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Abstract

The vertex separation problem belongs to a family of optimization problems in which the objective is to
�nd the best separator of vertices or edges in a generic graph. This optimization problem is strongly related
to other well-known graph problems; such as the Path-Width, the Node Search Number or the Interval
Thickness, among others. All of these optimization problems are NP-hard and have practical applications in
VLSI, computer language compiler design or graph drawing. Up to know, they have been generally tackled
with exact approaches, presenting polynomial-time algorithms to obtain the optimal solution for speci�c
types of graphs. However, in spite of their practical applications, these problems have been ignored from
a heuristic perspective, as far as we know. In this paper we propose a pure 0-1 optimization model and a
metaheuristic algorithm based on the variable neighborhood search methodology for the vertex separation
problem on general graphs. Computational results show that small instances can be optimally solved with
this optimization model and the proposed metaheuristic is able to �nd high-quality solutions with a moderate
computing time for large-scale instances.
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1. Introduction

Let G(V,E) be an undirected graph where V (n = |V |) and E (m = |E|) are the sets of vertices and
edges, respectively. A linear layout ϕ of the vertices of G is a bijection or mapping ϕ : V → {1, 2, . . . , n} in
which each vertex receives a unique and di�erent integer between 1 and n. For vertex u, let ϕ(u) denote its
position or label in layout ϕ. Let L(p, ϕ,G) be the set of vertices in V with a position in the layout ϕ lower
than or equal to position p. Symmetrically, let R(p, ϕ,G) be the set of vertices with a position in the layout
ϕ larger than position p. In mathematical terms,

L(p, ϕ,G) = {v ∈ V : ϕ(v) ≤ p} and R(p, ϕ,G) = {v ∈ V : ϕ(v) > p}.

Since layouts are usually represented in a straight line, where the vertex in position 1 comes �rst,
L(p, ϕ,G) can be simply called the set of left vertices with respect to position p and, R(p, ϕ,G) the set of
the right vertices w.r.t. p.

The Cut-value at position p of layout ϕ, Cut(p, ϕ,G), is de�ned as the number of vertices in L(p, ϕ,G)
with one or more adjacent vertices in R(p, ϕ,G), then,

Cut(p, ϕ,G) = |{u ∈ L(p, ϕ,G) : ∃v ∈ R(p, ϕ,G) ∩N(u)}|,
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where N(u) = {v ∈ V : (u, v) ∈ E}. The Vertex Separation value (VS) of layout ϕ is the maximum of the
Cut-value among all positions in layout ϕ: V S(ϕ,G) = maxp Cut(p, ϕ,G).

The Vertex Separation Problem (VSP) consists of �nding a layout, say ϕ∗, minimizing the VS in graph
G. Despite of its practical applications, there is no previous heuristic or metaheuristic algorithm to �nd
good solutions in short computing times. We propose a variable neighborhood search (VNS) [18] approach
whose performance is assessed by a broad testbed of instances.

The remainder of this paper is organized as follows. Section 2 presents the Vertex Separation Problem,
including its application domain. Section 3 formalizes the mathematical optimization model. Section 4
presents our algorithmic approach based on the VNS metaheuristic framework. Section 5 reports on an
extensive computational experience to validate the proposed algorithm by (1) comparing its performance
and computing time versus the optimization of the mathematical model for small instances, and (2) analysing
its performance for large instances. Finally, Section 6 summarizes the main conclusions of our research.

2. Description, related problems and applications

The Vertex Separation Problem (VSP) in graph G consists of �nding a layout, say ϕ∗, that minimizes
V S(G,ϕ), where V S(G,ϕ) is the maximum Cut-value in graph G for layout ϕ, i.e., V S(G,ϕ) =
maxpCut(p, ϕ,G). For the sake of simplicity, we denote the optimum value V S(G,ϕ∗) as V S∗.

Figure 1: (a) Graph illustrative example. (b) A layout ϕ for its VSP.

Figure 1.a shows an illustrative example of an undirected graph G with 7 vertices and 9 edges. Figure
1.b depicts a solution (layout) ϕ of this graph and the Cut-value of each position p, Cut(p, ϕ,G). For
example, Cut(1, ϕ,G) = 1 because L(1, ϕ,G) = {D} and R(1, ϕ,G) = {A, F, G, E, B, C} and there is one
vertex in L having and adjacent vertex in R. Similarly, Cut(3, ϕ,G) = 2 where L(3, ϕ,G) = {D, A, F} and
R(3, ϕ,G) = {G, E, B, C}. The objective function value, computed as the maximum of these cut values, is
V S(G,ϕ) = 3 whose related position is p = 4.

The decisional version of the VSP was proved to be NP-complete for general graphs [26]. It is also known
that the problem remains NP-complete for planar graphs with maximum degree of three [31], as well as for
chordal graphs [15], bipartite graphs [16], grid graphs and unit disk graphs [6].

We can �nd many di�erent graph problems that, although stated in di�erent terms, are equivalent to
the VSP in the sense that a solution to one problem provides a solution to the other one. Some of them are
the Path-Width problem [20], the Interval Thickness problem [22], the Node Search Number [23] and the
Gate Matrix Layout [21]. The equivalence between these problems is a consequence of the results presented
in [13, 20, 23]. For any graph G let V S(G), PW (G), IT (G), SN(G) and GML(G) be the objective
function value of the optimal solution for the Vertex Separation, Path-Width, Interval Thickness, Node
Search Number and Gate Matrix Layout problems, respectively. These values verify the following relations:

