
GRASP with Ejection Chains

for the dynamic memory allocation in embedded systems

Marc Sevaux1, André Rossi1, Maŕıa Soto2, Abraham Duarte3, Rafael Mart́ı4

1 Université de Bretagne-Sud, Lab-STICC, CNRS
Centre de recherche B.P. 92116
F-56321 Lorient Cedex, France

2 Université de Technologie de Troyes
Troyes, France

3 Universidad Rey Juan Carlos
Dept. Ciencias de la Computación

c/ Tulipán s/n, 28933 Móstoles, Madrid, Spain

4 Universidad de Valencia
Dept. de Estad́ıstica e Investigación Operativa

c/ Dr. Moliner 50, 46100 Burjassot (Valencia), Spain

March 13, 2013

Abstract

In the design of electronic embedded systems, the allocation of data structures to memory banks is a main
challenge faced by designers. Indeed, if this optimization problem is solved correctly, a great improvement in
terms of efficiency can be obtained. In this paper, we consider the dynamic memory allocation problem, where
data structures have to be assigned to memory banks in different time periods during the execution of the5

application. We propose a GRASP to obtain high quality solutions in short computational time, as required in
this type of problem. Moreover, we also explore the adaptation of the ejection chain methodology, originally
proposed in the context of tabu search, for improved outcomes. Our experiments with real and randomly
generated instances show the superiority of the proposed methods compared to the state-of-the-art method.

1 Introduction10

The continuous advances in nano-technology have made possible a significant development in embedded systems
(such as smartphones) to surf the Web or to process HD pictures. While technology offers more and more opportu-
nities, the design of embedded systems becomes more complex. Indeed, the design of an integrated circuit, whose
size is calculated in billions of transistors, thousands of memories, etc., requires the use of competitive computer
tools. These tools have to solve optimization problems to ensure a low cost in terms of silicium area and running15

time. There exist some Computer Assisted Design (CAD) tools such as Gaut [2] to generate the architecture of a
circuit from its specifications. However, the designs produced by CAD softwares are generally not energy aware,
which is of course a major drawback.

In the design of embedded systems, memory allocation is among the main challenges that electronic designers
have to face. Indeed, electronics practitioners, to some extent, consider that minimizing power consumption is20

equivalent to minimizing the running time of the application to be executed by the embedded system [1]. Moreover,
the power consumption of a given application can be estimated using an empirical model as in [6], and paral-
lelization of data access is viewed as the main action point for minimizing execution time, and consequently power
consumption.

This paper is focused on memory allocation in embedded systems because of its significant impact on power25

consumption as shown by Wuytack et al. in [14]. We have addressed various simpler versions of the memory

1

allocation problem: in Soto et al. [12], we have proposed a mixed linear formulation and a variable neighborhood
search (VNS) algorithm for the static version, and studied an even more simplified version of this problem in Soto
et al. [11]. We have also dealt with the dynamic memory allocation problem in Soto et al. [13] for which an
integer linear formulation and two iterative approaches have been devised. In this paper, we propose a GRASP30

with Ejection Chains for the dynamic memory allocation problem in embedded systems and compare it with the
previous iterative approaches.

The considered memory architecture is similar to the one of a TI C6201 device [6]. It is composed of m memory
banks whose capacity is cj kilo Bytes (kB) for all j ∈ {1, . . . ,m} and an external memory denoted by m+1, which
does not have a practical capacity limit. The processor needs q milliseconds for accessing data structures located35

in a memory bank, and it spends p× q more time when data structures are in the external memory.
Time horizon is split into T time intervals whose durations may be different. The application to be implemented

is assumed to be given as C source code, whose n data structures (i.e. variables, arrays, structures) have to be
loaded in memory banks or the external memory. The size of data structure si for i ∈ {1, . . . , n} is expressed in kB.
During each time interval t, the application requires accessing a given subset At of its data structures. We denote40

with a pair (a, b) when data structures a and b are simultaneously accessed. The set Dt contains all these pairs in
time period t.

The combinatorial nature of this problem comes from the fact that the processor can access all the memory banks
simultaneously. For example, given a specific time interval, to compute a+ b we may access a and b simultaneously.
If they are allocated to different memory banks, we can access both of them at the same time, with the associated45

time saving, but if they are allocated to the same memory bank, we have to perform two different accesses. Thus,
the cost of accessing simultaneously data structures a and b is d(a,b), and if they are allocated to the same memory
bank, the total access cost is 2 × d(a,b), i.e. accessing sequentially a and b. However, if a or b are allocated to the
external memory, the cost is p× d(a,b), and if both are allocated to the external memory the cost is 2× p× d(a,b).
Note that when we perform an operation such as a = a+1, the accessing cost can be either 2×d(a,a) or 2×p×d(a,a)50

depending whether a is in a memory bank or the external memory. Finally, a data structure can be accessed in
isolation (i.e., not in a pair) when for example, we perform the operation a = 5, then its cost is d(a,0) if it is in a
memory bank, and p× d(a,0) if it is in the external memory.

If we want to take into account the dynamic structure of the problem, the cost of changing a data structure
between memory banks or with the external memory from the previous time interval to the current one is related to55

its size. In particular, if data structure a is in a memory bank at time interval t− 1 and in a different memory bank
at time interval t we have a cost of �×sa where � is the duration of this physical move in milliseconds per kilo Bytes
(ms/kB). Alternatively, if we change the allocation of a data structure between a memory bank and the external
memory, the cost is v× sa where now the factor is given by v ms/kB. The later cost is particularly relevant because
of hardware requirements. All the data structures are initially (say in t = 0) allocated to the external memory and60

therefore we assume this as initial solution for each data structure allocated to a memory bank in t = 1. We assume
that v ≥ � and v < p because a DMA (Direct Memory Access) controller is supposed to be part of the memory
architecture, which allows for a direct access to data structures. Table 1 summarizes all the costs described above
for a specific time interval.

Table 1: Costs to evaluate a solution in a specific time interval

Type Value Description

Access d(a,b) if a and b are in different memory banks

2× d(a,b) if a and b are in the same memory bank

p× d(a,b) if a or b is in the external memory

2p× d(a,b) if a and b are in the external memory

Change �× sa a changed between memory banks

v × sa a changed between a memory bank and the external memory

This paper is organized as follows. Section 2 shows how to represent a solution and evaluate it on an illustrative65

example. Section 3 presents the GRASP with the Ejection Chains methods. The proposed method is first tuned in
our preliminary experimentation and then compared to previous iterative approaches in Section 5. Finally, Section
6 presents conclusions and future work for this problem.

