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Abstract

The quadratic minimum spanning tree problem consists of determining a spanning tree
that minimizes the sum of costs of the edges and pairs of edges in the tree. Many algorithms
and methods have been proposed for this hard combinatorial problem, including several
highly sophisticated metaheuristics. In this paper we present a simple tabu search (TS)
for this problem that incorporates strategic oscillation (SO) by alternating between con-
structive and destructive phases. We show commonalties shared by this strategy and the
more recently introduced methodology called iterated greedy search, and identify implica-
tions of their differences regarding the use of memory structures. Extensive computational
experiments reveal that the proposed SO algorithm with embedded TS is highly effective
for solving complex instances of the problem as compared to the best metaheuristics in the
literature. We also introduce a hybrid method that proves similarly effective for problem
instances that are both simple and complex.

Keywords. Tabu search, strategic oscillation, adaptive memory programming, Quadratic
minimum spanning tree, iterated greedy.

1 Introduction

The Quadratic Minimum Spanning Tree Problem (QMSTP) has been widely studied in the lit-
erature due to its applications in a wide variety of settings, including transportation, telecom-
munication, irrigation, and energy distribution. The problem appears, for example, when
transferring oil from one pipe to another in a situation where the cost depends on the type of
interface between two pipes. The same pairwise interaction effect arises in the connection of
aboveground and underground cables in a road network with turn penalties [23, 28].

We may define the QMSTP as follows. Let G = (V,E) be an undirected graph where
V = {v1, · · · , vn} is the vertex set and E = {e1, · · · , em} is the edge set. Consider that each
edge and each pair of edges has an associated cost. In mathematical terms, we have two
cost functions: w : E → ℜ+ and c : (E × E) − {(e, e), ∀e ∈ E} → ℜ+ where as in previous
approaches [2, 19], we assume that c(ei, ej) = c(ej , ei) for i, j = 1, ...,m. The QMSTP consists
of finding a spanning tree T of G with edge set ξ(T ) ⊆ E that minimizes:

∑

ei∈ξ(T )

∑

ej∈ξ(T )
ei 6=ej

c(ei, ej) +
∑

e∈ξ(T )

w(e).

The QMSTP is an extension of the well-known minimum spanning tree problem, where in
addition to edge costs, we have costs associated with pairs of edges. The problem was first
introduced by Assad and Xu [1, 25], showing that it is NP-hard.
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This paper has two objectives: the primary objective is to investigate the strategic oscilla-
tion proposal to alternate between constructive and destructive phases as a basis for creating
a competitive method for the QMSTP, and the secondary objective is to compare memory-less
with memory based designs. The remainder of this paper is organized as follows. In Section
2, we give a background of Tabu Search (TS) and Strategic Oscillation (SO) that sets the
stage for the later specific algorithmic design we employ. We also refer to the more recent It-
erated Greedy (IG) approach which has some resemblances to strategic oscillation, and which
provides a basis for subsequent comparative testing. Section 3 gives an overview of particu-
lar metaheuristics that have previously been applied to the QMSTP. Section 4 describes our
proposed methods based on TS, SO and IG. In Section 5, we present empirical studies, which
are designed to: 1) analyze the influence of the parameters and settings of our methods, 2)
compare the different designs, paying special attention to the influence of memory structures,
3) obtain an algorithm with a robust performance across test problems with different charac-
teristics, and 4) compare its results with those of the best approaches from the literature. We
finish with the associated conclusions in Section 6 and our proposals for further extensions.

2 Background of Tabu Search and Strategic Oscillation

Tabu Search is a meta-heuristic that guides a local heuristic search procedure to explore the
solution space beyond local optimality. One of the main components of Tabu Search is its use
of adaptive memory, which creates a highly flexible search behavior. Memory-based strategies
which are the hallmark of tabu search approaches, are founded on a quest for ”integrating
principles,” by which alternative forms of memory are appropriately combined with effective
strategies for exploiting them. The adaptive memory feature of TS allows the implementation
of procedures that are capable of searching the solution space economically and effectively.
Since local choices are guided by information collected during the search, TS contrasts with
memoryless designs that heavily rely on semi-random processes that implement a form of
sampling.

The structure of a neighborhood in tabu search goes beyond that used in local search
by embracing the types of moves used in constructive and destructive processes (where the
foundations for such moves are accordingly called constructive neighborhoods and destructive
neighborhoods). Following basic TS principles, memory structures can be implemented within
a constructive process to favor (or avoid) the inclusion of certain elements in the solution
previously identified as attractive (or unattractive). Such expanded uses of the neighborhood
concept reinforce a fundamental perspective of TS, which is to define neighborhoods in dynamic
ways that can include serial or simultaneous consideration of multiple types of moves.

This dynamic neighborhood approach applies not only to the types of neighborhoods used in
”solution improvement methods” (sometimes called ”local search methods”) but also applies to
constructive neighborhoods used in building solutions from scratch - as opposed to transitioning
from one solution to another. Although it is commonplace in the metaheuristic literature to
restrict the word ”neighborhood” to refer solely to transitions between solutions as embodied
in improvement methods, constructive neighborhoods have been proposed as an important
ingredient of search processes from the very beginning of the TS methodology, as documented
by Glover and Laguna [7]. Nevertheless, tabu search methods for exploiting constructive
neighborhoods have rarely been applied in computational studies.

Our tabu search approach for the QMSTP is additionally based on the strategic oscillation
methodology [7, 8]. Strategic oscillation (SO) is closely linked to the origins of tabu search,
and operates by orienting moves in relation to a critical level, as identified by a stage of
construction. In particular, we consider a constructive/destructive type of strategic oscillation,
where constructive steps ”add” elements and destructive steps ”drop” elements. As described in
Chapter 4 of [8], the alternation of constructive with destructive processes, which strategically
dismantle and then rebuild successive trial solutions, affords an enhancement of such traditional
constructive procedures.
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More recently, constructive and destructive neighborhoods have been applied within a
simplified and effective method known as Iterated Greedy (IG) [10], which generates a sequence
of solutions by iterating over a greedy constructive heuristic using two main phases: destruction
and construction. IG is a memory-less metaheuristic easy to implement that has exhibited
state-of-the-art performance in some settings (see for example [4, 12, 21]). We identify links
between this more recent constructive/destructive approach and strategic oscillation by first
proposing an adaptation of the IG methodology to the QMSTP and then extending it to include
short term memory structures to create a tabu search approach based on strategic oscillation.

3 Previous Metaheuristics Applied to the QMSTP

Although exact procedures, including branch and bound [1, 25] and Lagrangian relaxation
[14], have been applied to the QMSTP, their success has been chiefly limited to problems
that may be classified as small, containing from 6 to 15 vertices. By contrast, metaheuristics
have been shown capable of finding high quality solutions to QMSTP problems over a wide
range of sizes, from small to significantly larger than those handled by exact methods. Early
genetic algorithms (GAs) implementations were made by Zhou and Gen [28], which proposed
a GA based on the Prüfer number to encode a spanning tree. The algorithm was tested on
QMSTP instances with up to 50 vertices and proved superior to two greedy algorithms proposed
in [1, 25]. More recently, Soak, Corne, and Ahn [22] developed another GA approach that
employed an edge-window-decoder encoding, (in which a tree is represented as a linear string
of node identifiers, and these in turn are interpreted as a set of edges). This GA implementation
was demonstrated to perform much better than GAs based on other encodings (including the
Prüfer number representation) on Euclidean instances containing between 50 and 100 nodes.
In related work, Gao and Lu [5] proposed another GA to address a QMSTP variant, the
fuzzy QMSTP, which was formulated as an expected value model with chance-constrained
programming and dependent-chance constrained programming. The authors suggested the
use of Prüfer number representation for the GA.

