50%. In this experiment we test 10%, 50% and

90% (where 10% means that the 0.1{ solutions are included in the G,�7,) because of their

SS for the Cutwidth Problem

14

quality while the rest of solutions in the G,�7,) (0.9{) are selected attending to their

diversity).

 } b CM q

Level 1 0.2 5 CM1 10%

Level 2 0.5 10 CM2 50%

Level 3 0.8 15 CM3 90%

Table 5. Design of experiment for search parameters.

Considering the average percentage deviation with respect to the best known solution as the

dependent variable, and g, {, CM, and ~ the factors, we apply an ANOVA where the model is

limited to the main effects and all two-way interactions. Applying this factorial design to the 20

instances in our set gives a total of 1620 runs. We obtain that g is the most influential

parameter in our algorithm, followed by the combination method (both present a large F-value

of 50.7 and 8.6 respectively, and a significance of 0.00 < 0.05). On the other hand, the

influence of { and ~ in the results of the algorithm is much more limited, with a significance

level larger than 0.05. The strongest interaction is given between g and { with an F-value of

8.7 and a significance level of 0.00, followed by the interaction between g and CM, with an F-

value of 3.4 and a significance level of 0.01. Figure 8 shows both interactions.

Figure 8. Interaction of factors.

The best parameter setting in this experiment is g � 0.2, { � 15, CM=3, and ~ � 0.9, which

obtains an average percentage deviation of 3.92%. However, if we consider { � 10 (and keep

the values of the other parameters), the average percentage deviation slightly increments to

4.01% but the associated average running time drops from 446.5 to 238.9 seconds. We

therefore consider these values in our final experiment.

We finish our preliminary experimentation studying the contribution of the different SS

elements in the evolution of the best solution. Specifically, Figure 9 depicts, for each SS

iteration, the value of the best solution in the RefSet (Best RefSet), the value of the best

solution obtained with the combination of the solutions in the RefSet (Best Comb), and the

value of the best solution resulting from the application of the improvement method to the

combined solutions (Best Improv).

Figure

Figure 9 shows the contribution of the combination and improvement methods to the best

solution found. This figure clearly shows that the solutions obtained by combination are not

able to improve themselves th

constitute good seeds for the application of the improvement method. This is especially true in

iterations 1 and 5 in which the application of the improvement method to the combined

solutions is able to improve the best solution in the

overall.

In the last set of experiments we compare the

Simulated Annealing, SA, by Cohoon and Sahni (1985) and the GRASP wit

by Andrade and Resende (2007).

CM3, w � 0.1 and q � 0.9

iterations. The other two methods are executed for a similar amount of

parameters recommended by their authors

instances respectively, the average of the objective function value, Avg., the average

percentage deviation from the best known

the number of best solutions

the CPU Time in seconds.

Avg.

Dev(%)

#Opt.

CPU Time

Table 6. Final comparison over

SS for the Cutwidth Problem

15

Figure 9. Evolution of the best SS solution

shows the contribution of the combination and improvement methods to the best

This figure clearly shows that the solutions obtained by combination are not

able to improve themselves the value of the best solution in the RefSet

constitute good seeds for the application of the improvement method. This is especially true in

1 and 5 in which the application of the improvement method to the combined

is able to improve the best solution in the RefSet, thus generating a new best solution

set of experiments we compare the final design of our Scatter Search with the

Simulated Annealing, SA, by Cohoon and Sahni (1985) and the GRASP with Path Relinking, GPR,

by Andrade and Resende (2007). The Scatter Search algorithm is set to β � 0.2,

0.9 according to the previous experiments, and it

The other two methods are executed for a similar amount of

parameters recommended by their authors. Tables 6, 7 and 8 report for the three set of

, the average of the objective function value, Avg., the average

percentage deviation from the best known solution (or the optimum when available), Dev(%)

the number of best solutions (optima) that each method is able to match, #Best (#Opt.)

SS SA

4.92 5.15

0.00% 5.60%

84 64

0.07 0.07

Final comparison over the set Small (84 instances).

