
HEURISTICS FOR THE REGENERATOR

LOCATION PROBLEM

A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

Abstract. Telecommunication systems make use of optical signals to trans-
mit information. The strength of a signal in an optical network deteriorates
and loses power as it gets farther from the source, mainly due to attenuation.
Therefore, to enable the signal to arrive at its intended destination with good
quality, it is necessary to regenerate it periodically using regenerators. These
components are relatively expensive and therefore it is desirable to deploy in
the network as few of them as possible. In the regenerator location prob-
lem, we are given an undirected graph, positive edge lengths, and a parameter
specifying the maximum length that a signal can travel before its quality dete-
riorates and regeneration is needed. The problem consists in determining paths
that connect all pairs of nodes in the graph and, if necessary, locating single
regenerators in some of those nodes such that the signal never travels more
than the maximum allowed distance without traversing a regenerator node.
In this paper we present new implementations of previous heuristics and two
new heuristics, a GRASP and a biased random-key genetic algorithm, for the
regenerator location problem. Computational experiments comparing the pro-
posed solution procedures with previous heuristics described in the literature
illustrate the efficiency and effectiveness of our methods.

1. Introduction

Telecommunication systems make use of optical signals to transmit information.
The strength of an optical signal deteriorates and loses power as it gets farther
from the source, mainly due to attenuation. Therefore, to enable the signal to
arrive at its intended destination with good quality, it is necessary to regenerate
it periodically using regenerators. These components are relatively expensive and
therefore it is desirable to deploy in the network as few of them as possible.

In the regenerator location problem (RLP), we are given an undirected graph
G = (V,E), where V is the node set, E is the set of edges, with each edge (i, j) ∈ E

having a real-valued length di,j ∈ R
+. Furthermore, a parameter D ∈ R

+ is given
to specify the maximum length that a signal can travel before its quality deterio-
rates and regeneration is needed. The problem consists in determining paths that
connect all pairs of nodes in the graph and, if necessary, locating single regener-
ators in some of those nodes. Between each pair of nodes {s, t} ∈ V × V , a path
{(s, v1), (v1, v2), . . . , (vk, t)} connecting these nodes is formed by one or more path
segments. In this context, a path segment consists of a sequence of consecutive
edges {(vi, vi+1), (vi+1, vi+2), . . . , (vq−1, vq)} in the path, satisfying the condition

Date: November 18, 2011.
Key words and phrases. Metaheuristics, network design, regenerator, location, GRASP, ge-

netic algorithms.
AT&T Labs Research Technical Report.

1

2 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

that the total length of the segment

dvi,vi+1
+ dvi+1,vi+2

+ · · ·+ dvq−1,vq ≤ D.

If the total length of the path is no more than D, then the path consists of a single
path segment. Otherwise, it will consist of two or more path segments. In this
case, one or more regenerators will be located in the internal nodes of the path,
separating consecutive path segments. The objective of the RLP is to determine
paths that connect all pairs of nodes in the graph utilizing a minimum number of
regenerators.

(a) Graph G = (V, E) (b) Graph M = (V, E′)

Figure 1. Example of a seven node graph G with edges lengths
and corresponding communication graph M .

Figure 1(a) shows an example of a network with seven nodes and a maximum
distance parameter D = 100. The numbers near the edges represent their lengths.
Note that the length d1,5 = 150 of edge (1, 5) is greater than D and therefore it
cannot be part of any path. In this figure we can see that the shortest path from
node 1 to node 3 is {(1, 2), (2, 3)} with a total length of 60 + 70 = 130 > 100.
Therefore, it must be decomposed into two path segments {(1, 2)} and {(2, 3)} and
a regenerator must be placed in node 2 to connect node 1 with node 3 using this
path. The shortest path connecting nodes 1 and 5 is the single edge path {(1, 5)}
with length 150. Since edge (1, 5) is longer than D, then it cannot be used in any
path. Therefore, to connect node 1 with node 5 we identify the shortest feasible
path to be {(1, 2), (2, 3), (3, 5)} with total length 60 + 70 + 90 = 220. This path
must be decomposed into three path segments which requires two regenerators, one
at node 2 and one at node 3. On the other hand, we can connect node 5 with
node 7 using the shortest path {(5, 6), (6, 7)} with a total length of 40+40=80 and
therefore we do not need to allocate any regenerator in this case. Finally, note that
placing regenerators in nodes 2 and 7 allows for communication between all pairs
of nodes in the graph.

Regenerator placement in the context of traffic engineering with restoration can
be traced back to Yetginer and Karasan (2003). Gouveia et al. (2003) address
a multi-protocol label switching (MPLS) over wave division multiplexing (WDM)
network design problem in which one type of constraint (called WDM path con-
straint) forbids path segments between two components that are longer than a

HEURISTICS AND METAHEURISTICS FOR REGENERATOR LOCATION 3

given maximum length. Chen and Raghavan (2007) and Chen et al. (2010) intro-
duce the regenerator location problem and present a branch and cut procedure for
the Steiner arborescence problem with a unit degree constraint on the root node,
which they show to be equivalent to the RLP. Furthermore, they introduce three
heuristic procedures for this problem. Computational experiments using 740 test
problems show that the heuristics obtain the optimal solutions in 454 instances
while the branch and cut finds the optimal solution in 536 instances. The same
authors generalize the problem defining a set of nodes where regenerators can be
placed and a set of nodes that need to be connected (Chen et al., 2009). The regen-
erator location problem was shown to be NP-hard by Flammini et al. (2009) and
Chen et al. (2010).