V S(G) = PW (G) = IT (G) = SN(G)− 1 = GML(G) + 1.
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The VSP appears in the context of �nding "good separators" for graphs [28] where a separator is a set of
vertices or edges whose removal separates the graph into disconnected subgraphs. This optimization problem
has applications in VLSI design for partitioning circuits into smaller subsystems, with a small number of
components on the boundary between the subsystems [25]. The decisional version of the VSP consists of
�nding a vertex separation value larger than a given threshold. It has applications on computer language
compiler design and exponential algorithms. In compiler design, the code to be compiled can be represented
as a directed acyclic graph (DAG) where the vertices represent the input values to the code as well as the
values computed by the operations within the code. An edge from node u to node v in this DAG represents
the fact that value u is one of the inputs to operation v. A topological ordering of the vertices of this DAG
represents a valid reordering of the code, and the number of registers needed to evaluate the code in a given
ordering is precisely the vertex separation number of the ordering [4]. The decisional version of VSP has
also applications in graph theory [14]. Speci�cally, if a graph has a vertex separation value, say w, then it
is possible to �nd the maximum independent set of G in time O(2wn). Other practical applications include
Graph Drawing and Natural Language Processing [9, 29].

3. Pure 0-1 optimization model

Before presenting the model, let us de�ne the 0-1 variables that are required:

• xp
u, whose value is 1 if vertex u is placed in position p in a given feasible layout, i.e. p = ϕ(u) and 0,

otherwise (i.e., p 6= ϕ(u)), for u, p = 1, 2, . . . , n.

• yp,qu,v, whose value is 1 if p = ϕ(u) and q = ϕ(v) in the given layout ϕ and 0, otherwise. The
inconvenience of this type of variable is that the number of y variables ismn2 and, then, the cardinality
of the set of vertices in graph G must be small in order to obtain the optimal solution of the model
by an exact 0-1 solver. On the other hand, yp,qu,v avoids the quadratic expression xp

ux
q
v.

• zpc, whose value is 1 if the vertex in position p (i.e., p = ϕ(u) and, then, xp
u = 1) is connected with

the vertex in any position, say q (i.e., q = ϕ(v) and, then, xq
v = 1) (what implies that yp,qu,v = 1) that

is larger than position c and 0, otherwise.

We propose the following integer programming formulation for the vertex separation problem:

V S∗ = minV S (1)

subject to ∑
p∈{1,...,n}

xp
u = 1 ∀u = 1, . . . , n (2)

∑
u∈{1,...,n}

xp
u = 1 ∀p = 1, . . . , n (3)

yp,qu,v ≤ xp
u ∀u, v, p, q = 1, . . . , n (4)

yp,qu,v ≤ xq
v ∀u, v, p, q = 1, . . . , n (5)

xp
u + xq

v ≤ yp,qu,v + 1 ∀u, v, p, q = 1, . . . , n (6)

zpc ≤
n∑

q=c+1

n∑
u=1

n∑
v=1

yp,qu,v ≤Mzpc ∀p, c = 1, . . . , n− 1, p ≤ c (7)

c∑
p=1

zpc ≤ V S ∀c = 1, . . . , n− 1 (8)
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xp
u, y

p,q
u,v, zpc ∈ {0, 1} ∀u, v, p, q = 1, . . . , n (9)

The assignment constraints (2) and (3) ensure that each vertex is only assigned to one position, and
each position is only assigned to one vertex, respectively. Subsystem (4)-(6) de�nes the variable yp,qu,v as the
product of the variables xp

u and xq
v in the traditional way. So, notice that for a position p,

∑n
q=c+1 y

p,q
u,v

computes the number of edges from the vertex in position p, say p = ϕ(u), to any vertex in a position q,
say q = ϕ(v) (since xq

v = 1 for yp,qu,v = 1) that is bigger than c, for c = q + 1, . . . , n for a given layout ϕ.
Constraints (7) compute the 0-1 value of the zpc variable from the yp,qu,v variables (since xp

u = 1 for
yp,qu,v = 1), where M is the standard big-M parameter that should be computationally small enough to allow
any feasible layout ϕ, in our case M = n− 1.

The left hand side (lhs) of constraints (8) gives the number of vertices in positions {p} that, in one hand,
are lower than or equal to position c, in any feasible layout ϕ or equal to c and, in the other hand, they are
connected with vertices whose positions are larger than position c. So, there is a position c in layout ϕ that
has the greatest lhs in the constraints (8), which is V S∗. The objective function of the model (1) minimizes
that value, being V S∗ the optimal value.

We can observe that this model has O(mn2) 0-1 variables and O(mn3) constraints, what makes it
impractical for relatively large instances.

4. Algorithmic Approach: Variable Neighborhood Search

In spite of the di�culty of the model presented above we can �nd e�cient exact approaches to solve
the VSP on special classes of graphs. A linear algorithm to compute the optimal vertex separation of a
tree is proposed in [10] as well as an O(n log n) algorithm for �nding the corresponding optimal layout. The
algorithm was improved in [36] with a linear time procedure to �nd the optimal layout. In [33] an alternative
method to compute the Vertex Separation of trees was proposed. [12] proposes an O(n log n) algorithm to
compute the Vertex Separation of unicyclic graphs (i.e., trees with an extra edge). A polynomial-time
algorithm to compute the Path-Width (what is identical to VSP) is proposed in [2]. However, the algorithm
cannot be considered from a practical point of view, since the bound on its time complexity is Ω(n), see [12].
[5] proposes a polynomial time algorithm for optimally solving the VSP for n-dimensional grids. Co-graphs
and permutational graphs can also be optimally solved as it was proposed in [1] and [2], respectively.

Approximation algorithms have been also proposed for the VSP. Speci�cally, [3] proposes a polynomial
time O(log2 n)-approximation algorithm for general graphs and a O(log n)-approximation algorithm for
planar graphs. Similar results for binomial random graphs are presented in [7].

