
Improving performance of embedded systems with

variable neighborhood search

Jesús Sánchez-Oroa, Marc Sevauxc, André Rossic, Rafel Mart́ıb, Abraham
Duartea

aDept. de Informática y Estad́ıstica, Universidad Rey Juan Carlos, Móstoles, Spain
bDept. Estad́ıstica e Investigación Operativa, Universidad de Valencia, Burjassot, Spain

cUniversité de Bretagne-Sud, Lab-STICC, UMR6285 CNRS, Centre de Recherche,

Lorient, France

Abstract

Embedded systems have become an essential part of our lives, mainly due to
the evolution of technology in the last years. However, the power consump-
tion of these devices is one of their most important drawbacks. It has been
proven that an efficient use of the device memory also improves its energy
performance. This work efficiently solves the dynamic memory allocation
problem, which can be formally defined as follows: given a program that has
to be executed by a circuit, the objective is to fit that program in memory
in such a way that the computing time required to execute it is minimized.
In this work, we propose a parallel variable neighborhood strategy to ad-
dress this problem. We additionally compare this parallel procedure with
the sequential version of the algorithm and with the best previous approach.
Computational results show the superiority of our proposal, backed up with
statistical tests.

Keywords: dynamic memory allocation, variable neighborhood search,
embedded systems, memory, metaheuristics.

Email addresses: jesus.sanchezoro@urjc.es (Jesús Sánchez-Oro),
marc.sevaux@univ-ubs.fr (Marc Sevaux), andre.rossi@univ-ubs.fr (André Rossi),
rafael.marti@uv.es (Rafel Mart́ı), abraham.duarte@urjc.es (Abraham Duarte)

Preprint submitted to Elsevier December 15, 2014

1. Introduction

The advances in technology of the last years have been mainly focused on
the development of smart portable devices (smart-phones, smart-watches,
etc.) and embedded systems that increase the functionality of traditional
items, like on-board computers in cars. However, there is still a big drawback
while using them: their power consumption. In particular, these devices
require a battery that needs to be frequently charged.

The designers of integrated circuits focus on improving the quality of
their products in order to reduce their power consumption, which results
in a longer battery duration. However, as the technology evolves, those
circuits are becoming more and more complex, and designers need computer
tools to solve optimization problems that ensure a low cost in terms of both,
silicon area and performance of the device. There exist several Computer
Assisted Design (CAD) tools to generate the architecture of an integrated
circuit by using its specifications. Unfortunately, these tools are not focused
on reducing the energy consumption, which result in not so efficient circuits.

One of the main challenges in the design of embedded systems is the
memory allocation, which is directly related to the energy consumption of
a device (Wuytack et al., 1996). As stated by electronic designers, if the
device has a good performance in memory managing, the power consumption
is also reduced (Chimienti et al., 2002). In addition, it is possible to model
the energy consumption of a program that is being executed on a device
(Julien et al., 2003). Parallelizing the access to data stored in the device is
a common technique to reduce the execution time, and therefore the energy
consumption.

This work is intended to reduce the execution time of programs on a
device by finding the best memory location for the data structures used
in that program. This problem has been recently studied from different
perspectives. In particular, Soto et al. (2012) proposed a mixed integer linear
programming formulation and a variable neighborhood search algorithm for
the static version of the problem. The dynamic version of the problem was
originally tackled in Soto et al. (2011), where an integer linear programming
formulation and two heuristic iterative approaches were presented. Finally,
Sevaux et al. (2014) proposed an algorithm that embeds ejection chains in
a greedy randomized adaptive search procedure (GRASP), which is the best
algorithm in the literature.

The memory structure usually consists of m memory banks with a fixed

2

capacity of uj kilobytes (kB) for each j ∈ {1 . . .m}. Additionally, there exists
an external memory (m+1) whose capacity is considered unlimited (um+1 =
∞). Each memory bank (including the external memory) is used to store
the data structures required by the programs. In general, it is considered
that the device needs q milliseconds for accessing to a memory bank, but the
access to external memory is penalized by a factor p, resulting in an access
time of p× q for the external memory.

The execution of a program is split in T time intervals with different
lengths. A time interval t is defined as the set of instructions At that must
be executed sequentially, with no memory reallocation allowed. That is, the
device can reallocate the data structures used in the program only before or
after the set of instructions of each time interval is executed. The program
uses n data structures that have to be stored in memory banks or external
memory to be available for it. The size si of each data structure di (with
i ∈ {1 . . . n}) is expressed in kB. Each instruction of the program is defined
by the data structures that are required and the cost of executing it. Given
the instruction ak, where k indicates the instruction order within the program
(i.e., 1 ≤ k ≤

∑T

t=1|At|), it is represented as ak = {di, dj, ck}, where di, dj
are the data structures that need to be accessed by the instruction, and ck
is the associated cost of executing it.

A solution S of this problem consists of determining the memory state
(i.e., location of data structures in memory banks) of the device for each
time interval. The evaluation of the solution can be split into two parts: the
move cost and the access cost. The former refers to the cost of moving a data
structure from a memory bank to another in consecutive time intervals, while
the latter represents the cost for executing each instruction of the program.

