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Abstract 

The quadratic multiple knapsack problem (QMKP) consists in assigning a set of objects, which 
interact through paired profit values, exclusively to different capacity-constrained knapsacks 
with the aim of maximising total profit.  Its many applications include the assignment of 
workmen to different tasks when their ability to cooperate may affect the results. 

Strategic oscillation (SO) is a search strategy that operates in relation to a critical boundary 
associated with important solution features (such as feasibility).  Originally proposed in the 
context of tabu search, it has become widely applied as an efficient memory-based 
methodology.  We apply strategic oscillation to the quadratic multiple knapsack problem, 
disclosing that SO effectively exploits domain-specific knowledge, and obtains solutions of 
particularly high quality compared to those obtained by current state-of-the-art algorithms.  
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1. Introduction 

The quadratic multiple knapsack problem (QMKP) [1] consists in assigning a set of objects 
disjunctively to a set of capacity-constrained knapsacks for the goal of maximising the total 
sum of profits. Profit values are assigned not only to individual objects but also to pairs of 
them, which renders traditional approaches (that do not consider pairwise linkages between 
objects) unable to effectively address the problem [2]. The QMKP arises commonly in contexts 
where resources have to be assigned to different tasks and the success measure depends on 
interactions between these resources. Previous efforts to solve QMKP by metaheuristic 
approaches include local search methods [1, 3], genetic algorithms [1, 4, 5], swarm intelligence 
methods [3] and iterated greedy methods [11]. 

Strategic oscillation (SO) [6] is a search strategy that operates by moves defined in relation 
to a critical boundary that identifies regions of the search space that are expected to contain 
solutions of particular interest.  Originally proposed in the context of tabu search as a long 
term strategy, it now constitutes a well-established method within the family of memory-
based methodologies known as adaptive memory programming and has produced competitive 
results in applications fields such as binary quadratic programs [7], the multi-resource 
generalized assignment problem [8], the maximally diverse grouping problem [9] and the 
linear ordering problem with cumulative costs [10], among others. 

In this paper, we analyse the application of the SO framework to effectively solve the 
QMKP. In particular, we exploit capacity and object-individuality constraints of the QMKP as a 
source of critical boundaries that SO may explore. Our approach iteratively applies three 
stages: 

1) An oscillation process explores the feasible and infeasible regions around a current 
solution and returns a new candidate;  

2) A local optimization operator is applied to every new candidate to get an associated 
improved solution from the nearby area of the search space; and  

3) An acceptance criterion decides which improved solution is chosen to continue the 
search. In addition, we employ a constructor operator to build initial solutions at 
the beginning of the run and when stagnation is detected.  

We include tests of a variety of heuristics for each operator of our SO framework, such as 
completely random operators, procedures biased by the objective function, and tabu search 
strategies taking advantage of memory structures. The experiments show that the final 
algorithm, SO-QMKP, is able to effectively exploit domain-knowledge associated with the 
problem requirements and outperform current state-of-the-art approaches. 

The rest of the paper is structured as follows. In Section 2, we describe the QMKP model 
and current state-of-the-art approaches for its solution. In Section 3, we introduce our SO 
framework for the QMKP and detail several strategic variations that can be used at each stage. 
Section 4 presents the findings from our empirical study, which is designed to: (1) analyse the 
influence of the supporting strategies, parameters and settings associated with our method, 
(2) compare the results of our SO-QMKP algorithm with those of other approaches from the 
literature, and (3) identify the algorithmic components that provide the greatest contribution 
to exploiting the domain knowledge associated with the QMKP. Finally, Section 5 discusses 
conclusions and further work.  
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2. The Quadratic Multiple Knapsack Problem 

The QMKP seeks an optimal assignment of n objects and K knapsacks. Each object i {1, 2,…,n} 
has a profit pi and a weight wi, each pair of objects (i and j) has a profit pij, and each knapsack 

k {1, 2,…,K} has a capacity Ck. (To simplify the notation, we refer to objects and knapsacks by 

their index positions.) The profit pij associated with the pair of objects i and j is added to the 

total profit if both i and j belong to the same knapsack. The objective is to allocate each object 
to at most one knapsack so that the total weight of the objects in each knapsack k does not 
exceed its capacity Ck and the total profit of all the objects included into the knapsacks is 

maximised. Formally, given the binary variables xik, which indicate whether object i is included 

in knapsack k, the QMKP can be formulated as: 
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The QMKP has many real-world applications in situations where resources with different 
levels of interaction have to be distributed among different tasks, for instance, assigning team 
members to different projects where member contributions are considered both individually 
and in pairs. The QMKP is an extension of two well-known combinatorial optimisation 
problems, the multiple knapsack problem and the quadratic knapsack problem, and as in the 
case of its special instances, the QMKP is NP-hard [1]. 

Hiley and Julstrom [1] were the first to study this problem and proposed three approaches 
for its solution: a greedy heuristic (discussed in Section 3.1), which provides feasible solutions 
from scratch, a hill-climbing method that consists in removing some random objects from their 
corresponding knapsacks and applying the greedy heuristic to refill the solution, and a 
generational genetic algorithm. This latter comprises a population of solutions that are 
initialised by assigning objects iteratively to random knapsacks that can accommodate them. 
Afterwards, binary tournament selection is employed, and mutation and crossover operators 
are executed iteratively according to a crossover probability parameter. The tournament 
selection removes two random objects from their knapsacks and applies the greedy heuristic, 
and the crossover operators first copy into each offspring all object assignments common to its 
two parents and then considers all remaining objects in random order for the knapsacks that 
can accommodate them, preserving the best solution found.  

Singh and Baghel [5] addressed the QMKP with a grouping genetic algorithm, implementing 
a steady-state model where crossover and mutation produce a single child at each iteration (in 
a mutually exclusive manner), which replaces the least fit member of the population. Solutions 
are encoded as a set of knapsacks and multiple copies of the same solution are avoided by 
checking new ones against the existing population members. Initial solutions are created by 
the aforementioned greedy heuristic [1], but initially assigning a random object to an arbitrary 
knapsack. Binary tournament selection is applied. The crossover operator iteratively selects 
one of the two parents, assigns the knapsack with largest profit value to the child, and updates 
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the remaining knapsacks in both parents. Unassigned objects are then included randomly in 
the knapsacks where this is possible without violating the capacity constraints. Mutation 
removes some objects from knapsacks and refills them randomly.  

