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Abstract 

Hub networks are commonly used in telecommunications and logistics to connect origins to 

destinations in situations where a direct connection between each origin-destination (o-d) 

pair is impractical or too costly. Hubs serve as switching points to consolidate and route 

traffic in order to realize economies of scale. The main decisions associated with hub-

network problems include 1) determining the number of hubs (𝑝), 2) selecting the 𝑝 nodes 

in the network that will serve as hubs, 3) allocating non-hub nodes (terminals) to up to 𝑟 

hubs, and 4) routing the pairwise o-d traffic. Typically, hub location problems include all 

four decisions while hub allocation problems assume that the value of 𝑝 is given. In the hub 

median problem the objective is to minimize total cost while in the hub center problem the 

objective is to minimize the maximum cost between origin-destination pairs. We study the 

uncapacitated (i.e., links with unlimited capacity) 𝑟-allocation 𝑝-hub equitable center 

problem (with 1 < 𝑟 < 𝑝) and explore alternative models and solution procedures. 
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1. Introduction 

Hub-and-spoke architectures (aka hub networks) are frequently used in transportation, 

telecommunications, and computer networks to route traffic between origins and destinations. In hub 

networks, the number of routes used to connect a network with 𝑛 nodes is linear with respect to 𝑛, 

resulting in a more efficient use of transportation or communication resources when compared to a 

point-to-point network for which the number of routes is quadratic with respect to 𝑛. Hub networks use 

transshipment, consolidation, and sorting facilities, generically known as hubs, to connect a large 

number of origin-destination (o-d) pairs and achieve cost efficiencies due to: 1) a reduced number of 

transportation/communication links, 2) centralized handling and sorting operations, and 3) economies 

of scale through flow consolidation. Good surveys on this topic are the articles by Alumur and Kara 

(2008), Campbell and O’Kelly (2012) and Farahani et al. (2013). 

There are four main decisions associated with the design of a hub network: 1) determining the value 

of 𝑝, the number of hubs, 2) selecting the 𝑝 nodes that will be designated as hubs, 3) assigning the non-

hub nodes (terminals) to 𝑟 hubs, 4) routing the traffic through the network to satisfy the o-d pairwise 

demands. In transportation and telecommunication applications, the traffic may consist of packages, 

passengers, consumer goods, or electronic data. In hub networks, some direct communication may 

exist, for instance, when a hub happens to be the destination for a particular demand. In general, 

however, it is not expected that an o-d demand will reach its destination directly, i.e., without going 

through at least one hub. Empirical evidence shows that it is neither practical nor economically viable to 

connect all origins and destinations of a network directly, e.g., airlines do not use direct flights to move 

all of their passengers or internet providers do not physically connect every pair of computers for data 

transmission. Instead, depending on the industry, hub networks provide services such as: 

 Connecting passengers from multiple origins to multiple destinations through hub 

airports like Atlanta and Frankfurt. 

 Sending express packages via consolidating and sorting facilities (e.g., Memphis for 

FedEx). 

 Enabling data transmission via switches, concentrators, and routers. 

The hub network literature is divided into two main areas, location and allocation problems. In general, 

location problems include all four aforementioned decisions. Allocation problems typically assume that 

the first decision has been made and therefore operate with a fixed value of 𝑝. Location and allocation 

problems typically assume that hubs are connected by a complete network and that terminals are not 

connected directly. Another key distinction among hub network design problem relates to the functional 

form of the objective to be optimized: 

 Median: Minimize the total cost 

 Center: Minimize the maximum cost between origin-destination pairs 

 Covering: Minimize the cost of covering the demand 

Campbell (1994) presents several mixed-integer programming formulations for two special cases of 

these problems, one where 𝑟 = 1 (single allocation problem) and the other where 𝑟 = 𝑝 (multiple 
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allocation problem). Campbell recognized the advantage of the multiple allocation model but at the 

same time realized that there is a cost associated with connecting a terminal to all hubs. He, therefore, 

proposed mixed-integer programming models with minimum flow thresholds for traffic between 

terminals and hubs and a fixed cost for using spoke links. Fixed costs are also charged to hubs in the 

covering models. Ignoring the spoke-link fixed costs, the 𝑝-hub median model with flow thresholds can 

be transformed to the single allocation 𝑝-hub median problem setting the flow threshold between a 

terminal and a hub equal to the terminal demand. Likewise, the model can be transformed to the 

multiple allocation problem by setting the flow thresholds to zero. Instead of adding fixed costs or flow 

thresholds, Yaman (2011) introduced models for which 1 < 𝑟 < 𝑝. In particular, she defined the 

uncapacitated 𝑟-allocation 𝑝-hub median problem (UrApHMP) as follows: “Given a set of nodes with 

pairwise demands, choose 𝑝 hubs and allocate each node to at most 𝑟 hubs to minimize the total 

routing cost.”  

The following notation is used in the formulation below: 

 𝑉 is the set of nodes in the network (|𝑉| = 𝑛), and 𝐻 ⊆ 𝑉 is the set of hubs (|𝐻| = 𝑝). 

 𝑡𝑖𝑗  is the amount of traffic that needs to be transported from node 𝑖 to node 𝑗. 

 𝑐𝑖𝑘 is the cost of transporting a unit of traffic from node 𝑖 to node 𝑘. Similarly, 𝑐𝑘𝑙 and 𝑐𝑙𝑗. 

 𝑧𝑖𝑘 = 1 if terminal 𝑖 is allocated to hub 𝑘, and 0 otherwise. By definition, 𝑧𝑘𝑘 = 1 if node 

𝑘 is a hub and 𝑧𝑘𝑘 = 0 otherwise. 

 𝑥𝑖𝑗𝑘𝑙 is the proportion of the traffic 𝑡𝑖𝑗  that travels along the path 𝑖 → 𝑘 → 𝑙 → 𝑗, where 

nodes 𝑘 and 𝑙 are hubs. 

The MIP formulation of the UrApHMP in Yaman (2011) is: 

Min ∑ 𝑡𝑖𝑗(𝜒𝑐𝑖𝑘 + 𝛼𝑐𝑘𝑙 + 𝛿𝑐𝑙𝑗)𝑥𝑖𝑗𝑘𝑙𝑖𝑗𝑘𝑙  (1) 

s.t ∑𝑘 𝑧𝑖𝑘 ≤ 𝑟 ∀𝑖 (2) 

𝑧𝑖𝑘 ≤ 𝑧𝑘𝑘 ∀𝑖, 𝑘 (3) 

∑𝑘 𝑧𝑘𝑘 = 𝑝  (4) 

∑𝑘 ∑𝑙 𝑥𝑖𝑗𝑘𝑙 = 1 ∀𝑖, 𝑗 (5) 

∑𝑙 𝑥𝑖𝑗𝑘𝑙 ≤ 𝑧𝑖𝑘 ∀𝑖, 𝑗, 𝑘 (6) 

∑𝑘 𝑥𝑖𝑗𝑘𝑙 ≤ 𝑧𝑗𝑙 ∀𝑖, 𝑗, 𝑙 (7) 

𝑧𝑖𝑘 ∈ {0,1} ∀𝑖, 𝑘 (8) 

𝑥𝑖𝑗𝑘𝑙 ≥ 0 ∀𝑖, 𝑗, 𝑘, 𝑙 (9) 

In this formulation, constraints (2) ensure that each node is allocated to at most 𝑟 hubs. Node 𝑖 can only 

be allocated to node 𝑘 if node 𝑘 is a hub, as imposed in constraint (3). The limit in the number of hubs is 

established by constraint (4). All traffics must be transported, as stated in constraint (5). Finally, 



P e i r ó ,  e t  a l .  | 4 

constraints (6) and (7) are associated with the routing of the traffic between each pair of nodes 𝑖, 𝑗 

through their corresponding hubs 𝑘, 𝑙.  

