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Rafael Mart́ı, Ángel Corberán, and Juanjo Peiró∗
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Abstract

Scatter search is a population-based method that has been shown to
yield high-quality outcomes for combinatorial optimization problems. It
uses strategies for combining solution vectors that have proved effective
in a variety of problem settings. In this paper, we present a scatter search
implementation for an NP-hard variant of the classic p-hub median prob-
lem. Specifically, we tackle the uncapacitated r-allocation p-hub median
problem, which consists of minimizing the cost of transporting the traffics
between nodes of a network through special facilities that act as trans-
shipment points. This problem has a significant number of applications
in practice, such as the design of transportation and telecommunications
networks.

As it is customary in metaheuristic implementations, we design spe-
cific methods to create an efficient solving procedure based on the scatter
search methodology. In particular, we propose mechanisms to generate,
combine, and improve solutions for this problem. Special mention de-
serves the use of path-relinking as an extension of the classical combination
method. Extensive computational experiments establish the effectiveness
of our procedure in relation to approaches previously identified to be best.

Keywords and phrases: scatter search, path-relinking, hub location,
p-hub, r-allocation, combinatorial optimization.

1 Introduction

The aim of this paper is to expand the scatter search methodology by imple-
menting its underlying framework when solving a variant of the well known hub
location problem (HLP). Hubs are special facilities that act as transfer points,
concentrating and redistributing products that must be delivered in systems
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with many origins and destinations. They appear in problems related to the
design of transportation and telecommunications networks. Hub location prob-
lems have generated a considerable amount of research interest over the years,
as documented in [1, 2, 3, 4, 7, 10, 14]. Although we target here a specific
variant of the p-hub problem, our results (as compared with previous methods),
clearly show that the evolutionary methods in general, and scatter search in
particular, are well suited for solving location problems. Thus, we have two ob-
jectives: First, to obtain high quality solutions to the uncapacitated r-allocation
p-hub median problem (UrApHMP), and, second, to show the effectiveness of
the scatter search methodology to this type of location problems.

In the UrApHMP, one is given a network G = (V,E) with a set of demand
nodes V , and a set of edges E. For each pair of nodes i and j ∈ V , there is
an amount of traffic tij (generally of people or goods) that needs to be trans-
ported. It is assumed that direct transportation between i and j is not possible.
This well-known assumption is based on the empirical evidence that it is not
physically and/or economically viable, for example, to schedule a flight between
any two pairs of cities or to add a link between any two computers for data
transmission, since this would require a large amount of resources. Therefore,
the traffic tij is routed along a path i→ k → l→ j, where nodes k and l ∈ V are
used as intermediate points for this transportation. The UrApHMP consists of
choosing a set H of nodes, (H ⊆ V , |H| = p), that can be used as intermediate
transfer points between any pair of nodes in G, in order to minimize the total
transportation cost of all the traffics of the network. The nodes in H are com-
monly called distribution centers or hub nodes. The other nodes in the network
are known as terminal nodes. For the sake of simplicity, we call them hubs and
terminals, respectively.

Three optimization subproblems arise when solving the UrApHMP: a loca-
tion problem to choose the best locations for the hubs, an assignment problem
of each terminal to r of the hubs, and a routing problem to obtain the minimum
cost route transporting the traffics between any given pair of nodes. Regarding
the allocation strategy in the assignment process, the UrApHMP generalizes
two extensively studied versions of the p-hub location problem: the single and
multiple versions. In the single version (r = 1), each terminal is assigned to only
one of the p hubs, thus allowing to send and receive the traffics through this
hub. In contrast, in the multiple version (r = p), each terminal can send and
receive traffics through any of the p hubs. In the UrApHMP, 1 ≤ r ≤ p, each
terminal is allowed to be allocated to r of the p hubs. The motivation of this
variant comes from the fact that the single allocation version is too restricted
for real-world situations, while the multiple allocation variant results in high
fixed costs and complicated networks, which does not reflect the real models
either. Yaman presented in [24] a study of allocation strategies and introduced
the r-allocation version of the problem. We refer the reader to this paper for an
excellent analysis of different mathematical programming formulations for this
version.

From the standpoint of a metaheuristic classification, Scatter Search (SS)
may be considered as a population-based algorithm that constructs solutions by
combining others to efficiently solve NP-hard optimization problems. It derives
its foundations from strategies originally proposed for combining decision rules
and constraints in the context of integer programming [11, 13, 15, 16]. Path-
relinking (PR) was originally proposed in the context of tabu search [12, 21,
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Figure 1: The image on the left shows a location example of p = 3 hubs (in
nodes 5, 11 and 12) for a network G. The image on the right shows G with
the p hubs and a possible assignment of all nodes to their respective hubs when
r = 2.

23] as a method to find high quality solutions in the path between two good
solutions.

Hybridizations of SS and PR methodologies have been successfully applied
to other related facility location problems, such as the p-median [5] and the
p-center [19] problems. In these papers, a GRASP constructive method, based
on a partially randomizing greedy criterion, constructs the population of initial
solutions of SS. This method is coupled with PR, which creates a path between
two given good solutions to explore its intermediate solutions. The hybrid algo-
rithms resulting from the combination of SS and PR methodologies have proved
to produce high quality solutions in terms of its cost and computational effort.
Despite this, we consider that the proposed procedures for the p-median and
p-center cannot directly apply to solve the UrApHMP because of the differences
among the three problems. Note, for example, that the p-median and p-center
problems are not directly related to the delivery of goods between any two given
nodes of a network, since they are more focused on the supply of products from
facilities to clients. Moreover, in the p-median and p-center problems, each
client is assigned to only one facility, and, in the p-center problem, the objective
function is to minimize the maximum cost (distance) between the clients and
their assigned facilities. It is well documented in the metaheuristic literature
that, in order to obtain good solutions, the solving method has to be specifically
designed for the problem in hand. In this line, a GRASP is specifically proposed
in [20] for the UrApHMP. It is based on the idea of constructing a set of feasi-
ble solutions and improving them with three local searches. The authors also
propose a filtering mechanism to discard low-quality solutions and to apply the
local searches only to the promising solutions, with the aim of saving computing
time.

In this paper we explore the adaptation of SS and PR for the UrApHMP.
The good performance of this hybridization in related problems triggered our
interest to implement it in this problem. In the following section we describe
our proposals for the different elements that integrate this methodology. We
finally present exhaustive computational experiments to first calibrate these
elements and then compare our algorithm with the previous methods, including
the GRASP referenced above.
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2 Scatter search for the p-hub problem

If solutions of a combinatorial optimization problem are seen as points in a
space, the exploration of this space is done in scatter search by evolving a set
of reference points. These points define a set, known as Reference Set (RefSet),
and typically consist of good solutions obtained by prior problem solving efforts.

A given iteration of the SS method generally consists of three main steps:
to combine the solutions of RefSet, to improve the solutions obtained, and to
update RefSet with the resulting solutions that are better than those currently
in RefSet. In the next subsections we explain how these steps are adapted to
the UrApHMP.

As shown in Figure 2, the method starts by generating a set Pop of diverse
solutions with a selective good quality (see Subsection 2.1). Then, we select β
of them to create RefSet. We follow the standard design of selecting the best
β
2 solutions in Pop, and then the most diverse β

2 solutions w.r.t. the solutions
already in RefSet (see Subsection 2.2). The main loop of the method consists
of applying the combination method to all the pairs of solutions in RefSet. As
it is described in Subsection 2.4, the path-relinking methodology is the method
we use to create new solutions from each pair of solutions selected from RefSet.

Path-relinking is an intensification strategy to explore trajectories connecting
good (also known as elite) solutions obtained by other heuristic methods. When
hybridizing both methodologies, SS and PR, it seems natural to consider path-
relinking as the method for combining the solutions in RefSet, generating paths
between and beyond these reference points. Once a new solution has been
obtained, we decide whether it is included or not in RefSet. We implement a
standard RefSet update method, and we only include a solution in RefSet if it
better than the worst solution and provides sufficient diversity according to a
“distance” between the solution and RefSet. Finally, the improvement method
we propose is described in Subsection 2.6.

2.1 The Diversification Generator Method

The diversification generator method (DGM) yields a population Pop of π ini-
tial feasible solutions for the problem. It seeks to balance quality, in terms of
solutions cost, and diversity, in terms of solution attributes, and can be seen as
the mechanism that creates a first generation of solutions. If the attributes of
this first generation of solutions are good, there is some confidence of getting
better solutions in the following iterations after strategically combining them.

To create Pop, we have developed and tested seven different DGM for the
UrApHMP. Six of them are based on GRASP constructions [8, 9] that differ in
the implementation designs, and in the different expressions for the evaluations
of hubs that will be used in each of the solutions. The seventh is simply a
random construction to provide diversity to Pop.

As it is well known, in the semi-greedy implementation of GRASP, each
element of a solution is iteratively selected by evaluating all candidate elements
with respect to a greedy function g that measures their attractiveness. Only the
q elements with best g values are placed in a restricted candidate list (RCL),
where q is a search parameter. Then, an element in the RCL is randomly
selected, according to a uniform distribution, to become part of the solution.
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Figure 2: Scheme of the proposed scatter search

The values of g are updated at each iteration to reflect the changes brought on
by the selection of the previous element.

