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ABSTRACT — We first present a literature review of heuristics and metaheuristics
developed for the problem of coloring graphs.  We then present a Greedy Randomized
Adaptive Search Procedure (GRASP) for coloring sparse graphs.  The procedure is tested
on graphs of known chromatic number, as well as random graphs with edge probability
0.1 having from 50 to 500 vertices.  Empirical results indicate that the proposed GRASP
implementation compares favorably to classical heuristics and implementations of
simulated annealing and tabu search.  GRASP is also found to be competitive with a
genetic algorithm that is considered one of the best currently available for graph
coloring.
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1.  Introduction

Consider a graph G = (V, E) with vertex set V and edge set E.  A k-coloring of G is a
partition of V into k sets V1, …, Vk, such that no two vertices in the same set are
adjacent, i.e., if v, w ∈ Vi, 1 ≤ i ≤ k then (v, w) ∉ E.  The sets V1, …, Vk are referred to as
color classes or colors.  The chromatic number, χ(G), is defined as the minimum k for
which G is k-colorable.  The coloring problem can be stated as follows.  Given a graph
G, find χ(G) and the corresponding coloring.  Graph coloring is a well-known NP-hard
problem (Garey and Johnson, 1979).

Practical applications of graph coloring are numerous.  They include exam scheduling
(Wood, 1969; Brelez, 1979; Leighton, 1979), the design and operation of Flexible
Manufacturing Systems (Stecke, 1985), and the computation of sparse Jacobian
elements by finite differencing in mathematical programming (Coleman and More,
1983).  In all of these applications the related graph is usually sparse, that is, the
number of edges is the same order as the number of vertices.

Since graph coloring is NP-hard, all existing exact procedures require exponential time,
precluding their use as problem size increases.  As a result of this intractability, a
variety of heuristic and metaheuristic approaches have been proposed to produce good
colorings in a reasonable amount of time.

2.  Heuristics and Metaheuristics for Graph Coloring

The simplest heuristic methods are the sequential coloring approaches.  First, the
vertices are sorted, and the top vertex is put in color class number one.  The remaining
vertices are considered in order, and each is placed in the first color class for which it
has no adjacencies with the vertices already assigned to the class.  If no such class
exists, then a new class is created.  Several different schemes have been used for the
initial ordering.  The Largest First (LF) approach of Welsh and Powell (1967) sorts the
vertices by decreasing degree.  The Smallest Last (SL) ordering of Matula, Marble and
Isaacson (1972) lists the smallest degree vertices in reverse order in the following
fashion.  A vertex of minimum degree is placed last in the list.  Assume that {vk+1, …, vn}
have been ordered.  Choose vk such that the degree of vk in the graph induced by
V - {vk+1, …, vn} is minimum.  Note that both LF and SL tend to color the higher degree
nodes first.  Although these methods are easy to implement and fast, they often produce
colorings which are far from optimal.

The colorings produced by the sequential coloring heuristics can be improved by
performing interchanges.  At each stage, a previously color vertex is switched to another
class, if performing this interchange allows the current vertex to be colored without the
addition of a new color.  Largest First with Interchange (LFI) and Smallest Last with
Interchange (SLI) are the resulting procedures (Matula, Marble and Isaacson, 1972).
While the interchanges are more time consuming, they usually improve the
performance of the basic routines.

Other techniques have been developed which attempt to reorder the nodes at each
stage.  DATSUR (Brelez, 1979) chooses the next vertex to color based on its saturation
degree — the number of color classes for which the vertex is adjacent to at least one
vertex in that class.  A vertex with the maximum saturation degree is selected and
placed in the first legal color class found.
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The methods discussed thus far proceed by first choosing a vertex and then assigning
an appropriate color.  A different approach completes each color before introducing a
new one.  One of the most successful deterministic heuristics, Recursive Largest First
(RLF) due to Leighton (1979), is based on this idea.  The method selects vertices one
color class at a time.  Assume V1, …, Vi-1 have already been constructed, so that Vi is

the next class to be completed.  Let U 1
1
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j jVVV  be the set of currently admissible

uncolored vertices.  Let U be an initially empty set of uncolored vertices that are
inadmissible because they are adjacent to at least one vertex in Vi.  The method
constructs Vi as follows:

1. Choose Vv ˆ
0 ∈  to be a vertex with maximum degree in the graph

induced by V̂ .  Place v0 in Vi and move all Vv ˆ∈ that are adjacent to
v0 from V̂  to U.