The move cost of a data structure di in a given time interval t is computed
as the time needed to move di from the memory bank in which it was stored
in t− 1, to the new memory bank in t. For the sake of simplicity, we define
b(di, t) as the function that finds the memory bank in which di is stored at
t. Then, the move cost is formally defined as follows:

MoveCost(di, t) =

0 if b(di, t− 1) = b(di, t)

l · si if b(di, t− 1) 6= b(di, t) 6= m+ 1

v · si otherwise

(1)

where l and v represent the device transfer rates (kB / millisecond) for moving
a data structure between memory banks or between the external memory and

3

a memory bank, respectively. This equation describes three different cases.
The first one represents the situation where the data structure remains in
the same memory bank during consecutive time intervals. Therefore, its
associated cost is 0. The second case represents the cost of moving a given
data structure, di, between memory banks. This cost only depends on the
size of di, represented by si, and the transfer rate between memory banks
(l). The last case represents a move of a data structure where the external
memory is involved (either as origin or destination of the data structure).
This cost also depends on the size of the data structure (si) and the transfer
rate v. It is important to remark that moving a data structure from/to
external memory is usually more time consuming than moving it between
memory banks (v ≥ l).

The access cost is evaluated for each instruction that is executed in a
given program. It is worth mentioning that the device is able to access
simultaneously to all memory banks in a given time interval. That is, if
two data structures are stored in different memory banks in the same time
interval, then the device only needs to access once to its memory, retrieving
both data structures. However, if both data structures are stored in the
same memory bank, then the device needs to access twice to its memory.
The access cost for executing the instruction is evaluated as follows:

AccessCost(ak) =

ck if b(di, t) 6= b(dj , t) 6= m+ 1

2 · ck if b(di, t) = b(dj , t) 6= m+ 1

2 · p · ck if b(di, t) = b(dj , t) = m+ 1

p · ck otherwise

(2)

where p is a penalty factor for accessing the external memory. This equation
represents four different situations. In the first case, both data structures, di
and dj, are located in different memory banks. If both data structures are in
the same memory bank (second case); then the cost must be multiplied by
two, because the device will need to access twice its memory. The third and
forth cases are variations of the first and second but considering that one of
the involved data structures is located in the external memory.

Once the move and access cost have been introduced, we can now define
the complete evaluation of a solution. Specifically, given a program with At

instructions, split in T time intervals, that uses n data structures, a solution
S to the Dynamic Memory Allocation Problem, DMAP, is evaluated as:

4

d
1

d
2

d
3

d
4

d
5

d
6

d
1

d
2

d
3

d
4

d
5

d
6

d
1

d
2

d
3

d
4

d
5

d
6

d
1

d
2

d
3

d
4

d
5

d
6

t
0

t
1

t
2

t
3

a
1
=(d

1
,d
2
,100)

a
2
=(d

2
,d
6
,75)

a
3
=(d

5
,d
3
,50)

a
4
=(d

2
,d
3
,150)

a
5
=(d

5
,d
3
,75)

a
6
=(d

3
,d
6
,125)

a
7
=(d

1
,d
5
,200)

a
8
=(d

2
,d
5
,50)

b
1

b
2

b
3

b
ext

b
1

b
2

b
3

b
ext

b
1

b
2

b
3

b
ext

b
1

b
2

b
3

b
ext

Figure 1: Example of a possible DMAP solution for a program split in three time intervals

DMAP(S) =
∑

t∈T

n
∑

i=1

MoveCost(di, t) +

|At|
∑

k=1

AccessCost(ak)

 (3)

Then, the objective of this optimization problem is to find the solution
S⋆ with the minimum DMAP -value of all possible solutions S:

S⋆ = argminS∈SDMAP(S) (4)

Let us illustrate the evaluation of a solution to the DMAP problem with
an example, depicted in Figure 1, in which the memory consists of three
memory banks (b1, b2, b3), and the external memory (bext).

The program executes 8 instructions, a1, a2, . . . , a8, accessing to 6 data
structures d1, d2, . . . , d6, distributed in 3 time intervals T = {t1, t2, t3}. It is
important to notice that before executing the program, all the data struc-
tures are located in external memory. We model the initial configuration by
considering an additional time interval, t0, also shown in Figure 1. The time
interval t1 consists of executing three instructions, a1, a2, and a3. For the sake
of simplicity we represent each instruction by identifying the data structures

5

involved, and the associated cost. For example, instruction a1 = (d1, d2, 100)
indicates that a1 uses two data structures d1 and d2 with a cost of 100. The
second and third intervals in this example contain, respectively, instructions
{a4, a5} and {a6, a7, a8}.

The capacity of each memory bank depends on the specific electronic
device. In this example, we consider that each memory bank has a capacity
of 192 kB. Let us assume that all data structures have the same size and are
equal to 64 kB (i.e, si = 64 for 1 ≤ i ≤ 6). Therefore, each memory bank is
only able to store up to 192/64 = 3 data structures.

Table 1: Evaluation of the solution shown in Figure 1, where transfer rates are l = 1, v = 3
and the penalty factor for accessing external memory is p = 4

Time interval Move costs Access costs

t1

MoveCost(d1, 1) = 3 · 64 = 192 AccessCost(a1) = 100
MoveCost(d2, 1) = 3 · 64 = 192 AccessCost(a2) = 2 · 75 = 150
MoveCost(d5, 1) = 3 · 64 = 192 AccessCost(a3) = 4 · 100 = 400
MoveCost(d6, 1) = 3 · 64 = 192

Total t1 768 650

t2

MoveCost(d2, 2) = 3 · 64 = 192 AccessCost(a1) = 2 · 4 · 150 = 1200
MoveCost(d4, 2) = 3 · 64 = 192 AccessCost(a2) = 4 · 75 = 300
MoveCost(d6, 2) = 1 · 64 = 64

Total t2 448 1500

t3

MoveCost(d1, 3) = 1 · 64 = 64 AccessCost(a1) = 2 · 100
MoveCost(d3, 3) = 3 · 64 = 192 AccessCost(a2) = 200
MoveCost(d4, 3) = 3 · 64 = 192 AccessCost(a3) = 4 · 50 = 200
MoveCost(d6, 3) = 1 · 64 = 64