The Artificial bee colony method is another bio-inspired metaheuristic that has been a tool
of choice for dealing with the QMSTP [23], involving a swarm intelligence technique based on
the analogy to the intelligent foraging behavior of honey bees. To investigate the effectiveness
of this approach, the authors carried out experiments with problem instances of up to n = 250,
finding that artificial bee colony obtained better solutions than those achieved by the GA-based
methods of Zhou and Gen [28] and Soak et al [22].

Recently, Cordone and Passeri [2] proposed a tabu search implementation for the QMSTP
based on exchanges. At each iteration, the method adds a new edge to the current spanning
tree and removes one of the edges from the resulting loop. The tabu mechanism forbids recently
removed edges to be added into the solution and recently added edges to be removed for a
certain number of iterations. The algorithm was tested over a benchmark set of randomly gen-
erated instances with up to 30 vertices. However, no comparison with previous metaheuristics
is presented.

In the context of adaptive memory programming (the use of memory structures within
metaheuristics), Öncan and Punnen [14] presented a local search algorithm with tabu thresh-
olding. The algorithm was tested on different benchmark problems with sizes ranging from 6
to 100 vertices. Empirical results evidenced that the method improves upon the greedy algo-
rithms presented in [1, 25]. Finally, the most recent TS proposal is the highly effective Iterated
Tabu Search approach, proposed by Palubeckis [19] using two phases: solution perturbation
and TS. The method to perturb a solution (current spanning tree) relies on randomization: an
edge for removal and a non-tree edge for replacement are randomly selected from a candidate
list. At each iteration, the TS method examines all feasible exchange moves (replacement of
an edge in the tree) and the best admissible non-tabu move is performed. The removed and
added edges are labeled tabu for m

4 iterations. The TS method is run for a number of iterations
taken from the interval [Imin, Imax]. Computational results for problem instances with up to

3



50 vertices indicated that its performance (in terms of both solution quality and computational
time) surpasses those of the other metaheuristics included in their comparison, which consisted
of multistart simulated annealing, GA, and GA with local search.

4 New Metaheuristic Adaptations

In this section, we explore the adaptation of the TS and IG methodologies to obtain high
quality solutions to the QMSTP. We first describe in Section 4.1 the greedy constructive and
destructive algorithms that will be applied in both methods. Then, in Section 4.2, we provide
details of the improvement methods proposed in the literature for the QMSTP, which will be
employed as the local search phase of our IG for the QMSTP. Moreover, we describe the short
term memory structure that added to the local search creates the tabu search improvement
method of our TS for the QMSTP. Section 4.3 gives the entire IG method, showing how its
different elements interact; and finally, Section 4.4 completes the development by providing
the general overview of the TS algorithm with the Strategic Oscillation strategy.

4.1 Constructive and Destructive Methods

We begin by introducing two greedy constructive algorithms, C1 and C2, and a destructive
one, D, which may be used to build feasible solutions for the QMSTP. The two constructive
methods accomplish their task by adding, at each construction step, exactly one edge to a
current partial solution, which is a forest of G (disjoint union of trees). In order to describe
C1 and C2, we firstly define the contribution of an edge ei ∈ E to the total cost of a forest F
with edge set ξ(F ) ⊆ E as:

Q(ei, F ) = w(ei) +
∑

ej∈ξ(F )

c(ei, ej), i = 1, ...,m.

C1 is an iterative process that is similar to Kruskal’s algorithm [11]. At each iteration, the
algorithm considers the set S ⊆ E \ ξ(F ) of all edges that can be used to feasibly augment
the current forest F (i.e., those edges whose inclusion would not result in a cycle) and adds
the feasible edge with the minimum contribution value across all elements in S, emin. We can
easily update Q(ei, F ) for each ei, i = 1, ...,m by adding the value c(ei, emin) to it. We should
point out that given a spanning tree T , the objective function value z can be obtained from
the Q values with the expression:

z =
∑

ei∈ξ(T )

Q(ei, T ).

The greedy constructive procedure C2 is based on the sequential fixing method proposed
by Assad and Xu [1, 25]. It proceeds like C1 but employing the following greedy function to
guide the iterative selection of edges (again, the lowest values are preferable):

Q2(ei, F ) = Q(ei, F ) +
n1

m1
·
∑

ej∈S
i 6=j

c(ei, ej), i = 1, ...,m.

where m1 = |S| − 1 and n1 = n− 1− |ξ(F )|. Note that Q2 extends Q by further considering
interaction costs with the candidates edges for the tree in S (in this way, C2 is more complicated
than C1).

The greedy destructive algorithm is based on the reverse-delete algorithm (reverse version
of Kruskal’s algorithm). The algorithm starts with the original graph G and then it removes
one edge at a time until there are only n− 1 selected edges remaining. Specifically, it deletes
the edge e with the maximum contribution to the current graph that does not disconnect the
graph, emax. In this case, the Q values for each ei (i = 1, ...,m) are updated by subtracting
c(ei, emax) from them.
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4.2 Local Search Methods

In this section, we describe three improvement methods, based on exchanges, previously pro-
posed for the QMSTP. Given a solution T , we exchange an edge ei ∈ ξ(T ) with an edge
ej ∈ E\ξ(T ) resulting on a tree T ′ with ξ(T ′) = ξ(T )∪{ej}\{ei}. Note that when we delete ei
from T , the tree is partitioned into two components and therefore, the edge ej is selected from
the set of edges connecting these two components of T in order to obtain a new feasible solution
(tree T ′). We observe that we can efficiently evaluate an exchange move without recomputing
the objective function from scratch. Let z be the value of the objective function of solution T .
The value z′ of the new solution T ′ may be directly computed as:

z′ = z − 2 ·Q(ei, T ) + w(ei) + 2 ·Q(ej , T )− w(ej)− 2 · c(ei, ej).

In this way, the move value of the solutions in the neighborhood of a given solution can
be quickly evaluated, and once a move is chosen, the values Q(ei, T

′), k = 1, ..., n, may be
calculated as follows:

Q(ek, T
′) = Q(ek, T )− c(ek, ei) + c(ek, ej).

Based on the neighborhood defined by the exchanges above, we have studied three local
search methods:

• Best-improvement local search (BL). This is the classical local search method in which at
each iteration we explore the entire neighborhood and perform the best move. In other
words, the best choice strategy selects the move with the largest move value among all the
moves in the neighborhood. If it improves the current solution, we apply it and examine
in the next iteration the neighborhood of the new solution. Otherwise, the method stops.

• First-improvement local search (FL) [19]. This method implements the so-called first

choice strategy that scans the moves in the neighborhood in search for the first exchange
yielding an improvement in the objective function. At each iteration, an edge is randomly
selected from the current solution (ei ∈ ξ(T )) to be removed from it. Then, we examine
the edges out of the solution (ej ∈ E\ξ(T )) that can be added to ξ(T )\{ei}, producing a
new solution (spanning tree). We randomly select an edge ej and evaluate the associated
move. If it is an improving move, we perform it; otherwise, we randomly select a new
edge ej until we find an improving move or all the ej edges have been explored. In the
latter case we simply proceed to the next iteration in which a new edge ei is randomly
selected for removal. The procedure terminates when no further improvement is possible.