2. While V̂  ≠ ∅ repeat:

Choose Vv ˆ∈  of maximum degree in U (where the degree of v is
calculated as the number of vertices in U that are adjacent to v).

Add v to Vi and move all Vw ˆ∈ that are adjacent to v from V̂  to U.

Steps 1 and 2 are repeated until all nodes are colored.  The strategy of this procedure is
to make |Vi| large and the graph induced by the remaining vertices sparse.

Randomization has been used in a number of settings as an attempt to improve the
performance of simple heuristics.  Following this idea, Johnson, et al. (1991) developed
the XRLF method.  For each color, several candidate classes are generated and the one
inducing the fewest edges in the remaining graph is chosen.  Each candidate class is
constructed using a modified RLF procedure as follows.  At each stage, a fixed number
of uncolored  vertices are selected at random from V̂ .  The one with the largest degree
in U is chosen as the next vertex to be colored.  When the number of vertices left in the
set V̂  becomes less than a user specified number SETLIM, the candidate class is made
as large as possible by an exhaustive search procedure.

Metaheuristics, such as simulated annealing (Kirkpatrick, et al. 1983), tabu search
(Glover and Laguna, 1997), genetic algorithms (Holland, 1975) and neural networks
(Hopfield and Tank, 1985), have also been applied to graph coloring.  Metaheuristics
may or may not use local search but all have the goal of avoiding being trapped in local
optima by permitting moves that deteriorate the value of the objective function.  Chams,
Hertz and de Werra (1987) present results from applying simulated annealing to graph
coloring.  Both pure simulated annealing and an approach that combines XRLF and
simulated annealing are discussed.  The hybrid method, which we will denote SA
proceeds as follows.  XRLF is used to construct color classes until the number of
vertices in the graph is below a specified level.  Simulated annealing is then applied to
color the remaining vertices.  Johnson, et al. (1991) report on extensive experiments
using several variants of simulated annealing on random graphs of varying size and
density.

Hertz and de Werra (1988) describe a tabu search implementation for graph coloring
(TABUCOL), which gives good solutions and outperforms simulated annealing on
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several random dense graphs tested.  Their method attempts to find a legal coloring
with k colors, where the value of k can be changed to find improved coloring schemes.
A solution s = {V1, …, Vk} is a partition of the set of vertices V into k subsets and
E(Vi) = {  (v, w) ∈ E | v and w ∈ Vi }.  The quality of a solution s, is then given by the
following objective function:

∑
=

=
k
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The procedure stops when f(s) = 0 (or after a pre-specified number of iterations are
reached without finding a legal coloring for a given k).  A neighbor s′ of s is found by
first randomly choosing v′ = v or w, such that (v, w) ∈ E(V1) ∪ … ∪ E(Vk), and then,
assuming that v′ ∈ Vi, randomly choosing a color j ≠ i.  The new solution s′ = {V′1, …, V′k}
is obtained by:

jV ′  = Vj ∪ { v′ }

iV ′  = Vi \ {  v′ }

rV ′  = Vr for r = 1, …, k and r ≠ i, j.

The procedure selects the best neighbor s′ (as measured by the objective function value)
from a collection of randomly generated neighbors.  The size of the neighborhood is a
controlled search parameter.  After a move of vertex v from Vi to Vj, a tabu activation
rule forbids the move that returns v to Vi for a number of iterations.  The number of
iterations that the move remains tabu-active is the so-called tabu tenure (which
becomes another search parameter).  Hertz and De Werra (1987) also experimented
with hybrid approaches that used TABUCOL within a procedure that sequentially finds
independent sets that are as large as possible.