Sara and Sipahioglu [4] proposed another genetic algorithm in which initial solutions are 
generated by assigning random objects whose weights are smaller than the remaining capacity 
of the current knapsack, proceeding from the knapsack with the smallest capacity to the 
largest. Binary tournament selection is applied to allow solutions to be copied to the next 
generation. The crossover operator interchanges the object assignments between two 
randomly selected parents. When a knapsack capacity is exceeded because of this interchange, 
the newly added object causing the violation is removed from the knapsack. Subsequently, 
unassigned objects are considered according to the heuristic rule of [1]. Two mutation 
operators are included, the first one removing four objects from their knapsacks and refilling 
the solution, and the second one interchanging objects assigned to different knapsacks. Elitism 
is applied to maintain the best solution from one generation to another.  

Sundar and Singh [3] proposed an artificial bee colony algorithm (SS-ABC) combined with 
local search. In the ABC terminology, bees are classified as workers, scouts and onlookers, 
which exploit food sources representing solutions of the problem at hand. Initially, each 
worker bee is associated with a randomly generated food source (candidate solution) 
generated in a way similar to [5]. Then, during each iteration, each worker bee determines a 
new food source in the neighbourhood of its currently associated food source and computes 
the nectar amount (fitness or solution value) of this new one to apply or discard the associated 
move. Subsequently, onlookers choose one of the food sources associated with worker bees 
by means of binary tournament selection, and determine a new food source in the 
neighbourhood that replaces the selected one if it is better. When a food source is not 
improved for a predetermined number of iterations, then, the associated worker bee 
abandons it to become a scout. This scout draws a new random solution and becomes a 
worker bee associated with it. An improvement method based on swapping unassigned 
objects with those already in a knapsack is also applied.  The authors report computational 
experiments to assess the superiority of this procedure with respect to the previous 
approaches described above. 

Finally, iterated greedy has recently applied to the QMKP [11]. This method, TIG-QMKP, 
alternates constructive and destructive phases linked by an improvement process.  Specifically, 
after an initial construction, a destruction mechanism (enhanced by a short-term tabu search 
memory) removes different objects from the knapsacks, and then reconstructs the partial 
solution with a greedy method.  This latter method is partially based on a previous heuristic 
[5], plus a local optimization. The authors perform extensive experimentation and show that 
this method and the previous ABC reported above are able to obtain the best known solutions 
for the QMKP.  We therefore include both methods, SS-ABC and TIG-QMKP, in our 
computational comparison reported in Section 4. 

3. Strategic Oscillation for the QMKP 

The SO methodology, first introduced in [20], operates by orienting moves in relation to a 
critical level, as identified by a stage of construction or a chosen interval of functional values. 
As summarized in [6], such a critical level or oscillation boundary often represents a point 
where the method would normally stop. Instead of stopping when this boundary is reached, 
however, the rules for selecting moves are modified, either to retreat some distance in the 
reverse direction or to permit the region defined by the critical level to be crossed. 

In this study, we analyse the combination of different strategies, leading the search process 
to traverse the oscillation boundary defined by the constraints in QMKP:  
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 Maximal knapsack capacities: The sum of the weights of the objects in each knapsack 
must be inferior or equal to its capacity (equation 2). On the other hand, when profit 
and weight values are positive, which is the general case, then moves are selected so 
as not to miss the opportunity of including another available object when there is 
room for it. Knapsack capacities become critical levels where effective solutions are 
distributed and strategic oscillation are performed that approach the critical levels 
from both sides.  

 Indivisibility: Objects must be assigned to no more than one knapsack (equation 3). 
When this constraint is relaxed, the algorithm is allowed to include the same object in 
different knapsacks. Then, the presence of more than one knapsack offers another 
opportunity to perform oscillations around the aforementioned critical levels. 

 

Input:  maxfails:    Number of failed internal iterations before reinitiating 

 maxK:  Number of span bounds 

 σ1,…,σmax:  Span bounds for the oscillation method 

Output:  Sb:  Best solution generated 

 
1 while (stopping-condition is not reached) do 
2 S′← constructive procedure(); 
3 S ← improvement method(S′); 
4 Sb ← S, k ← 1, numfails ← 0; 

5 while (numfails < maxfails and stopping-condition is not reached) do 

6  S′← oscillation method(S,σk); 

7  S′′← improvement method(S′); 
8  if (S′′ is better than Sb) then 

9   Sb ← S′′, k ← 1, numfails ← 0; 

10  else 
11   if (k == maxK) then 

12 k ← 1, numfails ← numfails + 1; 

13   else 
14 k ← k + 1; 
15   end 
16  end 
17  S ← acceptance-criterion(S,S′′); 
18 end 
19 end 
 
20 return Sb; 

Figure 1: Pseudocode of the SO framework 

We consider the SO framework shown in Figure 1. Initially, a complete solution is built by 
the constructive procedure (described in Section 3.1), which is subsequently refined by the 
improvement method operator (described in Section 3.2). Afterwards, the algorithm iteratively 
applies first, the oscillation method (described in Section 3.3), which performs moves around 
the critical levels defined by previous constraints and the current solution according to a span 
parameter σ.  The oscillation method also applies an improvement method to refine the new 
solution and an acceptance-criterion (described in Section 3.4) that decides which 
configuration becomes the new current solution, until a maximum number of fails (iterations 
without improving the best solution) is reached. Note that the parameter k for the oscillation 
method is strategically updated according to whether the best overall solution is improved or 
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not (lines 8-16 in Figure 1). The entire procedure is repeated until a stopping condition is 
reached and the best solution generated is returned at the end. Additionally, Section 3.5 
describes several enhanced code implementations to reduce the computational effort 
associated with evaluating solutions. 

3.1. Constructive procedure 

In the context of our SO framework, the constructive procedure is in charge of providing an 
initial solution to attain the critical levels associated with the QMKP constraints, i.e., 
configurations where several objects have been assigned to one knapsack and there is no 
room for another object in any of them. From the different alternatives for pursuing this goal, 
we have considered the following five constructive methods, which iteratively introduce 
objects in knapsacks until there is no room in any knapsack for another unassigned object: 

 Random procedure: Introduces a randomly chosen object, currently not assigned to 
any knapsack, into a randomly chosen knapsack with sufficient room for it.  

 Greedy procedure: Hiley and Julstrom [1] describe a greedy constructive algorithm, 
which may be used to build feasible solutions for the QMKP. In order to do this, we 
firstly define the contribution (Δ(i,k)) and density (D(i,k)) of an object i with regards to 
knapsack k > 0, as the sum of profit values associated to the object i and those already 
in the knapsack k, and its division by the weight of object i, respectively:  

          ∑   

   

             

       
      

  
            

 

We note that D(i,k) is the classic bang-for-buck ratio used to evaluate assignments in a 
simple knapsack problem setting, where the numerator is adjusted here to reflect the 
full profit of the assignment in view of the quadratic objective. The greedy construction 
algorithm consists in performing the iterative assignment of the still unassigned object 
i to knapsack k that maximizes the value D(i,k), subject to wi + ∑ jk wj ≤ Ck . 