Chen et al. (2010) describe the communication graph which they use in their
algorithms for the RLP. Given the weighted graph G = (V,E), we first delete
all of the edges that have length greater than D. We add an edge between all
non-adjacent pairs of nodes having length equal to the length of the corresponding
shortest path if the edge length in G is smaller than D. Finally, we disregard all
length information. The resulting unweighted graph is referred to as M = (V,E′).
If the resulting graph is complete, then there is no need for any regenerator. If the
resulting graph is not connected, then the problem is infeasible. Alternatively, if
the resulting graph is connected but not complete, then one or more regenerators
will be required.

Figure 1(b) represents the communication graph M that results from the graph
in the example of Figure 1(a). The dashed link in the graph between nodes 5 and 7
is the only link added during the procedure to create M from G.

The remainder of this paper is organized as follows. In Section 2, we propose
new and efficient implementations of the three constructive algorithms originally
proposed in Chen et al. (2010). In Section 3 we point out an error in the descrip-
tion of a local search proposed in Chen et al. (2010). We then combine randomized
variants of three greedy algorithms proposed in Chen et al. (2010) with a correct
version of their local search, resulting in three multi-start GRASP heuristics. A
biased random-key genetic algorithm (BRKGA) for the RLP is proposed in Sec-
tion 4. Computational experiments comparing the proposed GRASP and BRKGA
with the heuristics of Chen et al. (2010) are described in Section 5. Concluding
remarks are made in Section 6.

2. Constructive heuristics

In this section, we adapt several constructive heuristics proposed in Chen et al.
(2010) for the RLP: a greedy algorithm, and two heuristics called H1 and H2. We
propose efficient implementations of these procedures that, as will be shown in
our computational experience, outperform their original implementations by up to
three orders of magnitude.

2.1. Greedy algorithm. The greedy algorithm takes as input the set of pairs
of nodes in the communication graph that are not directly connected (NDC) and
builds a set R of regenerator nodes, one node at a time. At each iteration, the
procedure computes, for each node u, g(u), the number of yet-unconnected pairs
in the communication graph that become connected with its inclusion in R. The
method then determines a node u∗ with maximum g-value. Node u∗ is added to

4 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

Table 1. X (u) and g(u) for all candidate nodes u in first iteration
of greedy algorithm on example of Figure 1(b).

u X (u) g(u)

1 ∅ 0
2 {(1, 3), (1, 4), (1, 7), (3, 7), (4, 7)} 5
3 {(4, 5), (2, 5)} 2
4 {(2, 6), (3, 6)} 2
5 {(3, 7), (3, 6)} 2
6 {(4, 7), (4, 5)} 2
7 {(2, 6), (2, 5)} 2

R and the communication graph is updated by adding to it the edges connecting
those yet-unconnected pairs that become connected by placing a regenerator in u∗.

In our implementation of this method, we store for each vertex u, the set of
its neighbors, N(u), in a hash-table. Therefore, basic operations, such as adding,
removing, or checking the membership of an element in N(u) can be practically
performed in constant time. For example, to calculate g(u) we need to compute
the Cartesian product of N(u) in the communication graph, which is extremely fast
with the hash table. Moreover, at the same time that we compute g(u) for each
vertex u, we store the best one so far, and we do not need to go through them again
to determine u∗, as apparently the original implementation of Chen et al. (2010)
does.

Algorithm 1 shows pseudo-code of our adaptation of the greedy algorithm. It
takes as input the communication graph M = (V,E′) and outputs the set of regen-
erator nodes R. In line 1 the set R of regenerator nodes is initialized empty and
the set C of candidate regenerator nodes is initialized with all of the nodes in the
graph. In line 2, the set Ē′ of not directly connected (NDC) pairs is initialized with
the complement of the set E′ of edges in M . The main loop of the greedy algorithm
goes from line 3 to 20. It is repeated until M is complete, i.e. while Ē′ 6= ∅. For
each candidate node u ∈ C, lines 4 to 14 compute the set X (u) of yet-unconnected
pairs in M that would become connected if node u were to house a regenerator.
Let g(u) denote the cardinality of set X (u). In line 5, X (u) is initialized empty
and in line 6, g(u) is initialized to zero. Line 7 computes the set N (u) of nodes
adjacent to u in M . For all pairs of nodes, both of which are in N (u), lines 8 to 13
verify if they are connected in M and if they are not connected we add them to
X (u). In line 15, the node u∗ that enables the connection of the largest number
of yet-unconnected pairs in M is selected. Ties are broken at random. In lines 15
to 18, sets R, C, E′, and Ē′ are updated to reflect the inclusion of node u∗ in set
R. In line 24, the set R of regenerator nodes is returned.

Consider as an example the communication graph depicted in Figure 1. For each
candidate regeneration node u, Table 1 shows X (u), the set of pairs of nodes not
connected that become connected if a regenerator is placed in node u and g(u), the
cardinality of X (u).