VNS is a metaheuristic methodology for solving optimization problems based on a systematic change of
neighborhood structures, without guaranteeing the solution's optimality. In recent years, a large variety of
VNS strategies have been proposed. We can highlight the Variable Neighborhood Descent (VND), Reduced
VNS (RVNS), Basic VNS (BVNS), Skewed VNS (SVNS), General VNS (GVNS), Variable Neighborhood
Decomposition Search (VNSD) and Reactive VNS, among others. We refer the reader to [18] for a complete
review of this methodology and its di�erent variants. In this paper, we focus on the Basic VNS variant, see
[30] for the details, which combines deterministic and stochastic changes of neighborhood as shown in the
BVNS pseudo-code depicted in Algorithm 1.

The method starts by constructing a feasible solution (step 1), using one of the constructive procedure
described in Section 4.1. The BVNS implementation is executed for a prede�ned computing time, tmax (step
2 to 10). The search process starts with the �rst neighborhood of the constructed solution, N1(ϕ) (step 3).
Then, BVNS performs stochastic changes of neighborhood structures until reaching the largest prede�ned
neighborhood kmax (steps 4 to 8). The VNS metaheuristic methodology has three main stages, namely,
Shaking (step 5), Improvement (step 6) and Neighborhood change (step 7). In the shaking stage a solution,
say ϕ′, is generated within Nk(ϕ) (see Section 4.2.1 for additional details). Then, the improvement method
(Section 4.4) is applied to ϕ′ in order to �nd a local optimum, say ϕ′′, in the corresponding neighborhood.
Finally, the neighborhood change stage (Section 4.3), analyzes if ϕ′′ is better than ϕ (see in Section 4.4 the
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Algorithm 1 BasicVNS(kmax, tmax)

1: ϕ← Construct()
2: repeat

3: k ← 1
4: repeat

5: ϕ′ ← Shake(ϕ, k)
6: ϕ′′ ← LocalSearch(ϕ′)
7: NeighbourhoodChange(ϕ,ϕ′′, k)
8: until (k = kmax)
9: t← Time()
10: until (t = tmax)

extended de�nition of the concept of improvement move). If so, ϕ is replaced with ϕ′′ and k is set to one.
Otherwise, k is incremented by one unit. And, in any case, we repeat the procedure.

We now describe with more detail the main strategies of our BVNS approach for solving the Vertex
Separation Problem.

4.1. Constructive procedures

We have designed two greedy constructive algorithms, say C1 and C2, for the VSP. The constructive
procedure, C1, starts by creating a set of unlabeled vertices U (initially U = V ), and a set of labeled vertices
L = V \U . The vertex with the minimum degree is selected as the �rst node u (ties are broken at random).
The vertex u is labeled with 1. Then, sets U and L are properly updated (i.e., U = U \{u} and L = L∪{u}).
Once the �rst label is assigned to vertex u, C1 evaluates the greedy function as follows

g(v) = |NL(v)| − |NU (v)| ∀u ∈ U,

where NL(v) is the set of vertices adjacent to v that has been already labeled, and NU (v) is the set of
vertices adjacent to v not labeled yet. The constructive procedure selects the vertex with the maximum
g-value and assigns the next label to it. The procedure ends when all the vertices of the graph have a label
(i.e., U = ∅).

The second constructive procedure, C2, is based on the creation of the so-called level structures [27]
which means that the set of vertices V is partitioned into di�erent sets L1, L2, . . . , Lλ called levels. The �rst
level, L1, contains only one vertex. The rest of levels Ll with l = 2, 3, . . . , λ (where λ is a search parameter)
contain all the vertices not present in any Lj with i ≤ j < l that are adjacent to some vertex in Ll−1. The
level structure created in this way guarantees that the vertices in alternative levels are not adjacent. In
order to construct this level structure we use a breadth �rst search approach, performing the search once for
each vertex of the graph. Therefore, if the graph has n vertices, we construct n di�erent level structures. In
the context of the VSP, it is desirable to obtain a level structure with λ as large as possible (i.e., a structure
with the largest number of levels). Once we have identi�ed the most suitable level structure, C2 explores
it performing a breadth-�rst search and asigning levels in an incremental way, thus obtaining a solution for
the VSP.

4.2. Incremental objective function computation

Let ϕp be a partial solution where p vertices have been placed in positions from 1 to p. For the sake of
simplicity, we denote vp as the vertex placed in position p, i.e., p = ϕ(vp). We maintain this notation for
the rest of the paper. Given a graph G and a partial solution ϕp, the Cut-value of a position p, Cut(p, ϕ,G)
can be computed from the Cut-value of the previous position p− 1 (except for p = 1 where, obviously, the
Cut-value is always 1) as follows,

Cut(p, ϕp, G) = Cut(p− 1, ϕp, G) + δ+(p)− δ−(p),
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where δ+(p) ∈ {0, 1} has the value 1 if vertex vp has, at least, one adjacent vertex in NU (vp), and 0,
otherwise; and δ−(p) = |NL(vp)|.

This strategy can be extended to the incremental computation in complete solutions (i.e., solutions
ϕ = ϕr with r = n). Speci�cally, for any position p the set NU (vp) is replaced with the set of vertices placed
in a position q with 1 ≤ q ≤ p. Symmetrically, the set NL(vp) is replaced with the set of vertices placed in
a position q with p < q ≤ n. Figure 2 shows an example of the incremental objective function computation.
Let us consider the third position in ϕ (i.e., vertex C). The Cut-value of this position can be computed by
using the Cut-value of the previous position, Cut(2, ϕ,G) = 2. The value of δ+(3) is 1 because vertex C has
one adjacent at least (speci�cally, three adjacents) placed in a position greater than ϕ(C) = 3 (vertices B,
F and E, with ϕ(B) = 4, ϕ(F) = 5 and ϕ(E) = 6, respectively). On the other hand, the value of δ−(3) is 2
because C is the adjacent vertex with the largest label of vertices A and D, placed in positions ϕ(A) = 1 and
ϕ(D) = 2, respectively. The same reasoning can be applied to compute the rest of the Cut-values.