An interesting variant of the classic GRASP design described above was
recently proposed in [22]. It is based on a sampled greedy that first builds a
RCL by uniformly sampling q elements at random. Then, g is evaluated over
these q elements. The RCL element with the best g value is added to the solution
under construction. In both GRASP implementation, the value of q controls
the trade-off between greediness and randomness. In the first design, lower q
values favor greedy selection (w.r.t. randomization), while this is obtained with
large q values in the second design.

In our implementation, we have based the g evaluation for the selection of
the p hubs on a cost criterion. Let h ∈ V be a candidate node to be used as hub.
If h were a hub, it would be used for the transportation of the traffics among
some terminals, possibly the ϕ terminals i1, . . . , iϕ with lower assignment cost
to h, where ϕ is a given parameter. We then compute g(h) as

g(h) =

s=ϕ∑
s=1

cost(is, h), ∀h ∈ V,

where cost(i, h) represents the assignment cost of terminal i to hub h. We

propose several ways for computing cost(i, h). In all of them, let
−→
Ti =

∑
j∈V tij

be the sum of all the traffics from i to all nodes j. Similarly, let
←−
Ti =

∑
j∈V tji
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be the sum of all the traffics from all nodes j to node i. The different alternatives
for computing the cost functions are:

Type 1 Here, cost(i, h) is computed as the cost of sending
−→
Ti from i to h,

i.e. cost(i, h) = dih
−→
Ti . This evaluation cost was proposed by Peiró, Corberán

and Mart́ı in [20] and produced good quality solutions.

Type 2 Now, we also consider the cost of receiving the incoming traffic
←−
Ti

for i from h, cost(i, h) = dih
−→
Ti + dhi

←−
Ti .

Type 3 In addition to the costs of transporting the incoming an outgoing
traffics, we consider here some of the discounting factors that are usually present
in the UrApHMP. To do this, we enrich the cost expression as cost(i, h) =

χdih
−→
Ti +

α+ δ

2
dhi
←−
Ti , where χ, α and δ are the unit rates for collection (origin-

hub), transfer (hub-hub), and distribution (hub-destination), respectively (see,
for instance, [24]).

The three types of cost functions above, combined with the two GRASP
designs (the semi-greedy and the sampled greedy), are applied to populate Pop.
As it will be shown, they have proven to be effective to obtain a balanced Pop
set of good quality and diverse solutions. We call these methods DGM1 to
DGM6, as shown in Table 1. A last method, called DGM7, is based on the
notion of constructing solutions at random by simply generating random sets
of p hubs, helping to create a limited amount of solutions not guided by an
evaluation function to just bring diversity to Pop.

Semi-greedy Sampled greedy

Type 1 DGM1 DGM4
Type 2 DGM2 DGM5
Type 3 DGM3 DGM6

Table 1: Classification of the different diversification generation methods.

Once the p hubs are selected for a solution, the following step is to allocate r
of the p hubs to each terminal. Let Hi ⊆ H be the set of the r hubs assigned to
terminal i in a solution. For any terminal i we compute the following estimation
of the assignment cost of i to a hub h as:

assignment(i, h) = dih
−→
Ti +

∑
j∈V

dhjtij .

Then, we assign to i the hub ha with the lowest assignment cost. Then, ha ∈
Hi. For the remaining assignments to i, the above expression is updated to
reflect the previous assignments:

assignment(i, h) = dih
−→
Ti +

∑
j∈V \Hi

dhjtij −
∑
u∈Hi

diutiu, ∀h ∈ H \Hi.
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This process is done in a greedy way, selecting at each iteration the lowest
assignment cost. Note that the assignment expressions are an estimation, be-
cause they assume that there is only one hub h in the path between any pair of
nodes i and j, which is not necessarily true.

Finally, we route all the traffics at their minimum cost. For each pair of
nodes i and j we have to determine the hubs k ∈ Hi and l ∈ Hj minimizing the
routing cost of the traffic sent from i to j. In mathematical terms, given k ∈ Hi

and l ∈ Hj , we denote as cij(k, l) the cost of transporting the traffics from i to
j through hubs k and l, i.e.

cij(k, l) = tij(χdik + αdkl + δdlj).

The routing cost from i to j, cij , is then obtained by searching the hubs k ∈ Hi

and l ∈ Hj minimizing the expression above, i.e.

cij = min
k∈Hi,l∈Hj

cij(k, l).

Note that the time complexity of evaluating the routing costs if χ 6= δ is
O(n2r2), since the path i → k → l → j does not necessarily involve the same
hubs k and l in the opposite direction. Note also that even if Hi and Hj have
common hubs, it cannot be ensured that the best route from i to j will be
through a common hub.

Once the p hubs have been located, r hubs have been assigned to each
node and all the traffics have been routed, we have a feasible solution for
the UrApHMP. A solution is denoted by s = (H,A) and its cost by f(s),
where H = {h1, . . . , hp} ⊆ V is the set of hubs in the solution and A =
[aij ]i=1,...,n;j=1,...,r , aij ∈ Hi, is a matrix whose rows contain the r hubs as-
signed to each node.

2.2 The Reference Set Construction Method

Using methods DGM1 to DGM7, we have generated π feasible solutions, but
only β of them, the best ones, will become part of RefSet. The notion of best
solution is not limited here to its quality, as a measure given by the objective
function, but also to the diversity that each solution brings to RefSet in terms
of its attributes.

The process to select the β solutions of Pop that will define RefSet is done
as follows: As the SS methodology specifies [15], we want to choose β

2 solutions
attending their quality. To do this, we order all solutions in Pop by ascending
order of their costs and introduce them, one by one, only if there is no other
solution already introduced in RefSet with the same cost. We stop this selection
process after examining the 50% of the solutions in Pop, even if they are less
than β

2 solutions. The rest of the solutions of RefSet will be selected from Pop
by a diversity criterion process that tries to choose those solutions of Pop that
differ most from RefSet.

Given s /∈ RefSet and t ∈ RefSet , let C = {h : h ∈ Hs ∩Ht} be the set of
common hubs in solutions s and t. We define dH(s, t) = p−|C| as the number of
hubs in s not present in t (or viceversa). We can consider the lower the value of
dH(s, t) is, the closer s and t are. To select the solution s ∈ Pop to be included
in RefSet, we define dist(s,RefSet) = mint∈RefSet dH(s, t). This distance is
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computed for all solutions in Pop, and the solution s∗ with maximum value of
dist(s,RefSet) is introduced in RefSet. Another distance function, dA, has been
defined to break a possible tie when two or more solutions s1, . . . , sz ∈ Pop take
the same dist value (dist(s1,RefSet) = . . . = dist(sz,RefSet)). New distance
dA is based on the assignments of terminals to the hubs in C. Given s /∈ RefSet ,
t ∈ RefSet , and h ∈ C, let Ths be the set of terminals assigned to hub h in
solution s. Then |Ths ∩ Tht | gives the number of common assignments to h in
both solutions. We define dA(s, t) = minh∈C |Ths ∩Tht |. If a tie occurs, we select
the solution with the maximum dA value.

2.3 The Subset Generation Method

Once the RefSet has been created, the subset generation method (SGM) consists
of producing, at any iteration, different sets X ⊂ RefSet to serve as a basis for
the application of the combination method later on. The SGM we propose works
by ordering the solutions of RefSet in ascending order of their cost (from best
to worst) and then generating subsets defined by any two different solutions. To
avoid the repetition of previously generated subsets at earlier iterations, each
subset is generated only if at least one of its solutions was introduced in RefSet
in the preceding iteration. Suppose that m subsets were not considered for this
reason, then the number of resulting subsets at each iteration for which the

combination method will be applied is β2−β
2 −m.

2.4 The Solution Combination Method

The solution combination method (SCM) is an element of scatter search that
is context-dependent. Although it is possible to design “generic” combination
procedures, we thought that it would be more effective to design the SCM based
on the characteristics of our problem. Our proposal for the SCM is a path-
relinking implementation that is applied to each subset generated in the previous
step. As it has been mentioned, path-relinking is an intensification procedure
that explores paths (also called trajectories) in the neighborhood space of two
good solutions, generating intermediate solutions that can eventually be better
than the two being connected.

More formally, let G = (F,M) be the search space graph, where node set F is
the set of feasible solutions of the problem, and M is the set of edges associated
with the moves in the neighborhood structure. Given two solutions s, t ∈ F , a
move is defined as (s, t) ∈ M if and only if s ∈ N (t) and t ∈ N (s), where N
is a given neighborhood structure. The path-relinking operator explores a path
P(s, t) that connects s and t with the objective of finding solutions s∗ ∈ P(s, t)
for which f(s∗) < min{f(s), f(t)}. Let s be the “initial” solution of the path
and t its “guiding” solution. This path is generically accomplished by swapping
out elements selected in s with elements in t, generating a set of intermediate
solutions. To obtain a first intermediate solution s′ in the path P(s, t), we
remove a hub v from Hs and replace it by a hub u in Ht, thus obtaining Hs′ =
Hs \ {v} ∪ {u}. Let ∆(s, t) be the set of attributes present in t but not in s. In
our hub location problem, we define ∆(s, t) as the set of nodes that are hubs in t
but not in s. In mathematical terms, ∆(s, t) = {u : u ∈ Ht, u /∈ Hs}. Note that
one or more first intermediate solutions can be obtained when |∆(s, t)| > 1.
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To combine the solutions in the subsets X generated from RefSet, the proce-
dure we have designed works as follows: For each subset X = {s, t}, we explore
the path between its two solutions. To do this, we consider as initial solution
the one with worse value, s. Then, we calculate ∆(s, t). If |∆(s, t)| ≥ 2, it
means that at least two hubs of Ht are not in Hs. If |∆(s, t)| ≤ 1, no path-
relinking is necessary as there are no intermediate solutions between s and t.
Our PR generates m = |∆(s, t)|2 different solutions, and each terminal node of
these m solutions needs to be assigned to r of the hubs as a previous step to
know its value. The best of these m solutions, sδ, is saved and the remaining
m − 1 solutions are discarded as possible steps of this path. Replace s∗ by sδ
if f(sδ) < f(s∗), where s∗ is the best solution found in P(s, t) so far. This pro-
cedure is repeated while |∆(s, t)| ≥ 2, and returns s∗ as the output. Note that
f(s∗) is not necessarily better than f(s) or f(t). All the generated solutions s∗

are stored in a set called Pool.