 Infrequent solution sampling: A common element of tabu search and SO is the 
application of memory structures that record statistics of the visited solutions in order 
to promote either intensification or diversification in future samplings [6]. Employing 
this idea, the infrequent solution samplilng operator uses a long-term memory, 
updated after each iteration of the improvement method, that registers the number of 
times that two objects were assigned to the same knapsack.  Then, when this method 
is applied to a new complete solution, the long-term memory structure is accessed in 
the search for the assignment of an unselected object i into a knapsack k such that the 
sum of frequencies of object i and those already in k is minimal.  

 Frequent non-tabu assignments: In contrast to the preceding heuristic, this method 
exploits long-term memory to build solutions similar to those already visited, by 
selecting assignments that make the sum of frequencies maximal. However, a short-
term memory is included as well in order to enhance the diversity of generated 
solutions. In particular, the short-term memory keeps track of the assignments (objects 
and knapsacks) of recent improved solutions, which are avoided when building a new 
complete solution. These assignments remain tabu during a number of SO iterations 
that is randomly chosen from the interval [0, maxT ], where maxT is a parameter of the 

operator.  
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 Greedy non-tabu assignments: This operator looks for assignments that maximise the 
aforementioned heuristic value D(i,k), but exploits as well a short-term memory in 
order to enhance the diversity of generated solutions. This memory is updated and 
employed as described above. 

3.2. Refining Solutions: improvement method 

The improvement method of our SO operates on solutions passed to it by exploring local 
modifications that lead to increased objective values. We analyse two alternatives, one from 
the literature and another proposed in this work:  

 Swap Moves: García-Martínez et al. [11] introduce a local search operator that seeks 
profitable exchanges of two assigned objects from different knapsacks, or of one 
assigned object with an unassigned object. Their results showed that this strategy 
provides better results than one that considers only swaps of the second kind (as 
proposed in [3]).  

 Reallocations + swaps: The swap moves previously discussed may result in a situation 
where some knapsack winds up with sufficient room to receive new objects or objects 
from other knapsacks. Therefore, we propose a multiple neighbourhood strategy, as 
commonly employed with SO and tabu search methods [21, 22, 23]. In our present 
design we first seek profitable allocations of objects to knapsacks by drawing on 
objects already assigned to other knapsacks or on objects currently unassigned. When 
no profitable allocation of this type exists, we then examine swaps until none remains 
that increases the objective value. At this point we return to start again by examining 
the first type of move. As soon as two consecutive stages fail to find an improved 
solution, the process stops. This approach constitutes a special instance of the multiple 
neighbourhood SO approach of [21] and hence we call it the strategic oscillation multi-
neighbourhood (SOM) method. (For a comparative analysis of several types of multiple 
neighbourhood strategies, see [23]). 

Two choice rules are analysed in combination with the previous strategies: a first-
improvement rule, which selects the first move that improves the objective value, and the 
best-improvement rule, which selects the move that produces the largest improvement in the 
objective value. 

3.3. Exploiting Critical Levels: Oscillation Method 

For the QMKP, our oscillation method explores the critical levels associated with the problem 
constraints (Section 3) to generate effective solutions by paths that are launched from 
different points of departure and that traverse different regions. We analyse several oscillation 
heuristics based on applying two specific steps every time they are invoked:  

1. Divergent step: The solution is induced to diverge (move away) from the critical level 
defined by its current state and the constraints defining feasibility (Section 3). In this 

stage, operations are performed until reaching a parameterized span bound (σ  [0, 
1]) described below.  

2. Convergent step: The solution is induced to converge to (move toward) the critical 
level where constraints are satisfied and there is no room for another unassigned 
object in any knapsack.  

Accordingly, two basic types of operations are used to execute these steps. The conditions 
for employing these operations depend on whether either the divergent step or convergent 
step is being applied:  

 Insertion: An object i is inserted into a knapsack k. For a divergent step, knapsacks are 
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permitted to be overloaded by a maximum factor equal to σ, and objects are allowed 
to be inserted into more than one knapsack until a maximum number of over-
assignments is reached, computed as σ times the average number of objects than can 
be allocated to the knapsacks (as specified in equation 6). For a convergent step, 
unassigned objects are allowed to be inserted into knapsacks with sufficient space for 
them. 

                          (  
∑   

 
   

∑   
 
   

)          

 Extraction: An object i is removed from knapsack k. A divergent step allows a 
percentage (σ) of the assigned objects to be removed from their knapsacks. On the 
other hand, during a convergent step the successive application of this operation is 
used to produce feasible solutions from infeasible ones. When performing extractions 
during a convergent step, objects assigned to more than one knapsack are dropped 
first. Then, objects from overloaded knapsacks are selected. These operations are 
repeated until the problem constraints are satisfied. 

Note that operation types are paired in the sense that a divergent step on the feasible side 
of the critical boundary employs extractions (to make the solution feasible by an increasing 
margin) and is then followed by a convergent step that employs insertions to move back 
toward the boundary. By contrast, a divergent step that is carried out on the infeasible side of 
the critical boundary employs insertions (to make the solution infeasible by an increasing 
margin), and is then followed by a convergent step that employs extractions to move back 
toward (and cross) the boundary. In particular, our oscillation method randomly decides which 
set of operations applies at every invocation, launched upon reaching a critical level, selecting 
divergent step insertions before proceeding to convergent step extractions with probability pI-

E and selecting divergent step extractions before proceeding to convergent step insertions 

with probability (pE-I =1 – pI-E). 

Considering the four possibilities, resulting from the combination of type of step (divergent 
step and convergent step) and basic operation (insertion and extraction), different heuristics 
can be implemented to select the object to be inserted in, or extracted from a knapsack. In this 
study, we analyse the following options:  

 Random heuristic: The object to be inserted or extracted is selected at random from 
the different possibilities.  

 Greedy heuristic: The best (or the least bad) operation is chosen from the different 
possibilities available, according to the density values (equation 5).  

 Tabu heuristic: A short-term memory structure is implemented, which keeps track of 
the objects recently inserted into or extracted from a knapsack. This heuristic looks for 
the best non-tabu operation, according to the density values (equation 5). Then, 
recently affected objects remain tabu for a number of iterations ahead which is 
computed randomly in the set {0,…,n · tenuremax}, where tenuremax is a parameter of 

the method. This general description requires particular adaptations for two special 
cases:   

 For convergent step insertions, a short-term memory tracking objects could 
potentially make the heuristic produce solutions falling short of the critical 
level when there was room in the knapsacks for more objects, but the 
possibilities were tabu. Therefore, in this case the implemented short-term 
memory keeps track of the object and knapsack pair that composes the 
proposed operation. This way, tabu objects are prevented from being inserted 
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in the knapsacks they belonged to in the recent past, but can still be associated 
with other knapsacks.  