SS for the Cutwidth Problem

shows the contribution of the combination and improvement methods to the best

This figure clearly shows that the solutions obtained by combination are not

RefSet; however, they

constitute good seeds for the application of the improvement method. This is especially true in

1 and 5 in which the application of the improvement method to the combined

, thus generating a new best solution

final design of our Scatter Search with the

h Path Relinking, GPR,

0.2, b � 10, CM �

according to the previous experiments, and it stops after 20

The other two methods are executed for a similar amount of time with the

for the three set of

, the average of the objective function value, Avg., the average

(or the optimum when available), Dev(%),

, #Best (#Opt.), and

GPR

5.2

6.54%

60

0.07

SS for the Cutwidth Problem

16

 SS SA GPR

Avg. 13 16.14 38.44

Dev(%) 7.76% 25.42% 201.81%

#Opt. 44 37 2

CPU Time 210.07 216.13 235.16

Table 7. Final comparison over the set Grid (81 instances).

 SS SA GPR

Avg. 315.22 346.21 364.83

Dev(%) 1.42% 48.97% 90.97%

#Best 59 8 2

CPU Time 430.56 435.41 557.48

Table 8. Final comparison over the set HB (87 instances).

Tables 6, 7 and 8 clearly show that our SS algorithm consistently produces the best solutions in

the three types of instances considered. In the Small instances, SS is able to match the 84

optima while SA and GPR obtain 64 and 60 respectively. However, if we allow the methods to

run for longer running times, all of them are able to obtain the 84 optima in less than 5

seconds. Grid instances are clearly more difficult to solve than the Small ones. In particular,

our SS method obtains 44 optima out of the 81 instances in this set in 210.07 seconds, while SA

and GPR obtain 37 and 2 respectively. Finally, in the HB set, where optimum solutions are not

known, our method is able to match 59 best known solutions, while SA and GPR obtain 8 and 2

respectively. We refer the reader to the Appendix where these best known values are listed.

To complement this information, we apply a Friedman test for paired samples to the data used

to generate these tables. The resulting p-value of 0.000 obtained in this experiment clearly

indicates that there are statistically significant differences among the three methods tested (we

are using the typical significance level of 0.05 as the threshold between rejecting or not the

null hypothesis). A typical post-test analysis consists of ranking the methods under comparison

according to the average rank values computed with this test. According to this, the best

method is the SS (with a rank value of 1.36), followed by the SA (2.05) and finally the GPR (with

2.59 rank value). We now compare SS and SA with two well-known nonparametric tests for

pairwise comparisons: the Wilcoxon test and the Sign test. The former one answers the

question: Do the two samples (solutions obtained with both methods in our case) represent

two different populations? The resulting p-value of 0.000 indicates that the values compared

come from different methods. On the other hand, the Sign test computes the number of

instances on which an algorithm supersedes another one. The resulting p-value of 0.000

indicates that the SS is the clear winner between both methods.

In the last experiment we compare the performance of the three methods over the time on the

instances employed in the preliminary computation. These methods were run for 250 seconds

per instance and the best solution found was reported every 10 seconds. The results of this

experiment are shown in Figure 10.

SS for the Cutwidth Problem

17

Figure 10. Average best solution value over time

Figure 10 shows that SS is capable of obtaining high quality solutions from the very beginning

of the search. Specifically, in the first 10 seconds, it exhibits an average deviation of 10.68%,

while GPR and SA show an average deviation of 332.14% and 133.31%, respectively. As it can

be observed in Figure 10, the three methods are able to improve its corresponding deviation as

the search progresses, with a final value of 213.64% (GPR), 117.98% (SA) and 4.08% (SS) when

the time limit of 250 seconds is reached.

7. Conclusions

The Cutwitdth minimization is a computationally difficult optimization problem, which has

served us well as test case for a few new strategies that we are proposing to embed in the

standard Scatter Search framework. In particular, we tested a GRASP constructive algorithm, a

local search strategy based on insertion moves and voting-based combination methods.

Moreover, our SS algorithm is also based on a new measure to control the diversity in the

search process.

We performed extensive computational experiments to first study the effect of changes in

critical Scatter Search elements and then to compare the efficiency of our proposal with

previous solution procedures. The comparison with two previous methods based on

metaheuristic methodologies favors our proposal.

Acknowledgments

This research has been partially supported by the Ministerio de Ciencia e Innovación of Spain

(Grant Ref. TIN2009-07516 and TIN2008-06890-C02-02) and by the Comunidad de Madrid (Ref.

S2009/TIC-1542).

0%

50%

100%

150%

200%

250%

300%

0 50 100 150 200 250

D
e

v
.

(%
)

CPU Time (s)

GPR

SA

SS

SS for the Cutwidth Problem

18

References

Adolphson D. and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied Mathematics,

25(3):403-423, 1973.