As shown in Yaman’s literature review, published work has focused on both the single and multiple 

allocation versions of the 𝑝-hub problems. See for example the papers by Brimberg et al. (2015, 2016), 

Ernst et al. (2009), Hwang and Lee (2012), Ilić et al. (2010), Kara and Tansel (2000), and Milanović (2010). 

The cost-minimizing solutions found with 𝑝-hub median models, however, might include routes for o-d 

demand pairs that are unreasonably long, calling into question the quality of the service that the 

network design will provide to some of its customers. The 𝑝-hub center problem addresses this issue by 

minimizing a function of the cost of meeting individual o-d demands. The typical cost structure for a 

given 𝑖 → 𝑘 → 𝑙 → 𝑗 path in a hub network is represented in Figure 1, where 𝑖 is the origin, 𝑗 is the 

destination, and 𝑘 and 𝑙 are hubs. 

 

Figure 1 Cost structure of demand from origin 𝑖 to destination 𝑗. 

Figure 1 shows the collection cost 𝑐𝑖𝑘from a terminal 𝑖 (origin) to a hub 𝑘, the transfer cost 𝑐𝑘𝑙 from hub 

𝑘 to hub 𝑙, and the distribution cost 𝑐𝑙𝑗 from hub 𝑙 to terminal 𝑗 (destination). Discount factors, if 

applicable, are associated with each cost: 𝜒 for the origin to hub cost, 𝛼 for the hub to hub cost, and 𝛿 

for the hub to destination cost. The total cost of sending one unit of traffic from origin 𝑖 to destination 𝑗 

via hubs 𝑘 and 𝑙 is given by 𝐶𝑖𝑗𝑘𝑙 = 𝜒𝑐𝑖𝑘 + 𝛼𝑐𝑘𝑙 + 𝛿𝑐𝑙𝑗. Since 𝑥𝑖𝑗𝑘𝑙 is the fraction of the traffic 𝑡𝑖𝑗  from 𝑖 

to 𝑗 routed via hubs 𝑘 and 𝑙, then the objective function for a basic model of the 𝑝-hub median problem 

has the following form: 

 min ∑ 𝑡𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝑥𝑖𝑗𝑘𝑙𝑖,𝑗,𝑘,𝑙  (10) 

Note that (10) is a more compact representation of (1) but both objective functions are the same, i.e., 

they attempt to minimize the total cost. In contrast, in the 𝑝-hub center problem, 𝑥𝑖𝑗𝑘𝑙 is equal to 1 if 

the demand 𝑡𝑖𝑗  from origin 𝑖 to destination 𝑗 is routed via hubs 𝑘 and 𝑙, and it is equal to 0 otherwise. 

The objective function for a basic model of the 𝑝-hub center problem has the following mathematical 

form: 

 min max
𝑖,𝑗,𝑘,𝑙

𝐶𝑖𝑗𝑘𝑙𝑥𝑖𝑗𝑘𝑙 (11) 

This objective function is relevant in hub networks where the flow involves time-sensitive commodities, 

e.g. people, live animals, and perishable items. In this context, cost refers to time, and 𝛼 may be 

interpreted as a time discount factor due to higher speed on the inter-hub links (Campbell 1994). An 

alternative objective function for the 𝑝-hub center problem has the following form: 

 min max
𝑖,𝑗,𝑘,𝑙

{max{𝜒𝑐𝑖𝑘 , 𝛼𝑐𝑘𝑙 , 𝛿𝑐𝑙𝑗} 𝑥𝑖𝑗𝑘𝑙} (12) 



P e i r ó ,  e t  a l .  | 5 

In (12) the cost also refers to time and the function is of interest in situations where the maximum travel 

time in any link is important. For instance, the model would be applicable to networks where items 

require some special processing that is only available at the hubs. 

Minimizing a maximum value is a well-known technique to obtain “balanced” solutions and thus to deal 

with models related to service. This is the case of the 𝑝-hub center problem, which provides a standard 

approach to overcome the limitations of the 𝑝-hub median problem when producing long routes. 

However, we have empirically found that the 𝑝-hub center problem does not model well air 

transportation problems. The main issue arises with the o-d cities that are away from each other, since a 

model focusing on minimizing the maximum length route does not optimize medium and lower distance 

routes. On the other hand, the 𝑝-hub median problem minimizes the sum of the costs by selecting hubs 

which “work well” on average over all the routes. However, we have observed that these hubs may 

perform poorly on some routes.  If the flight company solves the 𝑝-hub median problem, it would obtain 

a solution that is the best in terms of minimizing the overall operational cost, although some of their 

customers will see that the hub connection proposed in this solution is far from being “ideal”. Hence, it 

can be expected that these customers consider another flight company with a better service for their 

specific route. In this paper, we propose a new model based on the 𝑝-hub center problem including an 

equity measure for all o-d pairs. 

 

2. Problem Definition 

We are interested in studying a version of the uncapacitated 𝑟-allocation 𝑝-hub center problem that 

applies to situations for which an element of equity or fairness is important. In particular, given a 

network with link costs (distances), our model is based on an estimate of the best route for each origin-

destination pair (𝑖, 𝑗). It is clear that the customers traveling from 𝑖 to 𝑗  desire that the flight company 

selects 𝑖 and 𝑗 as hubs. Since this is no factible in practice for all of them, we consider that the best 

“realistic” route from 𝑖 to 𝑗  is the one with minimum cost in which neither 𝑖 nor 𝑗 are hubs. In other 

words, we consider that the traffic from 𝑖 to 𝑗  is routed through the best hubs 𝑘 and 𝑙 minimizing the 

cost of the route 𝑖 → 𝑘 → 𝑙 → 𝑗, where 𝑘 ≠ 𝑖, 𝑙 ≠ 𝑗. We call this minimum cost the “ideal cost” of pair 

(𝑖, 𝑗). We assume that it is desired to find customer-oriented solutions for which the actual cost for each 

demand remains relatively close to its ideal minimum cost. This minimum cost, denoted by �̂�𝑖𝑗, is 

calculated as follows: 

�̂�𝑖𝑗 = min
𝑘,𝑙,𝑘≠𝑖,𝑙≠𝑗 

(𝜒𝐶𝑖𝑘 + 𝛼𝐶𝑘𝑙 + 𝛿𝐶𝑙𝑗)               (13) 

Comparing the cost of a route with an “ideal” cost is a common practice for route planners in order to 

retain customers. In fact, in domestic flights, planners usually consider alternative transportation modes, 

such as trains, in their cost analysis.  It makes little sense to offer a route much longer than the one 

offered by a competitor. 