2.5 The Reference Set Update Method

The reference set update method (RSUM) is associated with each application of
the SGM. The update operation consists of maintaining a record of the β best
solutions found so far by the procedure. The issues related to this updating
function are straightforward: All the solutions in RefSet that are worse than
those in the current Pool will be replaced by these ones, with the aim of keeping
in RefSet the β best and most different solutions found so far. Let s ∈ Pool and
w ∈ RefSet such that f(s) < f(w). In this case, s will replace w if s is different
from all other solutions in RefSet.

2.6 The Improvement Method

As mentioned in Section 1, three optimization subproblems arise when solving
the UrApHMP. Since we solve the routing subproblem optimally, we propose
two improvement procedures based on local search strategies for the other two
subproblems: LSH for the hub selection, and LSA for the terminal allocations.
Both are based on the local search procedures proposed in [20].

LSH implements a classical exchange procedure in which a hub hi is removed
from H, and a non-hub node h′i ∈ N \ H replaces hi, thus obtaining H ′ =
{h1, h2, . . . , h′i, . . . , hp}. Peiró, Corberán and Mart́ı describe in [20] a mechanism
to determine the order of exploration of the hubs in this procedure, but we
have empirically checked that LSH performs better in the SS scheme without
this mechanism. Note that any change in H affects the other components in
s. Specifically, when hub hi is replaced by h′i, we need to re-evaluate the hub
assignment of at least all the vertices assigned to hi. Moreover, the routes for the
traffics are not necessarily optimal for the new set of hubs H ′. Hence, since the
solution structure changes that much, we evaluate all the routes from scratch.
As a classical local search procedure, LSH performs moves as long as the cost
improves. We have implemented here the so-called first strategy, in which the
first improving move is performed, instead of scanning the entire neighborhood
to determine the best move.

The local search procedure LSA is similar to LSH , but it considers changes
in the assignment of terminals to hubs. In particular, for a node i with Hi =
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{hi1, . . . , hia, . . . , hir}, this procedure exchanges an assigned hub with a non-
assigned one. In mathematical terms, we replace hia with h̄ia ∈ H \ Hi, thus
obtaining H̄i = {hi1, . . . , h̄ia, . . . , hir}.

3 Computational experiments

This section describes the computational experiments performed to test the
efficiency of the scatter search with path-relinking method we propose to solve
the UrApHMP. The procedure has been implemented in C using GCC 4.8.2
with optimization flags -O3, -march=corei7 and -m64. The results reported
in this section have been obtained with an Intel core i7–3770 at 3.40GHz and
16GB of RAM, under Ubuntu 14.04 GNU/Linux – 64 bits operating system.
The metrics that we use to measure the performance of the algorithms in a
particular experiment are:

• Dev: Average percentage deviation with respect to the best solution found
(or from the optimal solution, if available).

• # Best: Number of best solutions found.

• CPU: Average computing time in seconds.

3.1 Test instances

We have tested our algorithms on the following three sets of instances:

1. The CAB (Civil Aviation Board) data set, based on airline passenger
flows among some important cities in the United States. It consists of a
data file, presented by O’Kelly in [18], with the distances and flows of a
25 nodes network. From this original file, 23 instances with 25 nodes and
p = {1, . . . , 5} and r = {1, . . . , p} have been generated by several authors.
The following parameter values have been widely used: χ = δ = 1, α =
{0.2, 0.4, 0.6, 0.8, 1.0}.

2. The AP (Australian Post) data set, based on real data from the Australian
postal service and presented by Ernst and Krishnamoorthy in [6]. The size
of the original data file is 200 nodes. Smaller instances can be obtained us-
ing a code from ORLIB. As with CAB, many authors have generated differ-
ent instances from the original file. We have extended this set of instances
by generating 311 instances with n = {40, 50, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200}.
For those with 40 ≤ n ≤ 95, p varies from 1 to 10, and for those with
100 ≤ n ≤ 200, p takes values between 1 and 20. In all the cases,
r ∈ {1, . . . , p}. According with previous articles, cost parameter values
have been chosen as χ = 3, α = 0.75 and δ = 2. The flows between nodes
are not symmetric in these instances (i.e., for a given pair of nodes i and
j, tij 6= tji, in general). Moreover, flows from one node to itself can be
positive.

3. The USA423 data set. This family of instances was introduced by Peiró,
Corberán and Mart́ı in [20], and is based on real airline data. It consists
of a data file concerning 423 cities in the United States, where real dis-
tances and passenger flows for an accumulated three months period are
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considered. From the original data, 30 instances have been generated with
p ∈ {3, 4, 5, 6, 7} and 2 ≤ r ≤ p−1. For each combination of parameters p
and r, two different values for χ, α, δ have been used: 0.1, 0.07, 0.09, and
0.09, 0.075, 0.08, respectively.

The experiments are divided into two main blocks. The first block, described
in Section 3.2, is devoted to study the behavior of the components of the solution
procedure, as well as to determine the best values for the search parameters.
The second block of experiments, in Section 3.3, has the goal of comparing
our procedure with the best published methods. Regarding the size of the
instances, they have been classified as small (25 ≤ n ≤ 50), medium (55 ≤ n ≤
100), and large (105 ≤ n ≤ 200). The entire set of instances is available at
www.optsicom.es.

3.2 Parameter calibration

The first set of experiments to calibrate our method is performed on a subset
of 47 instances: five instances from the CAB set with n = 25, and 42 instances
with 40 ≤ n ≤ 200 from the AP set. We refer to these 47 instances as the
training set and to the remaining instances as the testing set.

The values of π, q and ϕ: We first study the values for the parameters
used in the diversification generator method: π (that determines how many
solutions will be constructed in Pop), q (that defines the size of the RCL in the
DGM1-DGM6 methods), and ϕ (that determines the number of elements in the
evaluation for the selection of hubs).

First, we have given parameter π two possible values: 100 and 150. For
each instance of the training set, we have constructed 0.15π solutions with
each of the methods DGM1 to DGM6, to obtain a 90% of the initial solutions
generated. The remaining solutions (up to π) are obtained with DGM7, the
random generator. In order to evaluate the capacity of the DGM methods
without taking into account the effect of the combination and improvement
methods, this experiment only considers the constructive phase, not performing
any of the subsequent elements of the scatter search procedure. The results on
the training set are shown in Table 2.

As expected (see Table 2), the best solutions in terms of quality are ob-
tained with π = 150. In this case, the algorithm obtains an average percentage
deviation of 1.4% and 31 best known solutions. The CPU time for π = 150
is still reasonable, with virtually no difference in small and medium instances.
Although for the large instances, the CPU values are slightly larger, we consider
that the enhancement of the results worth the CPU effort, so we set π = 150 in
the rest of the experiments.

In the second experiment, we study the value of the parameter q that defines
the RCL size. To do this we have considered q = min{n2 , ωp}, where ω is an-
other parameter whose impact is studied next. For each instance of the training
set, we have constructed 1

6π solutions with each DGM1 to DGM6 method but
not with DGM7, because it is a totally random procedure. As in the previous
experiment, we have only considered the constructive phase. The results for
ω = 2, 3, 4, 5 are presented in Table 3. Note that the best solutions in terms of
quality are obtained with ω = 5. With this value, we have obtained an average
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Dev (%) # Best CPU

Size # inst 100 150 100 150 100 150

s (small) 8 2.1 0.0 2 8 0.0 0.0
m (medium) 27 2.2 0.6 8 19 0.2 0.3

l (large) 12 2.0 4.1 8 4 1.2 1.8

47 2.1 1.4 18 31 0.4 0.6

Table 2: Calibration of π for the DGM of SS.

percentage deviation of 1.4% and 26 best known solutions. In order to com-
pare the results, we have performed the well-known non-parametric Friedman
test. This test answers the question: Do the solutions obtained with the differ-
ent methods represent different populations? The resulting probability value of
0.000006981 indicates that the compared values come from different methods.
Moreover, we do not appreciate differences in the CPU times among the differ-
ent values of ω, so we set ω = 5 from now on.

Dev (%) # Best CPU

Size # inst 2 3 4 5 2 3 4 5 2 3 4 5

s 8 2.1 1.7 1.8 0.6 5 1 3 4 0.0 0.0 0.0 0.0
m 27 7.4 5.0 3.6 1.3 3 4 4 16 0.2 0.2 0.2 0.2
l 12 8.9 3.3 3.4 2.4 1 2 3 6 1.1 1.1 1.2 1.2

47 6.9 4.0 3.2 1.4 9 7 10 26 0.4 0.4 0.4 0.4

Table 3: Calibration of ω for the DGM of SS.