 For convergent step extractions, the short-term memory could potentially 
prevent the heuristic from reaching a feasible solution if extractions either of 
over-assigned objects or from overloaded knapsacks are tabu. When this 
situation appears, the greedy (best) option is chosen regardless of its tabu 
condition (this is a form of aspiration criterion for overriding tabu status). 

 Random short-term memory heuristic: This alternative implements the previously 
described short-term memory and strategies with the exception that random non-tabu 
moves, instead of best non-tabu moves, are selected. 

Therefore, a wide range of possibilities is brought to the scene. In order to reduce the set of 
alternatives, we analyse the combinations that apply the same heuristic for each type of step 
(the divergent step and the convergent step). These combinations are presented in Table 1 in 
which the methods are denoted with a four letter name that stands for <divergent step 
insertions> <convergent step extractions> <divergent step extractions> <convergent step 
insertions> according to ‘R’ for the random heuristic, ‘G’ for greedy, ‘T’ for tabu, and ‘M’ for 
random short-term memory. For example, the cell labelled ‘RTRT’ represents an oscillation 
method that applies the random heuristic for divergent step operations (whether insertions or 
extractions), and the tabu heuristic for convergent step operations.  

 
Convergent step 

Random Greedy Tabu  Short-term 
Mem. 

Divergent step 

Random -  RGRG  RTRT  -  

Greedy GRGR  -  GTGT GMGM  

Tabu TRTR  TGTG  TTTT  TMTM  

Short-term 
Mem. 

-  MGMG MTMT MMMM  

Table 1. SO analysed combinations 

Empty cells represent combinations that have not been analysed because they introduced 
too much randomness (RRRR, RMRM, and MRMR), or not enough (GGGG), in the search 
process.  

3.4. The acceptance-criterion 

The acceptance-criterion of our SO establishes the rules by which the algorithm wanders over 
the regions of the search space in the quest for better solutions. We analyse the following 
criteria from the literature: 

 Replace if better: The new solution is accepted only if it attains a better objective 
function value [7, 9].  

 Random walk: Several authors have pointed out that the foregoing acceptance 
criterion may lead the method to stagnation, because of getting trapped in a local 
optimum [10, 14]. By contrast, the random walk criterion always selects the new 
solution, regardless of its objective function value, which prevents the method from 
being confined in the area of one local optimum. This approach is a special case of 
applying tabu search with a tabu tenure of 0, proposed as an option for probabilistic 
tabu search [6]. 
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3.5. Move Evaluations 

In this section, we describe several improvements that allow an efficient evaluation of new 
solutions, which were generated by means of insertion and extraction operations (Sections 3.1 
and 3.3) or reallocations and swaps (Section 3.2), for the QMKP. These enhancements 
accelerate the execution of our algorithm without altering its outcomes. 

Define the raw objective value of a solution to be the sum of individual and paired profits of 
the objects included in the knapsacks (equation 1) regardless of whether constraints (2) and 
(3) are satisfied. Then, given a solution S, feasible or not, the insertion of object i into the 
knapsack k, which does not contain i, produces a new solution whose raw objective value is 
that of S plus the corresponding contribution value Δ(i,k) (defined by equation 4): 

                                

Conversely, the extraction of object i from knapsack k, which contains i, produces another 
solution with a raw objective value reduced by the same quantity. Therefore, new solutions 
generated by insertion and extraction operations need not be completely evaluated by the 
objective function f(·), which saves computational effort.  

To achieve this savings in effort, we maintain the Δ(i,k) values in a memory structure which 
is updated every time an insertion or extraction operation is performed. In particular, given a 
null solution, where no object is assigned to any knapsack, the contribution of any object for 

any knapsack is equal to its profit value (Δ(i,k) = pi,  k {1,…,K}). Thereafter, inserting object i 

into knapsack k, which does not contain i, increments the contribution of each other object j, 
whether or not included in k, with the quadratic profit for the corresponding object j and i 
(equation 8). Similarly, extracting object i from knapsack k, which contains i, reduces the 
contribution of any object j, whether or not included in k, by the same quantity (equation 9). 

                            {     }          

                            {     }          
 

Reallocation and swap operations (Section 3.2) are applied only to feasible solutions, 
employing the following equations according to whether one object i is transferred from 
knapsack k to knapsack k′ (10), two objects i and j are exchanged between their respective 

knapsacks ki and kj (11), or an object i assigned to knapsack ki is exchanged with an unassigned 
object j (12). 

 (       )                          

 (         )        (    )   (    )   (    )   (    )           

                  (    )   (    )          

 

To our knowledge, the exploitation of (8) through (12) to efficiently update the objective 
function contribution of assigning objects to knapsacks has not been exploited for the QMKP in 
previous work.  

Finally, we should mention that we have implemented another memory structure that 
stores the sum of the weights of the objects in each knapsack, which is accordingly updated 
after applying any operation, in order to check capacity constraints efficiently. 
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4. Experiments 

In this section, we present the experiments carried out in order to analyse the performance of 
our SO framework. The experimental setup and comparison methodology are described in 
Section 4.1. The remaining sections report our computational experiments to analyse the 
influence of parameters and settings in order to obtain a tuned and robust instance of our SO 
algorithm (Section 4.2), compare the results obtained with our algorithm with those of 
previous (Section 4.3), and analyse the exploitation of domain-knowledge that allows our 
strategies to deal effectively with the QMKP (Section 4.4). 

4.1. Experimental Framework 

All algorithms were implemented in C++ and compiled with gcc 4.6.31. The experiments were 
conducted on a computer with a 2.8GHz Intel(R) Core(TM) i7-930 processor (8MB cache, 4 
cores and 8 threads) with 12GB of RAM running Fedora(TM) Linux V15. Each execution of an 
algorithm is performed sequentially, using a unique thread. We have developed experiments 
on the same 60 QMKP instances used in [1, 3, 4, 5, 11], which are characterised by the density 
d (proportion of non-zero profits pij; {0.25, 0.75}), the number of objects n ({100, 200}), and 

the number of knapsacks K ({3, 5, 10}) (5 instances per combination). Knapsack capacities are 
set to 80% of the sum of the instances objects weights divided by the number of knapsacks, as 
in the aforementioned studies. 

In line with the previous QMKP studies of [3], [11], our SO algorithm variants were executed 
10 times for parameter tuning (Section 4.2) and 40 times for the comparison study on each 
problem instance (Section 4.3). Each run consumed a maximum of 5 seconds for problems 
with 100 objects and 30 seconds for problems with 200 objects. 