Total t3 512 500
DMAP (768+448+512)+(650+1500+500)=4378

Table 1 breaks down the evaluation of the solution depicted in Figure 1.
The first column indicates the time interval that is being evaluated, while
the second and third one present the evaluation of move and access costs,
respectively. The transfer rates considered in this example are l = 1 and
v = 3, and the penalty factor for accessing the external memory is p = 4.
Let us first analyze the move costs. In the time interval t1, the data structures
d1, d2, d5, and d6 are moved from the external memory to a memory bank.
So the move cost for each data structure is the transfer rate from external
memory (v) multiplied by the size of the data structure (64 kB). In the
second time interval, d2 and d4 are moved from, or to the external memory,
so the move cost is the size of the structure multiplied by the transfer rate

6

v. However, d6 is moved between memory banks, resulting in a move cost of
the transfer rate l multiplied by the size of the structure. In the last time
interval, d1 and d6 are moved between memory banks, using the transfer
rate l to evaluate their move cost. On the contrary, d3 and d4 are moved
from, or to external memory, using the transfer rate v. Notice that all data
structures that remain in the same memory bank (or the external memory)
in two consecutive time intervals do not affect the evaluation of the move
cost (see for example d3 and d4 from t0 to t1)

We now analyze the access costs. In the first time interval, the cost
of a1 is directly the instruction cost because it accesses to data structures
located in different memory banks. However, the cost of a2 is multiplied by
2 because the data structures are in the same memory bank, and therefore,
it needs to be accessed twice. The access cost of a3 is multiplied by the
penalty factor p since it accesses to a data structure stored in the external
memory. In the second time interval, both data structures accessed by a4
are stored in the external memory, so the device has to access it twice, each
access with its corresponding penalty p. However, only one of the structures
accessed by a5 is stored in the external memory, so penalty is only applied
once. In the last time interval, a6 accesses to two data structures stored
in the same memory bank, while a7 requires two data structures located in
different memory banks. Finally, a8 accesses to a data structure stored in
the external memory, being affected by the penalty factor p.

The evaluation of the solution is calculated as the sum of all move and
access costs for each time interval, so the solution S depicted in Figure 1
presents a DMAP -value of DMAP(S) = 4378.

In this paper, we propose different heuristic methods and embed them into
a Variable Neighborhood Search (VNS) scheme to solve the Dynamic Mem-
ory Allocation Problem. More precisely, we propose a semi-greedy construc-
tive algorithm, a randomized shake procedure, and a local search method.
We additionally propose a parallel implementation of a VNS based on the
Replicated-Shaking methodology. We provide an experimental comparison
among our VNS variants and with the best previous methods of the liter-
ature. The experimentation reveals that our best procedures improve the
state of the art in both quality and computing time. This fact is confirmed
by non-parametric statistical tests. The rest of the paper is organized as
follows. The algorithmic approach based on variable neighborhood search is
described in Section 2. The parallelization of variable neighborhood search
is presented in Section 3. The computational experiments are introduced in

7

Section 4. Finally, the conclusions derived from the research are presented
in Section 5.

2. Variable neighborhood search

Variable neighborhood search (VNS) is a meta-heuristic which was orig-
inally proposed by Mladenović and Hansen (1997) as a general framework
to solve hard optimization problems. This methodology is based on per-
forming systematic changes of neighborhoods during the search space ex-
ploration. VNS has evolved in recent years, resulting in a large variety of
strategies. Some of the most relevant variants are Reduced VNS (RVNS),
Variable Neighborhood Descent (VND), Basic VNS (BVNS), Skewed VNS
(SVNS), General VNS (GVNS) or Variable Neighborhood Decomposition
Search (VNDS), among others (see Hansen et al. (2010) for a complete sur-
vey on VNS). We refer the reader to Pardo et al. (2013); Sánchez-Oro et al.
(2014a,b) to some recent and successful applications of VNS to hard opti-
mization problems.

In this paper we focus on the basic VNS (BVNS) approach. Algorithm 1
presents the pseudo-code of this method.

Algorithm 1 BVNS(kmax, iters)

1: S ← Construct()
2: for i ∈ 1 . . . iters do
3: k ← 1
4: while k ≤ kmax do
5: S ′ ← Shake(S, k)
6: S ′′ ← Improve(S ′)
7: NeighborhoodChange(S, S ′′, k)
8: end while
9: end for
10: return S

The algorithm starts by constructing an initial solution S with the method
described in Section 2.1 (step 1 in Algorithm 1). Then, BVNS iterates un-
til reaching the maximum number of iterations allowed, determined by the
parameter iters (steps 2-9). Each iteration starts the search from the first
neighborhood (step 3), and explores up to the maximum neighborhood, given
by parameter kmax (steps 4-8). For each neighborhood, BVNS perturbs the

8

incumbent solution with the Shake method (described in Section 2.2) to gen-
erate a new solution in the current neighborhood (step 5). Then, the solution
is improved with the local search method proposed in Section 2.3 (step 6).
Finally, if there has been an improvement, the incumbent solution is updated
and the search re-starts from the first neighborhood. Otherwise, it continues
with the next one (step 7).