2

2 Step by step example

For the sake of illustration, this section presents a detailed computation of the cost of a solution. From now, we70

represent a solution x as a matrix with data structures in rows and time intervals in columns. Thus, given a data
structure i in {1, . . . , n}, and a time interval t in {1, . . . , T }, x(i, t) = j with j in {1, . . . ,m+1} indicates that data
structure i is allocated to memory bank j at time period t.

Consider an example in which we have to allocate n = 12 data structures in m = 3 memory banks and the
external memory, with T = 4 time periods. Additionally, consider that the size of the data structures is given by75

{65, 18, 95, 88, 99, 12, 19, 81, 10, 4, 79, 80} and each memory bank has a capacity of 111 kB. Then, a feasible solution
x is given by the following (12,4)-matrix

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 4 4
2 2 2 2
3 3 4 4
2 2 2 4
4 4 4 4
1 1 1 1
1 1 1 1
4 4 3 3
3 3 3 2
3 3 3 3
4 4 4 2
4 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As mentioned above, the entries in the matrix indicate the indexes of the memory banks (where 4 refers to the
external memory). For example, in row 4, column 1, we have x(4, 1) = 2 which means that data structure 4 is
allocated to memory bank 2 at time interval 1. If we consider the data structures at the same time interval (a80

column of the matrix) that are assigned to the same memory bank, we can see that the sum of their sizes do not
exceed the capacity of this bank. For example, in the second column, we can see that memory bank 1 appears in
rows 6, 7, and 12 (i.e., x(6, 2) = 1, x(7, 2) = 1, and x(12, 2) = 1). If we sum the sizes of these data structures, we
obtain s6 + s7 + s12=12 + 19 + 80 = 111, which is exactly the capacity of memory bank 2. It is easy to check that
solution x verifies the capacity constraints of the three memory banks in the four time periods. Figure 1 illustrates85

the first two time periods (t = 1 and t = 2) of this solution in a diagram, in which memory banks appear as vertical
boxes, labeled as MB1, MB2 and MB3 respectively, and the external memory as a rectangular horizontal box labeled
as MB4.

MB4

t = 1 5 8 11 12

MB1

7

6

1

MB2

4

2

MB3

10

9

3

MB4

t = 2 1 5 8 11

MB1

7

6

12

MB2

4

2

MB3

10

9

3

Figure 1: Example

Consider now that in the first time period we have to access the data structures A1 = {1, 2, 3, 4, 7, 9} with 6
pairs accessed simultaneously: D1 = {(1, 2), (1, 3), (1, 4), (1, 7), (2, 3) (2, 9)}, with associated costs: 62, 68, 37, 83,90

18, and 33. To compute the total cost associated with the first time period, we note in Figure 1 that data structures
1 and 2 are in different memory banks (data structure 1 is in MB1 and data structure 2 is in MB2), therefore we
consider their access cost of 62. Similarly for pairs (1,3), (1,4), (2,3), and (2,9) since their data structures are in

3

different memory banks. On the contrary, the cost of pair (1,7) is 2× d(1,7) since data structures 1 and 7 are both
in MB1. The total access cost is therefore 62+68+37+2×83+18+33 = 384. To complete the cost computation at95

time period t = 1, we have to consider that initially (i.e., at t = 0), the n = 12 data structures are in the external
memory and therefore, the data structures in the three memory banks, 1, 2, 3, 4, 6, 7, 9, and 10, have an associated
cost of change of v× (65+ 18+ 95+ 88+ 12+ 19+ 10+ 4) = 311v. Therefore, the total cost at t = 1 is 384+ 311v.

Similarly, we compute the cost of period t = 2, considering that A2 = {2, 3, 4, 5, 6, 10, 11, 12} and the following 5
pairs are accessed simultaneously: D2 = {(2, 10), (3, 11), (3, 12), (4, 5), (4, 6)}, with associated costs: 99, 45, 71, 17,100

and 98. To calculate the access cost in this time interval, we have to consider that data structure 4 is allocated to
MB2 but data structure 5 is allocated to the external memory (as indicated with an arrow in Figure 1), and therefore
the cost of pair (4,5) is p× d(4,5) = 17p. Similarly with pair (3,11) given that data structure 11 is in the external
memory. Therefore the total access cost is now 99+ 45p+71+17p+98 = 268+ 62p. The cost of change computed
at t = 2 accounts for the fact that data structure 1 is in the external memory (indicated with a circle in Figure 1),105

and it is in MB1 at t = 1. This has an associated cost of v × s1 = 65v. Similarly, data structure 12 is allocated to
the external memory at time t = 1, and to MB1 at time t = 2 (highlighted with a circle in the figure). Therefore the
cost is v × s12 = 80v. Then, the total cost generated at time period 2 is 268 + 62p+ 145v.

3 GRASP

The GRASP metaheuristic was developed in the late 1980s [3]. Each GRASP iteration consists in constructing a110

trial solution with some greedy randomized procedure and then applying local search from the constructed solution.
This two-phase process is repeated until some stopping condition is satisfied. A best local optimum found over
all local searches is returned as the solution of the heuristic. We refer the reader to [10] for recent surveys of this
metaheuristic.

Algorithm 1 shows the pseudo-code for a generic GRASP for minimization. The greedy randomized construction115

seeks to produce a diverse set of good-quality starting solutions from which to start the local search phase. Let x
be the partial solution under construction in a given iteration and let C be the candidate set with all the remaining
data structures that can be added to x. The GRASP construction uses a greedy function g(c) to measure the
contribution of each candidate data structure c ∈ C to the partial solution x. A restricted candidate list RCL is the
subset of candidate data structures from C with good evaluations according to g. In particular, if gmin and gmax are120

the minimum and maximum evaluations of g in C respectively, then RCL = {c ∈ C | g(c) ≤ gmin+α(gmax−gmin)},
where α is a number in [0, 1]. At each step, the method randomly selects a data structure c∗ from the restricted
candidate list and adds this data structure to the partial solution. The construction is repeated in the inner while
loop (steps 4 to 10) until there are no further candidates. If C = ∅ and x is infeasible, then a repair procedure needs
to be applied to make x feasible (steps 12 to 14). Once a feasible solution x is available, a local search improvement125

is applied. The resulting solution is a local minimum. The GRASP algorithm terminates when a stopping criterion
is met (typically a maximum number of iterations, time limit, or a target solution quality). The best overall solution
x∗ is returned as the output of the heuristic.