Non-parametric  tests have been used to compare the results of different search algorithms 
[15]. It is customarily recommended that non-parametric tests be performed by applying the 
same criterion for sampling results to each method tested. Consequently, we compute the 
same aggregation (based on the average of the best objective function value in each run) over 
the same number of runs for each algorithm and problem. More specifically, we employ two 
alternative non-parametric tests to analyse the experimental results: 

 The Iman and Davenport test [16] with Holm’s method [17] employed as a post hoc 
procedure. The first test may be used to see whether there are significant statistical 
differences among the results of a certain group of algorithms. If differences are 
detected, then Holm’s test is employed to compare the best algorithm (control 
algorithm) against the remaining methods. 

 The Wilcoxon matched-pairs signed-ranks test [18]. With this test, the results of two 
algorithms may be directly compared. In order to avoid the bias introduced by the 
ranges of the different problems, we have normalised the results of every algorithm on 
each test function by mapping them into the interval [0, 1] taking into consideration 
the highest and the lowest values achieved by the set of algorithms considered in this 
type of statistical analysis. 

4.2. Parameter Study and Analysis 

The goal of this section is to investigate the effect of the parameters and strategies applied in 
our proposal, in order to provide a tuned SO algorithm. We have undertaken to find the most 
effective combination(s), under a full factorial design, summarized in Table 2, with the 
following elements:  

(i) the set of values for the span bound parameter σ (Section 3), consisting of a 

file:///C:/Users/glover/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/ZCSG8PGX/report02.html%23fn1x0
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variable set V={0.025, 0.05, 0.1, 0.15, 0.2}, or a constant set C={0.1, 0.1, 0.1, 0.1, 
0.1};  

(ii) the maximum number of fails to generate a new solution (maxfails {1, 20,∞});  

(iii) the constructor heuristic (Section 3.1) consisting of random (R), greedy (G), 
infrequent (I), frequent (F) or greedy non-tabu (GT); 

(iv) the improvement heuristic (Section 3.2) consisting of first-improvement swaps 
(FS), best-improvement swaps (BS),  first-improvement SOM (FSOM),  best-
improvement SOM (BSOM); oscillation methods (see Table 1) with pI-E = 0.5 and 

tenuremax = 0.1; and  

(v) the acceptance-criterion (Section 3.4) consisting of Replace if better (RB), 
and⋅Random walk (RW).  

The empirical framework is the one described in the previous section but only the first two 
instances (out of five) per problem type are considered in order to avoid overtraining and to 
reduce the computational cost of the study. Additionally, ten executions were performed for 
each algorithm and problem instance. 

 

Elements Alternatives 

 σ ⋅V,C  

maxfails ⋅1, ⋅20, ⋅∞ 

 constructive procedure ⋅R, G, I, F, GT 

improvement method ⋅FS, BS, FSOM, BSOM 

oscillation method Table 1 (12 designs) 

pI-E ⋅0.5 

tenuremax ⋅0.1 

acceptance-criterion ⋅RB, RW 

Table 2. SO parameters and strategies tested 

 

Table 3 shows the mean ranking of the best ten SO algorithm variants (out of 1728 tested), 
which are denoted as SO - S<span set type> - F<maxfails> - C<constructor> - I<improvement> - 

O<oscillation> -<acceptance>. For instance, using the indicated order, the best SO algorithm 
applies the variable set of span bounds, maxfails = 20, the random constructor, the SOM 

optimiser with the first-improvement strategy, the random short-term memory alternative for 
divergent step oscillation operations and the tabu alternative for convergent step operations 
and random walk as the acceptance criterion. Iman and Davenport’s and Holm’s analyses are 
not reported because they do not find significant differences between these leading ten 
algorithms (which rank in the upper 0.5% of the algorithmic variants tested). 
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 Algorithm 
 

Ranking 

1  SO- SV- F20-C R- IFSOM-O MTMT- RW 101.46 

2  SO- SV- F20-C R- IFSOM-O RBRB - RW 112.5 

3  SO- SV- F20-C I - IFSOM-O RBRB - RW 115.1 

4  SO- SC- F20-C R- IFSOM-O MBMB- RW 116.17 

5  SO- SV- F20-C I - IFSOM-O RTRT - RW 117.19 

6  SO- SC- F20-C R- IFSOM-O MTMT- RW 117.81 

7  SO- SV- F20-C I - IFSOM-O MBMB- RW 119.08 

8  SO- SV- F20-C R- IFSOM-O MTMT- RW 120.02 

9  SO- SV- F20-C R- IFSOM-O MBMB- RW 121.81 

10 SO- SC- F20-C I - IFSOM-O MTMT- RW 123.31 

..

. 
... … 

Table 3: Rankings of the best ten SO variants 

From the results in Table 3 we may remark that: 

 All of the ten best SO algorithm variants have the maxfails parameter set to 20, apply 

the SOM improvement method with the first-improvement strategy, and employ the 
random walk (0 tabu tenure) acceptance criterion. 

 Most of the ten best variants apply the variable set of span bounds. 

 There is a very slight preference for the random constructor heuristic over the 
infrequent sampling heuristic. In any case, these two approaches yield better results 
than the other alternatives for this component of the algorithm (i.e., the greedy 
constructor, the frequent non-tabu assignment, and the greedy non-tabu assignment). 

 While there is a modest variety of combinations for the oscillation heuristic that 
produce the best results, very interestingly all of them apply a divergent step that is 
not biased by the objective function (the random and random short-term memory 
approaches) and a convergent step that, on the contrary, is biased by the objective 
(the greedy and tabu approaches). In particular, the divergent step applying the short-
term memory is the one used most commonly by the best algorithms, and is most 
often paired with the tabu convergent step. 

With the aim of further tuning our proposal, we analyse some other settings under a full 
factorial design for three parameters of the best SO variant (SO-SV-F20-CR-IFSOM-OMTMT-
RW, which is in accordance with previous remarks for the best results): the maximum number 

of fails (maxfails {10, 20, 50}); the probability for applying the first divergent step insertion 

and second convergent step extraction operations pI-E {0.25, 0.5, 0.75}; and the maximum 

tenure value (tenuremax {0.05, 0.1, 0.2}). Table 4 shows the ten best combinations (out of 

27) with the notation SO-F<maxfails>-P<pmire>-T<tenuremax>. Iman and Davenport’s and 

Holm’s analysis are not reported because they do not find significant differences between 
these ten algorithms. In contrast, the R+ and R- values of Wilcoxon’s test (respectively 
associated with the best ranked algorithm and an alternative algorithm being compared with 
it) are presented together with the test’s result: when the R- value is inferior to the critical 
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value at significance factor 0.05 (81), this test finds significant differences in favour of the best 
ranked algorithm (+); if neither R+ nor R- is inferior to the critical value, it does not find 
significant differences (~).  