• ABC local search (AL) [23]. This is a hybrid method between the BL and the FL
described above. At each iteration, this local search randomly selects an edge from the
current solution (ei ∈ ξ(T )) to be removed from it. Then, it evaluates all the possible
edges that can be added to ξ(T )\{ei} and performs the best one if it improves the current
solution. The procedure terminates when no further improvement is possible.

These three methods represent typical implementations of a local search process. They ba-
sically resort to randomization or exhaustive exploration to select a move in the neighborhood
of a solution. Based on AL, we now propose a short term memory tabu local search (TLS) in
which we add a memory structure and apply candidate list strategies for move selection.

For each edge in the solution, ei ∈ ξ(T ), we can compute a measure,m(ei) of its contribution
to the solution value:

m(ei) = w(ei) +
∑

ej∈ξ(T )
ej 6=ei

c(ei, ej).
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These measures are mapped onto probabilities for move selection. Specifically, at each
iteration of TLS, we probabilistically select an edge in the solution to be removed. The proba-
bilities are computed from the measure above, where the larger the contribution the larger the
probability to be selected (the probability of selecting edge ei is proportional to its contribution
m(ei)). Then, as in AL, we evaluate all the possible edges that can be added to ξ(T )\{ei},
but here we select the best one that is not tabu, regardless of whether it improves the current
solution (i.e., the move is executed even when the move value is not positive, resulting in a
deterioration of the current objective function value). Then, we update the measure values
and perform a new iteration. The moved edge become tabu for TabuTenure iterations, and
therefore they cannot be selected for addition or removal during this time.

To implement our memory structure, we employ a one-dimensional array tabu(e), initially
set to −TabuTenure to permit initial selections, to store the iteration number when edge e

is moved. That is, if edge ei is removed from the solution and ej is added to the solution at
iteration iter, then tabu(ei) = tabu(ej) = iter. Then, in a subsequent iteration iter2, we say
that an edge e is tabu (and cannot be added to or removed from the solution) if

iter2 − tabu(e) < TabuTenure.

Note that although we use the same tenure value for both edges, an interesting variant is to
use a different tenure value for ei than for ej . In our experiments, however, we determined that
the effect of using different tenure values does not justify the increase in complexity related to
calibrating an additional search parameter.

4.3 Iterated Greedy

From an initial solution the IG method alternates between destructive and constructive phases
just as strategic oscillation does. During the destructive phase, some solution components are
removed from a previously constructed solution. The construction procedure then applies a
greedy constructive heuristic to reconstruct a solution. Once a newly reconstructed solution has
been obtained, an acceptance criterion is applied to decide whether it will replace the incumbent
solution. Additionally, an optional local search phase for improving the reconstructed solution
can be applied for improved outcomes.

An outline of the proposed IG is depicted in Figure 1. It starts from a complete initial
solution T (Initialise(); Step 1) and then iterates through a main loop which first generates a
partial candidate solution F by removing a fixed number of edges from the complete candidate
solution T (Destruction-phase(T, nd); Step 4) and next reconstructs a complete solution Tc

starting with F (Construction-phase(F ); Step 5). In the local search phase (Local-Search-
phase(Tc); Step 6), an improvement procedure is performed in order to find better solutions
near the reconstructed solution. Before continuing with the next loop, an acceptance criterion
(AcceptCriterion(T, Ti); Step 10) decides whether the solution returned by the local search
procedure, Ti, becomes the new incumbent solution. The process iterates through these phases
until a computation limit tmax is reached. The best solution, Tb, generated during the iterative
process is kept to provide the final result.

In the algorithm in Figure 1 we apply the greedy destructive algorithm D (see Section
4.1) to obtain the initial solution Initialise(). Then we can apply either C1 or C2 constructive
algorithms (Section 4.1) to implement the Construction-phase(F ). These methods insert nd

edges into the forest resulting from the destruction phase, obtaining a feasible spanning tree.
The Destruction-phase(T, nd) removes nd (a parameter of the algorithm) edges from the current
solution. These edges are selected at random as in many previous IG algorithms [20, 21, 26].
Finally, we can apply any of the three local search algorithms described in Section 4.2 as the
Local-search-phase(Tc).

We have considered two different following acceptance criteria in the scheme shown in
Figure 1:
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Input: G, tmax, nd

Output: Tb

T ← Initialise();1

Tb ← T ;2

while tmax is not reached do3

F ← Destruction-phase(T, nd);4

Tc ← Construction-phase(F );5

Ti ← Local-Search-phase(Tc);6

if Ti is better than Tb then7

Tb ← Ti;8

end9

if AcceptCriterion(T, Ti) then10

T ← Ti;11

end12

end13

Figure 1: Iterated greedy pseudocode

• ‘Replace if better’ acceptance criterion (RB). The new solution is accepted only if it
provides a better objective function value [27].

• ‘Random walk’ acceptance criterion (RW). An IG algorithm using the RB acceptance
criterion may lead to stagnation situations of the search due to insufficient diversification
[20]. At the opposite extreme is the random walk acceptance criterion, which always
applies the destruction phase to the most recently visited solution, irrespective of its
objective function value. This criterion clearly favors diversification over intensification,
because it promotes a stochastic search in the space of local optima.

4.4 Tabu Search with Strategic Oscillation

Our SO approach for the QMSTP implements a 1-sided oscillation that does not cross into
infeasible space by adding more edges than necessary (which could be an interesting design
to test). It thus differs from instances of SO that are organized relative to feasibility and
infeasibility, involving a 2-sided oscillation that crosses that boundary.

An outline of the proposed SO is depicted in Figure 2. It starts from a complete initial
solution T and then iterates through a main loop which first generates a solution Ti by a
combination of a constructive procedure and a memory structure. Once a fully constructed
solution is obtained (and a limiting computational time has not yet been reached), we pass to
the Destructive Phase in which edges are removed from the complete candidate solution Ti.
Once a Turn Around point is reached, the method goes to the next Constructive Phase.

Note that in the SO algorithm the meaning of a best move depends not only on problem
context but on whether a Constructive or Destructive phase is being employed. The Turn
Around point itself may oscillate by creating partial solutions containing different numbers of
elements. The Constructive and Destructive processes can be interrupted at any point to apply
an Improvement Process that may or may not include memory structures. Often Improvement
Processes are applied only at the conclusion of a Constructive Phase, when a complete solution
is obtained, but they may be applied at other points as well. Sometimes applying them earlier
in a constructive process, for example, can remove deficient features that would otherwise be
inherited by later construction stages and that would create undesirable solutions.