3.1 Constructive methods

To construct a solution we have to allocate the data structures, one by one, to the memory banks or the external130

memory in each time period. In this section we propose two different approaches; the first one sequentially constructs
a solution starting with time period t = 1 and moving to next time period once the allocation of all data structures
in the current one is completed. On the other hand, the second constructive method gives priority to the allocation
of data structures that might generate the largest cost, regardless of their time period.

Sequential approach In the sequential approach, SEQ, we first complete the assignments in a period and then135

we start the assignments in the next one. From the costs in Table 1, it is clear that the best option for a pair of
data structures is to be allocated to different memory banks; however, they have a limited capacity and some data
structures have to be eventually allocated to the same bank or in the external memory.

Consider a partial solution in which we have assigned the data structures to the memory banks in time periods
1 to t − 1 and we have already assigned some of the data structures in period t. Let Ct be the candidate set140

of unassigned data structures at time period t. To determine the data structure and memory bank for the next
assignment in our construction process, we compute for each data structure i ∈ Ct its evaluation g(i, t, j) to any
possible memory bank j, or to the external memory (for which j = m+ 1).

4

Algorithm 1: GRASP algorithm

1 f ∗ ←∞
2 while stopping criterion not satisfied do
3 x← ∅
4 Compute C with the candidate data structures that can be added to x
5 while C �= ∅ do
6 forall the c ∈ C do
7 compute g(c), gmin = minc∈C g(c) and gmax = maxc∈C g(c)

8 Define RCL← {c ∈ C | g(c) ≤ gmin + α(gmax − gmin)} with α ∈ [0, 1]
9 Select c∗ at random from RCL(C)

10 Add c∗ to partial solution: x← x ∪ {c∗}
11 Update C with the candidate data structures that can be added to x

12 x← LocalSearch(x)
13 if f(x) < f(x∗) then
14 x∗ ← x; f∗ ← f(x)

15 return x∗

To compute g(i, t, j), we consider two types of costs. The first one is the cost related to the access to data
structure i in the memory bank j at time interval t. This cost is denoted by total access(i, t, j) and defined by:145

total access(i, t, j) =

|Ni,t|∑
k=1

access(j, x(ak, t), d(i,ak),t) (1)

where Ni,t is the set of data structures which are in conflict with data structure i at time interval t, thus ak ∈ Ni,t.
Two data structures i and ak are said to be in conflict at time period t if (i, ak) ∈ Dt. Function access(j1, j2, d)
defined in Equation (2) computes the access cost produced by a conflict whose cost is d and where its corresponding
data structures are allocated to memory banks j1 and j2 respectively. Thus access(j, x(ak, t), d(i,ak),t) is the access
cost generated by conflict (i, ak) at time interval t where data structure i is allocated to memory bank j and150

x(ak, t) ∈ {1, . . . ,m+ 1} is the memory bank where ak is allocated.

access(j1, j2, d) =

⎧⎪⎪⎨
⎪⎪⎩

d, if j1 �= j2 and jk �= m+ 1, ∀k = 1, 2
2× d, if j1 = j2 �= m+ 1
2p× d, if j1 = j2 = m+ 1
p× d, otherwise

(2)

The other cost involved in the evaluation function g(i, t, j) is the cost related to the change of a data structure
between memory banks or between the external memory and a memory bank in consecutive time intervals. It is
computed as follows:

change(i, j1, j2) =

⎧⎨
⎩

0, if j1 = j2
�× si, if j1 �= j2 and jk �= m+ 1, ∀k = 1, 2
v × si, otherwise

(3)

Thus, the evaluation function g(i, t, j) is given by:155

g(i, t, j) = total access(i, t, j) + change(i, x(i, t− 1), j) (4)

When the data structure i is not accessed during time period t, we have to consider the cost of change from
the allocation in time interval t − 1, x(i, t − 1), and its trial allocation in t. Thus, the evaluation function is
g(i, t, j) = change(i, x(i, t− 1), j) for all i /∈ At .

Equation (4) computes the increment in the cost of the current partial solution under construction, if data
structure i ∈ At is assigned to a memory bank or to the external memory. However, feasible assignments only are160

considered; i.e., those for which data structure i can be added to a memory bank without exceeding its capacity.
Once all feasible assignments have been evaluated, we compute the minimum and maximum of those values as:

5

gmin(t) = min
i∈Ct

{g(i, t, j) ∀j ∈ {1, . . . ,m+ 1}}
gmax(t) = max

i∈Ct

{g(i, t, j) ∀j ∈ {1, . . . ,m+ 1}}

Then, as shown in Algorithm 1, we compute the restricted candidate list RCL(t) with the pairs of data structures
in conflict and memory banks for which the evaluation is within the customary GRASP limits. Specifically,

RCL(t) = {(i, j) : i ∈ Ct and g(i, t, j) ≤ gmin(t) + α(gmax(t)− gmin(t))},
where α is a number in [0, 1]. At each step, the method randomly selects a pair (i, j) from the restricted candidate165

list and performs the associated assignment (i.e., it assigns i to j at time interval t). The constructive algorithm,
called SEQ, terminates when all the data structures have been assigned, for all the time periods.

Conflict priority approach Our third constructive method, CPA, has two stages. In the first one we allocate
the pairs of data structures from Dt for any time period t, and in the second one we allocate the remaining elements
not in At for any time period t.170

In the first stage we define D as the ordered set of pairs in
⋃T

t=1 Dt in decreasing values of the cost d(a,b),t.
The restricted candidate list RCL is here simply computed as a fraction of the pairs in D. Specifically, we consider
a percentage α of the largest elements in D. We then select one pair (a�, b�) in RCL at random and allocate its
elements in their time period t. To do that, we compute g(a�, t, j) and g(b�, t, j) ∀j ∈ {1, . . . ,m+ 1} and perform
the best allocation. Once a pair has been allocated, it is removed from D. This operation is repeated as long as175

D �= ∅. Note that the construction of the restricted candidate list does not follow the conventional adaptive scheme.
In other words, the d(a,b),t values do not change from one construction step to the next. However, note also that
finding the best allocation for the selected pair involves the computation of an adaptive value since g(i, t, j) depends
on the previous assignments.