Objective function (10) is clearly not equipped to produce customer-oriented solutions since it focuses 

on minimizing the total cost of the company. Objective functions (11) and (12) may produce some 

customer-oriented solutions for the largest routes, but ignoring lower cost routes. A customer-oriented 

solution is defined as one that seeks to minimize large deviations between actual and ideal cost for all 



P e i r ó ,  e t  a l .  | 6 

demands. Since cost basis may be significantly different from one demand to another, we focus on the 

following model based on relative deviations: 

Min max
𝑖,𝑗,𝑖≠𝑗,𝑡𝑖𝑗>0

{
∑ 𝐶𝑖𝑗𝑘𝑙𝑥𝑖𝑗𝑘𝑙𝑘,𝑙 −�̂�𝑖𝑗

�̂�𝑖𝑗
} (14) 

s.t  (2) – (8) 

 𝑥𝑖𝑗𝑘𝑙 ∈ {0,1}    ∀𝑖, 𝑗, 𝑘, 𝑙  (15) 

We refer to this problem as the Uncapacitated 𝑟-Allocation 𝑝-Hub Equitable Center Problem, which 

following Yaman (2011), we abbreviate as UrApHECP. This problem arises in competitive environments, 

such as in the airline industry. As mentioned, an airline interested in minimizing total cost, might design 

a network for which some itineraries could offer low value to their customers. Value in this context 

could be interpreted as the relationship between cost and trip duration. That is, a long itinerary (with 

several stops) with a high cost may be perceived as offering low value. We assume that, all things being 

equal (e.g., airfare), travelers would typically prefer a short trip duration. 

To illustrate this point, consider the network with 55 nodes in the Australian Post (AP) instance 

introduced by Ernst and Krishnamoorthy (1996). The network and demands correspond to the 

Australian post services that operate from five hubs (i.e., 𝑝 = 5) and in which terminals may be assigned 

to no more than two hubs (i.e., 𝑟 = 2). The solution procedures developed by Peiró et al. (2014) and 

Martí et al. (2015) are designed to minimize the total cost 𝑓(𝑠) of a solution 𝑠, calculated as given by the 

objective function (1) of UrApHMP. The best solutions obtained by the application of both procedures 

include o-d pairs for which their cost is significantly larger than their minimum cost. Table 1 shows five 

o-d pairs, their associated hubs, as well as the relative difference 𝐷 between the minimum cost and the 

solution cost obtained with the procedure of Martí et al.: 

 𝐷𝑖𝑗 =  100
𝐶𝑖𝑗𝑘𝑙−�̂�𝑖𝑗

�̂�𝑖𝑗
 (16) 

Origin 𝑖 Destination 𝑗 Hub 𝑘 Hub 𝑙 𝐷𝑖𝑗 

30 29 36 40 493.9% 
30 20 36 40 467.4% 
30 19 36 16 449.6% 
33 32 40 40 433.3% 
33 44 40 40 417.9% 

Table 1 Deviation values obtained by solving the UrApHMP. 

As the costs are related to distance, the customers associated with the five o-d demands in Table 1 will 

most likely find their assigned routing unacceptable and might choose to hire a different service. Table 2 

shows a different set of assignments for the o-d pairs in Table 1. The relative difference between the 

actual costs and the minimum costs has decreased across all o-d pairs.  
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Origin 𝑖 Destination 𝑗 Hub 𝑘 Hub 𝑙 𝐷𝑖𝑗 

30 29 20 20 114.60% 
30 20 20 20 5.20% 
30 19 20 20 34.16% 
33 32 20 20 240.33% 
33 44 20 20 269.30% 

Table 2 Smaller deviation values for an alternative solution. 

The change of hub assignments from Table 1 to Table 2 causes a 0.82% increase in total cost. Clearly, AP 

must consider the tradeoff between total cost increase and customer satisfaction and retention. With 

that in mind, we now develop a method for the UrApHECP. 

3. A GRASP for the Uncapacitated 𝒓-Allocation 𝒑-Hub Equitable Center Problem 

The GRASP methodology was developed in the late 1980s by Feo and Resende (1989) and the acronym 

was coined in Feo and Resende (1995). Algorithm 1 shows the pseudocode of the GRASP framework 

that we will use to minimize the objective function 𝑔(𝑠) associated with a solution 𝑠 to the UrApHECP. 

Such a solution is characterized by the hub selection, the hub assignment, and the traffic routing. Each 

GRASP iteration consists of constructing a trial solution with a greedy randomized procedure (line 4 in 

Algorithm 1) and then applying local search to the constructed solution (line 5 in Algorithm 1). The 

construction phase is iterative, randomized, greedy, and adaptive. This two-phase process is repeated 

until some stopping condition is satisfied (lines 3 to 9 in Algorithm 1). The best solution (𝑠∗) found over 

all constructions and local searches is returned as the GRASP solution. We refer the reader to Festa and 

Resende (2011) for a recent survey of this methodology. 

GRASP() 

1 𝑠∗ ← ∅ 

2 𝑔(𝑠∗) = +∞ 

3 while stopping criterion not satisfied do 

4  𝑠 ← ConstructSolution() 

5  𝑠 ← ImproveSolution(𝑠) 

6  if 𝑔(𝑠)  ≤  𝑔(𝑠∗) then 

7   𝑠∗ ←  𝑠 

8  end if 

9 end while 

10 return 𝑠∗ 

Algorithm 1 GRASP template. 

As indicated in Algorithm 1, the design of GRASP entails the customization of the 

ConstructSolution and the ImproveSolution functions. Constructing solutions in the context 

of the UrApHECP includes three major steps: the selection of the 𝑝 hubs, the allocation of each terminal 

to at most 𝑟 hubs, and the routing of all the traffic. In this article we focus on GRASP designs where the 

hub selection and the initial hub allocation and routing occur in ConstructSolution and where a 
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search for improved hub allocations within the same hub selection occurs in ImproveSolution. The 

next sections describe our efforts to create effective construction and improvement functions within the 

GRASP framework. 

3.1 Construction Methods 

Our construction procedures require the ideal (minimum) costs for each o-d pair. These calculations are 

somewhat onerous but they are performed only once and therefore they can be done offline, before the 

search procedure is executed. Note that for a given o-d pair, all combinations of hubs must be 

considered in order to find the minimum cost. As part of this process, we record the number of times 

𝑞(ℎ) that a node ℎ is selected as the ideal hub for any of the terminals. For instance, if the ideal path for 

a demand from a terminal 𝑖 to a terminal 𝑗 traverses hubs �̂� and 𝑙 (i.e., �̂�𝑖𝑗 = 𝜒𝑐𝑖�̂� + 𝛼𝑐�̂�𝑙 + 𝛿𝑐𝑙𝑗) then 

both counts 𝑞(�̂�) and 𝑞(𝑙) are increased by one. If the origin or destination is a hub then only the count 

for the ideal hub connected to the terminal is incremented. That is, the 𝑞 count does not include the 

instances when a node is both a hub and a terminal in the minimum cost. Counting those instances does 

not add information to the attractiveness of a node to be selected as a hub from the point of view of 

being used by the terminal nodes in the network. 