In iteration 1 of the greedy algorithm, node u∗ = 2 is selected, since g(2) = 5
is the maximum g(u) for all u ∈ C. Edges (1, 3), (1, 4), (1, 7), (3, 7), and (4, 7)

HEURISTICS AND METAHEURISTICS FOR REGENERATOR LOCATION 5

procedure Greedy

Data: Communication graph: M = (V,E′)
Result: Set of regenerator nodes: R ⊆ V

1 R← ∅;C ← V ;

2 Ē′ = {(i, j) ∈ V × V : (i, j) 6∈ E′};

3 while Ē′ 6= ∅ do
4 for u ∈ C do

5 X (u)← ∅;

6 g(u)← 0;

7 N (u) = {v ∈ V : (u, v) ∈ E′};

8 for (i, j) ∈ N (u)×N (u) do
9 if (i, j) 6∈ E′ then

10 X (u)← X (u) ∪ {(i, j)};

11 g(u)← g(u) + 1;

12 end

13 end

14 end

15 u∗ ← argmax{g(u) : u ∈ C};

16 R← R ∪ {u∗};

17 C ← C \ {u∗};

18 E′ ← E′ ∪ X (u∗);

19 Ē′ ← Ē′ \ X (u∗);

20 end

21 return R;

Algorithm 1: Pseudo-code for GREEDY: Greedy algorithm for the RLP.

are added to graph M resulting in the graph shown in Figure 2(a). Similarly, in
iteration 2, node u∗ = 7 is selected and edges (1, 5), (1, 6), (2, 5), (3, 6), (4, 5), and
(2, 6) are added to graph M making it complete, as can be seen in Figure 2(b). The
set R of regeneration nodes obtained with this greedy algorithm is therefore {2, 7}.

2.2. H1 heuristic. The aim of heuristic H1 is to find a spanning tree on the com-
munication graph M with the maximum number of leaf nodes. This way, the
heuristic aims to minimize the number of internal nodes in the spanning tree. Re-
generators are assigned to these internal nodes. The algorithm starts by computing
u∗ ← argmin{deg(u) : u ∈ V }, a node of minimum degree (ties are broken
by favoring the node with smallest index) and initializes the set of nodes in the
spanning tree, S ← {u∗}, and its complement, S̄ = V \ {u∗}. The set R of re-
generators is initialized empty, i.e. R ← ∅. H1 then calls the recursive function,
Tree(u∗, S, S̄, R), described in Algorithm 2.

Tree takes as input the lowest degree vertex u of the graph and recursively
constructs a spanning tree . In step 3 of Algorithm 2 the spanning tree is augmented
with the unspanned nodes that are neighbors of node u. Note that in the previous

6 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

procedure Tree

Data: u, S, S̄, R
Result: R

1 U(u)← N (u) ∩ S̄;

2 if |S| > 1 then

3 S ← S ∪ U(u);

4 S̄ ← V \ S;

5 end

6 while U(u) 6= ∅ do
7 Compute degS̄(v) for all v ∈ U(u);

8 u∗ ← argmax{degS̄(v) : v ∈ U(u)};

9 if degS̄(u
∗) > 0 then

10 R← R ∪ {u∗};

11 Tree(u∗, S, S̄, R);

12 end

13 U(u)← U(u) \ {u∗};

14 end

15 return

Algorithm 2: Pseudo-code for Tree used in H1.

call to the procedure, a regenerator is placed in node u∗ in step 10. Applying
this algorithm to the example in Figure 1, we obtain the same solution as the one
obtained by Greedy.

In our implementation of H1 we use a hash set to store the set of unvisited vertices
instead of using the stack of the system. Additionally, our algorithm is iterative
instead of recursive, as seems to be the intent of the original implementation of
Chen et al. (2010). Finally, as we did in Greedy, the N(v) set is indexed with a
hash table and therefore its associated operations can be performed in O(1).

2.3. H2 heuristic. Heuristic H2 in some sense resembles the two previous methods.
In each step, it first identifies the nodes of lowest degree and then examines the

(a) Iteration 1 (b) Iteration 2

Figure 2. Communication graph on two iterations of the greedy algorithm.

HEURISTICS AND METAHEURISTICS FOR REGENERATOR LOCATION 7

neighbors of theses nodes and selects the one with the highest degree to assign a
regenerator. Once a regenerator is assigned to a node, the communication graph
is updated by adding edges with endpoints in newly connected pairs of nodes. H2

resembles Greedy in the sense that it updates the communication graph at each
step and it resembles H1 in the sense that is based on the degree of the nodes.

Contrasting our implementation of H2 with the original implementation in Chen
et al. (2010), it is worth mentioning that our Java code employs hash-sets for
an efficient update of the communication graph and the computation of the lowest
and highest degree nodes. In each iteration, we compute the set of newly connected
nodes by calculating the Cartesian product of the set of nodes adjacent to the node
just made to house a regenerator. As in the previous methods, the use of hash-sets
significantly accelerates this computation. In our experiments (see Section 5) we
empirically compare both implementations.