2.1. Constructive method

We propose a semi-greedy procedure, called CBI (Constructive Based on
Instructions), to construct solutions. It is based on initializing the state of
the time interval t by coping the state of t − 1. The constructive method
stochastically selects the instructions to be executed in the current time
interval. We use the roulette selection strategy (De Jong, 1975; Goldberg,
1989), where the larger the cost of the instruction the larger the probability
to be selected. Once an instruction is selected, the data structures involved
in it are located in the best memory bank. This best memory bank, b⋆, for
a data structure di in a time interval t is determined by moving di to all
possible memory banks bj (with 1 ≤ j ≤ m+ 1, where the external memory
is also considered) and selecting the bank which produces the solution with
the lowest DMAP -value. More formally:

b⋆ ← argmin
bj :1≤j≤m

DMAP(Move(di, bj , t))} (5)

We illustrate how this method works with the example shown in Figure 2.
In particular, we show how CBI constructs the first time interval. Then, the
first step consists of copying the state of the memory from the previous time
interval (i.e., time interval t0, where all data structures are located in the
external memory). The second step consists of determining the probability of
selecting an instruction. In this example, there are tree different instructions
a1, a2, and a3 whose costs are 100, 75, and 50, respectively. Therefore,
the probability of selecting the first instruction is 100/(100+75+50) = 0.45.
Similarly, the probability of selecting a2 is 0.33, and a3 0.22. The roulette
selection strategy stochastically selects one of these instructions according to
their probabilities. Let us assume that the selected instruction is a1, then in
the third step, the data structures involved (i.e., d1 and d2) are located in
the best bank. The forth step now proceeds in a similar way, by computing
the probabilities of selecting the remaining instructions (i.e., a2 and a3 with
probabilities 0.60 and 0.40). Let us assume that now the roulette strategy

9

d
1

d
2

d
3

d
4

d
5

d
6

b
1

b
2

b
3

b
ext

a
1
=(d

1
,d
2
,100)

a
2
=(d

2
,d
6
,75)

a
3
=(d

5
,d
3
,50)

a
1

a
2

a
3

d
1

d
2

d
3

d
4

d
5

d
6

b
1

b
2

b
3

b
ext

a
1
=(d

1
,d
2
,100)

a
2
=(d

2
,d
6
,75)

a
3
=(d

5
,d
3
,50)

d
1

d
2

d
3

d
4

b
1

b
2

b
3

b
ext

d
5

a
1
=(d

1
,d
2
,100)

a
2
=(d

2
,d
6
,75)

a
3
=(d

5
,d
3
,50)

d
6

a
2

a
3

step 1 step 2 step 3 step 4 step 5 step 6 step 7

a
1

a
3

d
1

d
2

d
3

d
4

b
1

b
2

b
3

b
ext

d
5

a
1
=(d

1
,d
2
,100)

a
2
=(d

2
,d
6
,75)

a
3
=(d

5
,d
3
,50)

d
6

a
2

a
2

Figure 2: Constructive procedure based on the roulette wheel strategy. Instructions that
can be selected are highlighted in bold font

randomly selects a2. Then, the involved data structures (d3 and d5) are
located in the best memory bank (fifth step). The sixth step selects the
non-used instruction (a2) and the last step locates the corresponding data
structures (d2 and d6) in the best bank. At this point, the time interval t1
is complete and the method continues constructing the next time interval by
following the same approach.

The method ends when the data structures for each instruction in all time
intervals have been moved to the best bank. Considering that the proposed
method is a semi-greedy procedure, different executions may produce dif-
ferent solutions. For that reason, the computational experiments described
in Section 4 discuss, in terms of quality and computing time, the results
obtained when performing different number of constructions.

2.2. Shake

The shake procedure is a key step in the variable neighborhood search
framework, to generate a solution relatively different to the current one. The
main objective of the shake procedure is to diversify the search, so the new

10

solution is traditionally generated by randomly perturbing the incumbent
solution. In order to design this procedure, it is necessary to define a move
operator that conforms the corresponding neighborhood.

Given a solution S, the move operator basically removes a data structure
from its current memory bank randomly selected (including the external
memory) and includes it in a different memory bank (or the external memory)
producing a new solution S ′. For the sake of simplicity we represent this
operation as S ′ = Move(S, di, bj , t), which moves the data structure di from
its current bank to bj in time interval t. It is important to remark that the
Move-operator only produces feasible solutions. Therefore, di is included in
bj if and only if bj has enough free space to store di.

We now define a compound move operator, denoted as Movek, which
applies k times Move in each time interval t ∈ T . More formally,

Movek(S, t) =

{

Movek−1(Move(S, di, bj , t), t) if k > 1

Move(S, di, bj , t) if k = 1
(6)

where the data structure di is randomly selected in the range 1 ≤ i ≤ n and
the bank bj is randomly selected in the range 1 ≤ j ≤ m. Note that this new
move is based on Move. Therefore, it only produces feasible solutions.

In this work, we define the neighborhood Nk of a solution S as the set
of solutions that can be generated by moving k data structures in each time
interval t ∈ T . We have:

Nk(S) = {S
′ : Movek(S, t), ∀t ∈ T} (7)

Given a solution S, our shake procedure generates a random solution in
the neighborhood Nk(S). Specifically, the method traverses each time in-
terval selecting at random k data structures in each one. Then, each data
structure selected is moved to a random memory bank (including external
memory) with enough free space to store it. The shake procedure finishes
when the operator Movek has been applied to each time interval. We have
empirically found that the random component of this compound move, in-
duces a diversity pattern in the search that results, over the long term, in
improved outcomes.

2.3. Local search

The local search method corresponds to the intensification part of the
VNS framework. Its main objective is to find a local optimum in the current

11

neighborhood. We propose an algorithm that systematically explores the
corresponding neighborhood with the move operator described above. In
order to increase the effectiveness and efficiency of the local search, it first
determines the candidate data structure to be moved by using an estimation
of the contribution of each data structure, di, in the time interval, t, to the
value of the objective function. We denote it as ∆(di, t) and it is formally
defined as:

∆(di, t) = MoveCost(di, t) +
∑

ak∈A(di,t)

AccessCost(ak) (8)

where A(di, t) represents the set of instructions that involves di in a time
interval t. Hence:

A(di, t) = {ak = (dp, d1, ck) : ak ∈ At ∧ (p = i ∨ q = i)} (9)

The local search scans all the data structures in descending order of ∆-
values. The rationale behind this strategy is to first move those data struc-
tures with large contribution to the objective function, since DMAP is a
minimization problem.