Evolutionary algorithms have also been adapted in the context of graph coloring.
Evolutionary methods operate on a population of solutions and seek improved
outcomes by a sequence of cycles consisting of a cooperation step and a self-adaptation
step.  In the cooperation step, solutions in the current population exchange information
with the goal of producing new solutions that inherit good attributes.  In the self-
adaptation step, solutions modify their internal structure without interacting with other
solutions  in the population.  In the context of genetic algorithms, cycles are referred to
as generations, the so-called crossover operators achieve the cooperation step and the
self-adaptation step consists of what is known as mutation.

Costa, Hertz and Dubuis (1995) describe a procedure that combines a simple descent
method to achieve self-adaptation within the general framework of a genetic algorithm.
The descent method is based on moving from a solution s to a neighbor solution s′ as
defined by Hertz and De Werra (1987).  The objective function f(s) is modified to
assigned weights to edges.  The weights are changed from one generation to the next to
avoid always manipulating the same conflicting edges (i.e., those edges in
E(V1) ∪ … ∪ E(Vk)).  The mutation operator consists of replacing, with a given
probability, a solution s by a randomly chosen neighbor s′.  The mutation probability is
changed during the search, using a systematic scheme.  A union crossover, originally
designed by Costa (1995) for a scheduling application, was adapted for graph coloring
to implement the cooperation step.
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Fleurent and Ferland (1996) proposed another evolutionary method for graph coloring.
This implementation uses a graph-adapted recombination operator for the cooperation
step.  It also employs an entropy measure to evaluate the diversification of the solutions
in the population.  If the entropy is zero, then all the solutions in the population are
identical.  This measure is used both to design stopping rules and to influence parent
selection.  Another important feature is that members of the population are subject to
local search. A variant of the TABUCOL scheme is used as one of the self-adaptation
steps.  Unlike the original TABUCOL implementation that randomly samples the
neighborhood of a solution s, the Fleurent and Ferland’s approach considers the entire
neighborhood when searching for the best move.  They also use a dynamic tabu tenure,
which randomly changes within specified bounds.  A number of variants are tested in
this study, which are the result of choosing (1) a population size, (2) an encoding
scheme (permutation or string), (3) a cooperation step (1- or 2-point crossover or graph-
adapted recombination), and (4) a self-adaptation step (pure local search, tabu search,
or a mutation rate).  For graphs with 500 and 1000 vertices, Fleurent and Ferland
follow the common approach of finding independent sets first and then applying their
procedure to the remaining vertices in the graph.

In another evolutionary approach, Eiben, et al. (1997) employ the 3-coloring problem to
test several variants of an asexual evolutionary algorithm.  The algorithm uses an
order-based representation and an adaptation mechanism.  The focus of their research
is to explore the applicability of their implementation to constraint satisfaction
problems.  However, the procedure was tested in the context of graph coloring, where
nodes can be viewed as variables while edges can be viewed as constraints.  It is
important to note that the algorithm does not use context-specific information (e.g., the
special structure of graph coloring problems), because the authors are interested in
exploring the applicability of their design to other constraint satisfaction problems.

Neural networks have also been applied to the graph coloring problem, this effort was
started more than 10 years ago by Dahl (1987) and more recently continued by Jagota
(1996).  Neural network applications in this context are based on mapping the
k-coloring problem to a Hopfield network.  This process is accomplished by first
considering a reduction to the maximum independent set (MIS) problem, followed by a
mapping of MIS onto a Hopfield network.  Jagota (1996) follows the approach of
choosing an initial k value and gradually decreasing it in an attempt to find improved
feasible colorings.  If the algorithm fails to find a feasible coloring in one phase, the
current k value is increased and the process continues.  Since k is initially set to a
sufficiently large value, the procedure is guaranteed to yield a proper coloring.  The
procedure was tested on a set of 30 graphs associated with the Second DIMACS
Challenge (Trick, 1993).  The results were compared with the parallel procedure Hybrid
of Lewandowski and Condon, 1993.  Jagota’s implementation is outperformed by
Hybrid in all but 6 instances.  These instances correspond to the Modified k-partite set,
for which the optimal solution is known to be k colors (where k is the number of
partitions used to construct each instance).  It is interesting to note that after the
DIMACS Challenge, the creator of the Modified k-partite set admitted that due to an
omission these instances could in fact be optimally solved by a greedy heuristic.
However, none of the algorithms in the DIMACS workshop (including Hybrid) seemed to
be able to exploit this particular feature (Jagota, 1996).