Now we study the value of ϕ, the number of terminals appearing in the
computation of g(h). This number is computed as ϕ = bλnp c, where λ ∈
{1, 1.2, 1.5, 1.7, 2}. Again, we have constructed 1

6π solutions with methods
DGM1 to DGM6 for each instance of the training set, using only the construc-
tive phase of SS. The results for the different values of λ are shown in Table
4. It seems there is no a clear value of λ outperforming the others, hence, we
have compared the results using the Friedman test. The resulting probability
value of 0.1461 confirms that the compared values do not present significant
differences. Considering that the best average deviation was found for λ = 1,
ϕ = bnp c is the value we have finally chosen for the rest of the experiments.

Dev (%) # Best CPU

Size # inst 1 1.2 1.5 1.7 2 1 1.2 1.5 1.7 2 1 1.2 1.5 1.7 2

s 8 1.4 3.1 3.1 3.1 3.0 4 1 0 3 1 0.0 0.0 0.0 0.0 0.0
m 27 3.1 4.3 3.8 2.9 2.6 7 3 3 9 7 0.2 0.2 0.2 0.2 0.2
l 12 3.0 1.5 5.0 4.5 3.0 3 3 1 4 4 1.3 1.3 1.3 1.3 1.3

47 2.7 3.4 4.0 3.3 2.8 14 7 4 16 12 0.5 0.4 0.4 0.4 0.4

Table 4: Calibration of ϕ through λ for the DGM of SS.
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The value of β: In order to study the size of RefSet (β), we have constructed
0.15π solutions with DGM1 to DGM6 for each instance of the training set. The
remaining solutions up to π are obtained with DGM7. In this experiment, we
include in the algorithm all elements of scatter search except the local searches,
to evaluate the power of the combination method (SCM) without the effects
of the improvement procedures. As it can be seen in Table 5, the higher the
value of β, the better are the results. However, this obviously implies higher
computing times. We have compared the results using the Friedman test for
all the values of β tested. The resulting probability value of 0.0000 indicates
that the results obtained for the different values of β are significantly different.
An important issue is to know if a similar deviation to the one obtained with
β = 10 can be obtained in shorter times with a smaller size of β by using the
improvement methods. This issue is the subject of the next experiment.

Dev (%) # Best CPU

Size # inst 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10

s 8 1.0 0.0 0.0 0.0 0.0 0.0 5 8 8 8 8 8 0.1 0.1 0.2 0.2 0.4 0.4
m 27 3.7 2.0 1.3 0.5 0.4 0.1 3 6 7 8 13 20 1.2 2.1 3.1 4.5 6.2 8.1
l 12 4.4 1.9 1.9 0.3 0.2 0.1 0 2 2 4 8 7 4.9 8.0 12.1 15.7 23.3 29.0

47 3.4 1.6 1.2 0.4 0.3 0.1 8 16 17 20 29 35 2.0 3.3 4.9 6.6 9.6 12.2

Table 5: Calibration of β for the DGM of SS.

The effect of local searches: Now we study the effect of the improvement
procedures described in Subsection 2.6. Recall that two local searches have been
proposed, one for the hub selection (LSH) and another for the terminal alloca-
tions (LSA). Note that the standard SS design specifies to apply the improve-
ment method to all the solutions resulting from the combination method. Some
previous works have proposed a selective implementation of the local search pro-
cedures, reducing their application to only the best solutions obtained from the
combination method in each global iteration. Since, due to the combinatorial
nature of this problem, the local searches we propose are quite time consuming,
in this paper we go a step further and limit the application of the improvement
method to only the best solutions across all the global iterations. Specifically
we have designed our procedure in such a way it applies LSH and/or LSA only
to the solutions of RefSet just before the end of the algorithm. To evaluate the
effect of the proposed local searches, we have studied the following four variants:

A: LSH and LSA are applied to all the solutions.

B: LSH and LSA are applied to the best solution only.

C: LSA is applied to all the solutions.

D: LSA is applied to the best solution only.

In what follows we compare each variant above for each value of β (from 5
to 10). Table 6 shows the results obtained on the 47 instances of the training
set. Variants C and D exhibit the worst results in terms of the number of best
solutions found and the deviation with respect to the best solutions found in
this experiment. The results clearly indicate that applying LSH to the solutions

13
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in RefSet substantially improves their value (from 2.5% to 4.5% on average).
Variant A exhibits a larger number of best solutions found compared to variant
B, what confirms that applying LSH and LSA to all the solutions of RefSet
is useful to match the best known solutions. Nevertheless, note that this ex-
haustive application of the local search procedures to all the solutions in RefSet
results in much higher CPU times (from 11.15 to 31.45 seconds in variant A
versus 3.94 to 15.24 in variant B). Despite the fact that variant B is not able to
get some of the best known solutions, the average deviation is very small (from
0.1% to 0.2%). This indicates that, for short computing times, variant B obtains
very good solutions in terms of average deviation of the cost and, hence, is also
a very good option. Both variants, A and B, are the ones chosen to compare in
Subsection 3.3 the SS procedure with the previously proposed methods for the
UrApHMP.

Dev (%) # Best CPU

Var Size # inst 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10

s 8 0.0 0.0 0.0 0.0 0.0 0.0 7 8 8 8 8 8 0.2 0.2 0.3 0.4 0.5 0.6
A m 27 0.1 0.0 0.0 0.1 0.1 0.0 21 22 24 18 21 24 4.6 6.0 7.4 9.1 11.5 14.0

l 12 0.0 0.0 0.2 0.0 0.0 0.1 8 10 10 11 10 7 33.3 43.7 51.8 64.8 81.4 91.3
47 0.1 0.0 0.1 0.1 0.1 0.0 36 40 42 37 39 39 11.2 14.6 17.5 21.8 27.5 31.4

s 8 0.1 0.1 0.1 0.1 0.1 0.1 7 7 7 7 7 7 0.1 0.1 0.2 0.2 0.3 0.4
B m 27 0.2 0.2 0.2 0.3 0.2 0.0 14 16 18 12 13 19 2.0 2.7 3.9 5.1 6.7 8.3

l 12 0.1 0.1 0.4 0.2 0.1 0.2 6 5 5 3 6 5 10.8 13.8 17.7 25.5 34.4 40.7
47 0.2 0.2 0.2 0.2 0.1 0.1 27 28 30 22 26 31 3.9 5.1 6.8 9.4 12.7 15.2

s 8 3.0 2.7 2.7 2.4 2.4 2.4 0 0 0 0 0 0 0.1 0.1 0.2 0.3 0.4 0.5
C m 27 3.6 2.6 2.3 1.7 1.5 1.6 0 0 0 2 3 2 2.5 3.3 4.7 6.1 8.0 9.8

l 12 7.6 6.7 5.7 5.2 4.9 4.6 0 0 0 0 0 0 16.1 22.9 27.3 37.8 52.1 61.7
47 4.5 3.7 3.3 2.7 2.5 2.5 0 0 0 2 3 2 5.6 7.8 9.7 13.2 18.0 21.4

s 8 3.0 2.7 2.7 2.4 2.4 2.4 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.3 0.4
D m 27 3.6 2.6 2.3 1.7 1.5 1.6 0 0 0 2 3 2 1.6 2.3 3.4 4.7 6.4 8.0

l 12 7.6 6.7 5.7 5.2 4.9 4.6 0 0 0 0 0 0 7.6 11.0 14.5 21.7 30.9 37.7
47 4.5 3.7 3.3 2.7 2.5 2.5 0 0 0 2 3 2 2.9 4.1 5.7 8.3 11.6 14.3

Table 6: Computational results obtained with the four variants for the local
search procedures.

Regarding the β parameter, and considering only variants A and B, it can
be observed that the best results in terms of Dev are obtained with values β = 6
and β = 10. In order to compare both sets of results, we have performed two
well-known non-parametric tests for pairwise comparisons: the Wilcoxon test
and the Sign test. The Wilcoxon test answers the question: Do the two samples
(in our case, the solutions obtained with β = 6 and β = 10) represent two
different populations? The resulting probability value of 0.50 indicates that
there are not statistical differences, meaning that the compared values do not
come from different methods. The Sign test computes the number of instances
on which an algorithm beats the other one. The resulting probability value of
1.0 corroborates the previous result. As the CPU effort is clearly lower with
β = 6 than with β = 10, we select β = 6 from now on.

3.3 Comparing the proposed SS with previous methods

After the calibration process described before, we now compare the performance
of our SS algorithm versus the GRASP procedure proposed in [20], which as far
as we know is the best heuristic algorithm for the UrApHMP. All the methods
under comparison are run in the same computer.
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As a summary, our SS with PR procedure is set as follows: we generate 150
initial solutions; the size of the RCL when constructing solutions with methods
DGM1 to DGM6 is defined by min{n2 , 5p}; b

n
p c terminals are considered for

the evaluation of each hub candidate; the size of RefSet is set to six solutions;
and both local search procedures LSH and LSA are applied to the solutions of
RefSet, using variants A and B, just before the end of the algorithm.

The results with the two versions of the algorithm corresponding to variants
A and B, denoted SSA and SSB respectively, are shown in the Appendix and
summarized in Table 7. This table clearly shows that, except in the small
size instances, our SS procedures outperform the previously proposed GRASP
method. In particular, although SSA and SSB match 16 out of 30 small size
instances while GRASP is able to match 25, and their deviation is 0.10% versus
0.06% in GRASP, the CPU time used by the SS methods is much shorter.
Regarding the medium size instances, we can observe that the behavior of SSB

and GRASP are similar, although the former uses 1/5 of the GRASP computing
time. In these instances, SSA performs better than GRASP (108 best solutions
found and Dev 0.02% versus 79 best and Dev 0.18%) using less than 1/2 of
the GRASP computing time. Finally, in what refers to the large size instances,
both SS versions clearly outperform GRASP in terms of Dev (0.01% and 0.07%
versus 0.23% on average). Moreover, SSA is able to find a larger number of best
solutions (40 against 26 of SSB and 29 of GRASP, respectively), although at a
bigger computing time.

