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B&B for the Cutwidth Minimization Problem 

 

 

 

Abstract 

 

 The cutwidth minimization problem consists of finding a linear arrangement of the vertices of a 

graph where the maximum number of cuts between the edges of the graph and a line separating 

consecutive vertices is minimized.  We first review previous approaches for special classes of 

graphs, followed by lower bounds and then a linear integer formulation for the general problem.  

We then propose a branch-and-bound algorithm based on different lower bounds on the 

cutwidth of partial solutions. Additionally, we introduce a Greedy Randomized Adaptive Search 

Procedure (GRASP) heuristic to obtain good initial solutions. The combination of the branch-

and-bound and GRASP methods results in optimal solutions or a reduced relative gap 

(difference between upper and lower bounds) on the instances tested.  Empirical results with a 

collection of previously reported instances indicate that the proposed algorithm is able to solve 

all the small instances (up to 32 vertices) as well as some of the large instances tested (up to 158 

vertices) using less than 30 minutes of CPU time. We compare the results of our method with 

previous lower bounds, and with the best previous linear integer formulation solved using 

Cplex. Both comparisons favor the proposed procedure. 
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1. Introduction 

Let G(V, E) be a graph with vertex set V (|V| = 𝑛) and edge set E (|E| = 𝑚). A labeling or linear 

arrangement 𝑓, assigns the integers {1, 2, … , 𝑛} to the vertices of G in such a way that each 

vertex 𝑣V has a different label 𝑓(𝑣) (i.e.,  𝑓(𝑣) ≠ 𝑓(𝑢) for all 𝑢, 𝑣V). The cutwidth of 𝑣, 

with respect to 𝑓, 𝐶𝑊𝑓(𝑣), is the number of edges (𝑢, 𝑤)E satisfying  𝑓(𝑢) ≤ 𝑓(𝑣) < 𝑓(𝑤). 

Note that 𝑓(𝑢) = 𝑓(𝑣) if and only if 𝑢 = 𝑣.  Then, the cutwidth of 𝑣 is computed as: 

 

𝐶𝑊𝑓(𝑣) = |{(𝑢, 𝑤) ∈ E: 𝑓(𝑢) ≤ 𝑓(𝑣) < 𝑓(𝑤)}| (1) 

 

Therefore, the vertex with label 𝑛 has an associated cutwidth of 0.  Given 𝑓, the cutwidth of G is 

defined as:  

 

𝐶𝑊𝑓(G) = max
𝑣∈𝑉

𝐶𝑊𝑓(𝑣) (2) 

 

The optimum cutwidth of G, 𝐶𝑊(G), is defined as the minimum 𝐶𝑊𝑓(G) value over all 

possible labelings.  In other words, the cutwidth minimization problem consists of finding an f 

that minimizes 𝐶𝑊𝑓(G) over the set 𝑛 of all possible labelings. 

 

𝐶𝑊(G) = min
𝑓∈Π𝑛

𝐶𝑊𝑓(G) (3) 

 

Finding the optimum cutwidth is usually referred to as the Cutwidth Minimization Problem 

(CMP). This is an NP-hard  problem as stated in Gavril (1977) even for graphs with a maximum 

degree of three (Makedon et al., 1985).  Practical applications of the CMP can be traced back to 

the early seventies. Adolphson and Hu (1973) used it as the theoretical model to establish the 

number of channels in an optimal layout of a circuit (see also Adolphson and Hu, 1973; 

Makedon and Sudborough, 1989). More recent applications of this problem include network 



B&B for the Cutwidth Minimization Problem 

reliability (Karger 1999), automatic graph drawing (Mutzel, 1995) and information retrieval 

(Botafogo, 1993). Despite of the practical applicability of the CMP, researchers on heuristic 

optimization have paid little attention to it. We have only found three references concerning 

heuristic methods for this problem. Specifically, a Simulated Annealing method (Cohoon and 

Sahni, 1987), an Evolutionary Path Relinking (Resende and Andrade, 2009) and, more recently, 

a Scatter Search procedure (Pantrigo et al., 2012), which as far as we know, obtains the best 

results so far. 

 

 

Figure 1: (a) Graph example, (b) Cutwidth of G for f.  

 

Figure 1.a is an example of an undirected graph with six vertices and ten edges.  A labeling of 

this graph is depicted in Figure 1.b, setting the vertices in a line in the labeling order as 

commonly represented in the cutwidth problem. In this way, since 𝑓(𝐴) = 1, vertex 𝐴 comes 

first, followed by vertex 𝐷 (𝑓(𝐷) = 2) and so on. We represent 𝑓 with the ordering 

(𝐴, 𝐷, 𝐸, 𝐹, 𝐵, 𝐶), meaning that vertex 𝐴 is located in the first position (label 1), vertex 𝐷 is 

located in the second position (label 2) and so on. In Figure 1.b, the cutwidth of each vertex is 

represented as a dashed line with its corresponding value at the bottom. For example, the 

cutwidth of vertex 𝐴 is 𝐶𝑊𝑓(𝐴) = 5, because the edges (𝐴, 𝐷), (𝐴, 𝐸), (𝐴, 𝐹), (𝐴, 𝐵) and (𝐴, 𝐶) 

have an endpoint in 𝐴 labeled with 1, and the other endpoint in a vertex labeled with a value 

larger than 1.  Similarly, we can compute the cutwidth of vertex 𝐵, 𝐶𝑊𝑓(𝐵) = 4, by counting 

the appropriate number of edges ((𝐴, 𝐶), (𝐷, 𝐶), (𝐹, 𝐶) and (𝐷, 𝐶)).  Then, since the cutwidth of 
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G, 𝐶𝑊𝑓(G) is the maximum of the cutwidth of all vertices in V, in this particular example we 

obtain 𝐶𝑊𝑓(G) = 𝐶𝑊𝑓(𝐷) = 7, represented in the figure as a bold line with the corresponding 

value at the bottom. 

 

In this paper we propose a branch-and-bound algorithm for the Cutwidth Minimization 

Problem.  It basically consists of a systematic enumeration of all its solutions (labelings) based 

on the definition of partial solutions. We review the related literature on the CMP in Section 2 

and propose four new lower bounds in Section 3 that will enable us to discard a large number of 

solutions in the enumeration process. This latter section ends with a study of the dominance 

among the lower bounds.  In Section 4 we study the relative dominance among nodes in the 

search tree.  In Section 5 we introduce a heuristic based on the Greedy Randomized Search 

Procedure (GRASP) methodology to obtain an initial upper bound for the CMP. The reader is 

referred to Resende and Ribeiro (2010); Festa and Resende (2009a) and Festa and Resende 

(2009b) for further details concerning the GRASP methodology. In Section 6, we describe the 

search tree and its associated strategies for an efficient enumeration of the problem solutions, 

and the paper concludes with the computational experiments and the associated conclusions. 

 

2. Previous methods, bounds and formulations  

The CMP has been optimally solved for some special classes of graphs. For example, Harper 

(1966) solved the cutwidth for hypercubes, Chung et al. (1982) presented an 𝑂(log𝑑−2𝑛) time 

algorithm for the cutwidth of trees with 𝑛 vertices and with maximum degree 𝑑. Yannakakis 

(1985) improved these results by giving an 𝑂(𝑛 log𝑛) time algorithm for the same kind of 

graphs. In particular, for k-level t-ary trees, 𝑇𝑡,𝑘, it holds that: 

𝐶𝑊𝑓(𝑇𝑡,𝑘) = ⌈
1

2
(𝑘 − 1)(𝑡 − 1)⌉ , ∀𝑘 ≤ 3  (4) 

 

Exact methods to obtain the optimal cutwidth of grids have been proposed in Rolim et al. 
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(1995). Specifically, for a grid 𝐿𝑤,ℎ with width 𝑤 ≥  2 and height ℎ ≥  2, these authors proved 

that: 

𝐶𝑊(𝐿𝑤,ℎ) = {
2, 𝑖𝑓 𝑤 = ℎ = 2

min{𝑤+ 1, ℎ + 1} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (5) 

 

Recently, Thilikos et al. (2005) presented an algorithm to compute the cutwidth of bounded 

degree graphs with small tree-width in polynomial time. As far as we know, there is no previous 

exact method for the CMP on general graphs, and all the previous methods, as shown above, 

target special classes of graphs. However, we have identified four previous lower bounds and a 

linear integer formulation that we describe in the following subsections. 

 

2.1 Lower bounds for the CMP 

Díaz et al., (2002) proposed two lower bounds for the CMP. The first one is based on 

fundamental cuts and the second one in spectral properties of graphs. The computation of the 

former is based on the well-known max-flow min-cut theorem (Ford and Fulkerson, 1962), 

which states that the maximal flow value from an origin 𝑜 to a destination 𝑑 in a given graph is 

equal to the minimal edge cut separating 𝑜 and 𝑑 (called a fundamental cut).  If we compute the 

value of the fundamental cut for all the possible pairs (𝑜, 𝑑) in a given graph G(V, E), the 

maximum of these values is a lower bound of the CMP (Díaz et al., 2002) that we denote as 

𝐿𝐵𝐹𝐹 .  In mathematical terms: 

 

𝐶𝑊(G) ≥ 𝐿𝐵𝐹𝐹 = max
𝑜,𝑑∈V

{𝑐𝑢𝑡(𝑜, 𝑑)} (6) 

where 𝑐𝑢𝑡(𝑜, 𝑑) represents the value of the fundamental cut from 𝑜 to 𝑑. 