Once we have identified the data structure to be moved, the second main
issue in the local search is to determine the destination of such data structure.
In order to do so, we select the best bank for each data structure by using
the equation introduce in Section 2.1.

The local search iterates over all time intervals sequentially, where the first
time interval is examined at the beginning. We proceed in this way since in
our estimation, a time interval is only affected by the previous one. Therefore,
the estimation of the first time interval is only affected by the initial state
t0, which remains constant during the search (i.e., all data structures in the
external memory). The same logic is applied for the rest of time intervals.
The method ends when no improvement is found in any time interval.

3. Parallel VNS

The constant evolution of the technology has lead us to use computers
with several processors, which are able to simultaneously execute different
programs. The use of multi-processors can substantially increase the per-
formance of the algorithms. Note that, in general, the methods must be

12

re-designed to be executed in parallel in order to take advantages of the
multi-processor architecture.

Nowadays there exists several parallelization technologies that can be
used to implement parallel algorithms (OpenMP, threads, CUDA, etc.). We
refer the reader to Oaks and Wong (2004), Gao et al. (2008), and Cook
(2012) for some tutorials on parallel programing. In this work, we focus
on the use of threads. A thread is defined as a fragment of code that is
independently executed in a processor. It is important to remark that there
exists two types of processors: physical and logical. The former refers to the
real processors that are installed in the computer. The latter, however, refers
to the number of threads that can be independently executed in a computer.
In the remaining of the paper, we only refer to logical processors since parallel
programming tools have only access to them.

The parallelization of a meta-heuristic has the following two goals: the
reduction of the computing time of the corresponding algorithm, or the ex-
ploration of a wider portion of the search space (Garćıa-López et al., 2002).
Furthermore, it is essential to know which parts of the algorithm can be
re-designed to be executed in a parallel way. This section proposes a par-
allel version of the Basic VNS described in Section 2. See Crainic et al.
(2004); Duarte et al. (2013); Garćıa-López et al. (2002) for some successful
applications of parallel VNS.

The parallelization of VNS was originally introduced in Garćıa-López
et al. (2002), where three parallel approaches are proposed. The first one is
called Synchronous Parallel VNS (SPVNS) and it is focused on parallelizing
the local search of the sequential Basic VNS. The main objective to reduce the
computational time, since the local search is usually the most time-consuming
part of the VNS algorithm. Then, SPVNS splits the local search in order to
execute it in different threads simultaneously. The second approach, called
Replicated Parallel VNS (RPVNS) is based on the exploration of a wider
portion of the solution space by using multi-start strategies. In particular,
the algorithm executes simultaneously several Basic VNS methods, each one
in a different processor. The third variant, called Replicated Shaking VNS
(RSVNS), is based on a classical master-slave approach. In particular, the
master processor (the main program) executes a sequential Basic VNS, and
each slave processor executes an independent shake and local search method.

Crainic et al. (2004) proposed a new variant called Cooperative Neigh-
borhood VNS (CNVNS), where several independent Basic VNS methods are
launched in each processor. Each independent Basic VNS communicates to

13

the main processor its local best solution. When the global best solution is
updated, the main processor communicates it to the processors executing the
Basic VNS to continue the search from the new best solution.

In order to select a VNS parallel strategy we must analyze how each one
fits to the Dynamic Memory Allocation Problem. In particular, we believe
that SPVNS is not well-suited for this problem, since the local search is emi-
nently sequential (i.e., the current iteration strongly depends on the previous
one). The RPVNS follows a multi-start strategy, which is useful when us-
ing constructive procedures that generates highly diverse solutions. In our
case, the semi-greedy constructive method described in Section 2.1 produces
different but not diverse solutions. The CNVNS is basically conceived for
optimization problems where different type of move are defined, which de-
termine different topologies of the search space. The moves associated to
the DMAP are always based on moving a data structure from one bank
to another. This paper therefore focuses on the Replicated Shaking VNS
(RSVNS). This methodology allows the search to explore simultaneously p
solutions (where p is the number of threads) in the current neighborhood.
Therefore, in a single iteration, this variant is able to explore p solutions while
the sequential version explores only one. Notice that if p processors are avail-
able, the computing time of the parallel and sequential versions should be
similar.

Figure 3 shows a flow diagram of the RSVNS. The algorithm starts by
constructing a solution with the method described in Section 2.1, becoming
the current best solution, Sbest . After that, the method starts the search
in the first neighborhood (k = 1). The parallel method creates p different
threads, where each one executes an independent shake and local search
methods.

The threads perform a parallel exploration of the search space, in such
a way that each thread th i (with 1 ≤ i ≤ p) starts from Sbest . Each shake
procedure perturbs Sbest , producing a solution S ′

i in the current neighborhood
Nk. Finally, each thread is in charge of improving its corresponding perturbed
solution, generating a local optimum S ′′

i . We use a barrier synchronization
method to wait until all threads have finished their task. Then, the parallel
method selects the best solution S ′′, among the solutions S ′′

1 to S ′′
p .

The neighborhood-change method determines whether S ′′ improves upon
the current best solution (Sbest), or not. If so, the method updates Sbest and
resorts to the first neighborhood (k = 1); otherwise, it continues the search
by exploring the next neighborhood (i.e., k = k + 1).