Figure 2: Incremental objective function computation. The symbol * means that the corresponding value is not de�ned for the
�rst position.

4.2.1. Shake

In this section we propose a shake function for the VSP, called shake(ϕ, k). This procedure initially
selects the vertices to be moved, based on their Cut-value. Speci�cally, shake(ϕ, k) selects the k vertices in
V with the largest Cut-value in ϕ. Then, each selected vertex is exchanged with another vertex determined
at random, obtaining a new ordering ϕ′. The rationale behind this procedure is that the k selected vertices
have Cut-values close or equal to the maximum Cut-value for ϕ in G and, therefore, the aim is to reduce
their Cut-value improving the objective function of ϕ′. Additionally, it is expected that the shaking step
will contribute to the diversi�cation of the search process. In other words, shaking will produce a solution
�far away� from the current one, allowing to explore di�erent regions of the solution space.

4.3. Neighborhood structures

A solution to the VSP can be represented as an ordering, where each vertex is located in the position
given by its label. For example, the labeling of the graph depicted in Figure 1 can be expressed by the
ordering ϕ = (D, A, F, G, E, B, C), where the �rst vertex, D, in the ordering receives the label 1, the second
vertex, A, receives the label 2, and so on. We de�ne neighborhood structures based on the exchange of
vertices in a given ordering. Given a solution ϕ = (v1, . . . , vp, . . . , vq, . . . , vn), we de�ne Move(ϕ, p, q) as
exchanging in ϕ the vertex in position p (i.e., vp) with the vertex in position q (i.e., vq) and, thus, producing
a new solution ϕ′ = (v1, . . . , vq, . . . , vp, . . . , vn).
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In a direct implementation, the complexity of evaluating ϕ′ is O(n2) in the worst case since it requires to
visit, for each position p in ϕ, all the vertices with labels p ≤ q. However, the Cut-value of some vertices does
not change when we perform a move. Therefore, it is not required to compute them again. Speci�cally, if we
perform Move(ϕ, p, q), all vertices with label r for 1 ≤ r < p or q ≤ r ≤ n do not change their Cut-values.
As a consequence, we only need to update vertices whose label s is such that p ≤ s < q. For example, Figure
3.a shows a layout and Figure 3.b represents the layout resulting from performing Move(ϕ, 2, 5). This move
only a�ects the Cut-value of positions 2 ≤ s < 5 (represented as a highlighted band in those �gures).

Additionally, to compute the Cut-value of the vertices involved (i.e., the set of vertices {D, C, B} in Figure
3.b) we can use the incremental objective function computation described above, but restricted to vertices
in positions from p to q − 1. In the example shown in Figure 3.b we can observe that the update of the
Cut-values is only needed for the vertices in positions ϕ(D) = 2, ϕ(C) = 3 and ϕ(B) = 4.

Figure 3: Illustrative example of an interchange move: (a) layout before the move and (b) layout after the move.

Given a layout ϕ, its neighborhood N1(ϕ) is de�ned as all possible exchanges between each pair of
vertices. In other words, a solution ϕ′ belongs to N1(ϕ) if and only if ϕ and ϕ′ only di�er in two labels. In
general, we may say that a solution ϕ′ belongs to the kth neighborhood of solution ϕ (i.e., ϕ′ ∈ Nk(ϕ)) if ϕ
and ϕ′ di�er in k + 1 labels.

4.4. Local search

VSP is a min-max problem [8, 32, 35] where the value of the objective function is usually reached in
several positions of the permutation ϕ. This kind of problems present a ��at landscape�, which turns out
in a challenge for classical local search procedures as well as for 0-1 solvers to obtain the optimal layout.
Typically, local search strategies do not perform well from a computational point of view, since most of
the moves have associated a null value. Then, given a graph G, changing the label p of a particular
vertex vp in ϕ (i.e., obtaining a new solution ϕ′) such that its Cut-value is decreased, does not necessarily
imply that V S(G,ϕ′) < V S(G,ϕ). However, it can be considered as an interesting move if the number of
vertices with a relative large Cut-value is reduced, regardless whether the objective function improves or
not. Considering this extended de�nition of �improving� we overcome the lack of information provided by
the objective function. Speci�cally, we implement a candidate list strategy classifying the vertices of the
graph according to its Cut-value. For example, given the graph depicted in Figure 1 and the labeling ϕ, we
obtain three di�erent sets: S3(ϕ) = {G}, containing vertices with Cut-value equal to 3; S2(ϕ) = {A, F, E},
with Cut-value equal to 2; and �nally S1(ϕ) = {D, B} with Cut-value equal to 1.

Given the de�nition of Si(ϕ) that has been introduced in the previous paragraph, we consider that a
move improves the current solution if any node involved in the move is removed from Si(ϕ) and included in
Sj(ϕ) with j < i without increasing the cardinality of any set Sl(ϕ) for l > i. According to this de�nition
of improving, a move which removes a vertex from S2(ϕ) (for example, vertex A) including it in S1(ϕ) is
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Figure 4: (a) improving move and (b) non-improving move over the layout depicted in Figure 3.a.

considered an improving move if the cardinality of S3(ϕ) remains unaltered. We have empirically found
that this criterion allows the local search procedure to explore a larger number of solutions than a typical
implementation that only performs moves when the objective function is improved. Figure 4.a shows an
improving move for the labelling of Figure 3.a. The move consists of exchanging the labels of vertices C

and A and, thus, obtaining a new solution ϕ′. In the new labelling, vertex F is removed from set S2(ϕ) and
included in set S1(ϕ