 

Considering the Laplacian matrix associated to a graph, it is possible to derive a lower bound 

for the CMP using its second smallest eigenvalue (Juvan and Mohar, 1992). Given a connected 

graph G(V, E) with |V| = 𝑛, let 𝜆2 be the second smallest eigenvalue. The 𝐿𝐵𝐿𝑀 lower bound 
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can be computed as: 

𝐶𝑊(G) ≥ 𝐿𝐵𝐿𝑀 = 𝜆2
⌊
𝑛
2
⌋ ⌈
𝑛
2
⌉

𝑛
 (7) 

 

Additionally, we can derive new lower bounds by studying the relations of the CMP with other 

layout optimization problems.  Specifically, Díaz et al., (2002) presented an inequality between 

the CMP and the Minimum Linear Arrangement problem, MinLA (Garey et al., 1976; Petit, 

2003), and another one between the CMP and the Edge Bisection problem, EB (Garey et al. 

1976).  Given a graph G(V, E) with |V| = 𝑛, and a labeling 𝑓, then: 

 

𝐿𝐴𝑓(G) ≤ 𝑛 ∙ 𝐶𝑊𝑓(G) with 𝑓 ∈ Π𝑛   (8) 

𝐸𝐵𝑓(G) ≤ 𝐶𝑊𝑓(G)  with 𝑓 ∈ Π𝑛   (9) 

 

where 𝐿𝐴𝑓(G) and 𝐸𝐵𝑓(G) are the values of the MinLA and EB objective functions, 

respectively.  Consequently, two additional lower bounds, 𝐿𝐵𝑀𝑖𝑛𝐿𝐴 and 𝐿𝐵𝐸𝐵 can be derived: 

 

𝐶𝑊(𝐺) ≥ 𝐿𝐵𝑀𝑖𝑛𝐿𝐴 =
𝐿𝐴(𝐺)

𝑛
   (10) 

 

𝐶𝑊(𝐺) ≥ 𝐿𝐵𝐸𝐵 = 𝐸𝐵(𝐺)   (11) 

 

 

2.2 Integer programming model 

Luttamaguzi et al. (2005) proposed the following CMP linear integer formulation based on the 

binary decision variables 𝑥𝑖
𝑘 , with indices 𝑖, 𝑘 ∈ {1, 2, … , 𝑛}, specifying whether 𝑖 is placed in 

position 𝑘 in the ordering. This binary variable takes on value 1 if and only if 𝑖 occupies the 

position 𝑘 in the ordering; otherwise 𝑥𝑖
𝑘 takes on value 0. 
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  min 𝑏 

  s.t. 

∑ 𝑥𝑖
𝑘

𝑘∈{1,…,𝑛}

= 1 (12) 

  

∑ 𝑥𝑖
𝑘

𝑖∈{1,…,𝑛}

= 1 (13) 

  

𝑦𝑖,𝑗
𝑘,𝑙 ≤ 𝑥𝑖

𝑘 (14) 

  

𝑦𝑖,𝑗
𝑘,𝑙 ≤ 𝑥𝑗

𝑙 (15) 

  

𝑥𝑖
𝑘 + 𝑥𝑗

𝑙  ≤ 𝑦𝑖,𝑗
𝑘,𝑙 +  1 (16) 

  

∑ 𝑦𝑖,𝑗
𝑘,𝑙

𝑘 ≤𝑐<𝑙

+ ∑ 𝑦𝑖,𝑗
𝑘,𝑙

𝑙 ≤𝑐<𝑘

≤ 𝑏, ∀𝑐 ∈ {1,… , 𝑛 − 1} (17) 

  

𝑥𝑖
𝑘  ∈ {0,1} (18) 

 

where 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}, (𝑣𝑖 , 𝑣𝑗)E, 𝑘, 𝑙 ∈ {1, 2, … , 𝑛}. Constraints (12) and (13) ensure that 

each vertex is only assigned to one position, and one position is only assigned to one vertex 

respectively. Consequently, constraints (12), (13), and (18) together imply that a solution of the 

problem is an ordering. Let 𝑦𝑖,𝑗
𝑘,𝑙  indicate whether both 𝑥𝑖

𝑘 = 1 and 𝑥𝑗
𝑙 = 1. Thus, 𝑦𝑖,𝑗

𝑘,𝑙  ≥ 𝑥𝑖
𝑘𝑥𝑗

𝑙, 

which is expressed by the traditional linear constraints (16). 

 

Constraint (17) computes for each position 𝑐 in the ordering, the number of edges whose origin 

is placed in any position 𝑘 (1 ≤ 𝑘 ≤ 𝑐 ) and destination in any position 𝑙 (𝑐 < 𝑙 ≤ 𝑛 ).  The 

cutwidth problem consists of minimizing the maximum number of cutting edges in any position, 
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𝑐 ∈ {1, … , 𝑛 − 1} of the labeling.  Therefore, the objective function 𝑏 must be larger than or 

equal to this quantity. 

 

 

3. Lower bounds  

Given a subset 𝑆 of V with 𝑘 < 𝑛 vertices and an ordering 𝑔 ∈ Πk  assigning the integers 

{1, 2, … , 𝑘} to the vertices in 𝑆, we define a partial solution as the pair (𝑆, 𝑔).  A complete 

solution of the cutwidth problem in G can be obtained by adding 𝑛 − 𝑘 elements from V \ S to S, 

assigning them the integers {𝑘 + 1, 𝑘 + 2,… , 𝑛}. Therefore, the elements in S ordered according 

to 𝑔 can be viewed as an incomplete or partial solution of the cutwidth problem in G.  We define 

U as the set of unlabeled vertices (U = V \ S) and 𝑆𝑔 as the set of all complete solutions of the 

problem in G obtained by adding ordered elements to 𝑆. In Figure 2, the partial solution (𝑆, 𝑔) 

of the example introduced in Figure 1.a is shown with the vertices in 𝑆 =  {𝐴, 𝐷, 𝐸} labeled with 

𝑔 (𝑔(𝐴) = 1, 𝑔(𝐷) = 2 and 𝑔(𝐸) = 3).  Vertices B, C and F remain unlabeled and therefore 

belong to set U. 

 

Figure 2: Partial solution.  

 

Given a partial solution (𝑆, 𝑔) with S  V and 𝑔 ∈ Πk, we consider the graph GS(S, ES) where S 

is the set of labeled vertices and ES  E is the set of edges among them. In the example depicted 

in Figure 2, S={A, D, E}, ES ={(A, E), (D, E)} and 𝑆𝑔={ (A, D, E, F, C, B), (A, D, E, C, B, F), 

(A, D, E, B, F, C), (A, D, E, F, B, C), (A, D, E, C, F, B), (A, D, E, B, C, F)}.  
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Given a complete solution of the CMP, the contribution of each vertex to the objective function 

is computed with the equation (1). However, this formula can be adapted to compute the 

objective function of a partial solution (S, g). Therefore, we can calculate the cutwidth of each 

labeled vertex in GS with respect to the ordering 𝑔 and the edges in ES, 𝐶𝑊𝑔(𝑣) as follows:  

 

𝐶𝑊𝑔(𝑣) = |{(𝑢, 𝑤) ∈  𝐸𝑆 ∶ 𝑔(𝑢) ≤ 𝑔(𝑣) < 𝑔(𝑤)}| (19) 

 

In Figure 2, we have 𝐶𝑊𝑔(𝐴) = 1, 𝐶𝑊𝑔(𝐷) = 2 and 𝐶𝑊𝑔(𝐸) = 0.  It is clear that the cutwidth 

values in the partial solution provide a lower bound of their corresponding values than in any 

complete solution 𝑓 ∈ 𝑆𝑔. In this example, if 𝑓 is a complete solution (with 4, 5 and 6 assigned 

to C, B and F), we have 𝐶𝑊𝑓(𝐴) ≥  𝐶𝑊𝑔(𝐴) = 1, 𝐶𝑊𝑓(𝐷) ≥  𝐶𝑊𝑔(𝐷) = 2 and 𝐶𝑊𝑓(𝐸) ≥

 𝐶𝑊𝑔(𝐸) = 0.  We can therefore conclude that the cutwidth of 𝐶𝑊𝑓(G) is larger than 

max{𝐶𝑊𝑔(𝐴), 𝐶𝑊𝑔(𝐷), 𝐶𝑊𝑔(𝐸)} = 2 and say that this maximum is a lower bound of the 

cutwidth.  In mathematical terms, for any 𝑓 ∈ 𝑆𝑔: 

 

𝐶𝑊𝑓(G) ≥ 𝐿𝐵 (𝑆, 𝑔) =  max
𝑣∈𝑆

𝐶𝑊𝑔(𝑣) (20) 

 

In this section we propose four lower bounds, LB1, LB2, LB3 and LB4, to the value of 𝐶𝑊𝑓(G) for 

𝑓 ∈ 𝑆𝑔 thus improving this trivial lower bound, 𝐿𝐵(𝑆, 𝑔). LB1 is based on the degree of the 

vertices in G, LB2 improves LB by considering the edges between the labeled and unlabeled 

vertices, LB3 considers the best vertex to be labeled next in the partial solution, and LB4 is based 

on the distribution of the edges in G minimizing the cutwidth. 

 

3.1 Lower bound LB1 

Let 𝑁(𝑣) be the set of vertices adjacent to v and let E(v) be the edges with an endpoint in v.  

Consider a solution 𝑓 and the vertex 𝑢 in position 𝑓(𝑣) − 1 (i.e., 𝑢 precedes 𝑣 in the ordering 
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𝑓). If an edge in E(v) is incident on a vertex 𝑤 with 𝑓(𝑤) < 𝑓(𝑣), then it contributes to 

𝐶𝑊𝑓(𝑢); otherwise, it contributes to 𝐶𝑊𝑓(𝑣) (the edge is computed in the cutwidth of the 

vertex). Then 𝐶𝑊𝑓(𝑢) + 𝐶𝑊𝑓(𝑣) ≥ |𝑁(𝑣)|.  Therefore, 

 

max{𝐶𝑊𝑓(𝑢), 𝐶𝑊𝑓(𝑣)} ≥ |
𝑁(𝑣)

2
|    (21) 

 

Considering that the cutwidth of the graph 𝐶𝑊𝑓(G) is the maximum of the cutwidths of all its 

vertices, we conclude that |𝑁(𝑣)|/2 is a lower bound on 𝐶𝑊𝑓(G). 