The computational studies in all the procedures reviewed above employ graphs for
which the probability that an edge exists is 0.5 or more.  In specific, random graphs Gn,p

are employed, where n is the number of vertices and p (for p ≥ 0.5) is the probability
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that an edge exists between any pair of edges (independently from the existence of any
other edge).

We have provided a partial review of the graph coloring literature, focusing on
metaheuristic approaches.  For more information on the graph coloring problem and a
more comprehensive bibliography, we refer the reader to Michael Trick’s “Network
Resources for Coloring a Graph” (http://mat.gsia.cmu.edu/COLOR/color.html), Joe Culberson’s
“Graph Coloring Page” (http://web.cs.ualberta.ca/~joe/Coloring/index.html), Tommy Jensen and
Bjarne Toft’s “Graph Coloring Problems” (http://www.imada.ou.dk/Research/Graphcol/), and
Pardalos, et. al (1999) survey.

Our paper presents the results of applying a greedy randomized adaptive search
procedure (GRASP) to the problem of coloring sparse graphs.  GRASP (Feo and Resende,
1989 and 1995) consists of two phases: construction phase and improvement phase.
For the construction phase, our GRASP implementation uses a randomized version of
RLF to generate initial colorings.  The improvement step consists of a local search that
finds improved neighbor solutions.  Data structures and sorting routines that exploit
sparsity are employed to increase efficiency.  The proposed procedure is tested in a set
of instances for which χ(G) is known (Trick, 1993) and large sparse random graphs (i.e.,
Gn,0.1).

The next section presents a detailed description of the proposed procedure.  This
description includes pseudo-code for both the randomized RLF adaptation for the
construction phase, and the local search for the improvement phase.  The data
structures used to exploit sparsity are also discussed together with the computational
complexity of the method.  Section 3 presents the empirical results and concluding
remarks are given in section 4.

3.  Proposed Procedure

Figure 1 gives a pseudo-code for our GRASP implementation, denoted by GraspColor.
In addition to G = (V, E), GraspColor takes as user defined input GIter, the number of
GRASP iterations, CIter, the number of iterations per color, and CSize, the size of the
candidate list.  The output from GraspColor is k*, the minimum number of colors used
and *V  = {V1, …, Vk*} the corresponding color classes.

The outer for loop (lines 2 to 32) performs the GRASP iterations consisting of the
construction and improvement phases.  The number of color classes i and the vertex set
V* are initialized for the current iteration in line 3.  The construction phase is executed
by the outer while loop (lines 4 to 27).  It constructs the next coloring, one color at a
time.  The inner for loop (lines 6 to 25) generates the CIter candidate color classes from
which the best is chosen.  Each class is constructed by the inner while loop in lines 9
to 20.  Lines 10 to 14 shows the construction of the candidate list (CL) of vertices.  The
list is constructed selecting CSize vertices from V̂ .  Note that for the first vertex selected
in each class, overall degree is used (i.e., the degree with respect to V is used).
Randomization occurs in line 15, where a vertex is randomly chosen from the candidate
list.  This vertex is then added to the current color class in line 16.  The chosen vertex
and its neighbors are removed from the set of admissible uncolored vertices V̂ , and the
neighbors are added to the inadmissible uncolored set U.  This constitutes the adaptive
component of our GRASP implementation.
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Once a color is maximal, the number of edges remaining in the graph induced by the
uncolored vertices are counted in line 21.  If this number is less than the current best,
ecount, then the color class is saved as the incumbent in line 23.  After CIter classes

Figure 1.  GRASP for Graph Coloring.