3. GRASP for the RLP

A GRASP, or greedy randomized adaptive search procedure, is a multi-start
or iterative process in which each iteration consists of two phases: construction
and local search (Feo and Resende, 1989; 1995). The construction phase builds a
feasible solution, whose neighborhood is explored until a local optimum is found
after the application of the local search phase . At each iteration of the construction
phase, GRASP maintains a set of candidate elements CL that can be feasibly added
to the partial solution under construction. Every candidate element is evaluated
according to a greedy function in order to select the next element to be added to
the partial solution. A restricted candidate list (RCL) is created with the best
elements in CL. This is the greedy aspect of the method. The element to be added
to the partial solution is randomly selected from those in the RCL. This is the
probabilistic aspect of the heuristic. Once the selected element is added to the
partial solution, the candidate list CL is updated and its elements evaluated. This
is the adaptive aspect of the heuristic. We refer the reader to Resende and Ribeiro
(2003; 2010) for two recent reviews of GRASP.

3.1. Construction procedures. We implemented three constructive algorithms,
CG, C1 , and C2 based on, respectively, the heuristics Greedy, H1, and H2 of Chen
et al. (2010), described in Section 2.

Given the communication graph M , the CG constructive method builds a set R
of regenerator nodes, one node at a time. At each iteration, CG first determines
the set CL of candidate nodes to house a regenerator, which is simply the set of
nodes in M in which no regenerator has been previously placed. Then, for each
candidate node u ∈ CL, it computes the set X (u) of yet-unconnected pairs in M

that would become connected if node u where to house a regenerator. Let g(u)
denote the cardinality of set X (u).

The restricted candidate list, RCL, is formed with those nodes having a relatively
good g-value. To this end, the method computes gmin and gmax as, respectively,
the minimum and maximum values of g in CL. The algorithm next constructs a
RCL with all the nodes in CL having a g-value greater than or equal to a specified
cutoff value

gmin + α · (gmax − gmin),

8 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

where

gmin = min
u∈CL

g(u) and gmax = max
u∈CL

g(u).

CG randomly selects an element u∗ in RCL, adds it to the set R and updates the
communication graph (by adding to it the edges connecting those yet-unconnected
pairs that become connected by placing a regenerator in u∗). The construction ends
when the graph M is complete. We test different values of α in the computational
experiments in Section 5.

Heuristic H1 tries to find a spanning tree S on the communication graph M

having the maximum number of leaf nodes, thus minimizing the number of internal
nodes in S to which regenerators are assigned. At each iteration, the set CL of
candidates nodes on which to place a regenerator, referred to as U(u) in Algorithm 2,
is computed as N (u)∩ S̄, where S̄ is the complement of the spanning tree S under
construction, and u is the node in which a regenerator was placed in the previous
iteration. H1 selects the node u∗ ∈ CL with maximum degree degS̄(u

∗) with respect
to S̄ and includes it in S. In the randomized construction C1 , instead of selecting
the node u∗ ∈ CL with maximum degree, we compute the restricted candidate list,
RCL, with all the nodes in CL having a degree in S̄ greater than or equal to a
specified threshold value

(1) degmin + α · (degmax − degmin),

where

degmin = min
u∈CL

degS̄(u) and degmax = max
u∈CL

degS̄(u).

Then, C1 randomly selects a node in RCL and adds it, together with its adjacent
vertices, to the spanning tree S under construction.

Finally, constructive method C2 determines at each iteration the set CL of can-
didate nodes to house a regenerator as the set of nodes inM in which no regenerator
has been previously placed. Then, for each candidate node u ∈ CL, it computes
its degree d(u) in M . Instead of selecting the node with the largest degree (as
H2 does), C2 computes a restricted candidate list with those nodes having degree
greater than or equal to a specified threshold value, as in (1), and randomly selects
a node u∗ ∈ RCL. The method adds u∗ to the set R and updates the communica-
tion graph by adding to it the edges connecting those yet-unconnected pairs that
become connected by placing a regenerator in u∗.

3.2. Local search. Given two nodes i and j in the set R of regenerator nodes,
procedure Move(i, j), shown in Algorithm 3, attempts to remove both regenerators
from nodes i and j and replace them with a single regenerator (that eventually
could be placed in i or j). A set C of potential candidates to host a regenerator is
initialized in step 2. In steps 3 to 10, each non-regenerator node u adjacent to either
i or j is analyzed. If u is not adjacent to an existing regenerator node (distinct from
i and j), then in step 5 the set of potential candidate nodes is updated, eliminating
from C the nodes not adjacent to u. If C is empty, then nodes i and j cannot be
replaced in R with fewer than two nodes and the procedure returns a nil indicator.
Otherwise, any element in the final set C can be selected to replace i and j. Note
that i, j, or both i and j can be in C. In step 11 a node v is selected from C and
is added to R′ in step 12. A 1-0 move results if either i or j is selected. Otherwise,

HEURISTICS AND METAHEURISTICS FOR REGENERATOR LOCATION 9

procedure Move

Data: Communication graph M = (V,E′), regenerator set R,
nodes i and j

Result: New regenerator set R′

1 R′ ← R \ {i, j};

2 C ← V \R′;

3 for u ∈ (N (i) ∪ N (j)) \R′ do

4 if N (u) ∩R′ = ∅ then
5 C ← C ∩ N (u);

6 end

7 if C = ∅ then
8 return nil;

9 end

10 end

11 Select v ∈ C producing a feasible solution;

12 R′ ← R′ ∪ {v};

13 return R′;

Algorithm 3: Pseudo-code for MOVE: a 2-1 or 1-0 move.

!"

#"

$"%"

&"

'"

("

)"

*"

+"

Figure 3. Example where original MOVE fails.

a 2-1 move is applied. Ties are broken by node index. The node in C with the
largest degree in the communication graph is selected.