C1() 

1 𝐶𝐿 ← 𝑉 

2 𝐻 ← ∅ 

 Stage 1: Select 𝑝 hubs 

3 while |𝐻| < 𝑝 do 

4  𝑞𝑚𝑎𝑥 ← max
ℎ∈𝐶𝐿

𝑞(ℎ) 

5  Randomly select ℎ∗ ∈ 𝑅𝐶𝐿 = {ℎ ∶ ℎ ∈ 𝐶𝐿, 𝑞(ℎ) ≥  𝛽1𝑞𝑚𝑎𝑥} 

6  𝐻 ← 𝐻 ∪ {ℎ∗} 

7  𝐶𝐿 ← 𝐶𝐿 ∖ {ℎ∗} 

8 end while 

 Stage 2: Assign terminals to 𝑟 hubs 

9 Calculate 𝑞𝑖(ℎ) for all 𝑖 ∈ 𝑉\𝐻 and ℎ ∈ 𝐻 

10 Let 𝐻𝑖 for 𝑖 ∈ 𝑉\𝐻 be the set of 𝑟 hubs with the largest 𝑞𝑖(ℎ) values 

 Stage 3: Route traffic through the network 

11 For all (𝑖, 𝑗) with 𝑡𝑖𝑗 > 0 let 𝑟(𝑖,𝑗) be the path 𝑖 → 𝑘 ∈ 𝐻𝑖 → 𝑙 ∈ 𝐻𝑗 → 𝑗 that 

minimizes 𝐶𝑖𝑗𝑘𝑙. Let Π = {𝜋(𝑖,𝑗)∀(𝑖, 𝑗): 𝑡𝑖𝑗 > 0} 

12 return 𝑠 = {𝐻, 𝐻𝑖∀𝑖, Π} 

Algorithm 2 Construction procedure C1. 

Algorithm 2 shows the pseudo-code for C1, the first of the two solution construction procedures that 

we have developed for this application. The hub selection is based on 𝑞 counts. That is, the greedy 

function is the maximization of 𝑞, which is employed as a measure of the node attractiveness. In the first 

stage, the procedure calculates 𝑞𝑚𝑎𝑥 as the maximum value of 𝑞 for all the nodes in the candidate list 

(𝐶𝐿). The candidate list contains all nodes in the graph that have not been chosen as hubs in any of the 

previous iterations of the construction procedure and therefore 𝐶𝐿 = 𝑉 at the beginning of the 

construction. A restricted candidate list (𝑅𝐶𝐿) is then constructed with those candidate nodes whose 𝑞 
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values are “close to” 𝑞𝑚𝑎𝑥, where proximity is determined by the value of the parameter 𝛽1. The next 

hub is chosen randomly among those nodes in 𝑅𝐶𝐿. The selection steps (lines 3 to 8 in Algorithm 2) are 

repeated 𝑝 times to produce a set 𝐻 of hubs with the specified cardinality. 

The second stage of the construction consists of assigning terminals to the chosen set of hubs. Once the 

set H of hubs has been determined, the ideal costs for all the terminal nodes are recalculated taking into 

account the hubs defining 𝐻. Then, values 𝑞𝑖(ℎ), representing the number of times that hub ℎ ∈ 𝐻 

appears in the ideal cost for terminal 𝑖, when 𝑖 is either an origin or a destination, are computed. The 𝑟 

hubs with the largest 𝑞𝑖(ℎ) values define the set 𝐻𝑖. 

In the third and last stage of the construction the traffic is routed through the network configured by the 

choices made in the first two stages. Since the links in the network have no capacity limits, a greedy 

routing is optimal for the chosen hubs and hub allocations. Therefore, each 𝑡𝑖𝑗  is routed through 𝑘 ∈ 𝐻 

and 𝑙 ∈ 𝐻 in order to minimize 𝐶𝑖𝑗𝑘𝑙 = 𝜒𝑐𝑖𝑘 + 𝛼𝑐𝑘𝑙 + 𝛿𝑐𝑙𝑗. Finding the set Π of min-cost paths for all o-d 

pairs requires a computational effort of 𝒪(𝑛2𝑟2). The hub selection 𝐻, the hub allocation 𝐻𝑖 for all 𝑖 ∈

𝑉\𝐻, and the set of paths Π for all o-d pairs represent a solution 𝑠 to the problem (see line 12 in 

Algorithm 2). i.e., 𝑠 = {𝐻, 𝐻𝑖∀𝑖, Π}. The objective function value is 𝑔(𝑠) = 𝐷𝑚𝑎𝑥 = max
(𝑖,𝑗):𝑡𝑖𝑗>0

𝐷𝑖𝑗. Note 

that the calculation of 𝐷𝑖𝑗 as shown in (16) depends on 𝑠. 

A variant of C1 (referred to as C2) is obtained by modifying the process in which the 𝑞 values are 

calculated. The goal of C2, in contrast to C1, is to avoid the selection of inferior hubs. That is, C2 tries to 

select hubs that are not going to produce large costs. For this purpose, we define �̌�𝑖𝑗 as the largest cost 

associated with the traffic pair (𝑖, 𝑗). The �̌�𝑖𝑗 values are obtained by simply changing min to max in 

expression (13).  

Hubs 𝑘 and 𝑙 are "acceptable" as hubs for terminals 𝑖 and 𝑗 (𝑡𝑖𝑗 > 0), respectively, if: 

𝐶𝑖𝑗𝑘𝑙 ≤ �̂�𝑖𝑗 + 𝛽2(�̌�𝑖𝑗 − �̂�𝑖𝑗), 

where 𝛽2 is set between 0 and 1. In this case, 𝑞(ℎ) counts the number of times a node ℎ is selected as 

"acceptable" for any of the terminals. As in C1, the hub selection step (see line 5 in Algorithm 2) gives 

preference to candidate nodes with large 𝑞 values. Note that if 𝛽2 = 0, C2 coincides with C1, while 

𝛽2 = 1 makes that all 𝑝 hubs have the same 𝑞 values (turning the hub selection into a totally random 

process). 

3.2 Local Search Methods 

We designed and tested two solution-improvement procedures, LS1 and and LS2. Both of these 

procedures are local searches, meaning that they stop upon reaching the first local optimal point. Also, 

both procedures are based on changing the allocation of terminals to hubs, while maintaining the same 

set of hubs. That is, the hub selection is not changed from the one given by the starting solution 

generated by one of the construction methods in Section 3.1. LS1 attempts to find an improved solution 

with respect to objective function (14) by identifying the (𝑖, 𝑗) pair for which 𝐷𝑖𝑗 = 𝐷𝑚𝑎𝑥 (see line 4 in 

Algorithm 3). This is the traffic pair that determines the value of the objective function. Let 𝑘 and 𝑙 be 

the hubs that terminals 𝑖 and 𝑗 are currently using to route 𝑡𝑖𝑗. Then, a neighborhood search is launched 
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to identify at least one allocation change for 𝑖 or 𝑗 that would reduce 𝐷𝑖𝑗 without increasing the 𝐷 value 

for the traffic in o-d pairs (𝑖,∗), (∗, 𝑖), (∗, 𝑗), and (𝑗,∗), where ∗ represents any terminal different from 𝑖 

and 𝑗. The complete procedure is shown in Algorithm 3. Line 5 in Algorithm 3 performs the 

neighborhood search consisting of evaluating different paths for (𝑖, 𝑗). If a new path is found, then the 

relevant sets and values are updated (lines 7 and 8 in Algorithm 3), and the 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 flag is set to TRUE. 