GraspColor(V, E, GIter, CIter, CSize, k*, *V )
1. k* = |V|;
// Outer loop, GRASP iterations
2. for iter = 1 to GIter
3. i := 0; V′ = V;
4. while V′ ≠ ∅
5. i := i + 1;
6. ecount := ∞;
// Start construction phase
7. for j = 1 to CIter
8. V̂  := V′; U := ∅; C := ∅;
9. while V̂  ≠ ∅
// Build candidate list
10. if U = ∅  then
11. CL := { CSize vertices of max degree in V̂  };
12. else
13. CL := { CSize vertices in V̂  of max degree in U };
14. end if
15. Select v ∈ CL at random;
16. C := C ∪ { v };
17. N(v) := {w | (v, w) ∈ E};
// Update V̂  and U
18. V̂  := V̂  - { v } – N(v);
19. U := U ∪ N(v);
20. end while
//Determine set of edges in V′ - C
21. *E  = {(u, v) ∈ E | u, v ∈ V′ - C };
// Update best color class
22. if | *E | < ecount then
23. Vi := C; ecount := | *E |;
24. end if
25. end for
// Update set of uncolored vertices
26. V′ = V′ - Vi;
27. end while
28. ImprovePhase(V, E, i, { V1, …, Vi });
// Update best coloring
29. if i < k* then
30. *V  := { V1, …, Vi }; k* := i;
31. end if
32. end for
end GraspColor
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have been sampled, the best class is removed from the graph in line 26.  Once a
coloring is completed, it is passed to the improvement phase (ImprovePhase, line 28).
If the solution returned by ImprovePhase is the smallest found so far, then it is saved
in *V  as the incumbent in line 30.  After completing GIter GRASP iterations the current
incumbent is returned as the solution.

There are several important differences between GraspColor and XRLF.  XRLF uses the
greedy function to select the best candidate from a set of randomly chosen vertices,
while GraspColor uses the objective function to rank all candidate vertices and then
randomly chooses among the CSize best.  Furthermore, XRLF is executed once, while
GraspColor produces many different sample solutions, and selects the best.

The improvement phase ImprovePhase is given in Figure 2.  Its input is the graph
G = (V, E) and a valid i-coloring {V1, …, Vi}.  The output is the k-coloring {V1, …, Vk} with
k ≤ i.  The procedure attempts to reduce the size of the current coloring as follows:

1. Let Vs1 and Vs2 be the smallest and second smallest cardinality color
classes, respectively.  Combine the two classes into one, leaving k = i-

1 classes.  Let s = { 1
~V , …, kV~ } denote these classes.

2. Let ∑
=

=
k

j
jVEsf

1
)~()( , where E( jV~ ) is the set of edges with both

endpoints in jV~ .

3. Apply a local search to minimize f(s).  The local search operates as
follows:

Figure 2.  Improvement phase of GRASP.

ImprovePhase(V, E, i, {V1, …, Vi})
1. do
2. Sort V such that |V1| ≥ |V2| ≥ … ≥ |Vi-1| ≥ |Vi|;
3. k := i – 1;
4. for j = 1 to k

5. jV~ := Vj;

6. end for
7. s := { 1

~V , …, kV~  ∪ Vi };
8. LocalSearch(k, s);
9. if f(s) = 0 then
10. for j = 1 to k

11. Vj := jV~ ;
12. end for
13. i := k;
14. end if
15. while f(s) = 0;
end ImprovePhase
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3.1 NoImprove := 0;
3.2 while (f(s) > 0 and NoImprove < NoImpIter)
3.3 Randomly choose an illegal vertex (i.e., one that is colored

with the same color as an adjacent vertex).
3.4 Make all possible attempts to switch v to a different color

to improve the current value of f(s).
3.5 if step 3.4 is successful then NoImprove  := 0 else

NoImprove := NoImprove  + 1.
3.6 end while

4. If a solution s with f(s) = 0 is encountered, then s is a valid coloring.

Save such coloring by setting i = k and Vj = jV~  for 1 ≤ j ≤ k.  Return to
step 1 and restart the improvement phase.