 Algorithm  Ranking R+ R- Wilcoxon 

1  SO- F50- P0.25- T0.2 7.67  

2  SO- F50- P0.25- T0.1 7.85 162 138 ~  

3  SO- F50- P0.25- T0.05 7.85 150.5 149.5 ~  

4  SO- F50- P0.5- T0.2 9.15 249 51 + 

5  SO- F20- P0.25- T0.1 9.17 205 95 ~  

6  SO- F20- P0.25- T0.05 9.17 207 93 ~  

7  SO- F20- P0.25- T0.2 9.23 208 92 ~  

8  SO- F50- P0.5- T0.05 9.60 253 47 +  

9  SO- F50- P0.5- T0.1 9.88 252 48 +  

10 SO- F20- P0.5- T0.05 11.92 248 52 +  

..

.  
... 

 
... ... ... ...   

Table 4. Best SO variants in the second tuning phase 

From the results in Table 4, we observe that, though these algorithms perform almost 
equally well, there is a slight preference for maxfails = 50 and pmire = 0.25. We do not find any 

indication of a preferred tenuremax value (from among those tested) that yields better results. 

From now on, the experiments are carried out only with SO-F50-P0.25-T0.2, the best ranked 
algorithm, which in the rest of the paper we simply denote as SO-QMKP.  

4.3. Comparison with Other Metaheuristics for the QMKP 

In this section, we compare SO-QMKP with the two current state-of-the-art methods, SS-ABC 
[3] and TIG-QMKP [11], described in Section 2.  We include in this study the five instances per 
problem type described in Section 4.1, totalling 60 instances.  The three methods were run 40 
times per problem instance and for the same CPU time, as reported in [3, 11].  Table 5 
summarizes the results per type of instance characterized by three values: n, d, and K.  We 
compute in each run the value obtained with each method on each instance.  Then we 
compute the average value, Avg, across the 40 runs, and the average percentage deviation, 
Dev, of theses values with respect to the best known values on each instance.  Table 5 reports, 
for each type of instance (in each row), the average of the Avg. and Dev. values of the 5 
instances.  It also reports the number of instances, out of the 5 in each type, in which the 
method is able to find the best solution known, #Best.  The last row summarizes the results 
over the entire set of 60 instances, reporting the average of the Avg. and Dev. values and the 
sum of the number of best founds. 

Tables 7 and 8 in the appendix show the individual results for each instance in this experiment.  
Specifically, Table 7 reports the Avg. values of the three methods on the 30 instances with 
d=0.25, the best solution found on the 40 runs, Best, and the standard deviation of the values 
in the 40 runs, SD.  Table 8 reports these statistics for the 30 instances with d=0.75. 
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 SS-ABC TIG-QMKP SO-QMKP 

Type Avg. Dev. #Best Avg. Dev. #Best Avg. Dev. #Best 

100, 25, 3 27705.006 2,03 0 28063.925 0,76 2 28232.775 0,16 5 

100, 25, 5 21351.048 2.27 0 21602.395 1.11 1 21716.3 0.59 5 

100, 25, 10 14854.166 4.48 0 15385.86 1.05 5 15369.845 1.15 0 

200, 25, 3 102281.2 0.72 2 102429.105 0.6 0 102640.735 0.39 3 

200, 25, 5 75667.804 0.72 3 75760.675 0.71 1 75895.72 0.53 1 

200, 25, 10 50372.774 3.6 0 51779.055 0.9 4 51772.69 0.91 1 

100, 75, 3 69039.64 0.82 0 69569.635 0.05 4 69569.86 0.05 3 

100, 75, 5 48829.54 0.82 0 49022.54 0.43 3 49060.195 0.35 4 

100, 75, 10 30013.22 1.58 1 30229.925 0.91 1 30289.635 0.71 3 

200, 75, 3 261867.42 1.13 0 264638.745 0.09 4 264692.07 0.07 4 

200, 75, 5 178872.298 1.27 0 180756.55 0.22 3 180776.27 0.21 3 

200, 75, 10 106641.482 2.38 0 108746.83 0.44 2 108788.665 0.4 3 

Summary 82291.3 1.82 6 83165.44 0.61 30 83233.73 0.46 35 

Table 5. Comparison of best methods on 60 instances 

Table 5 shows that SO-QMKP presents a 0.46% average deviation from the best known 
solution and is able to obtain 35 out of 60 best solutions, which compares favourably with the 
0.61% average deviation and 30 best solutions obtained with TIG-QMKP and with the 1.82% 
average deviation and 6 best solutions obtained with SS-ABC.  In line with this, Tables 7 and 8 
show that SO-QMKP often obtains better average results than the other algorithms (42 out of 
60 problem instances) and its standard deviations are usually the smallest ones. Table 6 
summarises the results of Wilcoxon’s test between our proposal and the other two algorithms 
with 0.05 as the significance level. This test finds significant differences between SO-QMKP and 
the other two algorithms, confirming the superiority of our method. 

 

 R+ R- Wilcoxon 

  SO-QMKP vs SS-ABC  1830 0 +  

 SO-QMKP vs TIG-QMKP 1437 393 +  

Table 6. Wilcoxon’s test for SO-QMKP vs. state-of-the-art algorithms. 

Additionally, we compare in Figures 2 and 3 the evolution of the objective function and 
ranking distributions respectively, of the two leading methods, SO-QMKP and TIG-QMKP, 
according to the previous experiments. In Figure 2 all objective values have been normalised to 
lie in the interval [0, 1]. Averaged results of the algorithms over the different problem 
instances are indicated by lines and the associated 95% confidence intervals (normal 
estimation) of their results are indicated by the shaded areas. Notice that the ranking 
distribution graphs, unlike the convergence graphs, are not monotonic. That is because ranking 
is a relative performance measure, and thus, if one algorithm improve its results, then, the 
ranking of the other may deteriorate. In addition, while variations in convergence graphs may 
be strongly affected by distant objective values on few instances, rankings are robust with 
regard to distant values but susceptible to small relative changes on many functions. 
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Figure 2: Search profile 

Figure 2 shows that SO-QMKP is able to get good results faster than TIG-QMKP, because its 
mean values are superior for running times lower than 10 milliseconds.  Moreover, it also 
supersedes TIG-QMKP on a lover term horizon (for running times larger than 0.1 seconds).  It is 
particularly significant that the distribution of SO-QMKP is narrower than that one of TIG-
QMKP, which means that SO-QMKP performs more robustly over the different problem 
instances.  The abrupt temporary improvement in the TIG-QMKP performance that starts just 
after the first 0.01 seconds can be partially explained by the fact the first call to the local 
optimizers occurs at this time. Then, since the SOM process of SO-QMKP is slower than the 
local search in TIG-QMKP (because of the use of more than one neighbourhood structure), an 
extra time is required for the contribution of this process. Once this happens, the performance 
of the SO-QMKP approach overtakes that of the TIG-QMKP approach to produce superior 
outcomes. 

