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Abstract

In this work we propose a heuristic procedure for a stochastic version
of the Uncapacitated r-Allocation p-Hub Median Problem with non-stop
services. In particular, we assume that the number of hubs to which a
terminal can be allocated, is bounded from above by r. Additionally we
consider the possibility of shipping traffic directly between terminals (non-
stop services) in case this renders savings in the overall cost. Uncertainty
is associated with the traffics to be shipped between nodes and with the
transportation costs. If we assume that such uncertainty can be captured
by a finite set of scenarios, each of which having some known occurrence
probability, it is possible to develop a compact formulation for the de-
terministic equivalent problem. However, even for small instances of the
problem, the model becomes too large to be easily tackled by a general
purpose solver. This fact motivates the development of an approximate
procedure, whose starting point is the determination of a feasible solution
to every (deterministic) single-scenario problem. These solutions are then
embedded into a process inspired by Path Relinking: gradually an initial
solution to the overall problem is transformed by the incorporation of at-
tributes from some guiding solutions. In our case, the guiding solutions
are those found for the single-scenario problems. We report and discuss
the results of the computational experiments performed using instances
randomly generated for the new problem using the well-known CAB data
set.
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1 Introduction

A hub location problem results from the need to ship traffic from many-to-many
nodes in a network. Instead of shipping the traffic directly between nodes, a
subset of them is selected for becoming hubs, thus consolidating and distributing
the flow. This induces a transportation network that helps making the shipment
more efficient and cheaper. For instance, we can take advantage from economies
of scale when transporting (large amounts of) traffic between hubs.

Hub location is a topic that has applications in many different areas such as
Telecommunication, Logistics, and Transportation. The extensive work that has
been developed in this area as well as the applications that have been studied
are very well summarized in the recent book chapter by Contreras (2015) and
also in the survey papers by Alumur and Kara (2008) and Campbell and O’Kelly
(2012). These works and the references there in show that nowadays we can
identify several research branches and problem classes in this field. For instance,
we find problems in which the number of hubs is exogenously defined while, in
others, this is an outcome of the decision making process. Additionally, hubs
may be capacitated (when there is some limit for the traffic that can go through
them) or uncapacitated. In fact, within the context of hub location, many
aspects can be isolated, each of which helping in the characterization of the
problem at hand.

One important aspect in a hub location problem regards the allocation pat-
tern for the non-hub nodes (terminals). Traditionally, two patterns have been
considered in the literature: single allocation and multiple allocation. In the
first case, a terminal is allocated to exactly one hub, whereas in the second
a terminal can be allocated to several hubs (without a limit). Recently, these
two patterns have been unified under the so-called r-allocation pattern that was
introduced by Yaman (2011). In this case, a limit, r, is imposed on the max-
imum number of hubs to which a terminal can be allocated. In the particular
case where r = 1 we obtain the single allocation scheme but if we set r large
enough (e.g., equal to the number of nodes) then we obtain a multiple allocation
problem.

Another important aspect concerning hub location is related with the ship-
ment of the traffic originated at each node. Most of the literature assumes that
all traffic must be routed via at least one hub which prevents direct shipments
between terminals. However, in some applications (e.g., in Logistics) it may
be possible (and even advantageous) to make direct shipments between termi-
nals. This is the case, for instance, if the volume of traffic between the nodes
is high and no specialized facility or equipment is required for processing that
traffic. Some authors have noticed the practical relevance of considering these
“non-stop” services. This is the case with Aykin (1994, 1995a,b), Sung and Jin
(2001), Nickel et al. (2001), and Wagner (2007). Nevertheless, the literature
capturing this feature is still much scarce.

Finally, one aspect that is increasingly attracting the attention of academi-
cians and practitioners concerns embedding uncertainty in optimization models.
This is not a new topic. However, the technological developments we have ob-
served in the past decades (e.g., the huge increase in computing power) made
possible to give more relevance to that aspect. This has led to more comprehen-
sive and, from a practical point of view, more relevant models. Hub location has
not been ignored in this trend. In fact, several works can already be found in
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the literature capturing uncertainty in optimization models developed for hub
location problems. To the best of the authors’ knowledge Marianov and Serra
(2003) is the first work dealing with uncertainty within the context of hub lo-
cation. Sim et al. (2009) introduce the stochastic p-hub center problem. Often,
the uncertain parameters are related with the amount of traffic to ship. This is
the case, for instance, with the work by Bollapragada et al. (2005). However,
other possibilities, as uncertainty in the costs, have been studied (the reader
should refer to Contreras et al. 2011a, and Alumur et al. 2012).