 

𝐶𝑊𝑓(G)  ≥ 𝐿𝐵1 = max
𝑣∈V

⌈
𝑁(𝑣)

2
⌉ (22) 

 

In the example in Figure 2, we obtain 𝐿𝐵1 = 3. Note that this bound is independent of the 

labeling, and it actually provides a lower bound on the optimum cutwidth of the graph 𝐶𝑊(G). 

 

In order to compute this lower bound, we need to examine all the vertices in the graph and, for 

each of them, all its neighbors. In a direct implementation, this procedure would be Ο(𝑛 𝑚). 

However, for each vertex we store its number of neighbors, reducing the complexity to Ο(𝑛). It 

is important to remark that this lower bound does not need to be updated when (𝑆, 𝑔) grows 

since it only depends on the vertex with maximum degree in the graph. Therefore, it is 

computed only once. 

 

3.2 Lower bound LB2 

Given a partial solution (𝑆, 𝑔) and a complete solution 𝑓 in 𝑆𝑔, the cutwidth of 𝑣 ∈  𝑆 with 

respect to 𝑓, 𝐶𝑊𝑓(𝑣), can be computed as: 
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𝐶𝑊𝑓(𝑣) = 𝐶𝑊𝑔(𝑣) + ∑ |𝑁𝑈(𝑢)|
𝑢 ∈𝑆

1≤𝑔(𝑢)≤𝑔(𝑣)

 
(23) 

 

where 𝑁𝑈(𝑢) is the set of unlabeled vertices adjacent to 𝑢.  The first term in this expression, 

𝐶𝑊𝑔(𝑣), corresponds to the cutwidth of 𝑣 in GS (S, ES). The second term represents the number 

of edges with an endpoint in a vertex 𝑢 labeled with 𝑔(𝑢) ≤ 𝑔(𝑣) (i.e., previous to 𝑣 in the 

ordering 𝑔), and the other endpoint in an unlabeled vertex 𝑤.  Note that 𝑓(𝑤) > 𝑔(𝑣) for all 𝑤 

in U and any labeling (solution) 𝑓 in 𝑆𝑔. This is why we include all the edges with an endpoint 

in the unlabeled vertices 𝑤 in the computation of 𝐶𝑊𝑓(𝑣). 

 

Given that (23) provides an expression of 𝐶𝑊𝑓(𝑣) for all 𝑣 in S  V, and that 𝐶𝑊𝑓(G) is the 

maximum of 𝐶𝑊𝑓(𝑣) for all 𝑣 in V, we can conclude that: 

 

𝐶𝑊𝑓(G) ≥ 𝐿𝐵2 = max
𝑣∈𝑆

{
 

 
𝐶𝑊𝑔(𝑣) + ∑ |𝑁𝑈(𝑢)|

𝑢∈𝑆
1≤𝑔(𝑢)≤𝑔(𝑣) }

 

 
 (24) 

 

In the partial solution shown in Figure 2, the value of the cutwidth of any solution 𝑓 in 𝑆𝑔, 

𝐶𝑊𝑓(G), satisfies:  

 

𝐶𝑊𝑓(G) ≥ max{𝐶𝑊𝑓(𝐴), 𝐶𝑊𝑓(𝐷), 𝐶𝑊𝑓(𝐸)} = max{4,7,6} = 7, 

where:  

 𝐶𝑊𝑓(𝐴) = 𝐶𝑊𝑔(𝐴) + |𝑁𝑈(𝐴)| = 1 + 3 = 4 

 𝐶𝑊𝑓(𝐷) = 𝐶𝑊𝑔(𝐷) + |𝑁𝑈(𝐴)| + |𝑁𝑈(𝐷)| = 2 + 3 + 2 = 7 

 𝐶𝑊𝑓(𝐸) = 𝐶𝑊𝑔(𝐸) + |𝑁𝑈(𝐴)| + |𝑁𝑈(𝐷)| + |𝑁𝑈(𝐸)| = 0 + 3 + 2 + 1 = 6 

 

The computation of this lower bound is performed in an incremental way.  In particular, we only 
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need to check the neighbors of the last vertex included in the partial solution. Therefore the 

complexity of computing LB2 is Ο(𝑛). 

 

3.3 Lower bound LB3 

Consider a partial solution (𝑆, 𝑔), an unlabeled vertex 𝑢𝑈, the vertex 𝑣𝑘 in 𝑆 with the largest 

label, and a solution 𝑓 in 𝑆𝑔.  If the vertex 𝑢 is labeled in 𝑓 with 𝑘 + 1 (i.e., 𝑢 follows 𝑣𝑘 in the 

ordering 𝑓) its cutwidth can be computed as: 

 

𝐶𝑊𝑓(𝑢) ≥ 𝐶𝑊𝑓(𝑣𝑘) − (|𝑁𝑆(𝑢)| − |𝑁𝑈(𝑢)|)  (25) 

 

Note that 𝐶𝑊𝑓(𝑣𝑘) is equivalent to the expressions |𝐸 ⋂  (𝑆 × 𝑈)|, ∑ |𝑁𝑈(𝑣)|𝑣 ∈𝑆  and 

∑ |𝑁𝑆(𝑢)|𝑢 ∈𝑈 . 

 

We can then compute a lower bound of the 𝐶𝑊𝑓-value for the vertex in position 𝑘 + 1, by 

computing the maximum of |𝑁𝑆(𝑢)| − |𝑁𝑈(𝑢)| for all 𝑢𝑈.  Thus we obtain: 

 

𝐶𝑊𝑓(G) ≥ 𝐿𝐵3 = 𝐶𝑊𝑓(𝑣𝑘) −max
𝑢∈𝑈

(|𝑁𝑆(𝑢)| − |𝑁𝑈(𝑢)|)  (26) 

 

A partial solution (𝑆, 𝑔) of the example given in Figure 1 is shown in Figure 3.a, where 

𝑆 =  {𝐸, 𝐹}, 𝑔(𝐸)  =  1, 𝑔(𝐹)  =  2 and 𝑈 =  {𝐴, 𝐵, 𝐶, 𝐷} with 𝐶𝑊𝑓(𝐹)  =  4.  In Figure 3.b it 

is shown the value of |𝑁𝑆(𝑢)| − |𝑁𝑈(𝑢)| for each vertex 𝑢 ∈ 𝑈. According to the definition 

given above, we select the vertex 𝐴, giving a value of 𝐿𝐵3 = 4– (– 1) = 5. This means that, 

independently of the labeling of the vertices in 𝑈, the value of the final solution is greater than 

or equal to 5.   
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Figure 3: (a) Partial solution. (b) |𝑁𝑆(𝑢)| − |𝑁𝑈(𝑢)| values for every 𝑢𝑈.  

 

Computing LB3 requires traversing all the unlabeled vertices and then, checking whether its 

neighbors are not labeled. Therefore, the complexity of the computation of this lower bound is 

Ο(𝑛2). 

 

3.4 Lower bound LB4 

Given a graph G with 𝑛 vertices and 𝑚 edges we compute the lower bound 𝐿𝐵4 of its cutwidth 

𝐶𝑊(G), by constructing an auxiliary graph G’ with 𝑛 vertices and 𝑚 edges distributed in such a 

way that it has minimum cutwidth.  In other words, we “put” the edges in G’ between the 

appropriate vertices to obtain a minimum cutwidth.  In this way, the cutwidth of G’ is a lower 

bound of the cutwidth of G for any labeling of its vertices (it is in fact a lower bound of the 

cutwidth of any graph with 𝑛 vertices and 𝑚 edges). 

 

Consider the case in which 𝑚 < 𝑛, we construct G’ as a path (Figure 4) in which some vertices 

may eventually be disconnected (when 𝑚 = 𝑛 − 1 it is a connected path).  The cutwidth of G’ is 

equal to 1 and it is clear that regardless how the edges are distributed in G, given that it has 𝑚 

edges, for any 𝑓, its cutwidth 𝐶𝑊𝑓(G) will be equal to or larger than 𝐶𝑊(G’) = 1. Moreover, if 

we have 𝑚 = 𝑛, we need to add an extra edge to the connected path G’ and it necessarily results 

in a vertex with cutwidth 2; therefore, in this case 𝐶𝑊(G’) = 2 ≤ 𝐶𝑊𝑓(G) for any labeling of 

the vertices in G. 
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Figure 4:  Graph G’ with 𝑚 = 𝑛 − 1 edges (path). 

 

Let us now consider the case in which 𝑚 > 𝑛. The best way to distribute the 𝑚 edges in a graph 

with 𝑛 vertices in order to reduce its cutwidth is as follows:  We place the first 𝑛 − 1 edges 

joining “consecutive” vertices, in the graph (we call them edges of length 1) as shown in Figure 

4 (between 𝑣𝑖  and 𝑣𝑖+1 for any 𝑖). Then, we can add some edges increasing the cutwidth by only 

one unit.  Specifically, we can add ⌊(𝑛 − 1)/2⌋ edges between “alternated” vertices (𝑣𝑖  and 

𝑣𝑖+2) as shown in Figure 5, keeping the cutwidth of G’ with value 2.  We shall denote them 

edges of length 2.  Therefore, the cutwidth of a graph G with 𝑛 vertices and 𝑚 edges with 

𝑛 ≤ 𝑚 ≤ 𝑛 − 1 + ⌊(𝑛 − 1)/2⌋ satisfies 𝐶𝑊(G’) = 2 ≤ 𝐶𝑊𝑓(G) for any labeling of the vertices 

in G.  Any extra edge would result in a cutwidth of 3. 

 

 

Figure 5:  Graph G’ with a length 1 and 2 edges. 