′). It means that the Cut-value of vertex F is decreased by 1 unit. This move does
not reduce the VS value of the graph, but it reduces the number of vertices with large Cut-value. Observe
that this move does not improve the incumbent solution, but it can allow further moves that, at the end,
improves it. On the other hand, if we now exchange the labels of vertices B and C obtaining a new solution
ϕ′′ (see Figure 4.b) then vertex C is removed from set S2(ϕ) and included in set S3(ϕ

′′) (i.e., its Cut-value
is increased by one unit). Therefore, although this move does not a�ect the VS value, it is not accepted.
Algorithm 2 shows a pseudocode of the procedure, where the acceptance criterion has been implemented.
This procedure starts by comparing the objective function of the previous ordering (ϕ) and the related
function of the ordering after the corresponding movement (ϕ′). If the associated move reduces the value
of the objective function, then IsImprovementMove returns true (step 2). On the other hand, if the
move deteriorates the objective function value then this procedure returns false (step 4). In case that the
corresponding move does not a�ect the value of the objective function (steps 6 to 13) IsImprovementMove
considers the extended de�nition of improvement move de�ned above.

Algorithm 2 IsImprovementMove(ϕ,ϕ′)

1: if V S(G,ϕ′) < V S(G,ϕ) then
2: return true
3: else if V S(G,ϕ′) > V S(G,ϕ) then
4: return false
5: else {* V S(G,ϕ) = V S(G,ϕ′) *}
6: for i← V S(G,ϕ) downto 1 do
7: if |Si(ϕ)| > |Si(ϕ

′)| then
8: return true
9: else if |Si(ϕ)| < |Si(ϕ

′)| then
10: return false
11: end if

12: end for

13: return false
14: end if

The proposed Local Search strategy is presented in Algorithm 3. This method receives a layout ϕ and
perform moves while an improve is produced (i.e., while-loop in step 2). Speci�cally, the procedure starts
by arranging the vertices in descending order of the Cut-value, obtaining the set posSet which contains
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the position of such vertices (step 4). Then, the algorithm traverses this set (for-loop in step 5) trying to
interchange each vertex in posSet with the remaining vertices in ϕ (for-loop in step 6). In each iteration,
the method proves to interchange the position of the two considered vertices (step 8) accepting the move if
the new layout ϕ′ outperforms ϕ (steps 9 to 12). This procedure is repeated until no improvement in the
move is found.

Algorithm 3 LocalSearch(ϕ)

1: improvement← true
2: while improvement do
3: improvement← false
4: posSet← OrderByCutV alue(ϕ)
5: for all p ∈ posSet do
6: for q ← 1 to |ϕ| do
7: if p 6= q then
8: ϕ′ ← Interchange(ϕ, p, q)
9: if IsImprovementMove(ϕ,ϕ′) then
10: ϕ← ϕ′

11: improvement← true
12: end if

13: end if

14: end for

15: end for

16: end while

17: return ϕ

5. Computational experience

This section reports the computational experiments that we have performed for testing the e�ciency of
our VNS procedure, so called BVNS, for solving the VSP. The algorithm has been implemented in Java SE
6 and all the experiments were conducted on an Intel Core i7 2600 CPU (3.4 Ghz) and 2 Gb RAM. We
have experimented with three sets of instances, totalizing 173 instances (All of the instances are available
at http://www.optsicom.es/vsp/).

5.1. Testbed description

• HB: We derived 73 instances from the Harwell-Boeing Sparse Matrix Collection. This collection consists
of a set of standard test matrices M = Muv arising from problems in linear systems, least squares,
and eigenvalue calculations from a wide variety of scienti�c and engineering disciplines. The graphs
are derived from these matrices by considering an edge (u, v) for every element Muv = 0. From the
original set we have selected the 73 graphs with n ≤ 1000. The number of vertices and edges range
from 24 to 960 and from 34 to 3721, respectively.

• Grids: This set consists of 50 matrices constructed as the Cartesian product of two paths [34]. They
are also called two dimensional meshes and the optimal solution of the VSP for squared grids is known
by construction, see [7]. Speci�cally, the vertex separation value of a square grid of size λ×λ is λ. For
this set, the vertices are arranged on a square grid with a dimension λ×λ for 5 ≤ λ ≤ 54. The number
of vertices and edges range from 5× 5 = 25 to 54× 54 = 2916 and from 40 to 5724, respectively.

• Trees: Let T (λ) be set of trees with minimum number of nodes and vertex separation equal to λ.
As it is stated in [11], there is just one tree in T (1), namely the tree with a single edge, and another
one in T (2), the tree constructed with a new node acting as root of three subtrees that belong to
T (1). In general, to construct a tree with vertex separation λ + 1 it is necessary to select any three
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members from T (λ) and link any one node from each of these to a new node acting as the root of the
new tree. The number of nodes, n(λ), of a tree in T (λ) can be obtained using the recurrence relation
n(λ) = 3n(λ − 1) + 1 where and n(1) = 2 (see [11] for additional details). We consider 50 di�erent
trees: 15 trees in T (3), 15 trees in T (4) and 20 trees in T (5). The number of vertices and edges range
from 22 to 202 and from 21 to 201, respectively.