Dev (%) # Best CPU

Size n # inst SSA SSB GRASP SSA SSB GRASP SSA SSB GRASP

25 18 0.1 0.1 0.1 11 11 15 0.1 0.1 0.4
s 40 6 0.1 0.1 0.0 1 1 5 0.3 0.2 3.2

50 6 0.0 0.0 0.0 4 4 5 0.6 0.3 9.4
summary 30 0.1 0.1 0.1 16 16 25 0.2 0.1 2.8

60 21 0.0 0.2 0.4 19 11 5 2.7 1.4 4.6
65 19 0.0 0.5 0.3 12 7 10 3.3 1.6 6.4
70 19 0.0 0.2 0.3 14 10 15 4.2 2.0 11.0
75 18 0.0 0.2 0.0 9 9 15 4.5 2.1 9.2

m 80 18 0.0 0.3 0.1 13 8 8 6.5 3.0 14.9
85 18 0.0 0.1 0.1 13 12 9 6.7 3.0 15.6
90 21 0.0 0.1 0.1 15 12 8 8.0 3.6 22.9
95 21 0.0 0.0 0.1 13 10 9 9.8 4.1 24.3

summary 155 0.0 0.2 0.2 108 79 79 5.8 2.6 13.8

100 21 0.0 0.0 0.1 13 10 9 11.7 4.9 4.8
l 150 20 0.0 0.0 0.3 13 10 12 40.5 13.7 20.6

200 21 0.0 0.2 0.2 14 6 8 86.1 27.5 58.9
summary 62 0.0 0.1 0.2 40 26 29 46.2 15.4 28.2

Table 7: Computational results on the CAB and AP instances

In order to compare the results obtained with SSA, SSB , and GRASP from a
statistical point of view, we have performed first the non-parametric Friedman
test. The resulting probability value of 0.000 indicates that the results are
significantly different. The ranks values produced by this test are 1.77 for SSA,
2.09 for GRASP, and 2.15 for SSB . Then, we have performed the non-parametric
Wilcoxon and Sign tests for pairwise comparisons. When comparing SSA with
SSB and SSA with GRASP, the resulting probability values of 0.000 indicate that
the compared results come from different methods. When comparing SSB with
GRASP, the resulting probability of 0.53 indicates that there are no significant
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differences between the two methods regarding the results obtained.
To complement this analysis, we have carried out a final comparison on very

large size instances. Table 8 shows the result of SSA, SSB , and GRASP on
the 30 USA423 instances described in Subsection 3.1. Procedures SSA and SSB

have been run with the parameters specified at the beginning of this section,
while GRASP parameters’ values are specified in [20]. As shown in this table,
SSA and GRASP are run for the same running time. This table confirms the
superiority of SSA compared to GRASP, since the former exhibits an average
percent deviation of 0.3% and GRASP only achieves a 4.5%. The resulting
probability of 0.01 of the non-parametric pairwise Wilcoxon test confirms this
conclusion. Additionally, SSB is very competitive since it obtains slightly better
results than GRASP in shorter computing times.

Solution value Dev (%) CPU

p r χ α δ SSA SSB GRASP SSA SSB GRASP SSA SSB GRASP

3 2 0.1 0.07 0.09 33727412959 40576260062 43867093585 0.0 20.3 30.1 99.0 30.3 100
4 2 0.1 0.07 0.09 31555933763 31555933763 31540232352 0.0 0.0 0.0 169.1 47.0 170
4 3 0.1 0.07 0.09 31378516085 31378516085 41500538133 0.0 0.0 32.3 259.3 63.3 260
5 2 0.1 0.07 0.09 29361690398 29361690398 29428603263 0.0 0.0 0.2 227.4 73.9 230
5 3 0.1 0.07 0.09 29012500636 29012500636 29005134361 0.0 0.0 0.0 337.1 98.3 340
5 4 0.1 0.07 0.09 28993057993 28993057993 35768287695 0.0 0.0 23.4 443.5 145.5 445
6 2 0.1 0.07 0.09 28761333285 29648009936 29813468007 0.0 3.1 3.7 348.0 116.0 350
6 3 0.1 0.07 0.09 28140175764 28636803830 27999028069 0.5 2.3 0.0 474.8 118.9 475
6 4 0.1 0.07 0.09 27952573758 28449216973 27690657697 0.9 2.7 0.0 545.6 144.3 550
6 5 0.1 0.07 0.09 27937297018 27937297018 27688845102 0.9 0.9 0.0 660.6 212.5 665
7 2 0.1 0.07 0.09 28076360663 28076360663 30799812597 0.0 0.0 9.7 416.6 122.9 420
7 3 0.1 0.07 0.09 26692507210 27724315371 26751472180 0.0 3.9 0.2 561.4 179.4 565
7 4 0.1 0.07 0.09 26258768165 26258768165 27537936675 0.0 0.0 4.9 717.9 207.6 720
7 5 0.1 0.07 0.09 26255012774 26255012774 26989369645 0.0 0.0 2.8 944.1 247.9 945
7 6 0.1 0.07 0.09 26255010934 26255010934 26255010934 0.0 0.0 0.0 1115.1 309.1 1120
3 2 0.09 0.075 0.08 30176127832 36338055076 30176127832 0.0 20.4 0.0 112.1 34.2 115
4 2 0.09 0.075 0.08 28373652481 28373652481 30530137285 0.0 0.0 7.6 173.5 61.3 175
4 3 0.09 0.075 0.08 28125164296 28125164296 28125164296 0.0 0.0 0.0 297.7 70.3 300
5 2 0.09 0.075 0.08 26451114267 26451114267 26492913729 0.0 0.0 0.2 232.3 82.8 235
5 3 0.09 0.075 0.08 26088080203 26088080203 26079665626 0.0 0.0 0.0 360.6 111.8 365
5 4 0.09 0.075 0.08 26061806930 26061806930 27249791197 0.0 0.0 4.6 471.3 138.6 475
6 2 0.09 0.075 0.08 26525421601 26525421601 26016295685 2.0 2.0 0.0 318.7 118.7 320
6 3 0.09 0.075 0.08 24971043351 25449149342 25788838779 0.0 1.9 3.3 497.9 155.3 500
6 4 0.09 0.075 0.08 25265904571 25265904571 24828738291 1.8 1.8 0.0 631.6 203.9 635
6 5 0.09 0.075 0.08 25243965930 25243965930 25385565293 0.0 0.0 0.6 853.8 264.2 855
7 2 0.09 0.075 0.08 25906507439 29264746888 26592882079 0.0 13.0 2.6 413.9 130.5 415
7 3 0.09 0.075 0.08 24784471473 25578317735 24066130754 3.0 6.3 0.0 636.6 192.6 640
7 4 0.09 0.075 0.08 23586398612 24971605186 23619010159 0.0 5.9 0.1 765.5 220.9 770
7 5 0.09 0.075 0.08 23577554532 24905755621 24220406570 0.0 5.6 2.7 1085.47 326.35 1090
7 6 0.09 0.075 0.08 23577543900 24887707334 25017677542 0.0 5.6 6.1 1356.71 500.71 1360

0.3 3.2 4.5 517.6 157.6 520.1

Table 8: Computational results on the USA423 instances

As a final test, we compare the performance of SSA and SSB with the results
of the evolutionary approach recently proposed by Milanović [17] for the multiple
version of the p-hub median problem. The proposed SS procedures are applied
on 40 AP instances of different sizes, where r = p. Table 9 shows, in each row,
the size and the value of p on each instance, and, for each method, the value
of the objective function, the average percentage deviation with respect to the
best known solution, and the CPU time. Results for the evolutionary method
are directly taken from [17], and therefore running times are only indicative and
cannot be directly compared with the SS computing times.