 

In Figure 6 it is shown how can we add ⌊(𝑛 − 2)/2⌋ edges to the graph in Figure 5 keeping the 

cutwidth of G’ with value 3.  Then, following the same argument described above, the cutwidth 

of a graph G with 𝑛 vertices and 𝑚 edges with 𝑛 − 1 + ⌊(𝑛 − 1)/2⌋ < 𝑚 ≤ (𝑛 − 1) + (𝑛 − 2) 

satisfies 3 ≤ 𝐶𝑊𝑓(G) for any labeling of its vertices (it is easy to see that ⌊(𝑛 − 1)/2⌋ +

⌊(𝑛 − 2)/2⌋ = 𝑛 − 2).   

 

Figure 6: Graph G’ with cutwidth 3. 
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Generalizing this incremental construction of G’, we observe that there is a maximum of 𝑛 − 𝑘 

edges of length 𝑘 (between 𝑣𝑖 and 𝑣𝑖+𝑘 for any 𝑖) that can be added to G’ (in which we have 

previously added all the edges with lengths 𝑡 from 𝑡 =  1 to 𝑘 − 1).  The first ⌊(𝑛 − 1)/𝑘⌋ 

edges increase the cutwidth of G’ by one unit; the second ⌊(𝑛 − 2)/𝑘⌋ by another unit, the third 

⌊(𝑛 − 3)/𝑘⌋ in another unit and so on until the 𝑛 − 𝑘 edges of length 𝑘 have been added and the 

cutwidth of G’ increases by 𝑘 units.  The cutwidth of graph G’ provides a bound of the cutwidth 

of any graph with the same number of vertices and edges. 

 

Note that it is possible to compute the cutwidth of such a graph G’ without explicitly 

constructing it, using the following recursive expression: 

 

𝑀𝑖𝑛𝐶𝑊(𝑀, 𝑙, 𝑖) =

{
 

 
0 𝑖𝑓 𝑀 ≤ 0

1 +𝑀𝑖𝑛𝐶𝑊 (𝑀 − ⌊
|𝑈|−𝑖

𝑙
⌋ , 𝑙, 𝑖 + 1) 𝑖𝑓 (𝑀 > 0) and (𝑖 < 𝑙)

1 +𝑀𝑖𝑛𝐶𝑊 (𝑀 − ⌊
|𝑈|−𝑖

𝑙
⌋ , 𝑙 + 1,1) 𝑖𝑓 (𝑀 > 0) and (𝑖 = 𝑙)

  (27) 

 

where 𝑀 is the number of remaining edges that have not been yet placed, 𝑙 =  |𝑓(𝑣𝑖)  −  𝑓(𝑣𝑗)| 

is the length of the edges considered in the labeling, 𝑖 is the label of the vertex in which we start 

to place edges and ⌊(|𝑈| − 𝑖)/𝑙⌋ computes the maximum number of edges with length 𝑙 we can 

place for each recursion level (i.e., placing consecutive edges of length 𝑙 starting in vertex with 

label 𝑖). Note that each recursion increases the cutwidth value by one unit.  

 

Given a partial solution 𝑆 and the set of unlabeled vertices 𝑈 = V\𝑆, we define 𝐸𝑈 as the set of 

edges (𝑣𝑖 , 𝑣𝑗) such that 𝑣𝑖 , 𝑣𝑗 ∈ 𝑈.  We can compute 𝐿𝐵4 as follows: 

𝐿𝐵4  =  𝑀𝑖𝑛𝐶𝑊(|𝐸𝑈|,1,1)      (28) 

 

For instance, the first call to 𝑀𝑖𝑛𝐶𝑊 incorporate the edges depicted in Figure 4, the second call, 

the new edges depicted in Figure 5, the third call, the new edges depicted in Figure 6 and so on.  
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As a result, the value of the cutwidth of any solution 𝑓 in 𝑆𝑔, 𝐶𝑊𝑓(G), satisfies:  

𝐶𝑊𝑓(G) ≥ 𝐶𝑊𝑓(G’) ≥ 𝐿𝐵4 = 𝑀𝑖𝑛𝐶𝑊(|𝐸𝑈|,1,1)  (29) 

 

Since this lower bound only depends on the graph structure, its computation can be done in a 

simple lookup-table of the problem size (i.e., of size 𝑛 × 𝑚). This table, computed offline, 

stores for each pair (𝑛,𝑚) the corresponding value of LB4; therefore, LB4 is available in constant 

time, Ο(1). 

 

3.6 Relative dominance among the lower bounds 

In this section we analyze the relative dominance among the lower bounds presented above and 

conclude that there are no dominance relationships among them. To this end, we present a graph 

in Figure 7.a and partial orderings in Figure 7.b, each one with a different best lower bound. 

 

Figure 7. Examples of dominance among lower bounds. 
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It is easy to see in Figure 7 that in labeling 𝑓1 the lower bound 𝐿𝐵1 dominates the others 

(𝐿𝐵1 = 4, 𝐿𝐵2 = 1, 𝐿𝐵3 = 2 and 𝐿𝐵4 = 3). In the second ordering (𝑓2), 𝐿𝐵2 dominates the rest 

of bounds (𝐿𝐵2 = 5, which is larger than 𝐿𝐵1 = 4, 𝐿𝐵3 = 4 and 𝐿𝐵4 = 2). In 𝑓3 the lower 

bound 𝐿𝐵3 dominates the rest of lower bounds and, finally, in 𝑓4, 𝐿𝐵4 is the best (largest) lower 

bound. 

 

4. Dominance between partial solutions  

In this section we propose a fathoming strategy based on the dominance among partial solutions 

(nodes in the search tree) to reduce the exploration and consequently the running time of our 

branch and bound procedure. 

 

Given a partial solution (𝑆, 𝑔) and a complete solution 𝑓 in 𝑆𝑔, we introduced in Section 3.2 the 

expression (23) to compute the cutwidth of 𝑣 ∈  𝑆 with respect to 𝑓, 𝐶𝑊𝑓(𝑣), in terms of the set 

of unlabeled vertices adjacent to 𝑢, 𝑁𝑈(𝑢).  It is clear that the cutwidth of G with respect to 𝑓 

can be split into two parts: 

 

𝐶𝑊𝑓(G) = 𝑚𝑎𝑥𝑣∈𝑉 𝐶𝑊𝑓(𝑣) = 𝑚𝑎𝑥{𝑚𝑎𝑥𝑣∈𝑆 𝐶𝑊𝑓(𝑣) ,𝑚𝑎𝑥𝑣∈𝑉∖𝑆 𝐶𝑊𝑓(𝑣)}     (30) 

Note that the value of each part in (30) is independent with the specific ordering of the vertices 

in the expression of the other part. For example, the cutwidth of 𝑣 ∈  V\ 𝑆 is independent with 

the ordering of the vertices in 𝑆, because in any ordering of 𝑆 all its vertices would receive a 

label lower than the label of 𝑣.  Therefore, the value of the first part in (30) only depends on the 

ordering of the vertices in 𝑆 (i.e., on 𝑔) and similarly, the value of the second part only depends 

on the ordering of the vertices in V\ 𝑆.  As a matter of fact, the value of the first part is the 𝐿𝐵2 

lower bound. 

 

𝐶𝑊𝑓(G) = 𝑚𝑎𝑥{𝐿𝐵2(𝑔),𝑚𝑎𝑥𝑣∈𝑉∖𝑆 𝐶𝑊𝑓(𝑣)}      (31) 
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Consider now a different partial solution over the same set of vertices (𝑆, ℎ) and a complete 

solution 𝑓′ in 𝑆ℎ.  From (31) it holds that: 

 

𝐶𝑊𝑓′(G) = 𝑚𝑎𝑥{𝐿𝐵2(ℎ),𝑚𝑎𝑥𝑣∈𝑉∖𝑆 𝐶𝑊𝑓′(𝑣)}      (32) 

 

If 𝐿𝐵2(𝑔) ≤ 𝐿𝐵2(ℎ) we can conclude that the value of the best solution in 𝑆𝑔 is better (lower) 

or equal than the value of the best solution in 𝑆ℎ.  Let  𝑓𝑏𝑒𝑠𝑡 be the best solution in 𝑆ℎ, we can 

express its value, 𝐶𝑊 𝑓𝑏𝑒𝑠𝑡(G), as in (32) in terms of 𝐿𝐵2(ℎ) and 𝐶𝑊 𝑓𝑏𝑒𝑠𝑡(𝑣) for all the 

𝑣 ∈  V\ 𝑆.  If we reorder in  𝑓𝑏𝑒𝑠𝑡 the elements of 𝑆 according to 𝑔 we obtain a solution in 𝑆𝑔 in 

which the value, expressed as in (31), clearly is lower or equal to the value of  𝑓𝑏𝑒𝑠𝑡 (note that 

the second part in both expressions have the same value).  Therefore, we can skip the 

examination of the solutions in 𝑆ℎ and only examine 𝑆𝑔 to determine the optimal solution. 

 

This dominance rule can be exploited during the search process. If a partial solution 

(𝑆, 𝑔) dominates another partial solution (𝑆, ℎ), (i.e., if 𝐿𝐵2(𝑔) ≤ 𝐿𝐵2(ℎ)) we do not explore 

(𝑆, ℎ).  To implement this rule in a direct way we would need to store the set 𝑆, to eventually 

fathom any other partial solution of these vertices. However, storing every possible set 𝑆 would 

result in an extremely large number of sets in the order of 𝑂(𝑛!).  An alternative strategy to limit 

the storage would be to generate any other partial solution with the same vertices assigned but in 

a different order (for example using a backtracking method).  However, this would be highly 

time-consuming (in the order of 𝑂(𝑛!)) when the number of vertices considered is relatively 

large.  We therefore have considered a compromise between the time/storage needed to study 

the dominance rule and the performance obtained.  Our strategy only checks the dominance by a 

reference partial solution in which the vertices are in a lexicographical order.  In this way we 

ensure that at least one solution over this set of vertices is checked, which permits an efficient 

implementation.  In the computational experience (Section 7), we evaluate the effectiveness of 
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this dominance rule, which complements the effect of the lower bounds.  Both together 

significantly reduce the partial solutions explored and therefore the total running time of the 

method. 