5. If the local search terminates with f(s) > 0, then no improved coloring
was found.

The computationally expensive operations in procedure GraspColor are ranking the set
of uncolored vertices in V̂ , updating the sets V̂  and U when a new vertex is colored,
and executing ImprovePhase.  We keep the graph in a dynamic list of vertices, where
each vertex can be accessed either directly or through an adjacent vertex.  The dynamic
nature of the list allows us to handle the memory more efficiently.  Specifically, each
vertex is stored in a structure that contains all the relevant information about the
vertex, including a list of pointers to the structures where adjacent vertices are stored.

The candidate list starts with CSize uncolored vertices and we maintain a pointer to the
vertex with the smallest degree.  As we examine the rest of the vertices, we compare
their degree with the lowest degree vertex currently in CL and update the list and the
pointer if necessary.  Each vertex is examined only once. There are O(n) operations to
create the initial candidate list CL.

A dynamic linked list is used to keep track of the colored vertices.  The list creates a
new pointer every time a vertex is colored.  This mechanism creates a direct access to
each vertex in the current coloring.  In our empirical tests, the improvement phase
required on average less than 20% of the amount of time spent in a complete GRASP
iteration.

4.  Computational Results

Two families of graphs were chosen for computational testing.  The first class includes
instances with known optimal solutions found in Michael Trick’s “Graph Coloring
Instances” page (http://mat.gsia.cmu.edu/COLOR/instances.html).

LEI: Leighton Graphs (Leighton, 1979)
MYC: Graphs based on the Mycielski transformation (Michael Trick).
REG: Graphs based on register allocation for variables in real code

(Gary Lewandowski).
SGB: Graphs from Donald Knuth's Stanford GraphBase.

The LEI instances are generated by a procedure proposed by Leighton (1979), which
constructs graphs of known chromatic number.  Given the number of nodes n, the
desired chromatic number k, the average node degree d, and a random vector of non-
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negative integers (bk, bk-1, …, b2) with bk ≥ 1, the method introduces edges such that
there are bi cliques of size i and the chromatic number and average vertex degree are k
and d, respectively.  Since the true chromatic number is known, the graphs are useful
when assessing the performance of a heuristic.  The instances consist of twenty seven
150-node graphs and twelve 450-vertex graphs with chromatic number ranging from 5
to 25, and with average vertex degrees ranging from 11 to 77.  We restrict our testing to
the twelve instances with 450 vertices.

The MYC set consists of 5 instances with known optima.  We use all five instances for
testing.  The REG set consists of 14 instances with known optima.  We also use all 14
instances for testing.  The SGB instances are divided into four sets: book graphs, game
graphs, mile graphs, and queen graphs.  In our testing we do not use the queen graph
instances because optimal solutions are known for all of them.  We use 10 out of the 11
remaining graphs, because we encountered problems reading the book graph labeled
“homer” (based on Homer’s Iliad).

The second set of test graphs is drawn from the class of random graphs Gn,p, with n
vertices and edge probability p.  This means that each edge in the graph appears with
probability p, independently of any other edge.  These graphs are generated as follows.
For each (unordered) pair i, j ∈ {1, …, n} a uniform random number r is drawn from the
interval [0, 1].  The edge (i, j) is included in E if and only if r ≤ p.  While the actual
chromatic number of these graphs is not known, Bollobas and Thompson (1985) derive
probabilistic estimates for the expected size of an optimal coloring.  Given the interest in
sparse graphs, p = 0.1 and n = 50, 100, 250 and 500 were chosen.  For each n, twenty
five random graphs were generated from Gn,0.1, for a total of 100 instances.

We performed a preliminary experiment to determine the best values for the parameters
in GraspColor.  For this experiment we used the 41 instances from the LEI, MYC, REG
and SGB sets.  For each search parameter, we tested 3 values:

GIter = 5, 15, 25
CIter = 5, 15, 25
CSize = 3, 6, 9
NoImpIter = n, n/2, 2n

We ran the procedure 81 times on each instance, to test all combinations of the
parameter values, resulting in 3,327 runs.  The parameter combination that yielded the
best results was:

GIter = 15
CIter = 15
CSize = 3
NoImpIter = n/2

These values are used throughout the rest of our experimentation.  The parameters for
other procedures were set as recommend by their creators.  We start by comparing our
GRASP implementation with other procedures reported in the literature.  We use the
procedures RLF (Leighton, 1979), XRLF (Johnson, et al. 1991), a simulated annealing
(SA) with the Fixed-k objective function (Johnson, et al. 1991), TABUCOL (Hertz and de
Werra, 1988) and GA (Fluerent and Ferland, 1996).  We chose the Fixed-k objective
function for SA, because it was reported as the best among three schemes when dealing
with sparse graphs (Johnson, et al. 1991).  The results of this experiment are reported
in Table 1.
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Table 1. Average number of colors used (optimal known).
Name Instances n m OPT RLF XRLF SA TABUCOL GA GRASP

LEI 12 450.0 11005.5 15.0 17.8 16.9 18.0 19.0 15.8 16.5
MYC 5 73.4 688.4 6.0 6.0 6.0 6.0 6.0 6 6.0
REG 14 362.1 7608.1 37.4 37.4 37.4 40.1 57.1 54.5 37.4
SGB 10 113.9 2835.2 22.6 22.6 22.9 26.0 24.1 23.1 22.7

Tot./Avg. 41 249.9 5534.3 20.2 20.9 20.8 22.5 26.6 24.9 20.6

The columns in Table 1 consist of: (1) identifier of instances, (2) number of instances,
(3) number of vertices, (4) average number of edges, (5) average number of colors used
in the optimal coloring, (6) to (11) average number of colors used per each procedure.

It is interesting to note that the simple heuristics RLF and XRLF perform remarkably
well in this set of problems (with average number of colors equal to 20.9 and 20.8,
respectively).  We should also mention that the performance of SA and TABUCOL is
highly dependent on the chosen values of their search parameters.  Most notably is the
selection of the initial k (i.e., the number of colors for which the procedure is attempting
to find a legal coloring).  Note also that the GA approach was only marginally better
than TABUCOL.  The number of optima found by each procedure and the average
computer time are reported in Table 2.  The times (in seconds) were obtained by
running the procedures (coded in C) on a personal computer with a 350 MHz Pentium
processor.

Table 2. Number of optima / computer time (in seconds).
Name RLF XRLF SA TABUCOL GA GRASP

LEI 3 / 0.10 5 / 2.23 2 / 142.36 0 / 13.64 6 / 138.10 6 / 27.59
MYC 5 / 0.00 5 / 0.08 5 / 0.12 5 / 0.79 5 / 6.93 5 / 0.47
REG 14 / 0.07 14 / 1.22 3 / 20.93 0 / 43.83 0 / 101.27 14 / 16.65
SGB 10 / 0.01 8 / 0.20 6 / 0.23 8 / 2.46 7 / 0.23 9 / 2.05

Total / Avg. 32 / 0.05 32 / 0.93 16/ 40.91 13 / 15.18 18 / 71.70 34 / 11.69

Table 2 reveals the inferior performance of SA, TABUCOL and GA when considering the
current set of problems.  These procedures find the least number of optimal solutions
and require the most amount of computer time.  GRASP is competitive in terms of
number of optimal solutions found (34 out of 41), however, it requires several orders of
magnitude more time than RLF or XRLF.

In our second set of experiments, we employ the 100 Gn,0.1 instances generated as
described above.  The results of this experiment are reported in Table 3, where the
values indicate the average number of colors used by each procedure.

Table 3. Average number of colors used (Gn,0.1 graphs).
n m RLF XRLF SA TABUCOL GA GRASP

50 218.5 5.20 5.16 5.84 5.00 4.84 4.92
100 889.8 7.88 7.56 8.60 7.76 7.00 7.08
250 5654.5 14.08 13.48 14.36 14.00 12.04 13.04
500 22708.8 23.20 22.16 21.48 23.48 20.40 21.88

Average 7367.9 12.59 12.09 12.57 12.56 11.07 11.73
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The results in Table 3 disclose the advantage of using GRASP when dealing with sparse
graphs, when compared to RLF, XRLF, SA and TABUCOL.  The GA approach marginally
outperforms GRASP in this set.  However, the quality of the solutions found by GA
comes at a high price in terms of computational time.  The times (in seconds) and the
number of best solutions found by each procedure are reported in Table 4.  The best
solutions are found by considering the solutions generated by all procedures.