Results in Table 9 clearly show that both SS procedures are able to achieve
state-of-the-art results for the multiple allocation problem, with a similar qual-
ity to those reported with the evolutionary method in [17], even though this
evolutionary method is specifically designed for this particular version of the
problem.
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Solution value Dev (%) CPU

n p SSA SSB Evo SSA SSB Evo SSA SSB Evo

2 173415.5 173415.5 173415.5 0.0 0.0 0.0 0.1 0.0 0.1
3 155458.1 155458.1 155458.1 0.0 0.0 0.0 0.2 0.1 0.0
4 140682.2 140682.2 140682.2 0.0 0.0 0.0 0.4 0.2 0.4
5 130384.1 130384.1 130384.1 0.0 0.0 0.0 0.6 0.4 0.5

40 6 122170.2 122170.2 122170.2 0.0 0.0 0.0 1.1 0.6 5.9
7 116035.9 116035.9 116035.9 0.0 0.0 0.0 1.5 0.9 7.1
8 109971.1 109971.1 109971.1 0.0 0.0 0.0 2.1 1.5 8.4
9 104211.5 104211.5 104211.5 0.0 0.0 0.0 2.6 1.6 9.6
10 99451.8 99451.8 99451.8 0.0 0.0 0.0 4.2 2.6 12.5

2 174390.6 174390.6 174390.6 0.0 0.0 0.0 0.1 0.1 0.1
3 156014.6 156014.6 156014.5 0.0 0.0 0.0 0.3 0.1 0.3
4 141154.3 141154.3 141154.3 0.0 0.0 0.0 0.7 0.3 0.6
5 129414.2 129507.4 129414.2 0.0 0.1 0.0 1.0 0.5 0.8

50 6 121673.6 121673.6 121673.6 0.0 0.0 0.0 2.2 1.3 8.5
7 115913.4 115913.4 115911.6 0.0 0.0 0.0 3.0 1.5 10.3
8 111139.4 111139.4 109927.6 1.1 1.1 0.0 3.9 2.4 12.5
9 104968.8 104968.8 104968.8 0.0 0.0 0.0 6.7 3.9 15.2
10 100509.3 100645.4 100509.2 0.0 0.1 0.0 9.7 6.3 18.0

2 176246.8 176246.8 176246.8 0.0 0.0 0.0 0.7 0.3 5.1
3 157870.9 157870.9 157870.9 0.0 0.0 0.0 2.2 0.8 13.3
4 143004.4 143086.4 143004.3 0.0 0.1 0.0 3.8 1.3 18.5
5 133483.0 133483.0 133483.0 0.0 0.0 0.0 7.6 2.6 23.8
6 126107.9 126107.9 126107.9 0.0 0.0 0.0 16.0 6.3 31.3

100 7 120164.6 120164.6 120164.6 0.0 0.0 0.0 24.5 10.9 41.3
8 115144.7 115144.7 114295.9 0.7 0.7 0.0 25.7 14.4 57.0
9 109449.1 109449.1 109449.1 0.0 0.0 0.0 38.7 20.2 68.7
10 104800.8 104800.8 104794.3 0.0 0.0 0.0 71.6 45.3 87.2
15 88882.5 89273.6 88882.5 0.0 0.4 0.0 226.9 148.0 167.1
20 79453.7 79453.7 79191.6 0.3 0.3 0.0 564.9 385.1 233.9

2 178094.0 178094.0 178094.0 0.0 0.0 0.0 5.0 1.9 44.2
3 159725.1 159725.1 159725.1 0.0 0.0 0.0 13.8 5.0 73.9
4 144508.2 144508.2 144508.2 0.0 0.0 0.0 36.1 11.9 95.5
5 136761.8 136761.8 136761.8 0.0 0.0 0.0 56.2 16.8 156.2
6 129556.5 130739.0 129556.5 0.0 0.9 0.0 124.7 24.6 185.7

200 7 123608.9 124132.2 123608.9 0.0 0.4 0.0 153.6 51.0 226.3
8 117879.5 117879.5 117710.0 0.1 0.1 0.0 231.8 85.9 285.0
9 112374.5 112374.5 112374.5 0.0 0.0 0.0 389.1 123.0 366.9
10 107846.8 108913.6 107846.8 0.0 1.0 0.0 485.7 201.3 432.7
15 92806.9 92920.7 92669.6 0.1 0.3 0.0 1566.4 965.0 816.4
20 83385.9 83385.9 83385.9 0.0 0.0 0.0 3857.5 2422.7 1130.0

0.1 0.1 0.0 198.6 114.2 116.8

Table 9: Computational results on AP instances for the multiple allocation
version
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4 Conclusions

In this article, we have proposed a new metaheuristic algorithm based on scatter
search for the uncapacitated r-allocation p-hub median problem. This problem
was introduced by Yaman [24] as a generalization of the classical single and
multiple p-hub median problem. The proposed scatter search procedure incor-
porates several designs for the diversification generator method, a path-relinking
procedure for combining solutions, and two local search procedures as the im-
provement method. The computational experiments on a large set of instances
from the literature show that our algorithm is able to find high-quality solutions
in short computing times, and outperforms a previously published GRASP pro-
cedure.

It is worth mentioning that our scatter search design only applies the im-
provement method at the end of the search. This selective application reduces
the CPU time without sacrifying the final solution quality, making our method
competitive in both quality of solutions and speed.

We hope that the good solutions obtained in this version of a hub location
problem trigger the interest of researchers to apply the scatter search method-
ology to other problems in this family.
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Appendix

Medium-sized hard instances

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP60 3 2 3 0.75 2 0.0 0.0 1.3 0.41 0.17 0.30 157493.38
AP60 4 2 3 0.75 2 0.0 0.3 1.8 0.62 0.27 0.48 142412.35
AP60 4 3 3 0.75 2 0.0 1.7 0.1 0.87 0.39 1.24 142268.41
AP60 5 2 3 0.75 2 0.0 0.2 0.0 0.90 0.44 1.06 130186.83
AP60 5 3 3 0.75 2 0.0 0.0 0.2 1.19 0.57 2.18 129680.76
AP60 5 4 3 0.75 2 0.0 0.0 0.1 1.52 0.72 2.86 129652.93
AP60 6 2 3 0.75 2 0.0 0.0 0.0 1.38 0.70 1.52 122365.30
AP60 6 3 3 0.75 2 0.0 0.3 0.3 1.93 0.96 1.63 122066.63
AP60 6 4 3 0.75 2 0.0 0.3 0.3 2.54 1.22 4.51 121979.40
AP60 6 5 3 0.75 2 0.0 0.3 0.0 3.11 1.51 4.55 121979.40
AP60 7 2 3 0.75 2 0.0 0.0 0.1 1.57 0.96 2.76 116380.78
AP60 7 3 3 0.75 2 0.0 0.2 0.5 2.45 1.24 3.22 116003.39
AP60 7 4 3 0.75 2 0.0 0.1 0.1 3.21 1.43 5.09 115959.96
AP60 7 5 3 0.75 2 0.0 0.1 0.1 4.20 1.89 7.31 115951.78
AP60 7 6 3 0.75 2 0.0 0.0 0.1 4.64 2.10 7.75 115951.78
AP60 8 2 3 0.75 2 0.0 0.0 1.1 2.05 1.30 2.98 110041.02
AP60 8 3 3 0.75 2 0.0 0.0 0.4 2.96 1.49 6.40 109888.11
AP60 8 4 3 0.75 2 0.0 0.0 0.5 3.65 2.06 6.82 109668.92
AP60 8 5 3 0.75 2 0.0 0.0 1.2 4.61 2.53 6.53 109651.38
AP60 8 6 3 0.75 2 0.0 0.0 0.0 6.73 3.62 11.39 109651.38
AP60 8 7 3 0.75 2 0.0 0.0 0.0 6.71 3.71 15.80 109651.38
AP65 3 2 3 0.75 2 0.0 2.1 0.0 0.43 0.21 0.69 157509.77
AP65 4 2 3 0.75 2 0.1 0.7 0.0 0.82 0.40 0.82 142702.65
AP65 4 3 3 0.75 2 0.0 0.0 0.3 0.94 0.43 1.18 142632.42
AP65 5 2 3 0.75 2 0.0 0.0 0.0 1.09 0.46 1.51 130848.81
AP65 5 3 3 0.75 2 0.0 0.0 0.0 1.47 0.57 4.16 130127.46
AP65 5 4 3 0.75 2 0.0 0.0 0.0 1.88 0.73 3.03 130094.52
AP65 6 2 3 0.75 2 0.0 0.0 1.7 1.75 0.92 1.81 123292.08
AP65 6 3 3 0.75 2 0.0 1.5 0.0 2.14 1.02 4.09 122959.75
AP65 6 4 3 0.75 2 0.0 1.4 0.1 3.09 1.31 4.40 122871.81
AP65 6 5 3 0.75 2 0.0 1.4 0.1 3.79 1.64 6.62 122871.81
AP65 7 2 3 0.75 2 0.1 0.1 0.0 2.58 1.18 2.76 116951.08
AP65 7 3 3 0.75 2 0.2 0.2 0.0 3.17 1.55 6.52 116665.46
AP65 7 4 3 0.75 2 0.0 0.0 0.8 4.21 1.96 8.41 116601.77
AP65 7 5 3 0.75 2 0.0 0.0 0.9 5.53 2.45 9.19 116590.58
AP65 7 6 3 0.75 2 0.0 0.0 0.9 6.48 2.99 14.49 116590.58
AP65 8 2 3 0.75 2 0.0 0.0 0.0 2.83 1.51 3.85 111622.72
AP65 8 4 3 0.75 2 0.0 1.0 0.0 4.43 2.41 12.57 111239.47
AP65 8 6 3 0.75 2 0.0 0.0 0.1 7.59 4.08 13.18 111231.25
AP65 8 7 3 0.75 2 0.0 1.0 0.1 9.41 4.30 22.31 111231.25
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Medium-sized hard instances