In the second stage we allocate the remaining elements (i.e., those not present in the pairs). As previously180

defined, let Ct be the candidate set of unassigned data structures at time period t. We define C as the ordered
set of pairs (i, t) in

⋃T
t=1 Ct in decreasing values of the size si. As in the first stage, RCL contains a fraction α

of the largest elements, from which we select one pair (a�, t) at random. Finally, we allocate a� in time t in the
best memory bank according to g(i, t, j) and update C. The method finishes when all the elements in C have been
allocated.185

The randomized nature of the constructive process permits to generate different solutions in each construction.
We have empirically found that in some instances the allocation of all the elements in the external memory banks
produces a trivial solution with a relatively good value. Therefore, we have included this trivial solution as the first
construction of this method.

3.2 Local Search190

Since there is no guarantee that a randomized greedy solution is optimal, local search is usually applied after each
construction step to attempt to find an optimal solution, or at least to obtain an improved solution with smaller
cost than that of the constructed solution. This idea originates in the seminal paper by [3] for set covering and was
later referred to as GRASP [4].

Given a feasible solution x of a combinatorial optimization problem, we define a neighborhood N(x) of x to195

consist of all feasible solutions that can be obtained by making a predefined modification to x. We say a solution x∗

is locally optimal if f(x∗) ≤ f(x) for all x ∈ N(x∗), where f is the objective function that we are minimizing. Given a
feasible solution, a local search procedure finds a locally optimal solution by exploring a sequence of neighborhoods,
starting from it. At the i-th iteration it explores the neighborhood of solution xi. If there exists some solution
y ∈ N(xi) such that f(y) < f(xi), it sets xi+1 = y and proceeds to iteration i+ 1. Otherwise, x∗ = xi is declared200

a locally optimal solution and the procedure stops.
Insertions are used as the primary mechanism to move from a solution to another in the local search for the

memory allocation problem. Specifically, given a solution x and a data structure i allocated to memory bank j at
time period t (i.e., x(i, t) = j), we define move(i, t, j′) as the removal of i from its current memory bank j, followed
by its insertion in memory bank j′ at time period t. This operation results in the solution y, as follows:205

6

y(i, t) = j′

y(i, t) = x(i, t) for t �= t′

y(i′, t) = x(i′, t) for i′ �= i and for all t

Given a solution x and a data structure i in memory bank j at time period t, we define h(i, t, j) as its contribution
to the solution value. If data structure i is accessed in one or more pairs in t, it can be computed as:

h(i, t, j) = total access(i, t, j) + change(i, x(i, t− 1), j) + change(i, x(i, t+ 1), j) (5)

This expression is similar to (4) in which we compute the cost for accessing data structure i in the memory bank
j to execute the operation at time interval t. The second and third terms in (5) compute respectively the cost of
change of i from period t − 1 to t and from t to t + 1. The later term was not involved in (4) since we computed210

there the cost of a partial solution under construction in which no data structure was assigned to period t + 1 at
that stage. Therefore, h(i, t, j) sums all the costs generated with the assignment of data structure i in {1, . . . , n}
to its current location j in {1, . . . ,m+ 1} at time interval t in {1, . . . , T }.

Algorithm 2: Local Search

1 t← 1
2 while t ≤ T do
3 improved←false

4 At ← SortElementsInConflicts(t)
5 forall the i ∈ At do
6 j� ← arg min

1≤j′≤m
h(i, t, j′)

7 j ← CurrentMemoryBank(i)
8 if j �= j� then
9 move(i, t, j�)

10 improved←true

11 if improved = true and t �= 1 then
12 t← t− 1

13 else
14 t← t+ 1

Considering that we have n data structures at a given time period t (where we start with t = 1), there are
n possible candidates for an insertion move. In other words, we can consider an allocation change for any data215

structure in this time period for improving the solution. However, instead of enumerating all these possibilities (i.e.,
scanning the entire neighborhood of the solution), we implement the so-called first strategy, in which we perform
the first insertion move that improves the solution. In order to study first those data structures that are more likely
to provide improving moves, our local search method first computes the contribution of all the data structures in a
time period and orders them according to these values. Then, it scans the data structures in this order, where the220

data structure with the largest contribution comes first. As a result, it first explores those data structures with a
large contribution since we can consider them as “badly allocated” and tries to re-allocate them in a different, and
better, memory bank.

Algorithm 2 shows the main steps of the local search method. In line 1, the time period t is initialized to
1. In line 4, we order the elements in conflict (accessed simultaneously) in time period t, At, according to their225

contribution. Once we select a data structure i ∈ At allocated to memory bank j at time period t, we compute
h(i, t, j′) for all memory banks. In line 6, we select the best memory bank j�. If j� �= j (line 8), which indicates
that h(i, t, j�) < h(i, t, j), we move (in line 9) data structure i from memory bank j to j� if there is room in bank
j�, since it results in a reduction of the solution value. Specifically, we perform move(i, t, j�) and the value of the
solution is reduced by h(i, t, j)− h(i, t, j�). Once we have explored the possible assignments of data structure i to230

a different memory bank, and eventually moved it, we resort to the next data structure in the ordered list to study
its associated moves. When we explore all the data structures with a positive contribution, we stop the scan of the
candidate list (there is no point in moving data structures with a null contribution). At this stage, we set t = t− 1

7

if t > 1 in line 12 and explore the previous time period. The rational behind this strategy is to perform a backward
step to re-allocate the elements linked with those recently moved in the current time period. Alternatively, if we235

have not found any improvement move in t, we set t = t+ 1 in line 14, and apply the improvement method in the
next time period. In any case, we compute the contribution of the data structures and proceed in the same fashion.
The local search LS terminates when no data structure is moved after scanning all the time periods. It returns the
associated local optimum.