Eight experiments are performed for assessing the validation of the proposed procedure BVNS. We have
selected 32 HB representative instances, with di�erent sizes and densities, to perform the experiments 1 to 5
oriented to establish the best con�guration of the BVNS procedure. Let us name this set of instances the HB
subset. Speci�cally, we consider the instances ASH85, BCSPWR01, BCSPWR02, BCSPWR03, BCSSTK01, BCSSTK02,
BCSSTK03, BCSSTK04, BCSSTK05, BCSSTK22, CAN_144, CAN_161, CAN_187, CAN_229, CAN_24, CAN_61, CAN_62,
CAN_73, CAN_96, DWT_162, DWT_193, DWT_198, DWT_209, DWT_221, DWT_234, DWT_245, DWT_59, DWT_66,
DWT_72, DWT_87, NOS1 and NOS4. Experiment 6 evaluates the performance of the optimization model (1)-(9).
Experiment 7 evaluates the performance of BVNS on instances whose optimum is known and, �nally, the
performance of the best con�guration of the procedure BVNS is analyzed by using the full testbed of 173
instances (experiment 8).

5.2. Experiment 1: constructive procedures performance

In our �rst experiment we compare the performance of the two proposed constructive procedures for the
VSP, namely C1 and C2, described in Section 4.1. We have conducted the experiment over the HB subset of
32 instances presented above. We generate one solution with each constructive procedure. The statistics of
Table 1 are as follows: #Best, number of best solutions found in the experiment; Avg., average quality over
all instances; Dev(%), average percent deviation with respect to the best solution found in the experiment;
and Time, average computing time in seconds required by the procedure.

Table 1: Constructive procedures.

C1 C2
#Best 19 18
Avg. 17.50 17.65

Dev(%) 11.24 15.66
Time 0.010 0.018

Table 1 shows that C1 obtains better results than C2 in all headings and using similar computing time.
Speci�cally, C1 reaches a smaller deviation (11.24%) than C2 (15.66%) and a larger number of best solutions
(19 versus 18) in the set of instances experimented with.

5.3. Experiment 2: local search performance

We compare the two constructive procedures for the VSP (C1 and C2) coupled with the improvement
procedure (LS) presented in Section 4.4. Table 2 reports the results using the same headings as above.
We can observe that the method C2 coupled with LS gets more best solutions than C1+LS (22 versus 19),
smaller deviation (9.48% versus 9.86%) and requires 7% smaller computing time (26.25 sec versus 24.42 sec)
than the method C1 + LS. Despite C1 alone has better performance than C2 (see Table 1), when coupling
the improvement strategy to the constructive procedures the behaviour completely changes and C2 + LS
clearly outperforms C1 + LS. This behaviour may be partially explained by the fact that C2 is able to
construct layouts with broader diversity than C1.

5.4. Experiment 3: objective function computation

We study the computing time of C2 + LS when (1) using a direct objective function computation (DOFC)
and (2) using the incremental objective function computation (IOFC) presented in Section 4.2. Figure 5
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Table 2: Constructive procedures coupled with the improvement procedure.

C1 + LS C2 + LS
#Best 19 22
Avg. 14.88 14.88

Dev(%) 9.86 9.48
Time 26.25 24.42

depicts a bar diagram where the X-axis represents the ten largest instances of the HB subset and the Y-
axis gives the computing time required to obtain a local optimum for both methods respectively (DOFC
and IOFC) in the corresponding instance. The �gure clearly shows that the saving in computing time is
signi�cant for IOFC. Speci�cally, for these ten instances DOFC needs 69 sec on average to obtain a local
optimum, while IOFC requires 3.85 sec on average to obtain the same optimum value, i.e., almost 18 times
faster.

Figure 5: Computing time comparison for direct (DOFC) and incremental (IOFC) objective function computation.

5.5. Experiment 4: number of neighborhoods

This experiment consists of evaluating the impact of the kmax parameter on the performance of BVNS.
It is expected that the larger the value of kmax, the larger the computing time and, hopefully, the lower the
objective function value. Table 3 shows the number of best solutions, the average objective function, the
average deviation and the computing time for the four di�erent values of kmax = {0.08n, 0.1n, 0.3n, 0.5n},
where n indicates the number of vertices. The table shows that kmax = 0.5n obtains the best results in
terms of quality but using the highest computing time. On the other hand, kmax = 0.08n is the fastest
BVNS variant but it has a poor quality results. Then, we select kmax = 0.3n as a trade-o� between quality
and computing time.

5.6. Experiment 5: one-start versus multi-start strategy

In general, the shake strategy allows the VNS methodology to scape from local optima. Additionally,
this procedure also diversi�es the incumbent solution by incorporating/removing elements in the shaken
one. In other words, the shake algorithm produces a solution which moves away from the current incumbent
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Table 3: Comparison of di�erent kmax values.

kmax

0.08n 0.1n 0.3n 0.5n
#Best 27 28 31 32
Avg. 13.34 13.31 12.91 12.87

Dev(%) 3.71 2.92 0.78 0.00
Time 69.70 79.54 214.32 341.74

solution. However, it could be possible that the shake strategy is not powerful enough to be used alone
(i.e., deep local optimum). Consequently, in order to analyze the potential improvement of diversi�cation,
we consider a multi-start strategy which construct solutions in di�erent positions of the search space and,
then, execute the VNS. In our this experiment we compare the performance of the best identi�ed variant
of BVNS (which includes C2, exchange-based LS and the parameter kmax set to 0.3n) with a multi-start
BVNS. In order to have a fair comparison, both methods use the same constructive and search strategies.
The multi-start BVNS is executed starting from 10 di�erent solutions. So, it is expected that its computing
time is about 10 times slower, and the kmax parameter is set to 0.03n, so it is 10 times lower than the kmax

value in BVNS. Table 4 show that the best variant of BVNS while using the one-start approach has better
performance than the multi-start strategy in the same envronment. Speci�cally, the former has more best
solutions (30 versus 25) and it reaches smaller average deviation (0.40%) than the latter (4.46%) in the set
of 32 instances of the HB subset considered in the experimentation. Furthermore, the computing time for
the one-start BVNS (214.32 sec.) is a 93% less than the time required by the multi-start strategy (3170.09
sec.) for BVNS. It is important to remark that in both variants, the BVNS algorithm is exactly the same.