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP70 3 2 3 0.75 2 0.0 0.0 2.0 0.62 0.26 0.56 158038.30
AP70 4 2 3 0.75 2 0.1 0.1 0.0 0.99 0.43 1.95 142720.05
AP70 4 3 3 0.75 2 0.0 0.0 1.0 1.22 0.53 1.70 142626.15
AP70 5 2 3 0.75 2 0.2 0.2 0.0 1.58 0.65 2.51 132562.81
AP70 5 3 3 0.75 2 0.0 0.0 0.0 1.96 0.76 4.56 132100.10
AP70 5 4 3 0.75 2 0.0 0.0 0.0 2.58 0.97 6.15 132055.96
AP70 5 3 3 0.75 2 0.0 0.0 0.0 3.40 1.59 6.29 123645.87
AP70 5 4 3 0.75 2 0.0 0.0 0.0 3.93 2.03 5.49 123601.74
AP70 5 5 3 0.75 2 0.0 0.0 0.0 4.82 2.54 7.18 123601.74
AP70 7 2 3 0.75 2 0.2 0.2 0.0 2.42 1.35 6.07 117996.74
AP70 7 3 3 0.75 2 0.0 0.0 0.0 3.32 1.75 11.29 117525.65
AP70 7 4 3 0.75 2 0.0 0.0 0.0 4.54 2.06 11.29 117485.79
AP70 7 5 3 0.75 2 0.0 0.0 0.0 5.65 2.71 12.06 117485.26
AP70 7 6 3 0.75 2 0.0 0.0 0.0 6.36 3.25 15.83 117485.26
AP70 7 3 3 0.75 2 0.0 0.7 0.0 4.19 1.94 8.58 112134.88
AP70 7 4 3 0.75 2 0.0 0.6 0.6 5.78 2.63 16.02 112098.09
AP70 7 5 3 0.75 2 0.0 0.6 0.0 7.23 3.11 16.82 112082.12
AP70 7 6 3 0.75 2 0.0 0.6 0.0 8.96 4.23 24.68 112082.12
AP70 7 7 3 0.75 2 0.0 0.6 1.1 10.24 5.04 49.23 112082.12
AP75 3 2 3 0.75 2 0.1 0.1 0.0 0.76 0.31 0.58 158171.28
AP75 4 2 3 0.75 2 0.0 0.0 0.0 1.45 0.58 2.14 142854.97
AP75 4 3 3 0.75 2 0.1 1.1 0.0 1.75 0.66 2.14 142668.41
AP75 5 2 3 0.75 2 0.0 0.0 0.0 2.00 0.79 3.37 132822.87
AP75 5 3 3 0.75 2 0.0 0.0 0.0 2.39 0.92 4.66 132387.75
AP75 5 4 3 0.75 2 0.0 0.0 0.0 3.10 1.20 7.07 132365.64
AP75 6 2 3 0.75 2 0.1 0.1 0.0 2.43 1.30 3.95 125657.15
AP75 6 3 3 0.75 2 0.0 0.0 0.0 3.32 1.59 7.01 125224.59
AP75 6 4 3 0.75 2 0.0 0.0 0.5 4.66 2.04 7.63 125184.65
AP75 6 5 3 0.75 2 0.0 0.0 0.1 5.82 2.55 14.15 125184.65
AP75 7 2 3 0.75 2 0.0 0.8 0.0 3.47 1.67 7.39 119237.88
AP75 7 3 3 0.75 2 0.0 0.0 0.0 5.08 2.28 10.08 118808.16
AP75 7 4 3 0.75 2 0.0 0.0 0.0 6.25 2.91 15.12 118786.38
AP75 7 5 3 0.75 2 0.0 0.0 0.0 7.95 3.65 13.32 118786.38
AP75 7 6 3 0.75 2 0.0 0.0 0.0 9.32 4.47 15.73 118786.38
AP75 8 2 3 0.75 2 0.0 0.0 0.2 3.68 2.19 4.18 114690.98
AP75 8 4 3 0.75 2 0.0 0.6 0.0 6.60 3.28 22.15 113400.50
AP75 8 7 3 0.75 2 0.0 0.0 0.0 11.16 5.56 24.54 114086.67
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Medium-sized hard instances

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP80 3 2 3 0.75 2 0.1 0.1 0.0 0.92 0.37 1.44 158202.73
AP80 3 3 3 0.75 2 0.0 0.0 0.0 1.95 0.70 2.12 143102.38
AP80 5 2 3 0.75 2 0.0 0.0 0.0 2.08 0.89 3.17 132915.50
AP80 5 3 3 0.75 2 0.0 0.0 0.0 2.82 1.14 4.85 132446.27
AP80 5 4 3 0.75 2 0.0 0.0 0.0 3.63 1.44 6.71 132424.08
AP80 6 2 3 0.75 2 0.1 0.1 0.0 3.25 1.60 5.83 125743.83
AP80 6 3 3 0.75 2 0.0 0.0 0.0 4.27 2.03 8.36 125284.10
AP80 6 4 3 0.75 2 0.0 0.0 0.1 5.66 2.64 11.12 125258.38
AP80 6 5 3 0.75 2 0.0 0.0 0.1 7.18 3.31 9.75 125258.38
AP80 7 2 3 0.75 2 0.0 0.6 0.6 4.02 2.06 4.35 119597.86
AP80 7 3 3 0.75 2 0.0 0.0 0.0 5.87 2.61 12.48 119132.73
AP80 7 4 3 0.75 2 0.0 0.0 0.8 7.61 3.52 17.05 119112.52
AP80 7 5 3 0.75 2 0.0 0.0 0.1 9.90 4.55 25.55 119105.55
AP80 7 6 3 0.75 2 0.0 0.0 0.1 11.76 5.43 21.25 119105.55
AP80 7 3 3 0.75 2 0.0 1.9 0.6 6.27 3.35 19.47 113787.42
AP80 7 5 3 0.75 2 0.0 1.2 0.1 10.58 5.48 26.02 114404.95
AP80 7 6 3 0.75 2 0.0 1.2 0.4 13.59 6.03 32.28 114404.95
AP80 7 7 3 0.75 2 0.0 1.2 0.0 15.65 7.34 55.93 114404.95
AP85 3 2 3 0.75 2 0.0 0.0 0.0 1.35 0.45 1.62 158274.33
AP85 4 2 3 0.75 2 0.0 0.1 0.0 1.76 0.73 3.11 142919.25
AP85 4 3 3 0.75 2 0.0 0.0 0.0 2.36 0.95 3.96 142822.33
AP85 5 2 3 0.75 2 0.2 0.2 0.0 2.77 1.34 6.08 133552.92
AP85 5 3 3 0.75 2 0.0 0.0 0.0 3.71 1.67 6.13 133110.33
AP85 5 4 3 0.75 2 0.0 0.0 0.0 4.63 2.16 10.08 133081.65
AP85 6 2 3 0.75 2 0.0 0.0 0.0 4.86 1.72 5.82 126462.13
AP85 6 3 3 0.75 2 0.0 0.0 0.4 5.18 2.33 7.05 125925.59
AP85 6 4 3 0.75 2 0.0 0.0 0.1 6.20 2.22 18.55 125849.01
AP85 6 5 3 0.75 2 0.0 0.0 0.1 8.59 3.74 18.91 125849.01
AP85 7 2 3 0.75 2 0.0 0.3 0.0 4.55 2.32 6.68 120735.00
AP85 7 3 3 0.75 2 0.1 0.1 0.0 6.02 2.80 15.98 119872.79
AP85 7 4 3 0.75 2 0.0 0.0 0.6 8.04 3.56 15.41 119852.39
AP85 7 5 3 0.75 2 0.0 0.0 0.0 10.17 4.47 31.81 119837.13
AP85 7 6 3 0.75 2 0.0 0.0 0.1 12.01 5.40 38.39 119837.13
AP85 8 2 3 0.75 2 0.2 0.7 0.0 5.77 3.02 12.15 114508.00
AP85 8 5 3 0.75 2 0.0 0.0 0.1 14.49 6.68 26.24 114966.55
AP85 8 6 3 0.75 2 0.0 0.0 0.1 17.65 8.30 53.54 114966.55
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Medium-sized hard instances