If no new path is found, then the procedure terminates. 

LS1(s) 

1 Compute 𝐷𝑖𝑗 for all (𝑖, 𝑗) pairs such that 𝑡𝑖𝑗 > 0 

2 do 

3  𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← FALSE 

4  Identify the path 𝜋(𝑖,𝑗) for which 𝐷𝑖𝑗 = 𝐷𝑚𝑎𝑥 

5  Find a new path 𝜋(𝑖,𝑗)
′  through 𝑘′ ∉ 𝐻𝑖 or 𝑙′ ∉ 𝐻𝑗 such that 𝐷𝑖∗, 𝐷∗𝑖, 𝐷∗𝑗, 𝐷𝑗∗ <

𝐷𝑚𝑎𝑥, where ∗ is any terminal node different from 𝑖 and 𝑗. 

6  if new path found then 

7 Update 𝐻𝑖 and/or 𝐻𝑗 and Π 

8 Update 𝐷𝑖∗, 𝐷∗𝑖, 𝐷∗𝑗, 𝐷𝑗∗and 𝐷𝑚𝑎𝑥  

9 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← TRUE 

10 end if 

11 while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 

12 return 𝑠 

Algorithm 3 Solution improvement procedure LS1. 

The second improvement procedure (LS2), summarized in Algorithm 4, does not tackle 𝐷𝑚𝑎𝑥 directly as 

it focuses on minimizing the total cost (1). The neighborhood search consists of evaluating the 

exchanges 𝑘 ∈ 𝐻𝑖 ↔ 𝑘′ ∉ 𝐻𝑖  for all 𝑖 such that 𝑡𝑖𝑗 > 0 or 𝑡𝑗𝑖 > 0, 𝑖, 𝑗 ∈ 𝑉, (lines 4 to 13 in Algorithm 4).  

LS2(s) 

1 Compute 𝐷𝑖𝑗 for all (𝑖, 𝑗) pairs such that 𝑡𝑖𝑗 > 0 

2 do 

3  𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← FALSE 

4  for 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐻𝑖, 𝑘′ ∉ 𝐻𝑖  do 

5 Replace 𝑘 with 𝑘′ 

6 Find new paths Π′ for all (𝑖, 𝑗) and (𝑗, 𝑖) for which 𝑘 ∈ 𝑝(𝑖,𝑗) or 𝑘 ∈ 𝑝(𝑗,𝑖) 

7 Compute the cost of routing all (𝑖, 𝑗) and (𝑗, 𝑖) traffic through Π′ 

8 if cost has improved then 

9 𝐻𝑖 ← 𝐻𝑖\{𝑘} ∪ {𝑘′} 

10 Update Π, 𝐷 and 𝐷𝑚𝑎𝑥 

11 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← TRUE 

12 end if 

13 end for 

14 while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 

15 return 𝑠 

Algorithm 4 Solution improvement procedure LS2. 
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This is done in order to minimize the cost of routing the traffic between 𝑖 and 𝑗 (lines 6 and 7 in 

Algorithm 4). For each exchange, all paths using hub 𝑘 are recomputed by redirecting the corresponding 

traffic through the least expensive available route (line 6 in Algorithm 4). 

A hub allocation for the terminal under consideration (i.e., node 𝑖) is changed to improve the routing 

cost (line 9 in Algorithm 4). The procedure ends when no change in the hub allocation for any of the 

terminal nodes is able to reduce the current cost of at least one traffic in the network. 

4 The Uncapacitated 𝒓-Allocation 𝒑-Hub Median and Equitable Center Problem 

Decision makers facing hub network design problems are interested in comparing solutions that trade 

off cost and customer service. In this context, a bi-objective problem formulation is the appropriate 

approach to search for solutions that simultaneously consider cost and service. We propose the 

Uncapacitated 𝑟-Allocation 𝑝-Hub Median and Equitable Center Problem (UrApHMECP) with the 

following formulation: 

Objective 1 (1) 

Objective 2 (14) 

Subject to (2) – (8) 

 𝑥𝑖𝑗𝑘𝑙 ∈ {0,1}    ∀𝑖, 𝑗, 𝑘, 𝑙 

The goal is to construct the set 𝐸 of efficient solutions to this bi-objective problem. Efficient solutions 

are defined in the traditional sense, that is, as those for which it is not possible to decrease the value of 

one of the objectives without increasing the value of the other objective. (Note that both objectives 

attempt to minimize a function of the solution.) The outcome of a heuristic approach is an 

approximation �̂� of the efficient frontier 𝐸. We propose a BGRASP solution method (see Algorithm 5) 

that builds upon the strategies introduced earlier. The procedure alternates between C1 and C2 to 

construct solutions and then sequentially applies LS1, LS2, and then again LS1 (lines 4 to 7 in 

Algorithm 5). The starting solution for each local search is the best solution found in the previous step. 

Since LS1 uses 𝑔(𝑠) to measure solution quality and LS2 uses 𝑓(𝑠), the application of both methods is 

expected to result in a set of solutions that, taken as a whole, produces a reasonable approximation �̂� 

for the UrApHMECP. 

BGRASP() 

1 �̂� ← ∅ 

2 while stopping criterion not satisfied do 

4  𝑠 ← C1() or C2() 

5  𝑠′ ← LS1(𝑠) 

6  𝑠′′ ← LS2(𝑠′) 

7  𝑠′′′ ← LS1(𝑠′′) 

8  Update �̂� 

9 end while 

10 return �̂� 

Algorithm 5 Bi-objective GRASP (BGRASP). 
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Although the updating of �̂� is shown in line 8 of Algorithm 5, this set of non-dominated solutions is 

maintained and updated throughout the application of all procedures, that is, after the completion of 

C1 or C2 (which produces 𝑠) as well as during all the neighborhood searches associated with LS1 and 

LS2. Maintaining and updating �̂� includes the clean-up processes needed to eliminate solutions that 

become dominated by the inclusion of new solutions in the set. The second call to LS1 (see line 7 in 

Algorithm 5) was added after preliminary experiments showed that additional non-dominated solutions 

can be found in the trajectory from 𝑠′′ to  𝑠′′′. 

5 Computational Experiments 

This section describes both the scientific and the competitive testing of our proposed solution method. 

Scientific testing refers to experiments designed to fine-tune the procedure and also to identify the 

contribution of the various components of the procedure. The goal of these experiments is to determine 

what makes the procedure perform well (or not) and why. We then engage in the traditional 

competitive testing to compare performance against alternative methods to search for solutions to the 

uncapacitated 𝑟-allocation 𝑝-hub center problem. The procedures in our method have been 

implemented in C and the integer linear programming formulation described in Section 2 has been 

solved using CPLEX 12.6.1. All the results reported in this section were obtained by running our codes on 

an Intel Core i5-4200U PCU @ 1.6 GHz and 8GB of RAM laptop computer with the Ubuntu Linux 

14.04.02–64bits operating system. For the single-objective problems, we use the following metrics to 

measure performance:  

 𝑉𝑎𝑙𝑢𝑒: Average objective value of the best solutions obtained by the procedure on the 

instances considered in the experiment. 