Most of the “classical” hub location problems are NP-hard. Accordingly,
the same holds for many of their extensions and thus it is not surprising to find
much literature presenting heuristic procedures in this field. Along with the
first mathematical formulation for the single allocation p-hub median problem,
O’Kelly (1987) presented two specially tailored heuristics for obtaining feasible
solutions to the problem. Since then, many heuristics have been developed.
The uncapacitated single allocation p-hub median problem was further studied
by Klincewicz (1992) (tabu search and GRASP), Campbell (1996) (a greedy
procedure), Ernst and Krishnamoorthy (1996) (simulated annealing), Kratica
et al. (2007) (genetic algorithms), Smith et al. (1996) (neural networks), and
Ilić et al. (2010) (variable neighborhood search). The capacitated version of
the problem was investigated by Stanimirović (2010), who proposed a genetic
algorithm. The unified allocation pattern in the context of this problem, i.e.,
the uncapacitated r-allocation p-hub median problem, was investigated by Peiró
et al. (2014) and Mart́ı et al. (2015). In the former paper, a GRASP procedure
was developed whereas the latter was devoted to presenting a scatter search
algorithm.

The single allocation p-hub center problem was tackled by Pamuk and Sepil
(2001) using tabu search and by Meyer et al. (2009), who developed a 2-phase
method based upon ant colony optimization.

The use of (meta)heuristics for approximating the optimal solution to hub lo-
cation problems goes much beyond the problems for which an exogenous number
of hubs, p, is imposed. In fact, the uncapacitated single allocation hub location
problem was studied by Abdinnour-Helm and Venkataramanan (1998) (genetic
algorithms), who improved the results presented by Abdinnour-Helm (1998)
that investigated a hybridization between genetic algorithms and tabu search.
Other heuristics for the problem include those developed by Pirkul and Schilling
(1998) (lagrangean heuristic), and Cunha and Silva (2007) (genetic algorithms).
The multiple allocation version of the problem was investigated by Kratica et al.
(2012), who presented a genetic algorithm.

The capacitated single allocation hub location problem was first tackled
heuristically by Ernst and Krishnamoorthy (1999) (simulated annealing), and
afterwards by Chen (2007) (simulated annealing combined with tabu search),
Randall (2008) (ant colony optimization), Silva and Cunha (2009) (tabu search),
and Contreras et al. (2009, 2011b) (lagrangean heuristics). The multiple allo-
cation version of the problem was considered by Kratica et al. (2011) (genetic
algorithms), and Rodŕıguez-Mart́ın and Salazar-González (2006) (iterative local
search). We note that in these two works, unlike the other works already quoted,
the hub level network can be incomplete, i.e., it does not need to be a complete
graph. These are problems with (hub level) network design decisions. Also
considering incomplete hub networks we find the work by Calık et al. (2009)
on a hub covering problem whose optimal solution is approximated using tabu
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search.
Other works containing heuristics for hub location problems include those

by Marianov et al. (1999) on competitive hub location (tabu search was consid-
ered), Eiselt and Marianov (2009) (using heuristic concentration—Rosing and
ReVelle 1997), and Lüer-Villagra and Marianov (2013) (who developed a genetic
algorithm).

The variety of heuristics for hub location problems covered by the literature
includes other more specific hub location problems not quoted above. This is the
case with the papers by Yaman and Carello (2005) (local search), Marianov and
Serra (2003) (tabu search), Sasaki et al. (1999) (greedy approach that generalizes
the procedures suggested by Campbell (1996)), and Alumur and Serper (2016)
(variable neighborhood search).

As far as stochastic hub location problems are concerned, to the best of the
authors’ knowledge, the only contribution to the literature so far is the paper
by Bollapragada et al. (2005). The authors studied a fixed-wireless network-
planning problem with a two phase planning horizon and a different budget for
each phase. They considered different hub types (regarding costs and capac-
ities) and assume stochastic demands. A greedy algorithm was proposed for
maximizing the expected demand covered.

In the current paper we extend the uncapacitated r-Allocation p-Hub Me-
dian Problem and develop an algorithm for finding high-quality feasible solu-
tions. The original problem is extended in two directions: (i) by considering
uncertainty in the traffics and in the shipping costs, and (ii) by allowing non-
stop services. We assume that uncertainty can be represented by a stochastic
random vector with some known probability distribution. This leads to the
adoption of a two-stage stochastic modeling framework for the problem: the
first-stage decisions refer to the network design (selection of hubs and alloca-
tion of terminals to the hubs); the second-stage decision is dependent on how
uncertain is revealed and regards the transportation of the traffics through the
network.

When the underlying random vector above mentioned has a finite support,
it is possible to derive a compact mixed-integer linear programming formulation
for the deterministic equivalent problem. Nevertheless, this is a large-scale op-
timization model even for small instances of the problem, which motivates the
development of a heuristic algorithm for obtaining high-quality feasible solu-
tions. The procedure we propose is inspired on the Path Relinking methodology
(Glover and Laguna 1997). In particular, it progressively changes an initial solu-
tion to the problem by incorporating attributes from a set of guiding solutions.
In our case, the guiding solutions are feasible solutions previously obtained to
the single-scenario problems (one for each).