14

iters = iters + 1

Create threads

Select best

Neighborhood Change

iters=maxIters

Shake

Local search

Shake

Local search

Shake

Local search

k≤k
max

· · ·

S

Construct solution

S

S
best

S
best

S’
1

S’’
1

S’’
2

S’’

k, S
best

k, S
best

S’’
p

S’
2

S’
p

S
best

S
best

NO

NO

YES

YES

S
best

Return Best

S
best

th
1

th
2

th
p

Figure 3: Flow diagram of the Replicated Shaking Variable Neighborhood Search

15

The current execution of the parallel VNS ends when the largest neigh-
borhood (kmax) is reached. If the maximum number of iterations is not
exceeded, the method performs the next repetition. Otherwise, it returns
the best solution found.

4. Computational experiments

This section discusses the results obtained by the sequential and parallel
VNS algorithms proposed, and then compares it with the best previous al-
gorithms for the DMAP problem. All the algorithms were coded in Java 8
and the experiments were conducted in an Intel Core i7 920 CPU (2.67 GHz)
with 8 GB RAM. The testbed used in the experiments is the same set of
44 instances used in previous works. Fifteen of these instances were directly
obtained from real design problems addressed in the Lab-STICC laboratory,
while the remaining 29 were derived from the DIMACS1 set, adding them
random values to: instructions costs, number of memory banks, capacity of
the memory banks, number of data structures, and sizes of data structures.
We consider standard values for the transfer rates (l = 1 ms/kB and v = 4
ms/kB), and the penalty factor for accessing to external memory (p = 16).

The experiments are separated into two parts. The preliminary exper-
imentation is intended to fulfill two goals. On the one hand, to find the
best parameters for our algorithms (kmax and iters). On the other hand, to
evaluate the impact of the proposed strategies. The final experimentation is
oriented to compare our best variant with the best previous algorithms found
in the related literature.

The preliminary experimentation is conducted with a subset of 10 repre-
sentative instances of the whole set to avoid over-training in the final com-
parison. All these experiments report the following statistics: the average
value of the objective function, Avg.; the average deviation with respect to
the best solution found in the experiment, Dev (%); the number of best so-
lutions found in the experiment, #Best; and the average computing time in
seconds, Time (s).

The first experiment evaluates the performance of the constructive method
CBI proposed in Section 2.1. In particular, this experiment compares the re-
sults obtained by this method when performing different number of construc-

1http://www.info.univ-angers.fr/pub/porumbel/graphs/

16

tions. Table 2 shows the results obtained, where the number of constructions
is specified in parenthesis.

Table 2: Results obtained by CBI when performing 1, 10, 50, 100, and 1000 constructions

Avg. Dev(%) #Best Time (s)
CBI(1) 674714.53 1.71 3 0.03
CBI(10) 670925.23 0.78 3 0.31
CBI(50) 670435.33 0.51 3 1.54
CBI(100) 669448.43 0.36 4 3.07
CBI(1000) 667966.93 0.00 10 31.74

As expected, the larger the number of constructions, the better the qual-
ity and, naturally, the larger the computing time. We can observe that
Time(s) grows linearly with the number of constructions. However, the qual-
ity seems to be stalling after 100 constructions. The average computing time
of CBI(100) is about 3 seconds (with a deviation of 0.36 %), while CBI(1000)
needs about 31 seconds (with a deviation of 0.00 %). We therefore select
CBI(100) since it exhibits a trade-off between quality and efficiency suitable
to become part of the VNS method.

The second experiment is performed to study how the largest neighbor-
hood explored affects the VNS method. Specifically, we test three different
values for the kmax parameter: 0.10n, 0.25n, and 0.50n, where n is the number
of data structures. Table 3 shows the results obtained with the Basic VNS
algorithm when using these values (indicated in parenthesis). We include
CBI(1000) as a baseline method.

Table 3: Comparison of the BVNS performance varying the kmax parameter

Avg. Dev(%) #Best Time (s)
BVNS(0.10n) 624864.93 5.68 4 17.94
BVNS(0.25n) 620552.73 0.22 6 25.72
BVNS(0.50n) 620315.03 0.00 9 29.80

CBI(1000) 667966.93 20.23 0 31.74

The first conclusion that can be drawn from the results in Table 3 is
that the constructive method is not competitive when comparing it with
advanced metaheuristics. In particular, this algorithm presents a deviation
of 20.23 %, while the worst variant tested of Basic VNS has a deviation of

17

5.65 % (requiring similar computing times). The best results are obtained
with kmax = 0.50n, i.e., with the variant that explores the largest number
of neighborhoods. It obtains the best results in 9 (out of 10) instances. In
addition, the computing time of this variant is 29.80 s, which although is
larger than the other VNS variants in this table, it is still moderate.

We do not test larger values of kmax since the method would be exploring
solutions located in a rather far neighborhood, which is conflicting with the
basic principles of VNS. In fact, it would become essentially a multi-start
procedure. The VNS methodology recommends to perform several iterations
in order to continue the search (see Algorithm 1).

The next experiment undertakes to study how the number of iterations
affects the performance of the Basic VNS in terms of quality and comput-
ing time. In line with the objective of heuristic methods of obtaining good
solutions in short time, we limit the maximum execution time to 100 s per
instance, stopping the execution at that time, and returning the best solu-
tion found so far. Figure 4 shows the time evolution of the Basic VNS. In
particular, we report the average deviation in 1, 10, 100, and 1000 iterations.
The number close to each point marker in the profile indicates the computing
time.

This experiment shows a typical behavior of a good heuristic method.
Specifically, the average deviation is drastically reduced at the beginning of
the search but, at a “critical point”, the algorithm needs large computing
times to marginally improve the solution quality. In other words, it exhibits
an aggressive search pattern very well suited for a real application. According
to the results presented in Figure 4, this critical point seems to be close to
100 iterations. Therefore, we select this value for the next experiments.