4 Ejection chains240

MB4

6 4 12 3 5 11

MB1

1

MB2

8

10

9

MB3

7

2

Figure 2: Memory banks at t = 3

Consider the example in Section 2 in which we have to allocate n = 12 data structures in m = 3 memory banks
and the external memory, in T = 4 time periods. We apply the greedy randomized constructive method to this
instance with parameter values q = 1, p = 16, � = 1 and v = 4, and we obtain a solution with a value of 15.692. Now
we apply our local search method based on insertions to improve this trial solution, and we observe that the data
structure with the largest contribution is data structure 6, allocated to the external memory (with index 4) at time245

period t = 3. Figure 2 shows a representation of the allocation of the data structures in memory banks at this time
period. Data structure 6 has a contribution value of h(6, 3, 4) = 2.384, and the local search computes its alternative
assignments at time period 3: h(6, 3, 1) = 533, h(6, 3, 2) = 622, and h(6, 3, 3) = 545, which are significantly lower
than the value of its current assignment. Since there is room in memory bank 1 for data structure 6, we perform
the move, insert(6, 3, 1) and obtain a new solution with value 15.692 − 2.384 + 533 = 13.841. We now resort to250

the next data structure in the ordered list according to their contribution. It is data structure 4 allocated to the
external memory (with index 4) at t = 3 and a contribution to the solution value of h(4, 3, 4) = 1.424. We would
move this data structure to memory bank 1 considering that its associated contribution is h(4, 3, 1) = 793; however,
there is no room in memory bank 1 for this data structure (it has a remaining capacity of 34 units and this data
structure has a size of 88). As a matter of fact, we cannot move this data structure to any other memory bank due255

to the associated evaluation or the size constraints. We therefore resort to the next data structure in the list and
continue in this fashion.

The previous example illustrates that some insertions cannot be performed because there is no room in the
destination memory bank. This suggests that we could consider to make room there by moving one of its data
structures elsewhere, implementing what is known in local search as a compound move or ejection chain. Glover260

and Laguna [5] introduced compound moves, often called variable depth methods, constructed from a series of
simpler components. As is well-known, one of the pioneering contributions to this kind of moves was Lin and
Kernighan [7]. Within the class of variable depth procedures, a special subclass called ejection chain procedures
has recently been proved useful. An ejection chain EC is an embedded neighborhood construction that compounds
the neighborhoods of simple moves to create more complex and powerful moves. It is initiated by selecting a set of265

data structures to undergo a change of state (e.g. to occupy new positions or receive new values). The result of this
change leads to identifying a collection of other sets, with the property that the data structures of at least one must
be “ejected from” their current states. State-change steps and ejection steps typically alternate, and the options for
each depends on the cumulative effect of previous steps (it is usually impacted by the latest step). In some cases,

8

a cascading sequence of operations may be triggered, representing a domino effect. A successful application of this270

strategy on the max-cut problem can be found in [8].

Algorithm 3: Ejection Chain

1 t← 1
2 while t ≤ T do
3 improved←false

4 Dt ← SortElementsInConflicts(t)
5 forall the i ∈ C do
6 d← 1
7 ieject ← i
8 impEC ←false

9 while (d ≤ dplimit) and impEC =false do
10 j� ← argminj∈MB h′(ieject, t, j)
11 j ←CurrentMemoryBank(ieject)
12 if j �= j� then
13 S ←EjectedElements(ieject, t, j

�)
14 if S = ∅ then
15 impEC ←true

16 improved←true

17 else
18 d← d+ 1
19 ieject ← argmax

k∈S
h′(k, t, j�)

20 if improved = true and t �= 1 then
21 t← t− 1

22 else
23 t← t+ 1

In the memory allocation problem, when data structure i in memory bank j at time period t has a relatively
large contribution to the objective function, the local search selects it to evaluate its insertion in a different memory
bank, say j′, in order to reduce this contribution. In some cases however, this move is not feasible because j′ does
not have enough capacity for i (i.e. because the difference between its capacity and the sum of the sizes of the data275

structures in j′ is lower than the size of this data structure). The EC local search then considers to move one of the
data structures in j′, say i′, to another memory bank on time period t, say j′′, to make room in j′ for i. We may
say that the insertion of i in j′ caused i′ to be ejected to j′′, or, in other words, that we apply the ejection chain
move(i, t, j′) +move(i′, t, j′′) of depth 2. Clearly, the benefit of moving a data structure in j′′ to another memory
bank, say j′′′, could also be evaluated if one would like to consider chains of depth three. Longer chains are possible280

by applying the same logic.
In EC, we define chain(i, dplimit) as the ejection chain that starts from moving vertex i and performs a maximum

of dplimit consecutive insertion moves. Once a data structure i with a relatively large contribution at time period
t is identified, EC starts by scanning alternative memory banks, in a random order, to allocate it. The chain then
starts by making chain(i, dplimit) = {move(i, t, j′)} where j′ is the first alternative memory bank considered. If this285

depth-1 move is improving and feasible (there is room in j′ for i), it is executed and the chain stops. Otherwise, we
search for move(i′, t, j′′) associated with a data structure i′ in j′. If the compound move of depth-2 is an improving
and feasible move (there is room in j′ for i and in j′′ for i′), the move is executed and the chain stops; otherwise
the chain continues until the compound move becomes improving and feasible or the depth of the chain reaches the
pre-specified limit dplimit. If none of the compound moves from depth-1 to dplimit examined is an improving and290

feasible move, alternative memory banks (values of j and j′) and data structures (values for i′ and associated trial
data structures) are considered in a recursive exploration. If none of them is improving and feasible, no move is
performed and the exploration continues with the next i data structure in the candidate list.

Algorithm 3 shows the pseudo-code of the EC method. It starts by setting t = 1 at line 1. Then, at line 4, it
orders data structures i in Dt according to their contribution. Line 6 sets the depth parameter d to 1, and defines295

at line 7 an auxiliary variable, ieject, with the element to be moved (initially equal to i). The while loop at line 9

9

allows the method to perform ejection chain steps as long as it improves, or the maximum depth limit, dplimit is
reached. The best memory bank j∗ to move ieject, including those banks with no room for it, is identified in line
10. The move move(ieject, t, j∗) is performed at line 13 and the method computes the set S with all the elements in
memory bank j∗ that create enough room to allocate ieject when removing them from j∗. The variables are then300

updated, including the ieject, which now is the best element in S in terms of its contribution (line 19). Lines 20 to
23 apply the same logic to scan the time periods described in the LS method.