In our SO method for the QMSTP we consider a constructive phase with two parts. In the
first one, we simply apply a greedy algorithm (C1 or C2, described in Section 4.1) but some
elements (those labeled as tabu) are not allowed to become part of the constructed solutions. In
the second part, we apply a short term tabu search (TLS) to improve the solution as described
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Input: G, tmax, ntabu

Output: Tb

T ← Initialise();1

Tb ← T ;2

while tmax is not reached do3

// Destructive Phase

Ti ← T ;4

while Current solution Ti has not reached a Turn5

Around point do

Select a best element to drop from Ti subject to (po-6

tential) tabu restrictions.
Drop it from the (partial) solution Ti7

end8

// Constructive Phase

while Current solution Ti is not complete do9

Select a best element subject to tabu restrictions.10

Add it to the partial solution11

end12

T ′
i ← TLS Improvement Process(Ti, ntabu);13

if T ′
i is better than Tb then14

Tb ← Ti;15

end16

if AcceptCriterion(T, T ′
i ) then17

T ← T ′
i ;18

end19

end20

Figure 2: Strategic Oscillation pseudocode

in Section 4.2. In line with this, our destructive phase for the QMSTP also incorporates
memory structures. As in the IG algorithm we randomly remove nd elements from the current
solution, but now, a number ntabu of these elements, ntabu ≤ nd, removed by the destruction
phase, are labeled tabu and thus not allowed to be added to the solution in the following
constructive phase. This strategy attempts to avoid looping over already visited solutions,
allowing the algorithm to advance towards diversified promising solutions. Note that the tabu

tenure in our memory structure is one entire iteration (destructive + constructive phases).
This memory structure may become decisive to ensure that SO performs an effective search
when dealing with complex problems (diversification is a key factor in this process). The level
of diversity induced by this technique is controlled by the ntabu parameter.

As customary in tabu search, we have implemented an aspiration criterion to overrule the
tabu status under certain circumstances. Note that specific situations may arise where the
construction of a feasible tree is not possible given the constraints imposed by this strategy.
When such an outcome is detected, the reference to tabu status is directly disabled (ntabu = 0)
during the current cycle to allow the creation of the new solution. (A common alternative is to
use a so-called ”aspiration by default” which removes the tabu status from a certain number
of the least tabu elements, measured by reference to their unexpired tabu tenures.)

5 Computational Experiments

This section describes the computational experiments that we performed to assess the per-
formance of the IG and SO models presented in the previous sections. Firstly, we detail the
experimental setup and the statistical methods applied (Section 5.1), then, we analyze the
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results obtained from different experimental studies carried out with these algorithms. Our
aim is: 1) to analyze the influence of the parameters and settings associated with IG, which
is a memory-less based algorithm (Section 5.2), 2) to show the benefits of the use of memory
structures in SO and TLS (Section 5.3), 3) to combine SO, IG, and ITS with the aim of ob-
taining a hybrid metaheuristic being able to show a robust operation for test problems with
different characteristics (Section 5.4), and 4) to compare the results of the hybrid algorithm
with those of other metaheuristic approaches for the QMSTP from the literature (Section 5.5).

5.1 Experimental Setup

The codes of all the studied algorithms have been implemented in C and the source code has
been compiled with gcc 4.6. The experiments were conducted on a computer with a 3.2 GHz
Intel R© CoreTM i7 processor with 12 GB of RAM running FedoraTM Linux V15. We considered
three groups of benchmark instances for our experiments (in total constituting 83 instances),
which are described below.

• The first set of benchmarks, hence forth denoted by CP, is composed of 36 instances,
ranging in size from 40 to 50 vertices, introduced by Cordone and Passeri (they are
publicly available1). For experimentation with these instances, the cutoff time for each
run was 10 seconds.

• Öncan and Punnen [14] present a transformation scheme to obtain QMSTP instances
from quadratic assignment problem (QAP) instances. They demonstrated that the op-
timum value of a QMSTP instance obtained with this transformation is equal to the
optimum value of the corresponding QAP instance. Particularly, the authors offered two
instance sets by transforming 15 QAP instances (from n = 24 to 60) by Nugent et al.
[13] and 14 QAP instances (from n = 24 to 50) by Christofides and Benavent [3] (whose
optimal solutions are known). They will be denoted by NUG and CHR, respectively.
The experiments reported in [14] showed that these instances are particularly challenging
for QMSTP algorithms. A time limit of 1000 seconds was assigned for these problems.

• The last group consists of two sets of large instances: RAND and SOAK. They were
generated exactly in the same manner as in [28] and [22], respectively. All the instances in
the RAND set represent complete graphs with integer edge costs uniformly distributed
in [1, 100]. The costs between edges are also integers and uniformly distributed in [1, 20].
In the SOAK instances, nodes are distributed uniformly at random on a 500× 500 grid.
The edge costs are the integer Euclidean distance between these points. The cost between
edges are uniformly distributed between [1, 20]. For each value of n ∈ {150, 200, 250},
there are 3 instances, leading to a total of 9 instances for each set. All methods were
stopped using a time limit that varied according to problem size (400, 1200, and 2000
seconds for problems from n = 150 to 250, respectively).

Non-parametric tests [6] have been used to compare the results of the different optimization
algorithms under consideration. The only condition to be fulfilled for the use of non-parametric
tests is that the algorithms to be compared should have been tested under the same conditions
(that is, the same set of problem instances, the same stopping conditions, the same number of
runs, etc). In the first place, average ranking for each algorithm is firstly computed according
to Friedman’s test. This measure is obtained by computing, for each problem instance, the
ranking ra of the observed results for algorithm a assigning to the best of them the ranking
1, and to the worst the ranking |A| (A is the set of algorithms). Then, an average measure is
obtained from the rankings of this algorithm for all test problems. For example, if a certain
algorithm achieves rankings 1, 3, 1, 4, and 2, on five problem instances, the average ranking is
1+3+1+4+2

5 = 11
5 . Note that the lower an average ranking is, the better its associated algorithm

1http://homes.dsi.unimi.it/∼cordone/research/qmst.html
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is. We have considered two alternative methods based on non-parametric tests to analyze the
experimental results:

• The first method is the application of the Iman and Davenport test and the Holm method
as a post hoc procedure. The first test may be used to see whether there are significant
statistical differences among the compared algorithms. If differences are detected, then
Holm’s test is employed to compare the best algorithm (control algorithm) against the
remaining ones.

• The second method is the utilization of the Wilcoxon matched-pairs signed-ranks test.
With this test, the results of two algorithms may be directly compared. In statistical
terms, this test answers the question: Do the two samples represent two different pop-
ulations? In the context of algorithms’ comparison the Wilcoxon test determines if the
results of two methods are significantly different.

5.2 Study of the Memory-less Based Method: IG

In this section, we investigate the effect of the different parameters and strategies applied in
IG and their interactions. In particular, we consider:

• The acceptance criteria: RB and RW.

• The memory-less based improvement methods: FL, BL, and AL.

• The number of removed solution components nd=0.2n, 0.4n, 0.6n, and 0.8n.

With the purpose of fine-tuning this method, we employed two types of training problem
instances: 1) the 14 CHR instances and 2) 14 large instances from the SOAK and RAND sets
with n = 150 to n = 200. All the IG variants in this experiment apply C1 in the construction
phase (we will study the application of C2 in the next experiment). The IG methods were
stopped using a time limit of 360 seconds and one run was performed for each problem instance.

In each experiment, we compute for each instance the overall best solution value, BestValue,
obtained by the execution of all methods under consideration. Then, for each method, we
compute the relative deviation between the best solution value found by the method and the
BestValue. In Table 1, we report the average of this relative deviation (Dev) across all the
instances considered in each particular experiment and the number of instances (#Best) for
which the value of the best solution obtained by a given method matches BestValue. We also
show the average rankings (computed by the Friedman test) obtained by these IG variants
(Section 5.1).