Consider the example in Figure 3 with the solution R = {c, d, e, h} (depicted in
black in the figure) and apply the MOVE procedure in Algorithm 3 to nodes d and e.
In steps 3 to 9 we take each vertex u ∈ (N (d) ∪ N (e)) \ R′ = {f, g} and compute
C, obtaining C = {a, g, i}. According to the original design of the MOVE procedure
in Chen et al. (2010), we could replace the regenerators in d and e with a single
regenerator allocated in any node in C. However, we can see that, in this case,

10 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

this would produce an infeasible solution. For example, if we select a, we would
obtain R′ = {c, h, a} leaving node e disconnected. To remedy this problem, we
have modified this method to include a condition on the feasibility of the resulting
solutions (step 11 in Algorithm 3). Specifically, we check if the subgraph induced by
the set of regenerators is connected. If it is, then the solution is feasible; otherwise,
we discard this selection and resort to the next node in C. In the example in
Figure 3, none of the candidates in C produces a feasible solution.

Our local search procedure scans the regenerator nodes in the order given by
their degrees in the original graph (where the node with the lowest degree is ex-
amined first). Nodes with low degree are expected to be good candidates to move
their regenerator to an alternative node. The procedure then applies a first im-
provement strategy, performing the first associated move in its exploration. The
local search finishes when there is no further improvement and returns the local
optimum found.

4. Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean (1994) for solving combinatorial optimization prob-
lems involving sequencing. In a RKGA, chromosomes are represented as vectors of
randomly generated real numbers in the interval [0, 1]. A deterministic algorithm,
called a decoder, takes as input a solution vector and associates with it a solution
of the combinatorial optimization problem for which an objective value or fitness
can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of random-keys.
Each component of the solution vector is generated independently at random in the
real interval [0, 1]. After the fitness of each individual is computed by the decoder
in generation k, the population is partitioned into two groups of individuals: a
small group of pe elite individuals, i.e. those with the best fitness values, and the
remaining set of p − pe non-elite individuals. To evolve the population, a new
generation of individuals must be produced. All elite individual of the population
of generation k are copied without modification to the population of generation
k + 1. RKGAs implement mutation by introducing mutants into the population.
A mutant is simply a vector of random keys generated in the same way that an
element of the initial population is generated. At each generation, a small number
(pm) of mutants is introduced into the population. With the pe elite individuals
and the pm mutants accounted for in population k + 1, p − pe − pm additional
individuals need to be produced to complete the p individuals that make up the
new population. This is done by producing p−pe−pm offspring through the process
of mating or crossover.

Bean (1994) selects two parents at random from the entire population to im-
plement mating in a RKGA. A biased random-key genetic algorithm, or BRKGA
(Gonçalves and Resende, 2011), differs from a RKGA in the way parents are se-
lected for mating. In a BRKGA, each element is generated combining one element
selected at random from the elite partition in the current population and one from
the non-elite partition. Repetition in the selection of a mate is allowed and there-
fore an individual can produce more than one offspring in the same generation.
Parameterized uniform crossover (Spears and DeJong, 1991) is used to implement

HEURISTICS AND METAHEURISTICS FOR REGENERATOR LOCATION 11

mating in BRKGAs. Let ρe > 0.5 be the probability that an offspring inherits the
vector component of its elite parent. Let n denote the number of components in
the solution vector of an individual. For i = 1, . . . , n, the i-th component c(i) of the
offspring vector c takes on the value of the i-th component e(i) of the elite parent e
with probability ρe and the value of the i-th component ē(i) of the non-elite parent
ē with probability 1− ρe.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed for all of the newly created random-key vectors and the pop-
ulation is partitioned into elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous n-dimensional hypercube, using the decoder
to map solutions in the hypercube to solutions in the solution space of the combi-
natorial optimization problem where the fitness is evaluated.

We propose a BRKGA heuristic for the regenerator location problem. As in the
previous algorithms, we denote vertex and edge sets of the communication graph
M as V and E′, respectively. The heuristic encodes the solution as a |V |-vector x
of random keys. The i-th element of x corresponds to node i ∈ V . To decode x,
we apply the greedy algorithm Decoder shown in Algorithm 4.

procedure Decoder

Data: Communication graph M = (V,E′) and vector x of
random keys

Result: Set of regenerator nodes: R ⊆ V

1 R← ∅;C ← V ;

2 Ē′ = {(i, j) ∈ V × V : (i, j) 6∈ E′};

3 Order the nodes in C w.r.t. their associated x value;

4 while Ē′ 6= ∅ do
5 Select the next node k ∈ C following the x-order;

6 X (k)← ∅;

7 A← N (k) = {v ∈ V : (k, v) ∈ E′};

8 for v ∈ A ∩R do

9 A← A ∪ N (v);

10 end

11 for (i, j) ∈ A×A do

12 if (i, j) 6∈ E′ then

13 X (k)← X (k) ∪ {(i, j)};

14 end

15 end

16 R← R ∪ {k};

17 C ← C \ {k};

18 E′ ← E′ ∪ X (k);

19 Ē′ ← Ē′ \ X (k);

20 end

21 return R;

Algorithm 4: Pseudo-code for DECODER.