According to Crainic and Michel (2003) the classical performance measure
for parallel algoriths (i.e., speedup described by Barr and Hickman (1993))
is not adequate to evaluate the performance of parallel metaheuristics since
asynchronous interactions between threads generally induce significant differ-
ences in search behavior, not only for the global parallel method, but also for
each search process participating to the cooperation. Therefore, the sequen-
tial and parallel methods may then be viewed as different metaheuristics,
requiring a redefinition of speedup and other performance measures. This
situation is further aggravated by the randomness embedded in the VNS
methods considered in this paper. However, it is important to notice that a
parallelization strategy should speed up the search or produce better results
than the sequential method. Consequently, we compare the quality of the

18

Figure 4: Average deviation vs. number of iterations of the Basic VNS method.

solutions obtained by the sequential and parallel VNS methods to evaluate
the quality of the parallel design strategy. In particular, the next experiment
compares the performance of BVNS and RSVNS (described in Section 3)
considering different number of threads: 1 (i.e., sequential version), 2, 4, and
8. Table 4 reports the associated results, where the parameter in parenthesis
indicates the number of threads.

Table 4: Performance of RSVNS

Avg. Dev (%) #Best Time (s)
BVNS 615136.32 1.01% 2 45.75

RSVNS(2) 610898.42 0.42% 5 46.62
RSVNS(4) 610151.82 0.07% 7 51.36
RSVNS(8) 610061.22 0.06% 7 50.99

Table 4 shows that all parallel versions outperform the sequential VNS
method according to the statistics in this table. This results can be partially
explained by the fact that the proposed parallel methods explore larger por-
tions of the search space. We also observe that the best outcomes are ob-

19

tained with 8 threads. It presents an average deviation of 0.06 % and 7 best
found solutions (out of 10), which compares favorably with the sequential
version (1.01 % and 2). Note that the computing time of all methods is
similar (about 50 s on average). We conduct an additional experiment where
the Basic BVNS is executed for p·Time(s) = 8 · 50 = 400 seconds to test
whether it improves upon RSVNS when running for that computing time.
The average deviation of BVNS is 0.09 % in 400 s, confirming the superiority
of RSVNS (0.06 % in 50 s).

Once we have identified the best parameters for Basic VNS and RSVNS,
the final experiment is intended to compare the performance of both methods
with the 2 best procedures identified in the state of the art. In particular,
a GRASP algorithm combined with Ejection Chains (GRASP+EC) and an
Iterative Metaheuristic (IM). For this final comparison we consider the full
set of 44 instances. Table 5 reports the associated results.

Table 5: Final comparison.

Avg. Dev (%) #Best Time (s)
BVNS 1006790.25 1.60% 11 34.08

RSVNS 1003751.30 0.81% 36 35.62
GRASP+EC 1060597.74 12.80% 4 130.55

IM 1378609.24 74.69% 10 300.72

The first conclusion that we can extract by analyzing these results is
that the new proposed procedures clearly outperform previous methods in
both, quality and computing time. In particular, the IM method presents
a large deviation (74.69 %) but it is able to find the best known solution
in 10 instances, while the GRASP+EC obtains lower deviation (12.80 %)
than IM, but only finds the best known solution in 4 instances. The RSVNS
clearly outperforms all its competitors. In particular, it presents an average
deviation of 0.81 %, finding the best known solution in 36 instances (out
of 44). The results obtained by the Basic VNS are also remarkable since
it obtains considerably better results than the previous methods in shorter
computing time.

Although RSVNS is a parallel method it has similar computing time
(35.62 s) than the Basic VNS (34.08 s). This is mainly because the objective
of RSVNS is not the reduction of the computing time, but the exploration
of a larger portion of the search space. Attending to the results presented

20

in Table 5, we conclude that exploring a large portion of the solution space
results in a successful strategy.

We have performed the Friedman non-parametric statistical test with all
the individual values obtained in the experiment summarized in Table 5 in
order to confirm the differences among the presented algorithms. The Fried-
man test ranks each algorithm in all instances according to the quality of the
solution obtained, giving rank 1 to the best algorithm, 2 to the second one,
and so on. If the averages differ greatly, the associated p-value or significance
will be small. The resulting p-value (lower than 0.001) obtained in this ex-
periment clearly indicates that there are statistically significant differences
among the 4 methods tested. Additionally, the average rank values produced
by this test are 1.40 (RSVNS), 2.11 (BVNS), 3.22 (GRASP+EC), and 3.27
(IM).

We conduct an additional statistical test to perform pair-wise compar-
isons between our methods (RSVNS and BVNS) and the previous algo-
rithms (GRASP+EC and IM). Table 6 presents the results obtained with
the Wilcoxon signed rank test for these five pairs. We report the algorithm
being compared (A1 and A2), the number of times that A1 outperforms A2
(A1 < A2), the number of times that A2 outperforms A1 (A1 > A2), the
number of ties (A1 = A2), and the associated p-value.

Table 6: Results of the Wilcoxon signed rank test run over each pair of algorithms of the
final experiment

A1 A2 A1 < A2 A1 > A2 A1 = A2 p-value
RSVNS BVNS 33 3 8 ≤ 0.001
RSVNS GRASP+EC 39 1 4 ≤ 0.001
RSVNS IM 34 5 5 ≤ 0.001
BSVNS GRASP+EC 39 1 4 ≤ 0.001
BSVNS IM 37 7 4 ≤ 0.001

Table 6 shows that the p-value obtained in the five tests is lower than
0.001, which means that there are statistical significant differences between
the compared algorithms. As it can be seen, both BVNS and RSVNS outper-
form the results obtained by GRASP+EC. When comparing the algorithms
proposed in this paper, RSVNS and BVNS, we can confirm that the parallel
version (RSVNS) emerges as the best algorithm overall, therefore becoming
the state-of-the-art method for the Dynamic Memory Allocation Problem.