In order to analyze the results, we have applied Iman-Davenport’s test (the level of signif-
icance considered was 0.05). We have observed the existence of significant differences among
the rankings (the statistical values, 79.41 and 160.16, are greater than the critical ones, 1.56
and 1.55, respectively). Then, we have compared the best ranked algorithm for each training
set (control algorithm), [RW, AL, 0.4n] and [RW, AL, 0.6n], with the other IG versions, by
means of Holm’s test (a post hoc statistical analysis) with p = 0.05. The last column in Table
1 indicates whether Holm’s test finds statistical differences between the control algorithm and
the corresponding algorithm.

We can draw the following conclusions from Table 1:

• The acceptance criterion has the largest impact on the IG performance. Unexpectedly,
the best outcomes (rankings) are obtained when the RW acceptance criterion is used
(Holm’s test confirms that its superiority is statistically significant). As a matter of
fact, it is unusual to find IG models in the literature employing this strategy (most of
them show a bias towards maintaining high quality solutions). Thus, we may remark
that the combination of the diversification provided by RW and the intensification of the
improvement procedure benefits the IG performance.
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IG CHR Instances IG LARGE Instances
(AC, LS, nd) Av. Ran. Dev #Best Holm (AC, LS, nd) Av. Ran. Dev #Best Holm
RB FL 0.2n 21.5 6.1971 0 yes RB BL 0.8n 21.9 0.0530 0 yes
RB AL 0.4n 21.3929 6.2129 0 yes RB FL 0.8n 21.6667 0.0586 0 yes
RB BL 0.2n 21.2857 6.1791 0 yes RB AL 0.8n 21.6667 0.0526 0 yes
RB FL 0.4n 20.7143 6.1676 0 yes RB BL 0.6n 21.1667 0.0442 0 yes
RB BL 0.4n 20.2143 6.1697 0 yes RB AL 0.6n 20.6 0.0413 0 yes
RB AL 0.2n 20.0714 6.0514 0 yes RB FL 0.6n 19.8 0.0468 0 yes
RB AL 0.6n 18.6071 5.6991 0 yes RB BL 0.4n 17.3333 0.0247 0 yes
RB FL 0.6n 17.8571 5.5717 0 yes RB BL 0.2n 16.5333 0.0224 0 yes
RB BL 0.6n 17.7143 5.6132 0 yes RB FL 0.4n 15.9333 0.0222 0 yes
RB AL 0.8n 14.5714 4.7705 0 yes RB AL 0.4n 15.7 0.0214 0 yes
RB BL 0.8n 14.1429 4.7515 0 yes RB AL 0.2n 15.0333 0.0198 0 yes
RB FL 0.8n 13.9286 4.6530 0 yes RB FL 0.2n 14.6667 0.0205 0 yes
RW FL 0.8n 8.7857 0.1185 1 no RW BL 0.2n 10.5333 0.0088 0 yes
RW FL 0.6n 8.6429 0.0996 0 no RW BL 0.8n 10.1333 0.0081 0 yes
RW BL 0.6n 8.2857 0.0996 0 no RW AL 0.2n 9.4 0.0078 0 yes
RW BL 0.8n 7.9286 0.1136 1 no RW FL 0.2n 9 0.0073 0 yes
RW AL 0.8n 7.3214 0.0959 1 no RW FL 0.8n 7.5333 0.0065 0 no
RW BL 0.2n 6.2857 0.0775 2 no RW AL 0.8n 7.3333 0.0062 0 no
RW AL 0.6n 6.1429 0.0764 2 no RW BL 0.4n 7.2 0.0055 0 no
RW FL 0.2n 5.8571 0.0626 4 no RW AL 0.4n 4.7333 0.0038 1 no
RW AL 0.2n 5.5357 0.0633 3 no RW FL 0.4n 4.2333 0.0031 0 no
RW BL 0.4n 5.0714 0.0762 2 no RW BL 0.6n 4 0.0027 1 no
RW FL 0.4n 4.8929 0.0565 3 no RW FL 0.6n 2.1333 0.0010 4 no
RW AL 0.4n 3.25 0.0412 4 no RW AL 0.6n 1.7667 0.0005 9 no

Table 1: Results of the IG instances

• The choice of the value for nd has an important influence, as well, on the IG behavior.
For both instance sets, the three best ranked algorithms employed the same setting for
this parameter (0.4n for the CHR set and 0.6n for the large instances).

• Although the results of Holm’s test indicate that there not exist significant differences in
the performance of the improvement procedures (and then, there exists little sensitivity
to changes in this IG component), we choose the ABC local search for all remaining
experiments involving IG since the best ranked configurations for the two instance sets
are based on this method.

We now undertake to analyze the effects of the greedy constructive algorithms (C1 and C2

described in Section 4.1) on the IG performance. We have implemented IGs with C1 and C2,
and the two best values of the nd parameter identified in the previous experiment (nd = 0.4n
and 0.6n). They apply the RW acceptance criterion and the ABC local search. The Iman
and Davenpor’s test indicates the existence of significant differences among the rankings (the
statistical values, 58.17 and 164.97 are larger than the critical ones, 2.84 and 2.82, respectively).

IG CHR Instances IG LARGE Instances
(Greedy, nd) Av. Ran. Dev #Best Holm (Greedy, nd) Av. Ran. Dev #Best Holm
C2 0.6n 3.6071 0.7424 0 yes C2 0.4n 3.9333 0.0102 0 yes
C2 0.4n 3.3929 0.6595 0 yes C2 0.6n 3 0.0084 0 yes
C1 0.6n 1.6786 0.0440 5 no C1 0.4n 2 0.0034 1 yes
C1 0.4n 1.3214 0.0098 10 C1 0.6n 1.0667 4.66E-05 14

Table 2: Results of IG versions with different greedy constructive algorithms

With regard to this result, we compare the best ranked IG for each instance set, [C1,
0.4n] and [C1, 0.6n], with the other IG variants, by means of Holm’s test. Table 2 reports its
results. Our main observation about the data in this table is that Holm’s test revealed the
clear advantage of C1 on C2. It is interesting to remark that, quite surprisingly, the simplest
constructive algorithm, when iterated inside IG, becomes the most effective one.

5.3 Study of the Memory Based Methods: SO and TLS

In this section, firstly, we present a series of preliminary experiments that were conducted to set
the values of the key search parameters of TLS (Section 4.2), TabuTenure and MaxIter. In par-
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ticular, we have built different SO instances (RW,C1, and ntabu = 0.05) with nd = {0.4n, 0.6n},
TabuTenure = {2, 10, 50}, and MaxIter = {100, 200, 500}. Table 3 summarizes the results of
these algorithms and the conclusions of Holm’s test (the Iman-Davenport test finds significant
performance differences between the considered algorithms because its statistical values, 14.03
and 27.56, are greater than the critical ones, 1.669 and 1.665, respectively).