 

5. GRASP Upper Bound 

In this section, we propose a heuristic approach based on the GRASP methodology (Feo and 

Resende 1994) to obtain an upper bound for the CMP. A Greedy Randomized Adaptive Search 

Procedure, GRASP, is a multi-start or iterative procedure where each iteration consists of two 

phases: construction and local search (Feo and Resende, 1989). At each iteration of the 

construction phase, GRASP maintains a set of candidate elements, CL, that can be feasibly 

added to the partial solution under construction. Every candidate element is evaluated according 

to a greedy function in order to select the next element to be added to the construction. A 

restricted candidate list, RCL ⊆ CL, is created with the best elements in CL. This is the greedy 

aspect of the method. The element to be added to the partial solution is randomly selected from 

those in the RCL. This is the probabilistic aspect of the heuristic. Once the selected element is 

added to the partial solution, the candidate list CL is updated and its elements evaluated. This is 

the adaptive aspect of the heuristic. Once a solution is constructed, a local search is applied to 

reach a local optimum.  We refer the reader to Resende et al. (2003; 2010) for two recent 

reviews of GRASP.  In Figure 8 there is a pseudo-code of our GRASP construction method for 

the cutwidth problem. 

 

The constructive method starts by creating a list of unlabeled vertices 𝑈 (initially 𝑈 = V).  The 

first vertex is randomly selected from all those vertices in 𝑈 and labeled with 1.  In subsequent 

construction steps, a candidate list CL is formed with all the vertices in 𝑈 that are adjacent to at 

least one labeled vertex.  For each vertex 𝑢 in CL we compute its evaluation 𝑒(𝑢) as: 

 

𝑒(𝑢) =  |𝑁𝑠(𝑢)| − |𝑁𝑈(𝑢)|.    (33)  
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Note that in this step a greedy selection would label the vertex 𝑢∗ having the maximum e-value 

with the next available label, which would be the minimum 𝐶𝑊𝑓(𝑢) value.  However, by 

contrast, the GRASP methodology computes a restricted candidate list, 𝑅𝐶𝐿, with good 

candidates and selects one at random. Specifically, 𝑅𝐶𝐿 = {𝑣𝐶𝐿/𝑒(𝑣) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} where: 

 

 threshold = 𝑒min + 𝛼(𝑒max − 𝑒min)     (34) 

 𝑒min = min𝑣∈𝐶𝐿{𝑒(𝑣)}        (35) 

 𝑒max = max𝑣∈𝐶𝐿{𝑒(𝑣)}.       (36) 

 

The search parameter α is computed as a percentage between the maximum, 𝑒max, and 

minimum, 𝑒min, values in CL. It is randomly selected, at each iteration, for diversification 

purposes. 

PROCEDURE Constructive 

1. Let 𝑆 and 𝑈 be the sets of labeled and unlabeled vertices of the graph respectively 

2. Initially 𝑆 =   and 𝑈 = V 

3. Select a vertex 𝑢 from 𝑈 randomly 

4. Assign the label 𝑘 = 1 to 𝑢. 𝑆 = {𝑢}, 𝑈 = 𝑈\{𝑢} 

 WHILE (𝑈 ≠  ) 

  5. 𝑘 = 𝑘 + 1 

  6. Construct 𝐶𝐿 = {𝑣𝑈/(𝑤, 𝑣)E , 𝑤 𝑆} 

7. Let 𝑁𝑠(𝑣) and 𝑁𝑈(𝑣) be the set of adjacent labeled and unlabeled vertices to 

𝑣 respectively. 

  8. Compute 𝑒(𝑣) =  |𝑁𝑠(𝑣)| − |𝑁𝑈(𝑣)|∀𝑣𝐶𝐿 

  9. Construct 𝑅𝐶𝐿 =  {𝑣𝐶𝐿/𝑒(𝑣) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} 

  10. Select a vertex 𝑢 randomly in 𝑅𝐶𝐿  

  11. Label 𝑢 with the label 𝑘 

  12. 𝑈 = 𝑈\{𝑢}, 𝑆 = 𝑆 {𝑢} 

Figure 8. Pseudo-code of the constructive method. 
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Once a solution has been constructed we apply an improving phase based on a local search 

procedure.  Our local search method for the cutwidth problem is based on insertion moves. 

Given f, we define the insertion move 𝑀𝑂 𝐸(𝑓, 𝑗, 𝑣) consisting of deleting 𝑣 from its current 

position 𝑓(𝑣) and inserting it in position 𝑗. This operation results in the ordering 𝑓′, as follows: 

 

 If 𝑓(𝑣) = 𝑖 > 𝑗, then 𝑣 is inserted just before 𝑣𝑗 in position 𝑗. In mathematical terms, 

from 𝑓 = (… , 𝑣𝑗−1, 𝑣𝑗 , 𝑣𝑗+1, … , 𝑣𝑖−1, 𝑣, 𝑣𝑖+1, … ), we obtain the new ordering 𝑓′ =

(… , 𝑣𝑗−1, 𝑣, 𝑣𝑗 , 𝑣𝑗+1, … , 𝑣𝑖−1, 𝑣𝑖+1, … ). 

 

 If 𝑓(𝑣) = 𝑖 < 𝑗, 𝑣 is inserted just after 𝑣𝑗 in position 𝑗. Therefore, from the ordering 

𝑓 = (… , 𝑣𝑖−1, 𝑣, 𝑣𝑖+1, … , 𝑣𝑗−1, 𝑣𝑗 , 𝑣𝑗+1, … ), we obtain the new ordering 𝑓′ =

(… , 𝑣𝑖−1, 𝑣𝑖+1, … , 𝑣𝑗−1, 𝑣𝑗 , 𝑣, 𝑣𝑗+1, … ). 

 

We define the set of critical vertices CV as those with a cutwidth value equal or close to the 

cutwidth of the graph.  In mathematical terms, the set of critical vertices is defined as: 

 

𝐶 = ⋃ 𝑆𝑖
𝑖≥⌈𝛽𝐶𝑊𝑓(G)⌉

 
(37) 

 

where 𝑆𝑖 = {𝑣 ∈  |𝐶𝑊𝑓(𝑣) = 𝑖} is the set of vertices with a cutwidth value equal to 𝑖 and the 

threshold value is computed as a percentage 𝛽 (0 ≤ 𝛽 ≤ 1) of the current objective function 

value ⌈𝛽𝐶𝑊𝑓(G)⌉.  The search parameter 𝛽 has been experimentally set to 0.9. These vertices 

determine the value of the objective function or alternatively are considered likely to do so in 

subsequent iterations.  In each iteration, our local search method selects a vertex 𝑣 in CV and 

performs the first improving move 𝑀𝑂 𝐸(𝑓,  𝑜𝑠, 𝑣), where the meaning of improving is not 
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limited to the objective function (which provides little information in this problem). The 

position  𝑜𝑠 in the move is computed as the median of the positions (according to f ) of the 

vertices adjacent to 𝑣. The search procedure explores not only  𝑜𝑠, but also positions close to 

 𝑜𝑠, and performs the first improving move. The considered moves are defined as 

𝑀𝑂 𝐸(𝑓, 𝑗, 𝑣) with 𝑗 ∈ [ 𝑜𝑠 − 𝑤,  𝑜𝑠 + 𝑤], being 𝑤 a search parameter which is calculated as 

|V| ∙ 𝛾, where 𝛾 is set to 0.1.  An improving move is the one that either reduces 𝐶𝑊𝑓(𝐺) or the 

number of vertices in CV.  When a move is performed, the associated vertex is removed from 

CV.  When the set becomes empty, we recalculate it and resort to the first element in it. The 

method cuts off when there is no improving move associated with the vertices in CV (i.e., when 

the solution cannot be further improved). 

Note that the set CV implements a candidate list strategy to scan the neighborhood in an 

intelligent way.  Moreover, note that CV is not re-computed after each move.  The notion of not 

updating key values (e.g., move values) after every iteration is based on the elite candidate list 

suggested in Glover and Laguna (1997).  The design considers that it is not absolutely necessary 

to update the value of the moves in a candidate list after an iteration is completed (i.e., the 

selected move is executed) because most of these move values either remain the same or their 

relative merit remains almost unchanged.  This strategy has been successfully applied in 

different optimization problems. 

 

6. The search tree 

A branch-and-bound procedure generates and explores the entire set of solutions to the problem 

by means of a search tree.  It first starts by running a heuristic algorithm (in our problem we 

chose the GRASP introduced in Section 5) to obtain an initial solution. The objective function 

value of this solution is an upper bound 𝑈𝐵 of the optimal value. Then, at each node of the 

search tree, we test if it is dominated by the reference solution (see Section 4). If so, the 

corresponding node is fathomed. Otherwise, a lower bound 𝐿𝐵 is computed and it is compared 
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with the 𝑈𝐵.  If 𝐿𝐵 ≥ 𝑈𝐵 then we fathom the node (because no better solution than the 

incumbent one can be found in the subtree rooted at this node); otherwise we branch the node 

and explore its first child node.  When the exploration reaches a leaf node (which represents a 

complete solution to our problem), it computes the objective function value of this solution, and 

updates the upper bound 𝑈𝐵 if necessary.  Then, it performs a backward step, checking its 

parent node again (backtracking) with the new upper bound and continues the exploration.  The 

branch-and-bound algorithm stops when all the nodes have been examined (some of which have 

been branched and others fathomed), and returns the optimum solution as the output.  An early 

termination, due to time limitations, provides us with a lower bound and an upper bound of the 

optimal value.  The upper bound is obtained as the value of the best solution found, while the 

lower bound is computed as the minimum of the lower bounds in the active (unexplored) nodes.  

For a more detailed description on this methodology see for example Martí et al., (2010). 