 

Figure 3: Evolution of the ranking distributions 

Figure 3 confirms the performance described above, and the differences between both 
methods become now more evident and explained by the fact that SO-QMKP overcomes TIG-
QMKP on most of the problem instances (objective value differences are not considered in the 
ranking distributions, where the lower the ranking values the better the method). The greatest 
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performance difference is attained at 0.2 seconds of the run approximately. After that point, 
TIG-QMKP tends to obtain lower quality results than SO-QMKP. 

4.4. Knowledge exploitation 

We analyse in this section whether the algorithmic components of SO-QMKP adequately suit 
the QMKP characteristics, showing profitable problem-knowledge exploitation with regards to 
other heuristics and general-purpose approaches that do not combine all of them. Concretely, 
the following characteristics are studied along the optimisation process: 

 Both sides of the search space exploration: We want to analyse the benefits of 
addressing the QMKP from the two fronts of action considered by SO-QMKP, feasible 
and infeasible regions of the search space. To carry out this goal, we include in this 
study two SO variants that tackle the problem from only one of these fronts. 
Concretely, SO-feasible will explore only the feasible region by means of divergent step 
extractions and convergent step insertions, whereas SO-infeasible will wander through 
the infeasible side with divergent step insertions and convergent step extractions. In 
this latter approach, the last convergent step always generates a feasible solution. 

 Solution optimisation by FSOM: The application of local search methods usually 
consumes a considerable portion of the computational resources allotted to the 
complete method [24, 25]. Practitioners often have to evaluate the trade-off between 
improvement and consumption imposed by these methods. Thus, we compare the 
performance of SO-QMKP with an SO variant that does not apply any local search 
mechanism (SO-NoLS). In Section 4.2 we noticed that the SO algorithm that applied 
FSOM was better than the one that did not at the end of the run. In this occasion we 
analyse the effect along the whole run. 

 Iterative generation of candidate solutions from low and overloaded configurations: In 
contrast to our SO strategy, many metaheuristics explore the search space by sampling 
complete solutions, i.e., feasible configurations where no or little room would be 
available in knapsacks for more objects. Most general-purpose approaches employ 
such a strategy. In this study, we will consider as well two (almost-)general-purpose 
algorithms for the QMKP. As observed in [19], our SO algorithm specifically designed 
for this problem should perform better than that of other algorithms not explicitly 
configured for the QMKP. In this case, we consider a tabu search method that starts 
from a greedy solution (GTabu) (which obtained the best results in [11] among the 
analysed general-purpose algorithms) , and a multi-start approach that repeatedly 
applies our FSOM procedure to random initial solutions. 

 

 

Figure 3 shows the average ranking distributions of these five algorithms and our final variant, 
SO-OMKP, over the runtime. Lines represent the averaged ranking values of the algorithms 
over the 60 problem instances and areas depict the associated 95% confidence intervals.  
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Figure 3: Ranking distributions of the algorithms 

 

From the graphics shown in Figure 3, we can conclude the following: 

 SO-QMKP is the algorithm that attains the best (lowest) ranking values from 10ms. 
Therefore, the combination of its mechanisms clearly produces a profitable synergy. 

 Regarding the use of the optimiser FSOM, SO-NoLS gets the worst ranking values from 
10ms and MSLS-FSOM achieves the second position along most of the run. Therefore, 
we conclude that the improvement procedure makes a clear contribution to 
compensate for the computational resources it requires. Remarkably, SO-NoLS gets 
the best ranking values at the beginning of the run. This is due to the fact that the 
absence of the improvement procedure allows the algorithm begin the discovery of 
new solutions earlier in the computational process, and hence initially to obtain better 
results. 

 SO-infeasible and SO-feasible appear to perform similarly but much worse than SO-
QMKP. This result shows the benefits of addressing the problem from both fronts of 
action. 

 Finally, the comparison between the almost general-purpose approaches, GTabu and 
MSLS-FSOM, and the SO variants shows that the iterative generation of candidate 
solutions from incomplete or infeasible configurations is only advantageous when both 
sides of the search space are considered. This suggests that the operations we have 
chosen to embed in the SO framework achieve insufficient diversification , when only 
one side of the search space is considered (SO-feasible and SO-infeasible). However, 
the progress when both sides are visited (SO-QMKP) is much more advantageous 
compared to the progress of the general-purpose algorithms. 

  

5. Conclusions 

In this work, we have addressed the QMKP with the SO methodology. We have defined critical 
levels for this problem and have designed specific strategies to exploit the constraint structure 
by means of effective explorations of solutions in feasible and infeasible regions close to these 
levels. In addition, we make use of a strategic oscillation multi-neighbourhood (SOM) 
component that has proved more advantageous than previously proposed local search 
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methods for this problem, and have described code implementations that allow a fast 
evaluation of new solutions built from insertion, extraction, reallocation and swap operations.  

We have empirically analysed a wide variety of heuristics and parameter settings for each 
of the stages of our SO framework (initial construction, improvement, oscillation, and 
acceptance), obtaining an algorithm that outperforms the state-of-the-art approaches for this 
problem. Finally, we have analysed the algorithmic components of the proposal, examining 
other SO variants and competitive general-purpose methods, to establish that SO-QMKP 
effectively exploits the domain-knowledge associated with QMKP.  

Three interesting avenues present themselves for future research: (1) incorporating tabu 
search strategies to guide the decisions currently handled by choice rules designed for search 
paths that terminate at local optimality; (2) adapting our SO framework and methodology to 
other challenging combinatorial problems, such as the demand-constrained multi-dimensional 
knapsack problem, and (3) building hybrid metaheuristics combining the proposed SO 
framework with other  approaches that have not previously been joined with strategic 
oscillation (e.g., artificial bee colony algorithms).  
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Appendix 

 

Table 7.  State-of-the-art results on the QMKP with d=0.25 

 
 
 

Instance SS-ABC TIG-QMKP SO-QMKP 

n K I C Time Best Avg SD Best Avg SD Best Avg SD 

100  3  1  688  3.8 29139  28753  209.68 29138  28894.6  120.74 29234  29159.25  48.43  

100  3  2  738  3.69 28443  28004  285.91 28473  28224.35  60.87 28491  28467  32.27 

100  3  3  663  2.87 26901  26585.33  192.9 27013  26905.4  77.47 27179  27155.35  31.79  

100  3  4  804  3.74 28568  28109.03  342.19 28593  28573.6  10.56 28593  28570.4  13.50 

100  3  5 723  3.57 27849  27073.67  274.77 27892  27721.68  174.68 27892  27811.53  20.56  

100  5  1  413  2.7 22390  22117.12  141.17 22264  22126  91.03 22509  22337.43  84.13 