EC is a local optimizer and hence it performs only improving chains, although it is worth mentioning that these
chains are compound of several insertion moves, and all of them are improving moves. Although the general design
of the compound moves permits the implementation of non-improving single moves, for the sake of reducing the305

CPU time, we restrict ourselves to improving moves.

5 Computational results

In this section, we first perform some preliminary experiments to set the appropriate search parameters and to com-
pare our different methods. Then, we compare our best variant with the iterative approaches and ILP formulation
in Soto et al. [13]. All algorithms have been implemented in Java SE 6 and run on an Intel Core i7 2600 CPU at310

3.4 GHz with 3 GByte RAM.
We have tested our metaheuristics using 45 real and artificial instances previously reported in Soto et al.

[13]. Real instances originate from electronic design problems addressed in the Lab-STICC laboratory. Artificial
instances originate from DIMACS [9] and they have been enriched by randomly generating conflict costs, number
and capacity of memory banks, sizes and number of access to data structures. Artificially large instances allow us315

to assess our metaheuristics for the practical use for forthcoming needs, as technology tends to integrate more and
more functionalities in embedded systems. In line with previous studies, the problem parameters are set as in the
real electronic applications. The time q spent by the processor to access data structures to memory banks is set
to 1 ms, the factor p to access data structures to external memory is set to 16, as with TI C6201. The cost v for
moving a data structure from the external memory to memory banks and vice versa is set to 4 ms/kB and cost for320

moving data structures between memory banks is equal to 1 ms/kB.
We perform our preliminary experimentation with 8 representative instances with different sizes and characteris-

tics. They are: fpsol2i2dy, mpeg2enc2dy, mug100-25dy, myciel7dy, queen5-5dy, r125.1cdy, treillisdy, and zeroin-i1dy.
In the first experiment we compare the two constructive methods described in Section 3.1, SEQ and CPA. For each
method and instance, Table 2 reports the value of the best solution found across 100 constructions, Value, the325

running time in seconds, CPU, and the average percent deviation from the best solution in this experiment, Dev.
Additionally, this table reports in column Best a 1 or a 0 indicating whether the method is able or not to obtain
the best solution. The last column summarizes the information, reporting the average Value, CPU and Dev., and
the sum of the Best values (i.e., the number of instances in which the method obtains the best solution).

Table 2: Constructive methods
Instances SEQ CPA

Name Value CPU Dev. Best Value CPU Dev. Best

fpsol2i2dy 3577023.00 35.0 2.49% 0 3489953.00 37.0 0.00% 1
mpeg2enc2dy 14548.81 0.0 0.00% 1 14548.80 0.0 0.00% 1
mug100-25dy 57462.00 0.0 0.00% 1 57650.00 0.0 0.33% 0
myciel7dy 986793.00 1.0 1.08% 0 976216.00 1.0 0.00% 1
queen5-5dy 57595.00 0.0 11.41% 0 51698.00 0.0 0,00% 1
r125.1cdy 3538925.00 71.0 3.42% 0 3421905.00 73.0 0,00% 1
treillisdy 4138.81 0.0 0.00% 1 4138.81 0.0 0.00% 1
zeroin-i1dy 1942869.00 43.0 6.24% 0 1828682.00 44.0 0.00% 1

Summary 1272419.32 18.7 3.08% 3 1230598.95 19.4 0.04% 7

Table 2 shows that constructive method CPA outperforms the sequential method, SEQ. Specifically, CPA330

presents an average deviation of 0.04% obtained in 19.4 seconds, which compares favorably with the average de-
viation of 3.08% obtained with SEQ in 18.7 seconds. Moreover, CPA is able to obtain 7 best solutions in this
experiment while SEQ obtains 3 out of the 8 considered instances.

In our second experiment, we compare the two complete GRASPs formed by the constructive methods coupled
with the local search. We denote them as CPA+LS and SEQ+LS. Table 3 shows for each method and each of the335

8 instances considered, the value of the best solution found across 10 constructions with local search, Value, as well
as the other three statistics described above: CPU, Dev., and Best.

10

Table 3: GRASP methods
Instances SEQ+LS CPA+LS

Name Value CPU Dev. Best Value CPU Dev. Best

fpsol2i2dy 2814803.00 86.0 0.00% 1 2816210.00 66.0 0.05% 0
mpeg2enc2dy 10808.34 0.0 0.01% 0 10807.80 0.0 0.00% 1
mug100-25dy 32673.00 0.0 0.12% 0 32633.00 0.0 0.00% 1
myciel7dy 631631.00 2.0 32.67% 0 476107.00 1.0 0.00% 1
queen5-5dy 35210.00 0.0 28.03% 0 27501.00 0.0 0.00% 1
r125.1cdy 3130709.00 81.0 0.00% 1 4282700.00 14.0 36.80% 0
treillisdy 3847,81 0.0 60.11% 0 2403.30 0.0 0.00% 1
zeroin-i1dy 871604.00 50.0 48.53% 0 586823.00 8.0 0.00% 1

Summary 941410.77 27.4 21.18% 2 1029398.10 11.1 4.61% 6

Table 3 shows that the CPA+LS method obtains better results than the SEQ+LS in shorter running times.
In particular CPA+LS presents an average percent deviation of 4.61% obtained in 11.1 seconds, while SEQ+LS
exhibits an average of 21.18% obtained in 21.18 seconds. Additionally, CPA+LS matches 6 best solutions in this340

experiment while SEQ+LS obtains 2 out of the 8 instances considered. Therefore, in the following experiments we
considered the CPA+LS as the GRASP method.

In our final preliminary experiment, we compare the contribution of the ejection chain post-processing (EC) and
the influence of the depth limit parameter, dplimit, in this method. Table 4 reports the average results of Value,
CPU, Dev., and the number of best solutions found with the GRASP (CPA+LS) runs for 100 iterations and the345

same GRASP method run for 10 iterations in which we apply the EC(dplimit) post-processing, with a given value
of the depth parameter, after the application of the LS. We have tested the values 2, 3, 4, and 5 for the depth limit
parameter.