 

 

Figure 9: Search tree.  

 

In our search tree, the initial node branches into n nodes labeling each vertex 𝐴, 𝐵, 𝐶, … with 
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label 1. Then, the node containing the vertex i represents the partial solution (𝑆, 𝑔) where 

𝑆 = {𝑖} and 𝑔(𝑖) = 1.  Each of these 𝑛 nodes at the first level branches into 𝑛– 1 nodes (which 

will be referred to as nodes at level 2).  Then, a node at level 2 contains two labeled vertices 𝑖 

and 𝑗 and represents the partial solution 𝑆 = {𝑖, 𝑗} with 𝑔(𝑖) = 1 and 𝑔(𝑗) = 2.  Therefore, at 

each level in the search tree, the algorithm extends the current partial solution by labeling one 

more vertex.  Figure 9 represents this search tree for the example given in Figure 1.a. 

 

PROCEDURE 𝐵𝐵1(𝑁𝑜𝑑𝑒𝑘, 𝑈𝐵) 

 1. Let (𝑆, 𝑔) be the partial solution associated with 𝑁𝑜𝑑𝑒𝑘, being 𝑘 the last assigned label 

 IF (𝑁𝑜𝑑𝑒𝑘 is a leaf node)  /* Complete solution*/ 

  2. Compute 𝐶𝑊𝑓(G) as the cutwidth of its associated solution 

  IF (𝐶𝑊𝑓(G) < 𝑈𝐵) 

   3. 𝑈𝐵 = 𝐶𝑊𝑓(G) 

 ELSE 

  4. Compute 𝐿𝐵 

  IF (𝐿𝐵 < 𝑈𝐵) 

   5. Let 𝑈 be the set of unlabeled vertices 

   6. 𝑘 = 𝑘 + 1 

   WHILE (𝑈 ≠  ) 

    7. Select 𝑢 from 𝑈 in lexicographical order 

    8. 𝑈 = 𝑈\{𝑢} 

    9. Set 𝑁𝑜𝑑𝑒𝑘 = {𝑆 =  𝑆 ∪ {𝑢}: 𝑔(𝑢) = 𝑘}  

    10. 𝐵𝐵1(𝑁𝑜𝑑𝑒𝑘, 𝑈𝐵) 

Figure 10: Pseudo-code of BB1 

 

We propose three different ways to explore the search tree, called BB1, BB2 and BB3.  In BB1, 

the search tree is first explored in depth.  This strategy of exploration might benefit of reaching 

leaf nodes quickly. This could take advantage of the faster update of the upper bound when the 
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heuristic procedure provides an initial solution which is not close to the optimum value. 

A pseudo-code of BB1 is shown in Figure 10 in which we initially call 𝐵𝐵1(𝑁𝑜𝑑𝑒𝑘 , 𝑈𝐵) with 

𝑁𝑜𝑑𝑒𝑘 = {𝑆 = : 𝑔(𝑢) = 0,𝑢V}, 𝑘 = 0, and UB being an upper bound, initially computed 

with the GRASP procedure. 

 

PROCEDURE BB3() 

1. Compute 𝑈𝐵 with the GRASP algorithm 

2. 𝑘 = 0 

3. Set 𝑁𝑜𝑑𝑒𝑘 = {𝑆 =  : 𝑔(𝑢) = 0 𝑢V}  

4. 𝑃𝑄 =   /* empty priority queue */ 

5. Enqueue(𝑁𝑜𝑑𝑒𝑘, 𝑃𝑄) /* add an element to the queue with an associated priority */ 

WHILE (𝑃𝑄 ≠  ) 

4. 𝑁𝑜𝑑𝑒𝑘 = De-queue(𝑃𝑄) /*return, removing from 𝑃𝑄, the highest priority element*/ 

  IF (𝑁𝑜𝑑𝑒𝑘 is a leaf node)  /* Complete solution*/ 

   5. Compute 𝐶𝑊𝑓(G) as the cutwidth of its associated solution 

   IF (𝐶𝑊𝑓(G) < 𝑈𝐵) 

    6. 𝑈𝐵 = 𝐶𝑊𝑓(G) 

  ELSE 

   IF (𝐿𝐵 < 𝑈𝐵) 

    7. Let 𝑈 be the set of unlabeled vertices 

    8. Let 𝑘 be the latest label assigned in the current node 𝑁𝑜𝑑𝑒𝑘 

    WHILE (𝑈 ≠  ) 

     9. Select 𝑢 from 𝑈 in lexicographical order 

     10. 𝑈 = 𝑈\{𝑢} 

     11. Set 𝑁𝑜𝑑𝑒𝑘+1 = {𝑆 =  𝑆 ∪ {𝑢}: 𝑔(𝑢) = 𝑘 + 1}  

     12. Compute 𝐿𝐵 

     IF (𝐿𝐵 < 𝑈𝐵) 

      13. In-queue(𝑁𝑜𝑑𝑒𝑘+1, 𝑃𝑄) 

Figure 11. Pseudo-code of BB3. 
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BB2 also performs a depth first search but, instead of exploring the first child node (in 

lexicographical order) of the latest explored node as BB1, it explores the most promising node 

at each level (i.e., the one with the lowest 𝐿𝐵 value).  We have implemented effective data 

structures to store the non-branched nodes at each level for a fast back-tracking.  Finally, BB3 is 

based on a breadth first search over the search tree. In order to enhance the performance of the 

algorithm, we use a priority queue to drive the search where the priority criterion is the same as 

the above mentioned.  Figure 11 provides a pseudo-code of this procedure. 

 

7. Computational Experiments 

In this section we describe the computational experiments performed to test the efficiency of our 

branch-and-bound procedure, as well as to compare it with previous approaches.  We have 

implemented the branch-and-bound algorithm in Java SE 6 and solved the linear integer 

formulation (shown in Section 2.2) with Cplex 11.1.  We used available executable codes (also 

implemented in Java SE 6) to compute the CMP lower bounds related with maximal 

fundamental cuts and the second smallest eigenvalue, and we used the values previously 

reported for the MinLA problem for its associated lower bounds (described in Section 2.1).  All 

the experiments were conducted on an Intel Core 2 Quad CPU and 6 GB RAM. 

 

We have employed three sets of instances in our experimentation.  The first one, Small, was 

reported in Martí et al. (2008), the second one, Grids, was described in Rolim et al. (1995) and 

the third one, Harwell-Boeing, is a subset of the public-domain Matrix Market library (available 

at http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/).  All these instances are available at 

http://www.optsicom.es/cutwidth.  Each set of instances is described below: 

 

Small: This data set consists of 42 graphs established in the context of the 

bandwidth reduction problem. We have selected 42 representative graphs 

(out of 84) from the original set.  The number of vertices ranges from 16 to 
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24, and the number of edges ranges from 18 to 49.   

 

Grids: This data set consists of 36 matrices constructed as the Cartesian product of 

two paths (Raspaud et al., 2009). They are also called two dimensional 

meshes and, as documented in Raspaud et al. (2009), the optimal solution of 

the cutwidth problem for these types of instances is known by construction. 

For this set of instances, the vertices are arranged on a grid with a 

dimension 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 where 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡 {3, 4, … , 10} and 

𝑤𝑖𝑑𝑡ℎ ≥ ℎ𝑒𝑖𝑔ℎ𝑡.  

HB: We derived 34 instances from the Harwell-Boeing Sparse Matrix 

Collection. This collection consists of a set of standard test matrices arising 

from problems in linear systems, least squares, and eigenvalue calculations 

from a wide variety of scientific and engineering disciplines. The problems 

range from small matrices, used as counter-examples to hypotheses in 

sparse matrix research, to large matrices arising in applications. Graphs are 

derived from these matrices as follows. Let 𝑀𝑖𝑗 denote the element of the   

i-th row and j-th column of the 𝑛 × 𝑛 sparse matrix 𝑀. The corresponding 

graph has 𝑛 vertices. Edge (𝑖, 𝑗) exists in the graph if and only if 𝑀𝑖𝑗 ≠ 0. 

From the original set we have considered all the graphs with 𝑛 ≤ 200. 

Specifically the number of vertices ranges from 30 to 199 and the number 

of edges from 46 to 2145. 

 

We have performed a preliminary experimentation over a set of 15 representative instances (five 

small, five grids and five HB instances referenced in Table 1) in order to test the main 

characteristics of our procedure.  We shall call the set with 15 instances Set1. In all the 

experiments the CPU time is limited to 30 minutes.  When the branch-and-bound algorithm is 

not able to explore the entire search tree within this time limit, we report the absolute gap (gap) 
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and relative gap (%gap) between the best lower and upper bounds obtained in the search, LB 

and UB respectively.  Both gaps provide an evaluation of the branch-and-bound performance on 

an early termination. 

 

𝑔𝑎 = 𝑈𝐵 − 𝐿𝐵,   %𝑔𝑎 =
𝑈𝐵−𝐿𝐵

𝐿𝐵
× 100 (38) 

 

The first experiment compares the performance of the three proposed search algorithms BB1, 

BB2 and BB3.  For each of them we report the number of explored nodes, Expl, and the number 

of fathomed nodes (not explored because of their bound), Fath, in the search tree.  To 

complement this information, we also report the number of unexplored and unfathomed nodes 

(UnExpl). Note that if the whole search tree is explored, UnExpl equals zero (and Expl+Fath 

equals the total number of nodes in the search tree).  These values are shown in Table 1 over the 

15 instances in Set1. 