 𝐷𝑒𝑣: Average percentage deviation from a reference solution, where the reference solution 

depends on the testing (i.e., scientific or competitive). 

 𝐵𝑒𝑠𝑡: Number of instances in a set for which a procedure is able to match the reference 

solution, where the reference solution depends on the testing (i.e., scientific or competitive). 

 𝐶𝑃𝑈: Average computing time in seconds employed by the algorithm. 

5.1 Problem Instances 

The following two sets of instances have been used: 

(1) The CAB (Civil Aviation Board) data set. This set is based on airline passenger flows between 

some large cities in the United States. The 25-node network was introduced by O’Kelly in 1987, 

who provided distances and passenger flows between nodes. As in other papers, we have used 

this network to generate 91 instances with 𝑝 ∈ {3, …, 5}, and 𝑟 ∈ {2,…, 𝑝 − 1}. The following 

discount factors have been widely used: 𝜒 = 1, 𝛿 = 1, and 𝛼 =

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. 

(2) The AP (Australian Post) data set. This set is based on real data from the Australian postal 

service and was introduced by Ernst and Krishnamoorthy in 1996. The size of the original 

network is 200 nodes. Smaller instances can be obtained using a code from the ORLIB (Beasley, 
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1990). As with CAB, many authors have generated various instances from the original network 

data. We have extended this set of instances by generating 56 more with 𝑛 = 30, 40, 50, 60, 75, 

80, 90, and 100 nodes. For these instances, 𝑝 ∈ {3, …, 7} and 𝑟 ∈ {2, … , 𝑝 − 1}. In line with 

previous articles, discount factors are set to 𝜒 = 3, 𝛼 = 0.75 and 𝛿 = 2. These instances have 

asymmetric flows between the nodes (i.e., for a given pair of nodes 𝑖 and 𝑗, 𝑡𝑖𝑗 is not necessarily 

equal to 𝑡𝑗𝑖). Moreover, flows from one node to itself can be positive (i.e., 𝑡𝑖𝑖  can be strictly 

positive for a given 𝑖). 

The entire set of instances is available at http://www.optsicom.es, where the instances that were used 

for scientific testing are identified. 

5.2 Scientific Testing 

From the complete set of 147 instances corresponding to the CAB and AP data sets described above, we 

have created a training set of 20 instances of various sizes and values of 𝑝 and 𝑟. Specifically, the 

training set contains 10 instances from the CAB set, with 𝑛 = 20  𝑝 ∈ {3,4,5}  and 𝑟 ∈ {2, 3,4}, and 10 

AP instances with 30 ≤ 𝑛 ≤ 90, 𝑝 ∈ {5,6,7},  and 𝑟 ∈ {2,3,4,5}. The goal of scientific testing is to assess 

the merit of the various elements included in a solution procedure. Since the tests isolate these 

elements, it is not expected that the quality of the solutions obtained by these partial procedures will 

rival those of the best-known (or optimal) solutions that were found with complete search processes. 

Therefore, for the purpose of scientific testing, it is customary to use as reference solutions in the 

calculation of 𝐷𝑒𝑣 the best solutions that the elements being tested are able to produce. This enables 

the detection of statistical differences between the performance of specific configurations of the 

elements under study. 

In the first experiment, we study the construction methods described in Section 3.1 to assess their merit 

in terms of solution quality in the context of the UrApHECP. The performance of this solution generators 

depends on the values of their corresponding parameters, 𝛽1 for C1 and 𝛽2 for C2, which determine the 

size of the 𝑅𝐶𝐿 in each construction method. Table 3 shows the 𝐷𝑒𝑣 values corresponding to C1 and C2 

for 𝛽1 and 𝛽2 values varying from 0.1 to 1.0. 

Each 𝐷𝑒𝑣 value is calculated over the 20 best solutions constructed by C1 and C2, one for each instance 

in the training set. The best solution for a problem instance is selected among 100 solutions generated 

by each method and parameter setting. For example, C1 with 𝛽1 = 0.1 is used to generate 100 solutions 

for the first instance in the training set. The best solution out of these 100 is selected. The process is 

repeated 19 more times for all instances in the training set. Then, 𝐷𝑒𝑣 = 22.9% is the result of 

averaging the deviation against the reference solution of the 20 best solutions found (one for each 

problem instance). 

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝛽1 22.9% 27.9% 18.9% 20.0% 33.1% 42.9% 61.7% 74.3% 87.7% 94.9% 

𝛽2 17.7% 28.4% 26.2% 32.6% 33.2% 33.1% 32.6% 17.8% 22.6% 21.5% 

Table 3 𝐷𝑒𝑣 values for C1 and C2 solutions of the training set instances 

http://www.optsicom.es/
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With the goal of detecting differences among the various parameter values, we applied the non-

parametric Friedman test for multiple correlated samples. The test was performed on the set of best 

solutions obtained by each construction method and each parameter value in Table 3. This test 

computes, for each instance, the rank of each method according to solution quality. Then, it calculates 

the average rank for each method across all instances. If the averages differ greatly, the associated 𝑝-

value or level of significance is small. For C1, the Friedman test results in a 𝑝-value of 0.000, indicating 

that there are statistically significant differences among the average solution quality obtained by 

employing different 𝛽1 values. We then performed a paired sample test (Wilcoxon) for the best 

solutions obtained by C1 with 𝛽1 = 0.3 and 𝛽1 = 0.4, which are the settings that result in the smallest 

𝐷𝑒𝑣 values. The resulting 𝑝-value of 0.53 indicates that there is no significant difference between 

setting 𝛽1 to 0.3 or 0.4. We chose 𝛽1 = 0.3. 

The Friedman test for the best solutions obtained by C2 with the 10 settings of 𝛽2 shown in Table 3 

yielded a 𝑝-value of 0.13. This result does not provide evidence that there is a significant difference in 

performance of C2 among all the 𝛽2 values that were tested. Although not supported from a statistical 

point of view, the values 𝛽2 = 0.1 and 𝛽2 = 0.8 resulted in the smallest deviations, and therefore we 

decided to use 𝛽2 = 0.1. 

We now search for the most effective combination of construction and improvement within GRASP in 

Algorithm 1. To that end, we test all combinations of construction and improvement procedures, i.e., C1 

(𝛽1 = 0.3) with LS1 and LS2 as well as C2 (𝛽2 = 0.1) with LS1 and LS2. The stopping criterion is set 

to 100 GRASP iterations for each instance in our training set. Table 4 shows the performance measures 

associated with each combination. 

Combination 𝑉𝑎𝑙𝑢𝑒 𝐷𝑒𝑣 𝐵𝑒𝑠𝑡 𝐶𝑃𝑈 

C1 (𝛽1 = 0.3) + LS1 183.0 6.79% 10 0.8 

C1 (𝛽1 = 0.3) + LS2 183.6 8.62% 8 13.7 

C2 (𝛽2 = 0.1) + LS1 186.6 11.19% 11 3.7 

C2 (𝛽2 = 0.1) + LS2 190.7 15.41% 8 16.6 

Table 4 Performance of various GRASP (Algorithm 1) configurations. 