12 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

In the initialization of the Decoder algorithm (see Algorithm 4) we order the
nodes in C, initially containing all nodes in V , according to the random key vector
x. In this way, nodes associated with components in x with a relative large value
(close to 1) come first. The main loop of the Decoder algorithm goes from line 4
to 20. It is repeated until M is complete, i.e. while Ē′ 6= ∅. In this loop nodes are
selected following the order induced by x. For each candidate node k ∈ C, lines 6
to 15 compute the set X (k) of yet unconnected pairs in M that would become
connected if node k where to house a regenerator. In lines 16 to 19, sets R, C, E′,
and Ē′ are updated to reflect the inclusion of node k in set R. In line 21, the set
R of regenerator nodes is returned.

5. Experimental results

This section describes the computational experiments that we performed to first
test the efficiency of our different procedures and then compare them with a number
of methods in Chen et al. (2010). We have implemented the methods in Java SE 6
and all the experiments were conducted on a Pentium 4 computer at 3 GHz with 2
GB of RAM.

In our computational experiments we used the instances from Chen et al. (2010)
that the authors kindly made available to us. Specifically, these graphs come from
two different sources, the M -graph instances, in which they directly generated
the communication graph, and random instances, in which they first generate a
graph with random edge lengths and then compute the communication graph. The
authors sent us a total of 280 instances, 200 from the first set and 80 from the
second one, with n = 40, 60, 80, and 100.

In the first experiment, we compare the original implementation of Chen et al.
(2010) of the heuristics Greedy, H1, and H2 coupled with the local search (labeled
as Orig. Greedy, Orig. H1, and Orig. H2, respectively, in Table 2) with our new
implementations of these methods (simply labeled as Greedy, H1, and H2). For
each method and each instance size, we consider, in Table 2, the two columns
reported in Table 1 of Chen et al. (2010): NR (number of regenerators) and RT
(running time). Results in this table clearly indicate that our implementations
outperform those in Chen et al. (2010) since they obtain slightly better solutions
(lower number of regenerators) in significant lower running times (more than 100
times faster). The methods in Chen et al. (2010) were run on a Pentium D (3.0
GHz processor with 2 GB RAM) while, as described above, our implementations
have been run on a similar computer (Pentium 4, 3 GHz with 2 GB of RAM). Note
also that our implementations are in Java while those in Chen et al. (2010) are in
C++.

In each of the following experiments, we compute for each instance the overall
best solution value, BestValue, obtained by all executions of the methods consid-
ered. Then, for each method, we compute the relative percentage deviation between
the best solution value obtained with that method and BestValue for that instance.
We report the average of this relative percentage deviation (Dev.) across all the
instances considered in each particular experiment. We finally report, for each
method, the number of instances (#Best) in which the value of the best solution
obtained with this method matches BestValue.

H
E
U
R
IS

T
IC

S
A
N
D

M
E
T
A
H
E
U
R
IS

T
IC

S
F
O
R

R
E
G
E
N
E
R
A
T
O
R

L
O
C
A
T
IO

N
1
3

Table 2. Comparison with Chen et al. (2010) implementation.

Orig. Greedy Greedy Orig. H1 H1 Orig. H2 H2

n m NR RT NR RT NR RT NR RT NR RT NR RT

40 10 1.40 0.00 1.40 0.00 1.40 0.00 1.40 0.00 1.40 0.10 1.40 0.00

30 2.00 0.20 2.00 0.01 2.00 0.10 2.00 0.00 2.00 0.00 2.00 0.00

50 3.00 0.10 3.00 0.01 3.10 0.30 3.00 0.00 3.30 0.10 3.00 0.00

70 4.60 0.70 4.50 0.01 4.70 0.50 4.60 0.00 4.60 0.20 4.40 0.00

90 9.50 1.70 10.10 0.02 9.70 1.30 9.90 0.01 9.80 0.50 10.20 0.00

60 10 1.90 0.30 1.90 0.04 1.90 0.30 1.90 0.01 1.90 0.00 1.90 0.00

30 2.10 0.80 2.00 0.03 2.10 0.30 2.00 0.01 2.20 0.20 2.00 0.00

50 3.20 1.90 3.10 0.05 3.30 1.10 3.10 0.00 3.40 0.40 3.00 0.00

70 5.30 4.30 5.10 0.06 5.40 3.90 5.10 0.00 5.30 0.70 5.00 0.01

90 10.80 15.80 11.00 0.10 11.20 18.00 11.40 0.01 11.20 2.50 11.30 0.01

80 10 1.90 1.30 1.90 0.06 1.90 0.70 1.90 0.03 1.90 0.10 1.90 0.00

30 2.90 3.90 2.60 0.09 2.80 2.00 2.70 0.02 2.80 0.30 2.70 0.01

50 3.80 9.10 3.50 0.08 4.00 5.60 3.60 0.01 3.70 0.90 3.50 0.00

70 6.00 19.40 5.80 0.13 5.90 17.30 5.70 0.00 5.80 3.00 5.70 0.01

90 11.90 88.90 12.20 0.22 12.50 70.70 12.40 0.03 12.80 13.00 12.10 0.03

100 10 2.00 3.60 2.00 0.14 2.00 1.80 2.00 0.07 2.00 0.50 2.00 0.01

30 2.90 9.60 2.70 0.17 2.90 7.10 2.80 0.03 2.80 1.40 2.80 0.01

50 4.00 21.10 4.00 0.20 4.00 13.60 4.00 0.02 4.00 2.60 4.00 0.01

70 6.00 49.00 6.00 0.25 6.40 56.00 5.80 0.01 6.10 8.20 6.00 0.01

90 13.40 286.40 12.70 0.38 13.70 295.00 13.50 0.04 13.30 42.90 13.00 0.02

Avg. 4.93 25.91 4.88 0.10 5.05 24.78 4.94 0.02 5.02 3.88 4.90 0.01

14 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

Table 3. GRASP Constructive methods

Value #Best Dev(%) CPU(sec.)