Table 4. Number of best / computer time (in seconds).
n RLF XRLF SA TABUCOL GA GRASP

50 16 / 0.00 17 / 0.04 7 / 0.07 21 / 0.22 25 / 5.21 24 / 0.16
100 4 / 0.00 11 / 0.15 16 / 1.71 6 / 0.78 25 / 10.40 24 / 0.81
250 0 / 0.04 0 / 0.84 0 / 13.49 0 / 5.15 25 / 46.73 25 / 8.71
500 0 / 0.25 0 / 3.79 6 / 329.75 0 / 29.42 25 / 204.03 13 / 61.23

Total / Avg. 20 / 0.07 28 / 1.20 29 / 258.79 27 / 26.68 100/ 66.59 46 / 17.73

While the GA approach provides all the best solutions in the set, GRASP is able to
match 46 out of 100 using 73% less computer time.  While RLF and XRLF continue to
be very fast, the quality of their solutions quickly deteriorates as n increases.  SA is able
to provide 29 best solutions, but it has the highest average solution time of all
procedures.  The largest contribution to this average comes from the solution time to
the set of instances with 500 vertices.

We take advantage of the flexibility of the GRASP design to implement two variants of
the method.  The variants use the same general framework described in section 2, but
replace the improvement phase with two different procedures: a tabu search
(GRASP-TS) and a simulated annealing (GRASP-SA).  We perform a final experiment to
assess the merit of replacing the somewhat simple improvement phase in the original
scheme.  We employ the Gn,0.1 instances for this purpose and report the results in
Tables 5 and 6.

Table 5. Average number of colors used (Gn,0.1 graphs).
n GRASP GRASP-TS GRASP-SA
50 4.92 4.92 4.88

100 7.08 7.04 7.08
250 13.04 13.00 13.00
500 21.88 21.84 21.92

Average 11.73 11.70 11.72

Table 6. Number of best / computer time (in seconds).
n GRASP GRASP-TS GRASP-SA
50 23 / 0.16 23 / 0.34 24 / 0.20

100 24 / 0.81 25 / 1.34 24 / 1.00
250 24 / 8.71 25 / 11.07 25 / 10.45
500 22 / 61.24 23 / 69.25 21 / 71.61

Average 93 / 17.73 96 / 20.50 94 / 21.06
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The GRASP-TS variant seems to be marginally better than the other two in terms of
solution quality, in particular as n increases.  These results are not surprising,
considering that the termination criteria used for the improvement phase limited the
amount of exploration that either TS or SA could perform.  When combining GRASP
constructions with other metaheuristics, a decision must be made regarding the
amount of time spent in each phase of the procedure.  The tradeoff is between
performing more GRASP iterations (i.e., to favor constructions) and spending more time
in the improvement phase (i.e., to favor local search).  This issue is equivalent to finding
the right balance between search diversification (GRASP constructions) and search
intensification (Improvement Phase) within the tabu search framework.  In our
particular implementation, we have found that the GRASP constructions are of such a
high quality that the improvement procedure yields better results only about 3% of the
time.

5.  Conclusions

In this paper we have first review some relevant work in the graph coloring area.  We
focused our partial review on implementation of metaheuristics in the context of graph
coloring.  We then describe a GRASP implementation for coloring graphs, which exploits
features of sparse graphs.

Our testing shows that the GRASP implementation is competitive when dealing with
graphs that are denser that we had in mind when designing the procedure.  The optimal
solutions to these instances are known, and our GRASP implementation is able to
match 34, out of 41, in an average of 35 seconds.  The merit of the proposed procedure
becomes more evident in a second experiment that uses sparse random graphs.
Finally, we tested the idea of combining GRASP constructions with an improvement
phase consisting of another metaheuristic.  We implemented variants that combined
GRASP with both tabu search and simulated annealing.  Our experiments show that if
the amount of time in the improvement phase is limited, metaheuritics are not able
significantly improve the performance of the overall method when compared to simple
descent mechanisms.
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