The 𝐷𝑒𝑣 values in Table 4 may be compared with the 𝐷𝑒𝑣 values in Table 3 for the corresponding 𝛽1 

and 𝛽2 settings to measure the contribution of the local search. On average, LS1 and LS2 improve the 

initial C1 solutions by 12.11% (18.9% - 6.79%) and 10.28% (18.9% - 8.62%), respectively. Likewise, LS1 

and LS2 improve the initial C2 solutions by 6.51% (17.7% - 11.19%) and 2.29% (17.7% - 15.41%) 

respectively. The results in Table 4 indicate that the most effective combination consists of pairing C1 

with LS1.  

We are also interested in identifying the contribution of the local search procedures within BGRASP. Of 

particular interest is the marginal improvement obtained by the order in which the local search 

procedures are applied (as shown in Algorithm 5). Using a termination criterion of 100 iterations, for 

each instance in the training set we calculate �̂� after the construction step (line 4 in Algorithm 5), then 

after the completion of LS1 and LS2 (line 6 in Algorithm 5), and finally after the completion of the 

additional call to LS1 (line 7 in Algorithm 5). Figure 2 illustrates the outcome of this experiment on one 

of the training instances. 
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Figure 2 Efficient frontier approximations for an instance in the training set. 

Figure 2 shows that each of the local search stages contribute to finding a better approximation �̂� (by 

moving the points toward the left and the bottom of the graph). While this depiction of the local search 

contributions is only for one of the problem instances in the training set, we have observed a similar 

behavior in the remaining instances in the set. 

5.3 Competitive Testing 

As mentioned in Section 2, Martí et al. (2015) developed a solution procedure, based on the scatter 

search methodology, for the UrApHMP. We argued, through an illustrative example, that a solution 

procedure designed for the UrApHMP is not capable of producing high quality solutions for the 

UrApHECP. We now provide experimental evidence to support this argument. The experiment consists 

of applying Martí et al.’s procedure (SS) and our GRASP (Algorithm 1 with C1 and LS1) to all problems 

in our test set. The stopping criterion, for both procedures, is set to a maximum number of 1000 

iterations for each problem instance. Table 5 shows the average objective function value (i.e., 𝑉𝑎𝑙𝑢𝑒) 

and the 𝐷𝑒𝑣 values calculated against the best-known solutions as the reference points. The set of 

instances has been divided in six subsets according to the number of nodes. 

Set 𝑛 
 

Instances 
UrApHMP UrApHECP CPU Seconds 

𝑉𝑎𝑙𝑢𝑒 (SS) 𝐷𝑒𝑣 (GRASP) 𝑉𝑎𝑙𝑢𝑒 (GRASP) 𝐷𝑒𝑣 (SS) SS GRASP 

CAB 15 27 15059745.9 7.6% 48.4 84.0% 0.1 0.6 
CAB 25 54 6825596063.6 14.2% 128.1 179.7% 0.9 13.5 
AP 40 6 138422.4 6.2% 121.5 37.8% 2.8 46.8 
AP 60 10 132012.9 15.3% 271.5 28.7% 11.2 305.3 
AP 80 15 129413.6 18.6% 392.1 141.4% 49.9 837.5 
AP 100 15 130146.4 23.4% 674.3 56.6% 102.3 2757.5 

Total/Average 127 2905471217.6 14.1% 217.8 121.7% 19.4 660.2 

Table 5 Performance comparison between SS and GRASP on UrApHMP and UrApHECP. 
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The procedures perform as expected. SS finds the best-known solutions for all instances when solving 

the UrApHMP. That is, a 𝐷𝑒𝑣 column for SS under UrApHMP would consists of all zeros. The third 

column of Table 5 shows the average objective values of the best-known solutions for UrApHMP. The 

GRASP solutions to these problems are, on average, 14.1% away from the best-known solutions, as 

indicated by the values in the 𝐷𝑒𝑣 (GRASP) column in Table 5. When solving the UrApHECP on the same 

instances, the performance of SS and GRASP is exactly the opposite to the previous case. That is, 

GRASP finds all the best-known solutions and the SS solutions are, on average, 121.7% away from these 

reference points. These results provide empirical evidence that UrApHMP and UrApHECP are 

significantly different problems, requiring specialized procedures and hence justifying our current work. 

We point out that the computational effort of GRASP is about an order of magnitude larger than the 

effort employed by SS. This is due to the complexity of the calculations associated with the optimization 

of the UrApHECP, which we illustrated in Section 2. 

In our next competitive experiment, we attempted to obtain solutions for the UrApHECP by solving the 

MIP formulation in Section 2. The well-known commercial MIP solver CPLEX 12.6.1 was unable to 

provide any feasible integer solutions to problems with  𝑛 > 20. Therefore, we eliminated the possibility 

of comparing the performance of our method against this optimization package. We then attempted a 

comparison of our GRASP for the UrApHECP with two general-purpose metaheuristic optimizers, 

LocalSolver and OptQuest1. The LocalSolver model that we used for this competitive testing is in the 

Appendix. The OptQuest code is available from the authors upon request. As a preliminary experiment, 

both of these optimizers were tried on a small AP instance with 𝑛 = 20, 𝑝 = 4, 𝑟 = 2, 𝜒 = 3, 𝛼 = 0.75 

and 𝛿 = 2. The best-known solutions for UrApHMP and UrApHECP have objective function values of 

𝑓(𝑠) = 132263 and 𝑔(𝑠) = 50.65%, respectively. These solutions were found in a fraction of a CPU 

second by SS (for UrApHMP) and GRASP (for UrApHECP). LocalSolver was able to match these solutions 

within 20-minute runs. However, OptQuest was only able to find a solution for UrApHMP with an 

objective function value of 𝑓(𝑠) = 136704.72 and a solution for UrApHECP with an objective function 

value of 𝑔(𝑠) = 84.44%. Similar results were found with additional small problems and therefore we 

decided to continue our competitive testing only with LocalSolver. 

Given the general nature of LocalSolver, we allowed it to run for 20 minutes for each problem instance, 

which represents about twice the computational effort of our GRASP. LocalSolver ran into memory 

issues on problems with 𝑛 > 60, therefore our experiments were limited to the 35 instances 

summarized in Table 6.  

Set 𝑛 Instances 
LocalSolver GRASP 

𝑉𝑎𝑙𝑢𝑒 𝐷𝑒𝑣 𝐵𝑒𝑠𝑡 𝑉𝑎𝑙𝑢𝑒 𝐷𝑒𝑣 𝐵𝑒𝑠𝑡 

CAB 15 9 60.8 0.0% 9 61.1 0.58% 8 

CAB 25 10 235.5 14.4% 2 207.2 0.56% 9 

AP 40 6 132.3 15.5% 1 113.5 0.31% 5 

AP 60 10 402.5 47.7% 0 271.5 0.00% 10 

Total/Average 35 220.6 20.4% 12 172.0 0.36% 32 

Table 6 Comparison between LocalSolver and GRASP on the UrApHECP 

                                                           
1 LocalSolver is a product of Innovation 24 (localsolver.com) and OptQuest is a product of OptTek Systems 
(opttek.com). 
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The quality of the solutions that LocalSolver finds decreases with the size of the problem. For the CAB 

instances, LocalSolver’s performance is somewhat comparable to GRASP. However, the gap widens 

when tackling the larger AP instances. 