  BB1 BB2  BB3 

  Expl Fath UnExpl  Expl Fath UnExpl  Expl Fath UnExpl 

S
m

a
ll

 (
5
) p51_20_28 1.4E04 6.6E18 0.0E0  1.4E04 6.6E18 0.0E0  1.4E04 6.6E18 0.0E0 

p63_21_42 1.2E06 1.4E20 0.0E0  1.2E06 1.4E20 0.0E0  1.2E06 1.4E20 0.0E0 

p72_22_49 1.3E06 3.1E21 0.0E0  1.3E06 3.1E21 0.0E0  1.3E06 3.1E21 0.0E0 

p81_23_46 7.7E06 7.0E22 0.0E0  7.7E06 7.0E22 0.0E0  7.7E06 7.0E22 0.0E0 

p100_24_34 1.5E06 1.7E24 0.0E0  1.5E06 1.7E24 0.0E0  1.5E06 1.7E24 0.0E0 

G
ri

d
s 

(5
) Grid5x5 6.5E02 4.2E25 0.0E0  6.5E02 4.2E25 0.0E0  6.5E02 4.2E25 0.0E0 

Grid6x8 1.3E04 3.4E61 0.0E0  1.3E04 3.4E61 0.0E0  1.3E04 3.4E61 0.0E0 

Grid7x9 5.9E05 54E.87 0.0E0  5.9E05 5.4E87 0.0E0  5.9E05 5.4E87 0.0E0 

Grid8x9 3.6E07 3.7E103 1.3E104  3.5E07 2.1E103 1.4E104  3.2E07 1.4E104 3.1E103 

Grid10x10 2.0E07 1.8E148 2.5E158  2.0E07 5.4E142 2.5E158  8.0E05 3.7E157 2.2E158 

H
B

 (
5

) 

ibm32 1.6E08 2.9E34 6.9E35  1.5E08 7.1E34 6.4E35  2.5E06 1.3E35 5.9E35 

ash85 4.4E07 4.8E125 7.7E128  4.1E07 1.3E123 7.7E128  4.2E05 2.5E127 7.4E128 

arc130 1.1E07 3.1E197 1.8E220  1.2E07 5.7E148 1.8E220  1.8E05 0.0E0 1.8E220 

west0167 6.0E06 2.6E285 4.1E300  6.6E06 4.7E256 4.1E300  1.1E05 0.0E0 4.1E300 

will199 4.6E06 3.2E318 1.1E373  5.0E06 4.7E256 1.1E373  8.0E04 0.0E0 1.0E373 

Table 1: Explored, fathomed and unexplored nodes in the search tree. 

 

Results in Table 1 indicate that BB1, BB2 and BB3 are able to solve the 5 small instances and 

the first 3 grids optimally.  However, in the last two grids, Grid8x9 and Grid10x10, none of the 

variants is able to finish but BB3 is able to fathom a larger number of nodes than BB1 and BB2.  

On the other hand, instances in the HB set exhibit a different pattern since BB3 is unable to 

fathom any nodes (while BB1 and BB2 fathom a relatively large number of nodes).  This can be 

partially explained considering the way in which BB3 explores the search tree (i.e., branching 
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the most promising node).  In large instances, there are a lot of promising nodes in the priority 

queue that are waiting for being branched.  This could lead to a low value of the total number of 

fathomed nodes in an early termination of the method.  However, although these nodes are not 

fathomed, they have been explored and contribute to improve the final lower bound, thus 

providing the best overall strategy.  Table 2 includes the lower bound, LB, the absolute gap, gap, 

and the relative gap, %gap, obtained with the three methods on the 15 instances of Set1.  Results 

in Table 2 seem to confirm that the best strategy to explore the search tree is BB3, in which 

nodes are ordered according to their bound. 

 

With the goal of supporting our conclusions about the performance of the proposed procedures, 

we performed a statistical test.  Specifically, we applied the non-parametric Friedman test for 

multiple correlated samples to the values obtained by each of the 3 methods.  This test 

computes, for each instance, the rank value of each method according to solution quality (where 

rank 3 is assigned to the best method and rank 1 to the worst).  Then, it calculates the average 

rank values for each method across all instances.  If the averages differ greatly, the associated  

p-value or level of significance is small.  The resulting p-value of 0.002 obtained in this 

experiment clearly indicates that there are statistically significant differences among the 3 

methods.  The rank values produced by this test are 2.40 (BB3), 1.80 (BB1), and 1.80 (BB2).  

We will therefore consider BB3 in the following experiments. 

 

  BB1 BB2 BB3 

  LB gap %gap  LB gap %gap  LB gap %gap 

S
m

a
ll

 (
5

) 

p51_20_28 6 0 0.0  6 0 0.0  6 0 0.0 

p63_21_42 12 0 0.0  12 0 0.0  12 0 0.0 

p72_22_49 14 0 0.0  14 0 0.0  14 0 0.0 

p81_23_46 13 0 0.0  13 0 0.0  13 0 0.0 

p100_24_34 7 0 0.0  7 0 0.0  7 0 0.0 

G
ri

d
s 

(5
) 

Grid5x5 6 0 0.0  6 0 0.0  6 0 0.0 

Grid6x8 7 0 0.0  7 0 0.0  7 0 0.0 

Grid7x9 8 0 0.0  8 0 0.0  8 0 0.0 

Grid8x9 3 6 200.0  3 6 200.0  8 1 12.5 

Grid10x10 3 8 266.7  3 8 266.7  8 3 37.5 

H
B

 (
5

) 

ibm32 6 17 283.3  6 17 283.3  18 6 33.3 

ash85 5 11 220.0  5 11 220.0  9 7 77.8 

arc130 62 140 225.8  62 140 225.8  62 140 225.8 

west0167 10 47 470.0  10 47 470.0  12 45 375.0 

will199 8 134 1675.0  8 134 1675.0  15 123 820.0 

Average 11.3 24.2 222.7  11.3 24.2 222.7  13.7 21.7 105.5 

Table 2: Lower bound, absolute and relative gaps. 
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In the second experiment we test the efficiency of each lower bound separately.  Specifically, we 

compute the percentage of nodes that each lower bound is able to fathom.  This measure can be 

interpreted as a success rate for each lower bound.  Note that, in some cases, a search tree node 

can be fathomed by two (or more) different lower bounds; then we compute “this success” in 

the rates of all the corresponding lower bounds (therefore this measure is independent on the 

order in which the fathoming tests are applied).  Table 3 reports the percentage of fathomed 

nodes for each lower bound (LB1 to LB4) and, in the last row, the CPU times to compute them 

(as a percentage over the total running time) in the 15 instances of Set1 (reporting the average 

on Small, Grids, and HB instances). 

 

 

LB1 LB2 LB3 LB4 

Small (5) 0 93.85 96.30 0 

Grids (5) 0 99.49 98.82 0 

HB (5) 0 92.41 98.42 0 

Total 

%CPU Time 

0 

0.64 

95.12 

1.56 

98.53 

4.78 

0 

0.74 

Table 3. Average fathoms of each lower bound. 

 

Results presented in Table 3 clearly show that LB1 and LB4 are not fathoming a significant 

number of nodes (the associated percentages are very close to 0, and are represented by 0 in the 

table for the sake of simplicity).  On the other hand, the behavior of LB2 and LB3 is very similar, 

fathoming on average about 95% and 98% respectively of the total fathomed nodes.  However, 

the time required to compute LB1 and LB4 is relatively short since LB1 is computed offline (only 

once, in the first node of the search tree) and LB4 is calculated in constant time (see Section 3.4). 

The time needed to compute LB1 and LB4 (see last row of Table 3) represents less than 1% of the 

total running time.  Although LB2 and LB3 are more time consuming (1.56 and 4.78 percent of 

the total running time respectively), they fathom most of the nodes in the search tree. 

 

It is also important to remark that LB1 and LB4 are especially relevant when a pre-established 

time limit is reached and the method does not explore the complete search tree. The 
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computation of these two bounds contributes to reduce the final gap. To test this point we 

perform a new experiment reporting the gap values when only LB2 and LB3 are computed in the 

search tree.  We shall call this method BB.  Then, we incorporate the computation of LB1 and 

LB4 at the end of the process, which results in the entire method tested above.  We shall call this 

method BB+LB.  Table 4 reports the average gaps, absolute and relative, obtained with each of 

these two methods on the instances in Set1. 

 

 
BB  BB+LB 

 
gap %gap  gap %gap 

Small (5) 0.0 0.0  0.0 0.0 

Grids (5) 0.8 10.0  0.8 10.0 

HB (5) 73.2 447.4  64.8 310.6 

Total 24.7 152.5  21.9 106.9 

Table 4. Average gaps of two branch-and-bound variants. 

 

The results in Table 4 show that the addition of LB1 and LB4 helps to reduce the final gap of the 

method on the HB instances.  Examining Tables 3 and 4 together, we can conclude that the 

lower bounds complement each other. On one hand, LB2 and LB3 fathom a large number of 

nodes in the search tree. On the other hand, LB1 and LB4 reduce the final gap.  We shall 

therefore include the four lower bounds in our final branch-and-bound algorithm.  

In our fifth experiment we compare the previous lower bounds described in Section 2.1 with the 

proposed lower bounds for complete solutions (LB1 and LB4).  We limit this experiment to the 

11 instances reported in Caprara et al. (2011) to obtain the 𝐿𝐵𝑀𝑖𝑛𝐿𝐴 value directly from their 

experiments (see their Table 2). We compute, for these instances the 𝐿𝐵𝐹𝐹  and 𝐿𝐵𝐿𝑀 values and 

our LB1 and LB4.  Table 5 reports the values of these bounds and the associated CPU times (in 

the 𝐿𝐵𝑀𝑖𝑛𝐿𝐴 they correspond to an Intel Core Duo 3.33 GHz and 2GB RAM). 

 

Table 5 shows that the combination between LB1 and LB4 (which is applied on the first node of 

our branch and bound algorithm) obtains, on average, better lower bounds than the three 

previous bounds considered.  Specifically they obtain an average value of 83.8 on 0.02 seconds 

while 𝐿𝐵𝑀𝑖𝑛𝐿𝐴, 𝐿𝐵𝐹𝐹 and 𝐿𝐵𝐿𝑀 obtain 45.9, 13.09 and 14.0 on 55202.1, 19.4 and 2446.8 
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seconds respectively. 