CG

α = 0.3 7.00 7 25.77 12.93

α = 0.6 5.65 13 5.92 10.00

α = 0.9 5.35 19 0.45 7.96

C1

α = 0.3 6.80 8 20.42 0.77

α = 0.6 6.10 10 10.79 0.74

α = 0.9 6.25 11 12.10 0.76

C2

α = 0.3 6.30 7 16.59 0.57

α = 0.6 6.10 11 10.64 0.56

α = 0.9 5.95 12 8.51 0.54

In our preliminary experimentation we consider a set of 20 instances randomly
selected from those instances in our set with n = 80, 100. In the first preliminary
experiment, we study the parameter α in constructive methods CG, C1, and C2.
Specifically, we test three values of this parameter on each method: 0.3, 0.6, and
0.9. We run CG, C1, and C2 100 times, thus obtaining 100 solutions for each method
and instance pair. Table 3 reports, for this set of 20 instances and each value of α
tested, the values of #Best and Dev. We also report the average objective function
value (number of regenerators), Value, and the CPU time in seconds.

The results in Table 3 show that the best outcomes are obtained when the
constructive method CG is run with a value of α = 0.9. However, it consumes longer
running times than its competing GRASP constructions C1 and C2, although the
three of them are very fast.

In the second preliminary experiment, we compare the constructive with the
local search methods for the RLP. Specifically we target the previous constructive
and improvement methods Greedy+LS, H1+LS, and H2+LS of Chen et al. (2010),
and our corresponding GRASP methods CG+LS, C1+LS, and C2+LS. We use the best
value of α for each method according to the results of the first experiment. In
particular we set α to 0.9, 0.6, and 0.9 in CG, C1, and C2, respectively. As in the
previous experiment we consider the set of 20 instances and report, in Table 4,
Value, #Best, Dev., and CPU time.

Table 4 shows that our three new GRASP heuristics are able to improve upon
previous methods also based on construction plus local search. Specifically, CG,
C1, and C2 present an average percent deviation from the best solutions of 1.45,
0.00, and 1.70, respectively, while Greedy+LS, H1+LS, and H2+LS obtain average
percent deviations of 8.96, 9.96, and 7.50, respectively. It must be noted that these
three previous methods are deterministic procedures that can only be run once.
The randomized nature of the GRASP construction allows multiple runs, which
provide a high-quality best solution over these runs. As expected, the GRASP based
constructions present much longer running times than the deterministic methods,
although they are still very moderate (less than 10 seconds).

HEURISTICS AND METAHEURISTICS FOR REGENERATOR LOCATION 15

Table 4. Constructive with local search methods

Value #Best Dev(%) CPU(sec.)

Greedy+LS 5.65 11 8.96 0.17

H1+LS 5.70 11 9.96 0.05

H2+LS 5.55 14 7.50 0.01

GC(0.9)+LS 5.25 18 1.45 8.19

C1(0.6)+LS 5.15 20 0.00 2.24

C2(0.9)+LS 5.25 18 1.70 0.11

Table 5. Comparison of best methods

Value #Best Dev(%) CPU(sec.)

n = 40

H2+LS 3.96 59 4.46 0.003

C1(0.6)+LS 3.77 70 0.00 0.25

BRKGA 3.83 66 1.71 1.44

n = 60

H2+LS 4.37 62 1.74 0.006

C1(0.6)+LS 4.26 70 0.00 0.65

BRKGA 4.34 64 1.48 4.46

n = 80

H2+LS 4.90 46 8.25 0.01

C1(0.6)+LS 4.50 70 0.00 1.36

BRKGA 4.67 58 4.39 9.74

n = 100

H2+LS 5.27 50 5.69 0.02

C1(0.6)+LS 4.91 70 0.00 2.39

BRKGA 5.00 62 2.13 20.17

In our final experiment, we compare our best method, C1+LS, with the parameter
α set to 0.6 with the best previous method, H2+LS. We also include in this exper-
iment the biased random key genetic algorithm, BRKGA, described in the previous
section with p = 100, pe = 0.15, pm = 0.10, and ρe = 0.7, run for 20 generations.
Table 5 reports the Value, #Best, Dev., and CPU time over the entire set of 280
instances divided according to their size.

Table 5 shows the merit of the proposed GRASP procedure. Our C1+LS imple-
mentation consistently produces the best solutions with percent deviations smaller
than those of the competing methods (and with number of best solutions found
larger than the others). On the other hand, the H2+LS algorithm is able to obtain
relatively good solutions in short computational time. The BRKGA method performs
well, better than H2+LS, although it consumes significantly longer running times
than the other methods.