21

5. Conclusions

This paper presents two variable neighborhood search algorithms for solv-
ing the Dynamic Memory Allocations Problem (DMAP). The first one is a se-
quential Basic Variable Neighborhood Search (Basic VNS), while the second
one is a parallel VNS called Replicated Shaking VNS (RSVNS). Both meth-
ods are composed among other search elements, by a semi-greedy method
to construct high quality solutions, as well as a fast local search procedure
which finds local optima in short computing time. The extensive experi-
mental comparison performed, backed up by statistical tests, shows that the
parallel version of the algorithm, RSVNS, clearly outperforms the sequential
version, BVNS. We also compare the results obtained with the best previ-
ous approaches for the DMAP, which are a GRASP algorithm combined with
ejection chain (GRASP+EC) and an Iterative Metaheuristic (IM). Note that
these are recent methods based on metaheuristic methodologies and outper-
form them constitutes a challenge for a new method. Both methods, RSVNS
and BVNS, are able to obtain better results than the previous state-of-the-
art algorithms in considerably shorter computing time, emerging RSVNS as
the new state-of-the-art algorithm for the DMAP. The results of this research
are in line with other papers that propose VNS methods for other problems
(Pardo et al., 2013; Sánchez-Oro et al., 2014b): in short, the VNS method-
ology is able to provide better solutions than other methodologies. The in-
terplay between intensification and diversification strategies is implemented
in VNS in a way that turns out to be simple and very efficient.

Acknowledgment

This research has been partially supported by the Spanish Ministry of
“Economı́a y Competitividad”, and “Comunidad de Madrid” with grants
ref. TIN2012-35632-C02 and S2013/ICE-2894.

References

R.S. Barr and B.L. Hickman. Reporting computational experiments with
parallel algorithms: Issues, measures, and experts opinions. ORSA Journal
on Computing, 5(1):2–18, 1993.

A. Chimienti, L. Fanucci, R. Locatelli, and S. Saponara. VLSI architecture
for a low-power video codec system. Microelectronics Journal, 33(5):417–
427, 2002.

22

S. Cook. CUDA Programming: A Developer’s Guide to Parallel Computing
with GPUs (Applications of Gpu Computing). Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1st edition, 2012.

T.G. Crainic and T. Michel. Parallel strategies for meta-heuristics. In
F. Glover and G.A. Kochenberger, editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations Research & Management
Science, pages 475–513. Springer US, 2003.

T.G. Crainic, M. Gendreau, P. Hansen, and N. Mladenović. Cooperative par-
allel variable neighborhood search for the p-median. Journal of Heuristics,
10(3):293–314, 2004.

K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, 1975.

A. Duarte, J.J. Pantrigo, E.G. Pardo, and J. Sánchez-Oro. Parallel variable
neighbourhood search strategies for the cutwidth minimization problem.
IMA Journal of Management Mathematics, In press, 2013.

G.R Gao, Mitsuhisa S., and Ayguad E. Special issue on parallel programming
with openmp. The International Journal of Parallel Programming, 36(3),
2008.

F. Garćıa-López, B. Melián-Batista, J. Moreno-Pérez, and J.M. Moreno-
Vega. The parallel variable neighborhood search for the p-median problem.
Journal of Heuristics, 8(3):375–388, 2002.

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1989.

P. Hansen, N. Mladenović, and J.A. Moreno-Pérez. Variable neighborhood
search: methods and applications. Annals of Operations Research, 175(1):
367–407, 2010.

N. Julien, J. Laurent, E. Senn, and E. Martin. Power consumption modeling
and characterization of the ti c6201. IEEE Micro, 23(5):40–49, 2003.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
Operations Research, 24:1097–1100, 1997.

23

S. Oaks and H. Wong. Java Threads. O’Reilly Media, 2004.

E.G. Pardo, N. Mladenović, J.J. Pantrigo, and A. Duarte. Variable formula-
tion search for the cutwidth minimization problem. Applied Soft Comput-
ing, 13(5):2242 – 2252, 2013.

J. Sánchez-Oro, N. Mladenović, and A Duarte. General variable neighbor-
hood search for computing graph separators. Optimization Letters, 2014a.
doi: 10.1007/s11590-014-0793-z.

J. Sánchez-Oro, J.J. Pantrigo, and A. Duarte. Combining intensification and
diversification strategies in vns. an application to the vertex separation
problem. Computers & Operations Research, 52(B):209–219, 2014b.

M. Sevaux, A. Rossi, M. Soto, A. Duarte, and R. Mart́ı. Grasp with ejection
chains for the dynamic memory allocation in embedded systems. Soft
Computing, 18(8):1515–1527, 2014.

M. Soto, A. Rossi, and M. Sevaux. Two iterative metaheuristic approaches
to dynamic memory allocation for embedded systems. In Evolutionary
Computation in Combinatorial Optimization, volume 6622 of Lecture Notes
in Computer Science, pages 250–261. Springer Berlin Heidelberg, 2011.

M. Soto, A. Rossi, and M. Sevaux. A mathematical model and a metaheuris-
tic approach for a memory allocation problem. Journal of Heuristics, 18
(1):149–167, 2012.

S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man. Power exploration
for data dominated video applications. In Proceedings of the 1996 Interna-
tional Symposium on Low Power Electronics and Design, pages 359–364,
Piscataway, NJ, USA, 1996.

24