Table 4: GRASP with Ejection Chains
Method Value CPU Dev. Best

GRASP(10)+EC(2) 655395.44 90.5 8.47% 3
GRASP(10)+EC(3) 655009.06 100.25 8.44% 4
GRASP(10)+EC(4) 654848.31 95.625 8.44% 5
GRASP(10)+EC(5) 654848.31 93.375 8.44% 5
GRASP(100) 868135.70 219.75 27.88% 2

Results in Table 4 indicate that the ejection chain post-processing significantly improves the GRASP method.
Specifically, the last line in this table shows that the GRASP runs for 100 iterations (construction plus local search)350

obtains an average percent deviation of 27.88% in 219.75. All the ejection chain variants tested, applied on a GRASP
run for 10 iterations, are able to improve the GRASP in lower CPU time. In particular, GRASP(10)+EC(4) exhibits
a remarkable 8.44% average deviation achieved on 95.625 seconds.

In our final experiment, we compare the GRASP(10) and the GRASP(10)+EC(4) with the Iterative Metaheuris-
tic, IM, proposed in Soto et al. [13], and considered the best published method. Table 5 shows in the first column355

the name of the instance, in the second column the best known value, which appears in bold when our new methods
are able to improve it in this experiment w.r.t the best previously identified. The next column presents the solution
value reached by the ILP formulation in Soto et al. [13] solved with Xpress-MP, that is used as a heuristic when the
time limit of one hour is reached: the best solution found so far is then returned by the solver. Note that in some
large instances, this method is not able to provide a solution within the 3,600 seconds of time limit considered. The360

rest of the columns appear in groups of three for each of the three methods under comparison. They respectively
report the deviation value with respect to the best known value (shown in column 2), the Best value indicating
whether it matches or not the best known, and the CPU time in seconds. The last row in this table summarizes
the results.

Results in Table 5 clearly indicate the superiority of the new approaches with respect to the previous one.365

In particular, GRASP(10) presents an average percentage deviation of 27.26% and 4 best solutions achieved on
27.3 seconds on average, GRASP(10)+EC(4) 6,56% and 20 best solutions in 130.5 seconds, while the previous IM
method presents an average percentage deviation of 61.59% and 16 best solutions achieved on 710.9 seconds on
average.

We applied the non-parametric Friedman test for multiple correlated samples to the best solutions obtained by370

each of the 3 methods. This test computes, for each instance, the rank value of each method according to solution
quality (where rank 1 is assigned to the best method and rank 3 to the worst one). Then, it calculates the average

11

Table 5: Final comparsion
ILP IM GRASP(10) GRASP(10)+EC(4)

Instance Best Known Obj. Func. Dev. Best CPU(s) Dev. Best CPU(s) Dev. Best CPU(s)

adpcmdy.dat 44192 44192 0.00% 1 0.0 0.00% 1 0.0 0.00% 1 0.0
alidydy.dat 108699 108699 927.33% 0 160.5 162.54% 0 3.0 48.75% 0 85.0
cjpegdy.dat 4466800 4466800 0.00% 1 0.0 0.00% 1 0.0 0.00% 1 0.0
compressdy.dat 342592 342592 0.00% 1 0.0 2.67% 0 0.0 0.00% 1 0.0
fpsol2i2dy.dat 2794787 * 52.29% 0 3463.4 0.74% 0 91.0 0.00% 1 1000.0
fpsol2i3dy.dat 2762059 * 49.81% 0 1062.4 1.18% 0 87.0 0.00% 1 1000.0
gsm newdy.dat 7808 7808 0.00% 1 0.0 0.00% 1 0.0 0.00% 1 0.0
gsmdy.dat 1355390 1355390 0.00% 0 0.0 0.13% 0 0.0 0.13% 0 0.0
gsmdycorrdy.dat 494118 494118 0.00% 1 0.0 0.35% 0 0.0 0.36% 0 0.0
inithx i1dy.dat 6280430 * 63.69% 0 13449.3 0.11% 0 702.0 0.21% 0 1000.0
lmsbdy.dat 7409669 7409669 0.00% 1 0.3 0.33% 0 0.0 0.14% 0 0.0
lmsbv01dy.dat 4350640 4350640 0.00% 1 0.0 1.13% 0 0.0 1.88% 0 1000.0
lmsbvdy.dat 4323294 4323294 0.00% 1 0.0 0.00% 1 0.0 1.14% 0 0.0
lmsbvdyexpdy.dat 4367024 4367024 0.00% 1 0.0 2.63% 0 0.0 1.88% 0 1000.0
lpcdy.dat 26888 26888 0.00% 1 0.0 22.02% 0 0.0 26.19% 0 0.0
mpeg2enc2dy.dat 9812 9886.81162 0.00% 1 0.8 9.99% 0 0.0 10.14% 0 0.0
mpegdy.dat 10613.625 10613.625 0.15% 0 0.1 4.73% 0 0.0 26.54% 0 0.0
mug100 1dy.col 28890 * 0.00% 1 14.7 25.65% 0 0.0 21.47% 0 0.0
mug100 25dy.col 30499 * 0.00% 1 11.9 6.10% 0 0.0 7.00% 0 0.0
mug88 1dy.col 25527 * 0.00% 1 11.4 9.23% 0 0.0 12.74% 0 0.0
mug88 25dy.col 24310 * 0.00% 1 7.8 12.41% 0 0.0 11.40% 0 0.0
mulsol i1dy.dat 518278 * 146.34% 0 1396.1 70.08% 0 40.0 0.00% 1 66.0
mulsol i2dy.dat 654533 764693 94.33% 0 1286.7 24.09% 0 24.0 0.00% 1 71.0
mulsol i4dy.dat 570529 * 106.05% 0 1657.4 49.03% 0 26.0 0.00% 1 56.0
mulsol i5dy.dat 574723 748781 121.00% 0 1480.8 15.13% 0 25.0 0.00% 1 59.0
myciel3dy.col 6379 6379 89.14% 0 1.2 8.95% 0 0.0 11.26% 0 0.0
myciel4dy.col 18455 18455 44.88% 0 6.1 26.10% 0 0.0 10.21% 0 0.0
myciel5dy.col 41938 41938 31.20% 0 28.9 38.66% 0 0.0 8.55% 0 0.0
myciel6dy.col 108077 108077 66.31% 0 95.0 52.35% 0 0.0 15.27% 0 1.0
myciel7dy.col 447000 486449 79.11% 0 377.1 30.75% 0 2.0 0.00% 1 18.0
queen5 5dy.col 27395 * 34.16% 0 4.8 8.98% 0 0.0 0.05% 0 0.0
queen6 6dy.col 47174 * 64.55% 0 283.7 9.78% 0 0.0 0.00% 1 0.0
queen7 7dy.col 81102 * 130.07% 0 42.8 43.12% 0 0.0 0.00% 1 0.0
queen8 8dy.col 154499 * 150.35% 0 82.6 17.41% 0 0.0 0.00% 1 2.0
r125.1cdy.col 1225115 * 90.93% 0 950.5 136.09% 0 84.0 0.00% 1 120.0
r125.1dy.col 61537 61537 83.24% 0 33.4 15.87% 0 0.0 12.26% 0 0.0
r125.5dy.col 741388 * 105.27% 0 1028.9 92.65% 0 27.0 0.00% 1 26.0
spectraldy.dat 15472 15472 0.03% 0 0.0 6.72% 0 0.0 0.00% 1 0.0
treillisdy.dat 1805.5625 1805.5625 0.02% 0 0.0 113.11% 0 0.0 33.10% 0 0.0
turbocodedy.dat 3195 3195 1.60% 0 0.1 33.49% 0 0.0 20.09% 0 0.0
volterrady.dat 178 178 0.00% 1 0.0 7.87% 0 0.0 7.87% 0 0.0
zeroin i1dy.dat 576320 * 49.26% 0 1691.2 60.75% 0 49.0 0.00% 1 79.0
zeroin i2dy.dat 557295 * 67.91% 0 1186.3 39.35% 0 21.0 0.00% 1 103.0
zeroin i3dy.dat 620385 750128 60.81% 0 1463.7 37.03% 0 20.0 0.00% 1 58.0