SO CHR Instances SO LARGE Instances
(nd, TT , MI) Av. Ran. Dev #Best Holm (nd, TT , MI) Av. Ran. Dev #Best Holm
0.6n 50 500 16.75 0.1947 0 yes 0.6n 50 500 15.2 0.0072 0 yes
0.4n 50 200 13.3929 0.1096 0 yes 0.6n 2 500 14.9333 0.0064 0 yes
0.6n 10 500 13 0.1204 1 yes 0.6n 10 500 14.6667 0.0067 0 yes
0.4n 50 500 12.6786 0.1259 1 yes 0.6n 2 200 13.3333 0.0062 0 yes
0.6n 50 100 12.6071 0.1156 2 yes 0.6n 10 200 13.0333 0.0059 0 yes
0.6n 50 200 12.1786 0.1298 3 yes 0.6n 2 100 12.7333 0.0060 0 yes
0.6n 10 200 12.1429 0.1065 1 yes 0.6n 50 100 12.5 0.0055 0 yes
0.4n 10 500 11.3571 0.1016 2 yes 0.6n 50 200 12.1667 0.0055 0 yes
0.6n 10 100 10.8571 0.0961 2 yes 0.6n 10 100 11.8333 0.0053 0 yes
0.4n 10 200 9.8214 0.0869 3 yes 0.4n 10 500 9.0333 0.0034 1 yes
0.4n 50 100 9.7857 0.0790 2 yes 0.4n 50 500 8.3 0.0034 1 yes
0.6n 2 500 6.1786 0.0324 5 no 0.4n 2 500 7.6 0.0029 0 no
0.4n 10 100 5.7143 0.0350 6 no 0.4n 2 200 5.2667 0.0020 0 no
0.6n 2 200 5.6429 0.0425 3 no 0.4n 50 200 5.1667 0.0018 3 no
0.6n 2 100 5.1429 0.0364 3 no 0.4n 10 200 4.8 0.0019 2 no
0.4n 2 200 4.8929 0.0327 4 no 0.4n 2 100 4.0667 0.0014 4 no
0.4n 2 100 4.8214 0.0342 4 no 0.4n 10 100 3.3333 0.0012 3 no
0.4n 2 500 4.0357 0.0164 5 0.4n 50 100 3.0333 0.0011 6

Table 3: Results of SO with TLS when applying different nd, TabuTenure, and MaxIter values

The results in Table 3 show that the best outcomes for the CHR instances are obtained
with the lowest TabuTenure value, and the ones for the large instances with the lowest MaxIter

values. Interestingly, the TabuTenure parameter had less impact on the performance of TLS
when dealing with large instances, and the same happens with the MaxIter parameter in
the case of CHR. Nevertheless, given the relatively robust performance achieved by using
nd = 0.4n, TabuTenure=10, and MaxIter = 100 (second best ranked algorithm for the large
instance set and Holm’s test did not detect significant differences between this configuration
and best one for CHR), we choose this setting for all remaining experiments involving this
local search operator.

Next, we investigate the effects of varying the ntabu parameter associated with SO (number
of removed elements that cannot be reinserted into the solution). In particular, we have gener-
ated 5 SO configurations with ntabu = {0.05nd, 0.1nd, 0.25nd, 0.5nd, nd}. In order to study the
results, we have applied Iman-Davenport’s test (the level of significance considered was 0.05).
We have observed the existence of significant differences among the rankings (the statistical
values, 7.85 and 277.66, are greater than the critical ones, 2.54 and 2.53, respectively). Then,
we analyze the performance of these SO instances by means of Holm’s test (Table 4).

SO CHR Instances SO LARGE Instances
(ntabu) Av. Ran. Dev #Best Holm (ntabu) Av. Ran. Dev #Best Holm
nd 4.2857 0.10776 yes 2 nd 5 0.02139 0 yes
0.5 nd 3.4286 0.06932 yes 4 0.5 nd 4 0.01429 0 yes
0.1 nd 2.9286 0.05291 no 3 0.25 nd 3 0.00697 0 yes
0.25 nd 2.7143 0.03983 no 3 0.1 nd 1.6 0.00129 6 no
0.05 nd 1.6429 0.00514 12 0.05 nd 1.4 0.00069 9

Table 4: Results of SO with different ntabu values

The results in Table 4 strongly reveals a clear superiority of the SO version with ntabu =
0.05nd for both instance sets. Clearly, too much diversity (high ntabu values) is not suitable
to allow SO to reach fitter search areas. To sum up, the effects derived from the combination
of the exploration power of TLS and a moderate diversification by SO (low ntabu values) are
sufficient to attain a high level of robustness for both instance sets.
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5.4 Comparison Between IG, SO, and ITS

The first objective of this section is to compare the results for IG, SO, and Iterated Tabu Search
ITS [19]. ITS is another memory-based approach proposed to deal with the QMSTP that has
proved as one of the most appealing contemporary metaheuristic approaches for this problem
and other combinatorial optimization problems with quadratic objective functions, including
the unconstrained binary quadratic optimization problems [15], the maximum diversity prob-
lem [16], and the Max-2-SAT problem [17, 18]. We should point out that IG, SO and ITS were
run under the same computational conditions (machine, programming language, compiler, and
time limits; see Section 5.1) in order to enable a fair comparison between them. We have used
the source code of ITS provided by the author2. Henceforth, all studied algorithms were run
10 times on each problem instance.

In Table 5, we have summarized the results of the IG and SO versions that achieved the
best outcomes in Sections 5.2 and 5.3, respectively, and the ones of ITS (best performance
measure values are outlined in boldface). For each algorithm, in column Avg-Dev , we include
the average of the relative deviations from BestValue (Section 5.2) of the solution values found
by the algorithm in the 10 runs on a set of problem instances and, in the case of the column
%best, we outline the percentage of runs in which the algorithm reached BestValue for the
instances in the corresponding group.

Inst. Set IG SO ITS HSII
Avg-Dev %best Avg-Dev %best Avg-Dev %best Avg-Dev %best

NUG 0.0745 0 0.0429 7.33 0.0104 15.33 0.0176 8.67
CHR 0.2434 10 0.0945 23.57 0.9918 10 0.0665 20
RAND 0.0016 8.89 0.0048 0 0.0046 0 0.0021 1.11
SOAK 0.001 6.67 0.0072 0 0.0016 3.33 0.0012 2.22
CP 0.0005 71.94 0.004 25.56 0.0004 77.50 0.0006 72.22

Avg. 0.0642 19.5 0.03068 11.292 0.20176 21.232 0.0176 20.844

Table 5: Comparison between IG, SO, ITS, and HSII

The results of IG, SO, and ITS (Table 5) allow us to make the following observations.

• The high Avg-Dev values for IG, SO, and, specially, for ITS on the CHR set suggest that
it includes the hardest QMSTP instances. Note that, in this case, the results of SO are
much better than those of its competitors. The high levels of diversity promoted by the
memory-based techniques in SO became decisive to guarantee an effective search when
dealing with these complex problem instances.

• For the large instance sets, RAND and SOAK, the Avg-Dev and %best measures for
IG show better quality than the ones for SO and ITS. We should note that, in contrast
with the previous case, SO obtained the lowest quality results. For problems with many
vertices, the action of the memory-based techniques in SO may produce detrimental
disruptions in the solutions, causing misbehavior in the SO search. However, the diver-
sification originated from the random deletion of elements during the destruction phase
in IG may be enough to favor the progress towards promising search zones.

• ITS outperforms IG and SO on the CP and NUG instance sets.