Andrade, D.V. and M.G.C. Resende. GRASP with path-relinking for network migration

scheduling. Proceedings of International Network Optimization Conference, 2007a.

Andrade, D.V. and M.G.C. Resende. GRASP with evolutionary path-relinking. Proceedings of

Seventh Metaheuristics International Conference (MIC), 2007b.

Botafogo R. A. Cluster analysis for hypertext systems. 16th Annual International ACM-SIGIR

Conference on Research and Development in Information Retrieval, 116-125, 1993.

Cohoon, J. and S. Sahni. Heuristics for the Board Permutation Problem. Journal of VLSI and

Computer Systems, 2, 37- 61, 1987.

Feo T.A., and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set

covering problem. Operations Research Letters, 8:67–71, 1989.

Feo T.A., and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6:109–133, 1995.

Gavril F. Some NP-complete problems on graphs. In Proceedings of the 11
th

 conference on

information Sciences and Systems, 91-95, 1977.

Glover, F. and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

Karger D. R. A randomized fully polynomial time approximation scheme for the all-terminal

network reliability problem. SIAM Journal on Computing, 29(2):492-514, 1999.

Laguna, M. and R. Martí (2003) Scatter Search: Methodology and Implementations in C, Kluwer

Academic Publishers, Boston.

Makedon F., C. Papadimitriou, I. H. Sudbourough. Topological bandwidth. SIAM Journal on

Algebraic and Discrete Methods, 6(3):418-444, 1985.

Makedon F. and I.H. Sudborough. On minimizing width in linear layouts. Discrete Applied

Mathematics, 23(3):243-265, 1989.

Martí, R., V. Campos and E. Piñana, Branch and Bound for the Matrix Bandwidth Minimization,

European Journal of Operational Research 186:513-528, 2008.

Piñana E., I. Plana, V. Campos and Rafael Martí: GRASP and Path Relinking for the matrix

bandwidth minimization. European J. of Operational Research 153(1):200-210, 2004.

Raspaud A., H. Schröder, O. Sýkora, L. Török, and I. Vrt'o. Antibandwidth and cyclic

antibandwidth of meshes and hypercubes. Discrete Mathematics, 309:3541-3552,

2009.

Resende, M.G.C. and D. V. Andrade. Method and System for Network Migration Scheduling.

United States Patent Application Publication US2009/0168665, 2009.

Resende, M.G.C. and C.C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover

and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–250. Kluwer

Academic Publishers, 2003.

Resende, M.G.C. and R. F. Werneck. A hybrid heuristc for the p-median problem. Journal of

Heuristics, vol. 10, pages 59-88, 2004.

Rolim J., O. Sýkora and I. Vrt'o. Cutwidth of the de Bruijn graph. RAIRO Informatique Théorique

et Applications, 29(6):509-514, 1995.

SS for the Cutwidth Problem

19

Appendix

HB Set

Instance Best value Instance Best value

494_bus 17 impcol_a 47
662_bus 27 impcol_b 55

685_bus 35 impcol_c 46

arc130 202 impcol_d 64

ash292 36 impcol_e 170

ash85 16 lns__131 32

bcspwr01 5 lns__511 71

bcspwr02 5 lund_a 113

bcspwr03 10 lund_b 111

bcspwr04 29 mbeacxc 16329

bcspwr05 18 mcca 390

bcsstk01 32 nnc261 46

bcsstk02 1089 nnc666 80

bcsstk04 310 nos1 4

bcsstk05 115 nos2 4

bcsstk06 227 nos4 12

bcsstk20 20 nos5 193

bcsstk22 13 nos6 29

bcsstm07 199 plat362 155

can__144 25 plskz362 30

can__161 50 pores_1 17

can__292 96 pores_3 29

can__445 123 saylr1 16

curtis54 13 saylr3 45

dwt__209 58 sherman4 36

dwt__221 27 shl__200 387

dwt__234 12 shl__400 385

dwt__245 27 shl____0 357

dwt__310 26 steam1 182

dwt__361 39 steam2 308

dwt__419 55 steam3 20

dwt__503 138 str__200 560

dwt__592 70 str__600 606

fs_183_1 185 str____0 388

fs_541_1 296 west0132 71

fs_680_1 17 west0156 56

gent113 87 west0167 54

gre_216a 52 west0381 480

gre__115 36 west0479 287

gre__185 48 west0497 181

gre__343 72 west0655 466

gre__512 94 will199 131

hor__131 145 will57 11

ibm32 23

Table 9. Best known values of HB instances.