 

The sixth experiment focuses on the combination of the GRASP heuristic with the branch-and-

bound procedure.  We compare the performance of the branch-and-bound procedure with the 

initial upper bound computed with GRASP, BB from GRASP, with the branch-and-bound 

procedure with an initial upper bound set as the value of a random solution, BB from Random.  

In Table 6 we include the average, absolute and relative gaps of both variants. 

 

 𝐿𝐵𝑀𝑖𝑛𝐿𝐴  𝐿𝐵𝐿𝑀  𝐿𝐵𝐹𝐹   Max(LB1, LB4) 

 Value 
CPU 

Time 
 Value 

CPU 

Time 
 

Value 
CPU 

Time 
 

Value 
CPU 

Time 
gd95c 8 68.3  1 0.1  9 0.4  8 0.01 

gd96a 72 86400  8 33.8  42 2522.9  56 0.02 

gd96b 12 493.5  1 0.1  34 1.8  24 0.01 

gd96c 7 218.1  1 0.1  5 0.7  3 0.01 

gd96d 12 1642.2  4 0.1  14 6.7  14 0.01 

c1y 73 86400  25 11.4  8 1363.6  152 0.01 

c2y 78 86400  28 20.3  9 2454.3  164 0.02 

c3y 86 86400  27 55.0  10 6.882  182 0.05 

c4y 79 86400  24 60.4  10 7603.8  155 0.03 

c5y 74 86400  24 16.6  12 4777.9  162 0.03 

bintree10 4 86400  1 15.5  1 1300.8  2 0.02 

Avg.  45.9 55202.1  13.09 19.4  14.0 2446.8  83.8 0.02 

Table 5. Comparison with previous bounds. 

 

As shown in Table 6, the results obtained with the branch-and-bound algorithm coupled with the 

heuristic initial upper bound are better, as expected, than those obtained with the random 

variant.  We have also computed the number of instances in which the solution obtained with the 

GRASP algorithm matches the optimum value.  This is difficult to compute since we do not 

know the optimum in all the cases (with the exception of the Grid instances in which, by design, 

the optimum is known, as documented in Rolim et al., 1995).  In this experiment we observed 

that GRASP is able to obtain the optimum in the 5 Small and the 5 Grid instances tested in Set1.  

On the other hand, we cannot assess how far the GRASP solutions are from the optimum in the 

HB instances. 
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BB from GRASP  BB from Random 

 
gap %gap  gap %gap 

Small (5) 0.0 0.0  1.4 11.7 

Grids (5) 0.8 10.0  33.0 471.4 

HB (5) 64.8 310.6  179.4 1055.2 

Total 21.9 106.9  71.3 512.8 

Table 6. Comparison of heuristic with random initial solution.  

 

The next experiment focuses on the effectiveness of the dominance rule (proposed in Section 4) 

in the performance of BB3. To this aim we run BB3 (with the lower bounds LB1, LB2, LB3 and 

LB4) and compare it with a new version of BB3 which also includes the dominance test among 

partial solutions. Both executions start from the upper bound constructed with the GRASP 

heuristic. The results of this experiment are presented in Table 7. 

 

 
BB3   BB3+ Dominance 

 
#Opt. %gap CPU Time  #Opt. %gap CPU Time 

Small (5) 5 0.0 28.8  5 0.0 0.23 

Grids (5) 3 10.0 727.7  4 7.5 376 

HB (5) 0 310.6 1807.5  1 250.9 1591.4 

Total 8 106.9 854.7  10 86.2 655.9 

Table 7. Performance of the dominance properties. 

 

As it can be seen in Table 7, dominance properties among partial solutions considerably 

improve the results of BB3. Specifically, BB3+Dominance is able to find two new optima (i.e., 

10 out of 15 instances), the %gap decreases on average about 20% and the CPU Time also 

decreases about 200s, which represents a saving of 25% of running time. 

 

In our final experiment, we compare our branch-and-bound algorithm with the linear integer 

formulation (Luttamaguzi et al. 2005) solved with Cplex 11.1.  Specifically, we consider our 

three variants to explore the search tree, BB1, BB2 and BB3.  In the three variants we compute 

LB1, LB2, LB3 and LB4; the dominance rule among partial solutions; and the initial GRASP 

upper bound.  In Table 8 it is reported the number of optimal solutions found, #opt, the average 

absolute gap between the final lower and upper bounds, gap, the average relative gap (in 

percentage), %gap, and the CPU time in seconds for each method on our entire benchmark set 
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of 115 instances (42 Small, 36 Grids and 34 HB).  

 

Results in Table 8 show that the Cplex solver with the linear integer formulation is only able to 

solve 9 small instances (n ≤ 20) within 30 minutes of CPU time. Alternatively,  the three 

variants tested of our branch-and-bound algorithms clearly outperform Cplex with this 

formulation since they are able to optimally solve all the small and medium-sized instances, and 

the average relative gap values in the HB instances are below 300% (while the average relative 

gap value of Cplex is 634.8% in these instances).  The three branch-and-bound variants present 

a similar performance with a marginal improvement of BB3 over BB1 and BB2.  Specifically, 

on the 34 HB instances BB3 presents an average relative gap of 173.53% while BB1 and BB2 

present a value of 296.45% and 297.04% respectively. However, BB1 and BB2 are able to reach 

one more optima than BB3 in the hardest set of instances (HB). This behavior suggests that 

when the size of the instance is quite large, BB3 is not able to reach leaf nodes as fast as BB1 

and BB2 do (in the time horizon considered). 

 

  BB1 BB2 BB3 Cplex 

S
m

al
l 

(4
2

) # opt 42 42 42 9 

gap 0.00 0.00 0.00 1.90 

%gap 0.00 0.00 0.00 54.70 

CPU Time 0.04 0.04 0.06 1573.90 

G
ri

d
s 

(3
6

) # opt 33 33 33 2 

gap 0.61 0.61 0.14 4.20 

%gap 20.37 20.37 1.66 211.10 

CPU Time 156.16 156.37 156.40 1707.90 

H
B

 (
3
4

) 
 

 

# opt 9 9 8 0 

gap 50.94 50.97 48.00 97.00 

%gap 296.45 297.04 173.53 634.80 

CPU Time 1373.59 1375.66 1431.20 1800.00 

 

Table 8. Branch-and-bound algorithms versus Cplex. 

 

We finally represent the search profile of the three branch-and-bound variants, BB1, BB2 and 

BB3 when running for 3 hours.  Specifically, Figure 12 depicts the progression of the average 

relative gap of the three methods over the 15 instances in Set1.  We report the average relative 

gap values of BB1, BB2 and BB3 every 10 minutes in each execution (and join the points with a 
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line to observe the trend). 

The progression of the average gap represented in Figure 12 confirms that BB3 performs 

slightly better than BB1 and BB2.  Additionally, it also shows that the most significant 

reduction in the gap value is obtained in the first 30 minutes; then, only a marginal extra 

improvement can be obtained if we run the method longer. 

 

 

 

Figure 12. Relative gap profile. 

 

Table 9 in the Appendix contains the best upper and lower bounds obtained for the set of 34 HB 

instances (identified as the hardest to solve in our study). We ran the GRASP for 10 minutes to 

obtain the initial upper bound and BB3 for 4 hours to obtain the lower bound on each instance 

(thereby setting a benchmark for future comparisons). 

 

8.  Conclusions 

We have developed an exact procedure based on the branch-and-bound methodology coupled 

with a GRASP heuristic to provide solutions for the Cutwidth Minimization Problem.  We have 

introduced the partial solution as the set of solutions that share some vertices, and we have 
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proposed several approaches for computing lower bounds on partial solutions.  These bounds 

allow us to explore a relatively small portion of the nodes in the search tree when implementing 

our branch-and-bound procedure.  Additionally, we have presented three different strategies to 

explore the search tree, which we have called BB1, BB2 and BB3. 

 

We have conducted extensive preliminary experimentation to analyze the performance of the 

proposed lower and upper bounds, as well as the search strategies.  The final experiment shows 

that our branch-and-bound procedures clearly outperform the previous linear integer 

formulation solved with the well-known Cplex (version 11.1), and that they are able to 

optimally solve all the small-sized problems as well as some of the larger ones.  Finally, we 

provide detailed results for the hardest instances for future comparisons. 
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Appendix 
 

 
n m 

 
LB UB 

pores_1 30 103 
 

17 17 

ibm32 32 90 
 

23 23 

bcspwr01 39 46 
 

5 5 

bcsstk01 48 176 
 

27 32 

bcspwr02 49 59 
 

5 5 

curtis54 54 124 
 

10 13 

will57 57 127 
 

7 11 

impcol_b 59 281 
 

24 55 

bcsstk02 66 2145 
 

1089 1089 

steam3 80 424 
 

20 20 

ash85 85 219 
 

11 16 

nos4 100 247 
 

12 12 

gent113 104 549 
 

27 87 

bcsstk22 110 254 
 

6 13 

gre__115 115 267 
 

12 36 

dwt__234 117 162 
 

6 12 

bcspwr03 118 179 
 

6 10 

lns__131 123 275 
 

6 30 

arc130 130 715 
 

62 202 

bcsstk04 132 1758 
 

107 310 

west0132 132 404 
 

18 71 

impcol_c 137 352 
 

14 46 

can__144 144 576 
 

25 25 

lund_a 147 1151 
 

43 113 

lund_b 147 1147 
 

42 111 

bcsstk05 153 1135 
 

42 115 

west0156 156 371 
 

14 56 

nos1 158 312 
 

4 4 

can__161 161 608 
 

23 52 

west0167 167 489 
 

17 55 

mcca 168 1662 
 

58 390 

fs_183_1 183 701 
 

52 190 

gre__185 185 650 
 

22 48 

will199 199 660 
 

21 132 

Table 9. Lower and upper bounds for the HB instances. 

 

 