Hence, it seems that, somewhat unsurprisingly, there is no single best algorithm; SO is
superior for the most complex instance set, IG for the large instances, and ITS becomes the
winner for the case of the easiest instances. Thus, regarding these results and with the aim of
producing a robust operation, we have built a hybrid algorithm, dubbed HSII, that combines
SO, IG, and ITS. Specifically, HSII is a relay collaborative hybrid metaheuristic [24] that
executes SO, IG, and ITS in a pipeline fashion. First, SO is performed during the PSO% of the

2ITS is publicly available at http://www.soften.ktu.lt/∼gintaras/qmstp.html
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imposed time limit and the best found solution becomes the initial solution for IG, which is
run during PIG% of this time. Finally, the output of IG is supplied as input to ITS. We have
set PSO and PIG to 25% and 50%, respectively. The idea of this hybridization scheme is: (1)
to use SO as diversification agent to reach good initial solutions for the most difficult problem
instances, then (2) to allow IG enough time to offer a suitable behavior on large instances,
and finally (3) to employ ITS as effective improvement procedure for refining the best solution
found in the previous stages.

Table 5 has the Avg-Dev and %best values for HSII. In general, for most problem sets, this
algorithm might obtain Avg-Dev values very similar to the ones returned by the fittest algo-
rithms (or even better, as was the case for CHR). Thus, we may conclude that the combination
of the proposed IG and SO approaches along with ITS (by following a simple hybridization
scheme) resulted really advisable to achieve an acceptable level of robustness across a wide
range of different QMSTP instances.

5.5 HSII vs. State-of-the-art Metaheuristics for the QMSTP

In this section, we undertake a comparative analysis among HSII and the current best algo-
rithms for the QMSTP, ITS [19], ABC [23], and local search algorithm with tabu thresholding
(LS-TT) [14]. We should point out that HSII, ITS, and ABC were run under the same com-
putational conditions (Section 5.1). We have implemented ABC in C. Since we could not
obtain the source code of LS-TT, we have used the results reported in [14] for the NUG and
CHR instances to compare with our algorithm (they were obtained with a single run). The
parameter values used for each considered algorithm are the ones recommended in the original
works. Their results are outlined in Tables 9-13 in Appendix A. With the aim of determining
the position of SO and IG with regards to the state-of-the-art, we have included them in this
comparative study as well.

In order to detect the differences among HSII and the other algorithms, we have applied
Wilcoxon’s test. Tables 6-8 have the %best and Avg-Dev measures and summarize the results
of this procedure for p = 0.05, where the values of R+ (associated to HSII) and R− of the test
are specified. The last column indicates whether Wilcoxon’s test found statistical differences
between these algorithms. If min{R+, R−} is less than or equal to the critical value, this
test detects significant differences between the algorithms, which means that an algorithm
outperforms its opponent. Particularly, if this occurs and R− = min{R+, R−}, then HSII is
statistically better than the other algorithm. All large instances (RAND and SOAK) and
QAP based instances (NUG and CHR) have been grouped in order to apply the statistical
test to a significant number of instances.

Algorithm Avg-Dev %best R+ R− Diff?

IG 0.0005 71.94 300.0 366.0 no
SO 0.0040 25.56 628.5 1.5 yes
ITS 0.0004 77.50 174.5 455.5 yes
ABC 0.0061 20.28 661.0 5.0 yes
HSII 0.0006 72.22

Table 6: Comparison on the CP set (Wicoxon’s test; critical value = 208)

NUG set CHR set
Algorithm Avg-Dev %best Avg-Dev %best R+ R− Diff?

IG 0.0745 0 0.2459 10.00 434.0 1.0 yes
SO 0.0429 7.33 0.0965 22.86 294.5 140.5 no
ITS 0.0104 15.33 0.9965 10.00 196.0 210.0 no
ABC 0.2597 0.00 1.9261 0.00 435.0 0.0 yes
LS-TT 0.0671 0.00 0.2918 7.14 411.0 24.0 yes
HSII 0.0176 8.67 0.0686 20.00

Table 7: Comparison on the NUG and CHR sets (Wicoxon’s test; critical value = 126)
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RAND set SOAK set
Algorithm Avg-Dev %best Avg-Dev %best R+ R− Diff?

IG 0.0016 8.89 0.0010 6.67 23.0 148.0 yes
SO 0.0048 0 0.0072 0 171.0 0.0 yes
ITS 0.0046 0 0.0016 3.33 162.0 9.0 yes
ABC 0.0111 0.00 0.0077 0.00 171.0 0.0 yes
HSII 0.0021 1.11 0.0012 2.22

Table 8: Comparison on the RAND and SOAK sets (Wicoxon’s test; critical value = 40)

The results presented in Tables 6-8 reveal the following.

• For large instances (Table 8), HSII has the upper hand in the statistical comparison over
its competitors (ABC and ITS).

• For complex instances (Table 7), our hybrid metaheuristic clearly obtained statistically
significant improvements relative to ABC and LS-TT. In addition, analyzing the compu-
tational time reported in [14] (where a Pentium IV PC at 3 GHz was used to carry out
experiments) for LS-TT on these instances (Tables 10 and 11), we may conclude that,
in general, LS-TT required much time than our hybrid algorithm (with a time limit of
1000 seconds). Therefore, our proposal outperforms this algorithm in all aspects, when
considering the results on the NUG and CHR instance sets.

On the other hand, Wilcoxon’s test did not detect significant differences between HSII
and ITS on these instances. According to the Avg-Dev and%best measures, our algorithm
clearly beats ITS for the CHR instances. For the case of the NUG instances, they show
similar values for the Avg-Dev measure, which explains that Wilcoxon’s test did not find
statistical differences between them when the two sets of instances were considered.

• HSII was found to be superior to ABC for the CP instances (Table 6), however, only
in this case, ITS could statistically outperform our proposal (even so, note that HSII
attained a similar %best value). It is worth mentioning that, in [19], iterated tabu search
proved superior to other advanced methods precisely on this instance set.

In summary, this experimental analysis confirms that our hybrid HSII approach is a very
attractive alternative to the existing approaches for the QMSTP.

Finally, we should note that SO achieved better Avg-Dev and %best values than ABC and
LS-TT in the case of the NUG and CHR sets (Table 7), and IG was able to outperform all
other algorithms on the RAND and SOAK sets (Table 8). These facts evidence the great
potential of the proposed SO and IG metaheuristics to effectively handle large and highly
complex problem instances, which posed real challenges for previous metaheuristic approaches
in the literature.

6 Conclusions

Our research study demonstrates the effectiveness of a strategy for solving the QMSTP that
alternates between constructive and destructive phases, as originally proposed in strategic
oscillation (SO) and more recently in the iterated greedy (IG) method. We limit consideration
of SO in this study to a one-sided oscillation that does not cross the feasibility boundary in
order to make it more comparable to the IG approach, and differentiate it from IG primarily
by introducing tabu search (TS) memory as in previous SO algorithms.

Our tests disclose that the memory-based SO method is able to solve complex QMSTP
instances better than other previous algorithms. On the other hand, our implementation
of the IG algorithm succeeds in performing most effectively for large problems that are not
highly complex, while the iterated tabu search (ITS) algorithm performs best in application
to easier instances. Based on these findings we additionally developed a hybrid method HSII
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that combines these three algorithms, which proved very effective across the board with the
exception of one class of problem instances, where iterated tabu search remained the winner.