Table 4: One-start Vs multi-start BVNS.

BVNS Multi-start BVNS
#Best 30 25
Avg. 12.91 13.41

Dev(%) 0.40 4.46
Time 214.32 3170.09

5.7. Experiment 6: pure 0-1 optimization model

This experiment consists of evaluating the optimization of the mathematical model introduced in Section
3, by using the state-of-the-art optimization engine CPLEX v12.1 [19].

The main results of the experiment are shown in Table 5, whose additional headings are as follows:
TimeCPLEX , computing time (sec) required by CPLEX; nc, number of constraints; n01 number of 0-1
variables; nel, number of constraint matrix non-zero elements; V S∗ = V S(G), optimal vertex separation
value for the corresponding instance G; V SCPLEX , vertex separation value related to the incumbent
vertex separation provided by CPLEX; nn, number of CPLEX branch-and-cut required for obtaining the
incumbent vertex separation; V SCPLEX , LP lower bound of the optimal vertex separation value provided by
CPLEX; V SBVNS , vertex separation value provided by our metaheuristic procedure BVNS; and TimeBVNS ,
computing time required by the procedure.

Firstly, it is important to point out that the instances of the set that have been used in this experiment
are those whose model dimensions are such that CPLEX is not running out of memory. Speci�cally, the
table reports the main results of the following small instances: two instances from the grid set and the
21 instances from the set that have 22 nodes. In total 23 out of 173 instances in the sets that we have
experimented with. Notice that the optimal vertex separation of the subset of instances in Table 5 is known
by construction.

12



Table 5: CPLEX results

Instance n TimeCPLEX nc n01 nel V S∗ V SCPLEX nn V SCPLEX V SBVNS TimeBVNS

grid_3 9 2528 5938 2062 19690 3 3 12636 3 3 0.054
grid_4 16 5400 37166 12665 152318 4 5 902 1 4 0.126

Tree_22_3_rot0_3 22 5400 61532 21044 2922994 3 4 533 1 3 0.029
Tree_22_3_rot1_3 22 5400 61532 21044 2922994 3 5 543 1 3 0.022
Tree_22_3_rot2_3 22 5400 61532 21044 2922994 3 4 604 1 3 0.024
Tree_22_3_rot3_3 22 5400 61532 21044 2922994 3 4 557 1 3 0.037
Tree_22_3_rot4_3 22 5400 61532 21044 2922994 3 3 553 1 3 0.019
Tree_22_3_rot5_3 22 5400 61532 21044 2922994 3 4 572 1 3 0.018
Tree_22_3_rot6_3 22 5400 61532 21044 2922994 3 4 593 1 3 0.015
Tree_22_3_rot0_1 22 5400 61532 21044 2922994 3 4 595 1 3 0.04
Tree_22_3_rot1_1 22 5400 61532 21044 2922994 3 4 597 1 3 0.02
Tree_22_3_rot2_1 22 5400 61532 21044 2922994 3 4 572 1 3 0.018
Tree_22_3_rot3_1 22 5400 61532 21044 2922994 3 4 577 1 3 0.025
Tree_22_3_rot4_1 22 5400 61532 21044 2922994 3 4 590 1 3 0.016
Tree_22_3_rot5_1 22 5400 61532 21044 2922994 3 4 566 1 3 0.019
Tree_22_3_rot6_1 22 5400 61532 21044 2922994 3 5 646 1 3 0.022
Tree_22_3_rot0_2 22 5400 61532 21044 2922994 3 5 625 1 3 0.029
Tree_22_3_rot1_2 22 5400 61532 21044 2922994 3 5 590 1 3 0.022
Tree_22_3_rot2_2 22 5400 61532 21044 2922994 3 4 547 1 3 0.024
Tree_22_3_rot3_2 22 5400 61532 21044 2922994 3 4 588 1 3 0.037
Tree_22_3_rot4_2 22 5400 61532 21044 2922994 3 4 591 1 3 0.019
Tree_22_3_rot5_2 22 5400 61532 21044 2922994 3 4 543 1 3 0.018
Tree_22_3_rot6_2 22 5400 61532 21044 2922994 3 4 636 1 3 0.015

Note: CPLEX computing time limit: 5400 sec.

We can observe in Table 5 that the LP lower bound V SCPLEX is so small that is useless, in fact is 1, i.e.,
the minimum possible value for connected graphs. Additionally, we can observe that CPLEX only obtains
the optimal vertex separation for the smallest instance, grid_3. On the other hand, the gap between the
CPLEX incumbent solution and the optimum is one or two units, which means a gap of 66% (considering
the value V S∗). Finally, it is worth to mention that, although CPLEX obtains the optimal value V S∗ = 3
for instance TREE_22_3_rot4, it can not guarantee its optimality in the computing time limit (taking into
account the value of the lower bound V SCPLEX = 1 < V S∗ = 3).

Finally, we can observe in Table 5 that the procedure BVNS obtains the optimal vertex separation value
in all instances that we have used in the experiment, being impressive its computing time (much less than
0.15 sec for each instance). On the other hand, since our BVNS is heuristic in nature, it does not certify
the optimality of these solutions by itself.