16 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

GRASP1

empirical
theoretical

Figure 4. Time to target plots (run time distributions) for C1+LS.

We ran C1+LS 100 times on a representative instance, stopping when a solution
with objective value equal to the best known for this instance was found. For each
run we recorded the running time. Each run was independent of the other, using
a different initial seed for the random number generator. With these 100 running
times, we plot the time-to-target plots (run time distributions), shown in Figure 4.
This experiment confirms the expected exponential runtime distribution for our
GRASP. Therefore, linear speed is expected if the algorithm is implemented in
parallel.

6. Concluding remarks

This paper deals with the regenerator location problem in optical telecommuni-
cation networks. In this problem, we are given a network represented by a weighted
graph, where edge weights represent distances, and the maximum distance an opti-
cal signal can travel before it starts to degrade. Regenerators strengthen the signal
to its original state. They are, however, expensive and one wants to deploy as few
of them as possible in the network. We seek the locations of a minimum number of
regenerators such that all pairs of nodes in the network are able to communicate
using optical signals.

Three constructive procedures and a local improvement procedure were previ-
ously proposed by Chen et al. (2010). In this paper, we propose efficient imple-
mentations of the three constructive procedure as well as point out an error in the
local search procedure for which we propose a correction. Not only are our imple-
mentations of the constructive procedures much faster (up to 7375 times faster in

HEURISTICS AND METAHEURISTICS FOR REGENERATOR LOCATION 17

one case) than those of Chen et al. (2010), but, on average, they also find better
solutions.

This paper also proposes three GRASP heuristics, each using one of the three
constructive procedures of Chen et al. (2010) as well as the corrected local search
procedure. The three (multi-start) GRASP heuristics find much better solutions
than the corresponding (single-start) constructive procedures with local search.

Finally, this paper proposes a biased random-key genetic algorithm (BRKGA)
for this regenerator location problem. The BRKGA uses a decoder based on the
greedy constructive procedure of Chen et al. (2010). To enable the genetic algo-
rithm to have running times similar to those of the other algorithms tested, a small
population was used as well as a small number of generators were computed. So-
lutions found by the BRKGA were better than those found by the heuristics of
Chen et al. (2010) but worse than those found by the GRASP heuristics. To find
solutions of similar quality, we conjecture that the BRKGA would require larger
populations, and more importantly, a greater number of generations.

Acknowledgment

The research of A. Duarte and R. Mart́ı was partially supported by the Minis-
terio de Ciencia e Innovación of Spain (TIN2009-07516). The research of R.M.A
Silva was partially supported by the Brazilian National Council for Scientific and
Technological Development (CNPq) and the Foundation for Support of Research
of the State of Minas Gerais, Brazil (FAPEMIG). The authors thank Profs. Chen,
Ljubić, and Raghavan for making their instances available to us.

References

J.C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA J. on Computing, 6:154–160, 1994.

Si Chen and S. Raghavan. The regenerator location problem. In Proceedings of the
2007 International Network Optimization Conference (INOC 2007), 2007.

Si Chen, I. Ljubić, and S. Raghavan. The generalized regenerator location prob-
lem. In M.G. Scutellà, editor, Proceedings of the 2009 International Network
Optimization Conference (INOC 2009), 2009.

Si Chen, I. Ljubić, and S. Raghavan. The regenerator location problem. Networks,
55:205–220, 2010.

T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8:67–71, 1989.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2):109–133, 1995.

M. Flammini, A. Machetti, G. Monaco, L. Moscardelli, and S. Zaks. On the com-
plexity of the regenerator placement problem in optical networks. In Proceedings
of SPAA 2009, pages 154–162, Calgary, 2009.

J.F. Gonçalves and M.G.C. Resende. Biased versus unbiased random key genetic
algorithms: A experimental analysis. J. of Heuristics, 17:487–525, 2011.

L. Gouveia, P. Patŕıcio, A. Sousa, and R. Valadas. MPLS over WDM network
design with packet level QoS constraints based on ILP models. In Proceedings of
the IEEE Infocom, volume 1, pages 576–586, 2003.

18 A. DUARTE, R. MARTÍ, M.G.C. RESENDE, AND R.M.A. SILVA

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages
219–250. Kluwer Academic Publishers, 2003.

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures:
Advances and applications. In M. Gendreau and J.-Y. Potvin, editors, Handbook
of Metaheuristics, pages 281–317. Springer Science+Business Media, 2nd edition,
2010.

W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 230–236, 1991.

E. Yetginer and E. Karasan. Regenerator placement and traffic engineering with
restoration in GMPLS networks. Photonic Network Commun., 6:139–149, 2003.

(A. Duarte) Departamento de Ciencias de la Computación, Universidad Rey Juan Car-
los, Spain.

E-mail address: abraham.duarte@urjc.es

(R. Mart́ı)Departamento de Estad́ıstica e Investigación Operativa, Facultad de Matem-
aticas, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain

E-mail address: rafael.marti@uv.es

(M.G.C. Resende) Algorithms and Optimization Research Department, AT&T Labs

Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.
E-mail address: mgcr@research.att.com

(R.M.A. Silva) Centro de Informática (CIn), Federal University of Pernambuco, Av.
Professor Lúıs Freire s/n, Cidade Universitária, Recife, PE, Brazil.

E-mail address, R.M.A. Silva: rmas@cin.ufpe.br