61.59% 16 710.9 27.26% 4 27.3 6.56% 20 130.5

12

rank values of each method across all the instances solved. If the averages differ greatly, the associated p-value or
significance will be small. The resulting p-value of 0.026 obtained in this experiment clearly indicates that there are
statistically significant differences among the methods tested. Specifically, the rank values produced by this test375

are 1.69 (GRASP(10)+EC(4)), 2.11 (IM), and 2.20 (GRASP(10)).
We finally compare the best two methods, according to the ranking above, with the well-known Wilcoxon test for

pairwise comparisons, which answers the question: Do the two samples (solutions obtained with GRASP(10)+EC(4)
and IM in our case) represent two different populations? The resulting p-value of 0.001 indicates that the values
compared come from different methods (using the typical significance level of α = 0.05 as the threshold between380

rejecting or not rejecting the null hypothesis). Summarizing the experimentation above, we can therefore conclude
that our new proposal, hybridizing GRASP with ejection chains, outperforms the state-of-the-art method for the
dynamic memory allocation problem.

6 Conclusion

In this paper we propose several heuristics based on GRASP and ejection chains for the dynamic memory allocation385

problem. The proposed GRASP heuristics consist of two randomized greedy construction procedures and a local
search procedure. An ejection chain intensification algorithm was also proposed and tested as a post-processing of
the GRASP.

We performed a computational comparison of our proposals and a previous method. It clearly shows that our
GRASP with ejection chains is able to improve the previous method for the problem considered. The performance of390

our method is definitely enhanced by the context-specific strategies described in Sections 3 and 4 that we developed
for this problem. However, we hope other researchers might find effective and GRASP with ejection chains could
become a standard hybrid method in future implementations.

7 Acknowledgment

This research was partially supported by the grant-invited -Professors-UBS-2012 of France, and by the the Ministerio395

de Economı́a y Competitividad of Spain (TIN2009-07516 and TIN2012-35632-C02).

References

[1] A. Chimientia, L. Fanucci, R. Locatellic, and S. Saponarac. VLSI architecture for a low-power video codec
system. Microelectronics Journal, 33(5):417–427, 2002.

[2] P. Coussy, E. Casseau, P. Bomel, A. Baganne, and E. Martin. A formal method for hardware IP design and400

integration under I/O and timing constraints. ACM Transactions on Embedded Computing System, 5(1):29–53,
2006.

[3] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set covering problem.
Operations Research Letters, 8:67–71, 1989.

[4] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization,405

6:109–133, 1995.

[5] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1997.

[6] N. Julien, J. Laurent, E. Senn, and E. Martin. Power consumption modeling and characterization of the TI
C6201. IEEE Micro, 23(5):40–49, 2003.

[7] S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling salesman problem. Operations410

Research, 21:498–516, 1973.

[8] R. Mart́ı, A. Duarte, and M. Laguna. Advanced scatter search for the max-cut problem. INFORMS Journal
on Computing, 21 (1):26–38, 2009.

[9] D. Porumbel. DIMACS graphs: Benchmark instances and best upper bound, 2009.

13

[10] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In J.Y. Potvin and415

M. Gendrau, editors, Handbook of Metaheuristics - 2nd edition, pages 283–320. Kluwer Academic Publishers,
2010.

[11] M. Soto, A. Rossi, and M. Sevaux. Métaheuristiques pour l’allocation de mémoire dans les systèmes embarqués.
In Proc. ROADEF 11e congrès de la société Française de Recherche Opérationelle est d’Aide à la Décision,
pages 35–43, Toulouse, France, 2010.420

[12] M. Soto, A. Rossi, and M. Sevaux. A mathematical model and a metaheuristic approach for a memory allocation
problem. Journal of Heuristics, 18(1):149–167, mar 2011.

[13] M. Soto, A. Rossi, and M. Sevaux. Two iterative metaheuristic approaches to dynamic memory allocation for
embedded systems. In P. Merz and J.K. Hao, editors, Evolutionary Computation in Combinatorial Optimization
- 11th European Conference, EvoCOP 2011, Torino, Italy, April 27-29, 2011. Proceedings, volume 6622 of425

Lecture Notes in Computer Science, pages 250–261. Springer, 2011.

[14] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man. Power exploration for data dominated video
application. In Proc. IEEE International Symposium on Low Power Electronics and Design, pages 359–364,
Monterey, CA, USA, 1996.

14