To the best of our knowledge, the literature does not include a procedure specifically developed for the 

UrApHMECP. Once again, we started by executing both LocalSolver and OptQuest on a small AP problem 

with 𝑛 = 20. The narrow multiobjective capabilities of LocalSolver limit our analysis. LocalSolver is not 

designed to search for an approximation of an efficient frontier. If more than one objective is defined 

within a LocalSolver model, the system treats them lexicographically. The objectives are considered in 

the order that they are declared. The execution of LocalSolver produces a single solution that is the best 

approximation of the lexicographic optimization of the objectives. For each problem instance, we 

attempt to produce four non-dominated solutions in the efficient frontier: 1) minimize 𝑓(𝑠) 

(modelNumber = 1 in the Appendix), 2) minimize 𝑔(𝑠) (modelNumber = 2), 3) minimize 𝑔(𝑠) and then 

𝑓(𝑠) (modelNumber = 3), and 4) minimize 𝑓(𝑠) and then 𝑔(𝑠) (modelNumber = 4). Given the heuristic 

nature of the LocalSolver, there is no guarantee that the four solutions will be non-dominated and 

therefore we remove those that are dominated. 

OptQuest has a multiobjective setting in which the procedure searches for an approximation of the 

efficient frontier associated with the objective functions defined in the optimization model. Figure 3 

shows the non-dominated solutions found by BGRASP (5), LocalSolver (2), and OptQuest (1) on an AP 

problem with 𝑛 = 20. 

 

Figure 3. Bi-objective solutions to an AP instance with 𝑛 = 20. 

The BGRASP solutions in Figure 3 dominate two of the LocalSolver solutions, the ones found using the 

lexicographical multiobjective functionality of LocalSolver. The solution found using the multiobjective 

OptQuest search is also dominated by the GRASP solutions. In addition, one of the LocalSolver solutions 

dominates the OptQuest solution. Since similar results were found with other smaller instances, we 

focused our competitive testing on LocalSolver. 
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We employ the same 35 instances in Table 6 to run BGRASP for 1000 iterations and LocalSolver for 20 

minutes with modelNumber = 1, 3, and 4. The solutions for modelNumber = 2 were obtained from the 

experiments reported in Table 6. The comparison is done in terms of the hypervolume. This metric was 

developed by Zitzler and Thiele (1999) and measures the size of the space covered, which approximates 

the volume where the dominated points reside. Hence, the larger the hypervolume the better. The 

number of points in �̂� is another measure of interest in multiobjective optimization. Table 7 reports 

both the average hypervolume and the average number of points found by BGRASP and LocalSolver for 

each subset of problems. 

Set 𝑛 Instances 
Hypervolume Number of Points 

BGRASP LocalSolver BGRASP LocalSolver 

CAB 15 9 0.29 0.11 1.89 1.78 

CAB 25 10 0.84 0.15 6.70 2.50 

AP 40 6 0.77 0.03 3.67 1.83 

AP 60 10 0.71 0.20 4.40 1.80 

Total/Average 35 0.65 0.13 4.29 2.00 

Table 7 Comparison between LocalSolver and BGRASP on the UrApHMECP 

The nondominated solutions that BGRASP finds result in a hypervolume that on average is about 5 

times larger than the hypervolume corresponding to the LocalSolver solutions. Also on average, half of 

the solutions that LocaSolver finds for each problem instance are dominated (as indicated by the value 

of 2.00 in the last row of the LocalSolver column under the Number of Points heading). 

6 Conclusions 

We tackle two hub-network design problems that have not been addressed in the literature, the 

Uncapacitated 𝑟-Allocation 𝑝-Hub Equitable Center Problem (UrApHECP) and the Uncapacitated 𝑟-

Allocation 𝑝-Hub Median and Equitable Center Problem (UrApHMECP). Modeling equity as a relative 

deviation from an ideal value (e.g., cost) is applicable in contexts where solutions for which some of the 

demand is fulfilled using routes that are far from ideal are not desirable. We argue that the airline 

industry is such that if routes connecting two terminal nodes (i.e., an origin and a destination) are far 

from ideal (e.g., a direct flight) it could result in a loss of customers to the competition. In order to keep 

operational costs in perspective, we suggest to formulate the problem as a bi-objective optimization 

model that accounts for both cost-efficiency and service. 

The UrApHECP is a so-called minimax model, since it seeks to minimize the maximum deviation from the 

ideal values. These problems create “flat” objective function spaces because many solutions share the 

same objective function value. Empirical evidence points to multistart methods as an effective way of 

searching these spaces. This is the reason the selection of GRASP as the underlying methodology for our 

solution procedure. Careful scientific testing was performed to identify a high-performing configuration 

of our search method. This was followed by a competitive testing designed to show the need for a 

specialized procedure for both the UrApHECP and the UrApHMECP. Although our tests are limited to 

problem sizes that LocalSolver is able to handle, the proposed GRASP and BGRASP are scalable and 

able to tackle problems of realistic size. 
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Appendix 

This is the model() function within the LSP file that we used with LocalSolver 6.0 to find solutions to the 

UrApHMP (modelNumber = 1), UrApHECP (modelNumber = 2), and UrApHMECP (modelNumber = 3 or 

4). We do not include our input() and output() function but the entire LSP file is available upon request. 

function model()  

{ 

  // z[i][k] equal 1 if node i is assigned to hub k 

  z[1..n][1..n] <- bool(); 

 

  // allocate each node to at least one hub but no more than r hubs  

  for [i in 1..n] constraint sum[k in 1..n](z[i][k]) >= 1; 

  for [i in 1..n] constraint sum[k in 1..n](z[i][k]) <= r; 

 

  // allocate node i to k only if k is a hub 

  for [i in 1..n][k in 1..n] constraint z[i][k] <= z[k][k]; 

 

  // select p hubs 

  constraint sum[k in 1..n] (z[k][k]) == p;  

 

  // calculate sum of routing costs 

  csum <- 0; 

  for [i in 1..n][j in 1..n : t[i][j] > 0] { 

    cost[i][j] <- min[k in 1..n][l in 1..n](z[i][k]*z[j][l] > 0 ?  

    xi*c[i][k] + alpha*c[k][l] + delta*c[l][j] : 99999999); 

    csum <- csum + t[i][j]*cost[i][j]; 

  } 

 

  // identify maximum difference from ideal 

  M <- max[i in 1..n][j in 1..n : i != j && t[i][j] > 0] 

  ((cost[i][j] - d[i][j]) / d[i][j]); 

   

  // objective function 

  if (modelNumber == 1) minimize csum; 

  if (modelNumber == 2) minimize M; 

  if (modelNumber == 3) { 

    minimize M;  

    minimize csum; 

  } 

  if (modelNumber == 4) { 

    minimize csum;  

    minimize M; 

  } 

} 