Overall, the ability of the alternating constructive/destructive strategies to give superior
outcomes for larger problems, with memory proving valuable for complex problems and a dis-
regard for memory proving valuable for easier problems, invites further consideration of other
forms of strategic oscillation, particularly by crossing feasibility boundaries (whose value is un-
derscored in [9]) and by going beyond the reliance on randomization in carrying out destructive
moves by introducing more advanced strategies for selecting these moves (as indicated in [7]).
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A Results of the Algorithms

Tables 9-13 outline the results of the algorithms concerning the experiment in Section 5.5. The
columns with heading ‘Ave’ (respectively, ‘Min’) present the difference between the average of
the objective function value of the solutions reached by an algorithm after 10 runs (respectively,
the objective function value of the best solution out of these 10 solutions) and the value in
the second column. Additionally, Tables 10 and 11 have the computational times required by
LS-TT to achieve their results (both of them were directly extracted from [14]).

Instance Best Known V. HSII ITS ABC
Ave Min Ave Min Ave Min

n40 m257 1 5945 0 0 0 0 13.8 0
n40 m257 2 56237 0 0 0 0 0 0
n40 m257 3 6925 0 0 0 0 0 0
n40 m257 4 57874 0 0 0 0 0 0
n40 m522 1 5567 3.2 0 0.6 0 24.8 18
n40 m522 2 51851 0 0 24.6 0 392.2 220
n40 m522 3 6456 0 0 0 0 18.9 18
n40 m522 4 53592 9.9 0 13 0 104.5 43
n40 m780 1 5368 0.5 0 0.9 0 68.1 13
n40 m780 2 49817 18.2 0 6.2 0 591.4 129
n40 m780 3 6208 0 0 1 0 8 0
n40 m780 4 51229 77.1 0 0 0 647.6 0
n45 m326 1 7521 0 0 0 0 1.4 0
n45 m326 2 70603 0 0 0 0 42.9 0
n45 m326 3 8720 0 0 0 0 4.7 0
n45 m326 4 72676 0 0 0 0 82 82
n45 m663 1 7161 16.8 0 15.7 0 51.9 44
n45 m663 2 66889 23.8 0 0 0 287.6 0
n45 m663 3 8225 0.6 0 0 0 36.3 25
n45 m663 4 68737 46 0 0 0 440.2 0
n45 m990 1 6944 7.3 1 4.7 0 76.9 47
n45 m990 2 64840 45.6 0 50.9 0 1048.3 583
n45 m990 3 7827 0 0 0 0 4 0
n45 m990 4 66508 148 0 141.9 0 1042.2 331
n50 m404 1 9393 0 0 0 0 34.1 24
n50 m404 2 88942 0 0 0 0 370.4 349
n50 m404 3 10717 0 0 0 0 0 0
n50 m404 4 91009 0 0 0 0 165 165
n50 m820 1 8958 10.5 0 1.3 0 76.8 33
n50 m820 2 84020 100.4 0 4.4 0 1256.6 601
n50 m820 3 10100 0 0 0 0 46.7 37
n50 m820 4 86231 147.6 0 18.7 0 1169.9 599
n50 m1225 1 8713 25.1 0 21 0 128.7 53
n50 m1225 2 81858 205.5 27 192.5 27 1128.1 450
n50 m1225 3 9836 8.4 0 1.9 0 47.8 20
n50 m1225 4 83838 31.6 0 102.1 0 883.6 43

Table 9: Results for CP instance set
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Instance Opt. Value HSII ITS ABC LS-TT
Ave Min Ave Min Ave Min Ave/Min Time

nug12 578 0 0 0 0 165.8 78 27 639
nug14 1014 20.8 12 9.2 0 273.8 126 70 724
nug15 1150 16.8 2 10.2 0 334.6 254 115 1348
nug16a 1610 39.4 24 36.6 28 432 334 132 2311
nug16b 1240 33.2 6 28.4 8 369.8 240 110 2936
nug17 1732 58.6 42 49.2 36 475.8 334 142 3422
nug18 1930 74.8 54 61 34 488.6 294 126 3482
nug20 2570 127 92 100 74 645.4 330 290 5151
nug21 2438 137.2 102 106.8 64 870.6 604 260 5184
nug22 3596 190.2 154 161 116 1397.2 984 272 5482
nug24 3488 237.6 200 187 160 1133 852 386 5914
nug25 3744 252.6 196 224.4 210 1116.4 778 339 5983
nug27 5234 342.6 300 303.4 222 1481 1050 732 6025
nug28 5166 353.2 318 321.4 240 1300.2 1072 653 6087
nug30 6124 482 404 429.6 382 1775.8 1564 799 6227

Table 10: Results for NUG instance set

Instance Opt. Value HSII ITS ABC LS-TT
Ave Min Ave Min Ave Min Ave/Min Time

chr12a 9552 0 0 14625.6 7142 20331.4 4738 1618 783
chr12b 9742 92 0 16221.2 6614 22457 11810 1011 790
chr12c 11156 3 0 12243.8 6278 14143.2 4654 1556 783
chr15a 9896 446.6 56 16624.8 6822 27719.4 14328 1742 1239
chr15b 7990 1628 394 21137.8 9218 33899.8 20350 2155 1136
chr15c 9504 1035.6 0 19956.2 9798 25663.2 16062 3265 1254
chr18a 11098 3439.2 2736 22572.4 11398 31298.6 13856 1659 3325
chr18b 1534 3.4 0 0 0 1123 626 142 3354
chr20a 2192 225.8 84 162.4 40 4142.4 2550 253 4968
chr20b 2298 223.8 164 184.4 142 3435 1406 432 4652
chr20c 14142 7976 6064 31867.6 22416 50674.6 35700 15982 4763
chr22a 6156 312.6 178 269 234 3759.8 2532 2604 5089
chr22b 6194 336.6 202 249.4 120 4067.6 2714 2208 4741
chr25a 3796 929.6 514 787 504 7728.2 4744 5862 5223

Table 11: Results for CHR instance set

Instance Best Known V. HSII ITS ABC
Ave Min Ave Min Ave Min

RAND-150-1 192606 304.1 0 638.5 340 2223.1 1688
RAND-150-2 192607 315.8 0 762.9 427 2187 1611
RAND-150-3 192577 215.6 0 726.1 388 2112.8 1305
RAND-200-1 350517 506.6 0 1270.2 699 3874.3 2646
RAND-200-2 350389 513.4 0 1434.7 923 3756.3 3395
RAND-200-3 351057 228.4 0 883.8 409 2856.4 2112
RAND-250-1 556929 505.6 0 2306.5 1522 5585.8 4935
RAND-250-2 557474 376.1 0 2004.2 1346 4898 3230
RAND-250-3 556813 650.4 0 2676.8 2491 5423.3 4684

Table 12: Results for RAND instance set

Instance Best Known V. HSII ITS ABC
Ave Min Ave Min Ave Min

SOAK-150-1 206721 368.4 204 283.9 0 1557.2 931
SOAK-150-2 206761 519.5 341 392.6 0 2024.1 1445
SOAK-150-3 206781 173.2 0 178.6 21 1336.4 752
SOAK-200-1 370137 393.5 128 396.3 0 3196.8 2282
SOAK-200-2 369982 201.6 0 369 46 2311 1659
SOAK-200-3 370045 300.8 0 345.7 1 2860 2072
SOAK-250-1 581819 464.7 0 1250.4 463 4260.3 2980
SOAK-250-2 581691 322.3 0 1181.9 454 4132.7 2718
SOAK-250-3 581854 736.8 0 1671.8 854 4491.1 3863

Table 13: Results for SOAK instance set
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