5.8. Experiment 7: BVNS on instances with known optimum value

We evaluate in this experiment the performance of our best identi�ed variant of BVNS on a larger set
of instances than the set used in the previous experiment. In this other set the optimal vertex separation
is known by construction. Speci�cally, we use the 50 instances of the set Grids and 50 instances of the set
Trees and test whether the BVNS is able to match the optimum or not. Table 6 has the same headings
as the other tables plus the computing time, say, Time_to_Opt, required by BVNS to reach the optimal
solution on average.
Observe that BVNS is able to �nd the optimum solution in all the instances of the set Grids, subset Trees_22
and subset Trees_67. Therefore, BVNS is able to �nd the optimum in the instances where CPLEX could
not due to running out of memory while solving the model presented in Section 3. Indeed, BVNS �nds the
optimum in subsets Trees_22 and Trees_67 in short computing time. It is worth to remark that although
the BVNS method requires a relative large computing time (1422.76 sec) for the whole procedure, it obtains
the optimal solution in only 0.36 sec on average. In sight of these results we can conclude that grids instances
are easily solved by our procedure. Regarding the instances of the set Trees the algorithm is able to �nd the
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Table 6: Grids and Trees.

Grids Trees_22 Trees_67 Trees_202

#Opt 50 15 15 1
Avg. 29.5 3.00 4.00 6.35

Dev(%) 0.00 0.00 0.00 27.00
Time_to_Opt 0.36 0.002 0.58 *

Time 1422.76 0.02 3.37 314.28

optimal solution for the small and medium instances (i.e., Trees_22 and Trees_67) in very small computing
time, 0.002 sec for �nding the solution and 0.02 sec for proving it for trees with 22 nodes, and 0.58 sec and
3.37 respectively, for trees with 67 nodes. Speci�cally, BVNS only �nds the optimal solution in one out of
20 large instances included in the set Trees_202 and the average deviation is 27.0%. But, although the
computing time, 314.28 sec, is large as compared to the other sets of instances, it is not too much e�ort
considering that the instances have 202 vertices. Moreover, although it is not reported in Table 6, we can
observe analyzing each instance that, besides guaranteeing optimally in one instance, BVNS obtains in 11
instances a quasi-optimal solution (the solution value is 6, i.e., one unit from the optimal one), and for the
remaining 8 instances it obtains a solution value of 7 (i.e., two units from the optimal one). Notice that,
since BVNS does not match the optimal value in 19 instances, the corresponding Time_to_Opt value is
not reported (represented by an asterisk in the table).

5.9. Experiment 8: BVNS procedure versus C2 and C2 + LS

The VSP has been computationally observed to be optimally solved for particular graphs (trees, grids,
co-graphs, etc.). Additionally, as it was presented in Section 2, VSP has relevant practical applications.
However, as far as we know, there are no previous heuristic procedures to obtain high-quality solutions on
general graphs. In order to provide a �nal comparison, our experiment consists of evaluating the performance
of BVNS versus the constructive approach C2, and the constructive C2 plus the local search procedure, C2
+ LS, executed as stand-alone procedures. To provide a fair comparison, the three procedures are executed
during a similar computing time. Speci�cally, C2 is run for 23000 independent iterations while C2 + LS is
executed for 150 independent iterations. The target of this computational comparison is to experimentally
show how a systematic change of neighborhood (VNS methodology) is able to outperform more direct
approaches (say C2 and C2 + LS).

Table 7: Constructive Vs Constructive plus local search Vs BVNS

C2 C2 + LS BVNS
#Best 16 38 73
Avg. 30.70 26.68 24.25

Dev(%) 35.97 11.73 0.00
Time 1417.05 1204.38 749.77

Finally, the results of the last experiment are shown in Table 7, where the performance of the procedures
C2, C2 + LS and BVNS are compared by executing them over the whole set of 73 HB instances, where the
optimum is not known. Taking into account that we are considering large instances (up to 1000 vertices),
the computing time could not be eventually a�ordable. Therefore, the time limit for stopping the heuristic
methods was set to 1000 sec. We can observe that the inclusion of the local search procedure LS described
in Section 4.4 improves the solution obtained by the constructive approach C2 alone. Furthermore, BVNS
clearly outperforms C2 and C2 + LS in all headings. Speci�cally, BVNS is able to �nd the best solution in
the 73 instances under consideration (in 749.77 sec), while C2 + LS �nds it in only 38 instances (requiring
1204.38 sec) and C2 only �nds it in 16 instances (requiring 1417.05 sec).
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6. Conclusions

In this paper we have proposed a pure 0-1 optimization model for the Vertex Separation Problem (VSP).
This model has O(mn2) variables and O(mn3) constraints, which makes it impractical for relatively large
instances, as we have reported in our experimentation. We therefore have also presented an approximation
algorithm. As far as we know, it is the �rst heuristic procedure for gereral graphs for the VSP. Speci�cally,
we have introduced two constructive procedures based on di�erent greedy strategies, so called C1 and C2.
Experimental results show that C1 marginally improves the performance of C2. Additionally, we introduce
a novel scheme for calculating the objective function which substantially reduces the computing time (by a
factor of 18) as compared with the direct implementation. We also propose a local search strategy, LS, based
on exchanges that incorporates a new de�nition of the improvement move. It allows the procedure to search
in �at landscapes. Experimental results revealed that coupling constructives procedures with the local search
strategy, improves the results of constructive methods by themselves in terms of quality although consuming
more computing time. We can observe in our extensive experimentation that the best combination is C2
+ LS which means that although as a constructive procedure C1 obtains better results than C2, when
combined with the local search C2 becomes the best alternative. We also introduce a shake procedure which
selects vertices according to their contribution, performing an interchange in a stochastic way (in order to
favor diversi�cation). Finally, we incorporate C2, LS and the shake procedure in a BVNS algorithm. The
proposed metaheuristic has been tested on a large benchmark consisting of 173 well-known instances in
the existing literature. Speci�cally, the BVNS has been able to �nd the optimal Vertex Separation in 81
out of 100 instances (whose optimal solution is known by construction). In the rest of instances, where the
optimum value is unknown, the BVNS procedure clearly outperforms C2 and C2 + LS when executing all the
procedures with the same running time proving experimentally the superiority of the BVNS metaheuristic.
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