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP90 3 2 3 0.75 2 0.0 0.0 0.0 1.28 0.44 1.94 157612.16
AP90 4 2 3 0.75 2 0.1 0.1 0.0 1.83 0.76 2.92 142465.46
AP90 4 3 3 0.75 2 0.0 0.0 0.0 2.65 1.07 7.77 142342.85
AP90 5 2 3 0.75 2 0.1 0.1 0.0 3.79 1.47 5.43 132771.23
AP90 5 3 3 0.75 2 0.0 0.0 0.0 4.35 1.79 8.05 132486.47
AP90 5 4 3 0.75 2 0.0 0.0 0.0 5.62 2.28 11.28 132422.07
AP90 6 2 3 0.75 2 0.1 0.1 0.0 3.86 1.74 9.31 125465.09
AP90 6 3 3 0.75 2 0.0 0.0 0.1 5.47 2.25 11.34 125176.85
AP90 6 4 3 0.75 2 0.0 0.0 0.1 6.51 2.65 18.00 125055.28
AP90 6 5 3 0.75 2 0.0 0.0 0.1 7.90 3.27 17.64 125055.28
AP90 7 2 3 0.75 2 0.1 0.1 0.0 5.72 2.72 10.30 119666.91
AP90 7 3 3 0.75 2 0.0 0.0 0.4 7.55 3.51 16.32 119379.94
AP90 7 4 3 0.75 2 0.0 0.0 0.2 10.04 4.48 41.87 119198.08
AP90 7 5 3 0.75 2 0.0 0.0 0.1 12.39 5.28 36.33 119190.81
AP90 7 6 3 0.75 2 0.0 0.0 0.1 14.94 6.84 58.77 119190.81
AP90 8 2 3 0.75 2 0.0 0.0 0.0 6.07 3.44 10.55 114099.35
AP90 8 3 3 0.75 2 0.0 0.0 1.1 8.03 4.17 27.21 113872.57
AP90 8 4 3 0.75 2 0.0 0.0 0.2 11.06 5.07 19.20 113776.78
AP90 8 5 3 0.75 2 0.0 0.0 0.4 13.60 6.36 38.81 113732.39
AP90 8 6 3 0.75 2 0.0 0.0 0.1 16.91 7.47 47.03 113732.39
AP90 8 7 3 0.75 2 0.0 0.8 0.1 18.50 9.25 81.84 113732.39
AP95 3 2 3 0.75 2 0.0 0.0 0.0 1.67 0.53 1.50 157684.46
AP95 4 2 3 0.75 2 0.1 0.1 0.0 2.17 0.86 3.60 142538.31
AP95 4 3 3 0.75 2 0.1 0.1 0.0 2.55 1.06 5.49 142457.05
AP95 5 2 3 0.75 2 0.1 0.1 0.0 3.51 1.38 6.49 133014.42
AP95 5 3 3 0.75 2 0.0 0.0 0.0 4.79 1.76 14.01 132763.09
AP95 5 4 3 0.75 2 0.0 0.0 0.0 6.19 2.27 12.57 132686.94
AP95 6 2 3 0.75 2 0.0 0.0 0.0 5.28 1.99 6.35 125700.19
AP95 6 3 3 0.75 2 0.0 0.0 0.1 6.59 2.58 11.73 125435.39
AP95 6 4 3 0.75 2 0.0 0.0 0.1 8.63 3.22 24.37 125311.86
AP95 6 5 3 0.75 2 0.0 0.0 0.1 10.54 3.98 17.80 125311.86
AP95 7 2 3 0.75 2 0.0 0.1 0.0 6.38 3.23 11.90 119897.57
AP95 7 3 3 0.75 2 0.0 0.0 0.1 8.06 3.81 20.17 119628.97
AP95 7 4 3 0.75 2 0.0 0.2 0.0 10.96 4.70 30.11 119422.38
AP95 7 5 3 0.75 2 0.0 0.1 0.1 13.88 5.88 37.85 119422.38
AP95 7 6 3 0.75 2 0.0 0.1 0.1 16.18 7.11 36.05 119422.38
AP95 8 2 3 0.75 2 0.0 0.0 0.4 8.32 4.22 15.76 114236.69
AP95 8 3 3 0.75 2 0.0 0.0 0.0 10.01 4.52 25.82 114351.51
AP95 8 4 3 0.75 2 0.0 0.0 0.4 14.33 5.87 37.18 113900.72
AP95 8 5 3 0.75 2 0.0 0.0 0.0 18.42 7.34 53.85 113890.35
AP95 8 6 3 0.75 2 0.0 0.0 1.0 21.56 8.83 85.85 113868.30
AP95 8 7 3 0.75 2 0.0 0.0 0.0 25.07 10.85 51.21 113868.30
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Large-sized hard instances

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP100 3 2 3 0.75 2 0.0 0.0 0.0 1.99 0.60 0.45 158043.08
AP100 4 2 3 0.75 2 0.0 0.0 0.0 2.78 1.01 1.12 143208.40
AP100 4 3 3 0.75 2 0.0 0.0 0.0 4.00 1.41 1.21 143086.43
AP100 5 2 3 0.75 2 0.1 0.1 0.0 4.24 1.74 2.11 133815.35
AP100 5 3 3 0.75 2 0.0 0.0 0.0 5.73 2.21 1.53 133569.22
AP100 5 4 3 0.75 2 0.0 0.0 0.0 6.91 2.83 1.57 133483.00
AP100 6 2 3 0.75 2 0.1 0.1 0.0 6.30 2.45 3.36 126523.14
AP100 6 3 3 0.75 2 0.0 0.0 0.0 8.60 3.18 2.46 126228.60
AP100 6 4 3 0.75 2 0.0 0.0 0.1 11.44 4.11 5.26 126107.94
AP100 6 5 3 0.75 2 0.0 0.0 0.1 14.13 5.17 3.59 126107.94
AP100 7 2 3 0.75 2 0.1 0.1 0.0 7.60 3.40 4.14 120697.19
AP100 7 3 3 0.75 2 0.0 0.0 0.0 10.37 4.40 6.02 120471.47
AP100 7 4 3 0.75 2 0.0 0.2 0.2 13.67 5.55 6.62 120187.66
AP100 7 5 3 0.75 2 0.0 0.0 0.2 18.03 7.21 5.34 120164.59
AP100 7 6 3 0.75 2 0.0 0.1 0.1 19.49 9.52 8.97 120234.75
AP100 8 2 3 0.75 2 0.0 0.1 0.0 9.73 4.63 3.18 114709.50
AP100 8 3 3 0.75 2 0.1 0.1 0.0 11.67 5.23 6.27 114439.93
AP100 8 4 3 0.75 2 0.0 0.0 0.1 15.68 6.68 9.50 114315.28
AP100 8 5 3 0.75 2 0.0 0.0 1.2 20.19 8.42 7.40 114298.12
AP100 8 6 3 0.75 2 0.0 0.0 1.1 24.68 10.28 7.98 114296.13
AP100 8 7 3 0.75 2 0.0 0.0 0.0 27.87 12.15 12.93 114296.13
AP150 3 2 3 0.75 2 0.0 0.0 0.0 4.95 1.79 1.68 158742.05
AP150 4 2 3 0.75 2 0.1 0.1 0.0 8.66 3.33 3.57 143811.40
AP150 4 3 3 0.75 2 0.0 0.0 0.0 10.70 3.82 2.94 143696.46
AP150 5 2 3 0.75 2 0.0 0.0 1.6 13.06 5.02 6.93 134590.93
AP150 5 3 3 0.75 2 0.0 0.1 1.8 17.36 5.93 9.85 134053.76
AP150 5 4 3 0.75 2 0.0 0.0 0.0 20.77 6.89 9.59 134022.43
AP150 6 2 3 0.75 2 0.1 0.1 0.0 19.62 6.95 8.39 127219.49
AP150 6 3 3 0.75 2 0.0 0.0 0.0 25.01 8.73 14.03 126935.58
AP150 6 4 3 0.75 2 0.0 0.0 0.0 29.01 10.38 11.20 126871.13
AP150 6 5 3 0.75 2 0.0 0.0 0.0 39.97 13.43 16.45 126871.13
AP150 7 2 3 0.75 2 0.1 0.1 0.0 27.73 9.20 18.00 121297.48
AP150 7 3 3 0.75 2 0.0 0.0 0.2 33.58 11.11 26.64 121101.93
AP150 7 4 3 0.75 2 0.0 0.0 0.0 48.84 15.48 19.35 120922.63
AP150 7 5 3 0.75 2 0.0 0.0 0.3 58.01 17.32 21.78 120965.44
AP150 7 6 3 0.75 2 0.0 0.0 0.0 68.40 20.69 27.71 120965.44
AP150 8 2 3 0.75 2 0.0 0.0 1.0 33.95 13.09 20.70 115486.83
AP150 8 3 3 0.75 2 0.0 0.0 0.6 45.65 16.29 33.58 115609.81
AP150 8 5 3 0.75 2 0.0 0.0 0.0 83.73 28.37 43.13 115108.06
AP150 8 6 3 0.75 2 0.0 0.0 0.0 102.16 34.79 61.19 115105.52
AP150 8 7 3 0.75 2 0.0 0.0 0.7 118.18 41.23 55.18 115105.52
AP200 3 2 3 0.75 2 0.0 0.0 0.0 10.93 3.96 5.67 159987.41
AP200 4 2 3 0.75 2 0.0 0.0 0.0 24.46 7.55 11.99 144755.16
AP200 4 3 3 0.75 2 0.0 0.0 0.0 33.80 9.03 12.00 144611.12
AP200 5 2 3 0.75 2 0.0 0.0 0.0 36.78 10.49 21.50 137408.43
AP200 5 3 3 0.75 2 0.0 0.4 0.3 43.53 11.50 22.56 136914.54
AP200 5 4 3 0.75 2 0.0 0.2 0.2 64.65 16.60 33.38 136777.91
AP200 6 2 3 0.75 2 0.0 0.0 0.0 38.48 14.40 37.03 130235.76
AP200 6 3 3 0.75 2 0.0 1.2 0.0 50.76 16.11 44.05 129883.62
AP200 6 4 3 0.75 2 0.0 0.0 0.0 76.71 23.27 54.33 129817.47
AP200 6 5 3 0.75 2 0.0 0.0 1.2 93.25 28.60 30.80 129817.47
AP200 7 2 3 0.75 2 0.0 0.2 0.6 57.63 18.31 49.65 123989.21
AP200 7 3 3 0.75 2 0.1 0.2 0.0 78.94 23.21 56.82 123670.80
AP200 7 4 3 0.75 2 0.0 0.2 0.2 110.69 30.88 73.03 123661.35
AP200 7 5 3 0.75 2 0.0 0.2 0.2 139.14 38.47 89.25 123658.33
AP200 7 6 3 0.75 2 0.0 0.2 0.0 163.59 45.90 63.66 123658.33
AP200 8 2 3 0.75 2 0.0 0.1 0.5 89.36 33.12 61.56 118125.17
AP200 8 3 3 0.75 2 0.0 0.2 0.5 106.03 41.38 79.85 117828.62
AP200 8 4 3 0.75 2 0.0 0.0 0.0 104.03 36.42 136.11 117719.51
AP200 8 5 3 0.75 2 0.0 0.0 0.4 142.68 46.31 121.85 117709.98
AP200 8 6 3 0.75 2 0.0 0.0 0.6 162.28 56.19 118.79 117709.98
AP200 8 7 3 0.75 2 0.0 0.0 0.4 180.24 65.34 112.22 117709.98
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