100  5  2  442  2.93 21584  21224.03  188.87 21580  21430.38  84.20 21678  21540.35  87.18  

100  5  3  398  2.4 21093  20771.12  215.23 21100  21015.03  34.45 21188  21104.75  57.49 

100  5  4  482  3.26 22178  21767.5  194.69 22180  22043  98.19 22181  22136  56.43  

100  5  5 434  3.18 21301  20875.47  199.51 21669  21397.58  126.71 21669  21462.88  70.51 

100  10  1  206  1.42 15953  15573.65  170.84 16118  15863  120.50 16065  15886.58  92.51  

100  10  2  221  1.84 15487  14896.35  192.44 15525  15398.43  64.66 15510  15359.95  65.19 

100  10  3  199  1.58 14339  14027.83  191.24 14773  14554  106.90 14663  14568.38  63.75  

100  10  4  241  2.1 15807  15397  244.28 16181  16089.95  71.61 16159  16013  77.94 

100  10  5 217  1.82 14719  14376.8  177.96 15150  15023.45  84.78 15130  15021.33  64.63  

200  3  1  1381  23.99 100662  100103.02  283.79 100218  100056.23  92.62 101100  100653.5  181.44  

200  3  2  1246  18.61 107958  107545.2  240.77 107787  107644.98  61.42 107805  107607.15  86.29  

200  3  3  1335  29.85 104521  104006.98  311 104479  104251.5  79.93 104538  104271.68  91.71  

200  3  4  1413  38.93 98791  98344.32  268.1 98896  98557.4  142.53 99559  99003.63  223.48  

200  3  5 1358  29.22 102049  101406.48  344.51 101973  101635.43  93.83 102041  101667.73  160.54  

200  5  1  828  19.88 74922  74132.95  519.19 74239  73977.78  118.20 74559  74237.4  169.65  

200  5  2  747  16.75 79506  79073.32  278.65 79480  79234.28  107.32 79400  79153.55  100.12  

200  5  3  801  22.86 77607  77069.52  244.68 77700  77420.5  179.10 77632  77452.25  150.44  

200  5  4  848  28.07 73181  72607.25  372.38 73173  72477.65  247.03 73327  72884.03  182.63  

200 5 5 815 20.74 76022 75455.98 248.11 75884 75693.18 116.06 75996 75751.38 125.09 

200  10  1  414  10.37 49883  49079.47  425.35 51413  50845.78  193.36 51323  50862.7  156.42  

200  10  2  373  8.48 53298  51831.55  459.79 54116  53608.45  169.08 53975  53649.03  139.02  

200  10  3  400  11.15 52281  51324.28  359.07 52735  52456.28  143.13 52841  52337.73  140.19  

200  10  4  424  12.83 49210  48190.6  466.33 50221  49656.4  204.40 50190  49802.43  163.80  

200  10  5 407  10.99 51921  51437.97  296.41 52651  52328.38  164.68 52470  52211.58  126.16  
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Table 8. : State-of-the-art results on the QMKP with d=0.75 

 
 
 

Instance   SS-ABC TIG-QMKP SO-QMKP 

n  K  I  C  Time Best  Avg  SD Best  Avg  SD Best  Avg  SD  

100  3  1  669  2.07 69721  69373  231.72 69977  69936.05  6.64 69935  69925.73  37.77  
100  3  2  714  1.86 69462  69041  236.38 69504  69442.78  39.75 69504  69442.48  49.40 
100  3  3  686  1.86 68635  67960.05  406.74 68811  68811  0 68832  68812.58  5.6  
100  3  4  666  1.88 69986  69687.68  217.28 70028  70019.88  32.91 70028  70028  0 

100  3  5 668  2.12 69679  69136.4  246.88 69692  69638.48  24.32 69653  69640.53  12.95  

100  5  1  401  2.07 4922  48937.47  196.48 49345  49218.1  29.81 49363  49197.53  55.7 
100  5  2  428  1.96 49313  48908.05  202.63 49316  49081.53  81.88 49305  49137.38  82.1  
100  5  3  411  1.71 48472  47874.5  380.3 48495  48327.48  85.51 48495  48287.88  77.08 
100  5  4  400  1.83 50199  50017.93  197.12 49866  49866  0 50246  50025.03  97.69  

100  5  5 400  2.01 48710  48409.75  133.12 48752  48619.6  65.78 48752  48653.18  62.88 

100  10  1  200  1.22 29875  29429.2  208.12 29877  29548.68  102.80 29931  29788.48  54.53  
100  10  2  214  1.45 30939  30697.8  134.28 30980  30832.15  83.73 30973  30829.05  70.25 
100  10  3  205  1.3 29465  28983.78  246.93 29695  29439.95  142.78 29730  29519.48  112.25  
100  10  4  200  1.4 31663  31218.85  176.33 31550  31333.45  67.95 31587  31392.48  71.15 

100  10  5 200  1.42 30219  29736.47  213.33 30096  29895.4  75.08 30229  29918.7  94.01  

200  3  1  1311  14.11 269736  267117.92  1070.76 270718  270525.9  204.46 270718  270617.48  166.63  
200  3  2  1414  16.27 256195  253916.75  896.46 257090  256764.98  95.68 257026  256852.3  88.06  
200  3  3  1342  11.87 268890  267079.03  1124.57 270069  269974.03  85.82 270069  269955.03  91.51  
200  3  4  1565  30.64 246205  244618.4  1022.02 246704  246356.53  101.17 246882  246473.13  157.1  

200  3  5 1336  10.46 279490  276605  1443.72 279598  279572.3  34.82 279598  279562.43  33.9  

200  5  1  786  12.34 184448  183046.65  735.6 184909  184500.8  150.78 184822  184529  107.67  
200  5  2  848  12.34 173575  171738.85  735.6 174682  174239.48  245.75 174682  174267  139.36  
200  5  3  805  12.1 185107  185059.52  469.38 186443  186170.68  172.71 186526  186216.75  123.93  
200  5  4  939  27.03 165273  164042.2  777.57 166358  166159.55  97.56 166584  166165.38  137.84  

200  5  5 801  14.06 192764  190474.27  1021.33 193084  192712.25  118.40 193053  192702.25  104.88  

200  10  1  393  7.64 111000  109624.73  714.45 112262  111889.75  169.32 112354  112043.68  150.05  
200  10  2  424  9.96 103540  102603.18  522.59 105092  104669.83  169.32 105151  104781.5  162.83  
200  10  3  402  8.04 112509  111388.2  509.42 113868  113510.55  194.64 113869  113563.08  140.04  
200  10  4  469  14.81 96859  95681.7  545.54 98252  97807.73  155.00 98028  97747.55  106.18  

200  10  5 400  8.21 115125  113909.6  590.96 116513  115856.3  240.19 116298  115807.53  168.32 

 

 

 

 