The development of (meta)heuristics for stochastic combinatorial optimiza-
tion problems is not a new topic as we can observe in the survey paper by
Bianchi et al. (2009). Nevertheless, we can also conclude that most of the work
was developed on stochastic traveling salesman problems, on stochastic vehicle
routing, and on stochastic scheduling. Within the context of facility location, no
much work can be found. The paper by Albareda-Sambola et al. (2013) is a good
exception. The authors introduced a so-called fix-and-relax-coordination pro-
cedure for a multi-period location–allocation problem under uncertainty. This
is a specialization of the fix-and-relax heuristic (Dillenberger et al. 1994, Es-
cudero and Salmerón 2005) embedding a branch-and-fix coordination two-stage
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solution algorithm (Alonso-Ayuso et al. 2003).
The new methodology we propose in this work, represents a contribution to

the development of heuristic approaches for stochastic hub location problems
that can be easily extended to other stochastic discrete optimization problems.
The remainder of the paper is organized as follows: in Section 2 we present a
mathematical model for the deterministic version of the problem we are inves-
tigating. Afterwards, we extend the model to a setting in which the traffics
and shipping costs are stochastic. In Section 3 we introduce the new heuristic
procedure. In particular, Section 3.1 is devoted to developing a heuristic to the
deterministic (single-scenario) version of the problem. Finally, in Section 4, we
present the computational tests performed in order to assess the quality of the
new heuristic. The paper ends with some conclusions and an outlook of the
work done.

2 The Uncapacitated r-Allocation p-Hub Me-
dian Problem with non-stop services

In this section we start by summarizing the most important results concerning
the (deterministic) Uncapacitated r-Allocation p-Hub Median Problem intro-
duced by Yaman (2011), as well as the special case in which non-stop services
are allowed (Sung and Jin 2001). Then, we introduce a stochastic version, which,
as far as we know, is the first time it has been considered in the Literature.

2.1 Deterministic model

Consider a network G = (V,E) with a set of demand nodes V and a set of edges
E, and let tij be the amount of traffic to be sent between each pair of nodes i
and j. In the Uncapacitated r-Allocation p-Hub Median Problem (UrApHMP),
traffic tij has to be routed along a path i → k → l → j, where nodes k and
l ∈ V are used as intermediate points for this transportation. The UrApHMP
consists of choosing a set H of p nodes that are used as intermediate transfer
points between any pair of nodes in G, allocating each terminal to at most r
of the p hubs, and such that the total transportation cost is minimized. The
traffic to and from each terminal can be routed via one or several hubs among
the ones to which the terminal is allocated. Each terminal The nodes in H are
commonly called hub nodes or, simply, hubs, while all the other nodes in the
network are known as terminal nodes or terminals.

The UrApHMP was first introduced by Yaman (2011), who also pointed
out the possibility of considering non-stop services between origin–destination
pairs. Non-stop services, as considered by Aykin (1994, 1995a,b), Sung and
Jin (2001), Nickel et al. (2001), and Wagner (2007), refers to the possibility of
sending traffics between any pair of nodes using a direct edge, at a given cost,
rather than going through their corresponding hubs. The direct transportation
via such a direct edge is called a non-stop service.

The problem we study in this paper is the UrApHMP with non-stop services,
where fixed assignment costs of terminals to hubs are also considered. We call
this problem the Uncapacitated r-Allocation p-Hub Median Problem with non-
stop services (UrApHMP-NSS).
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In order to formulate the problem as a mixed-integer linear optimization
problem, we define the following variables. Given a node k ∈ V , zkk = 1 if
node k is set to be a hub and zkk = 0, and otherwise. Given a non-hub node
i ∈ V , zik = 1 if node i is assigned to node k and zik = 0 otherwise. Moreover,
we define xijkl as the proportion of the traffic tij from node i to node j that
travels along the path i → k → l → j, where k and l are the nodes that will
be used as hubs. Finally, for two nodes i, j ∈ V , yij = 1 if tij is routed on a
non-stop service, and yij = 0 otherwise. The UrApHMP-NSS, similarly to the
formulation proposed in Yaman (2011), can be formulated as follows.

min
∑

i,k∈V,i 6=k

aikzik +
∑

i,j,k,l∈V

tij(χcik + αckl + δclj)xijkl

+
∑
i,j∈V

(tijdij + bij)yij (1)

s. t.
∑
k∈V

zkk = p (2)∑
k∈V

zik ≤ r, ∀i, k ∈ V (3)

zik ≤ zkk, ∀i, k ∈ V (4)∑
l∈V

xijkl ≤ zik, ∀i, j, k ∈ V (5)∑
k∈V

xijkl ≤ zjl, ∀i, j, l ∈ V (6)∑
k∈V

∑
l∈V

xijkl + yij = 1, ∀i, j ∈ V : tij > 0 (7)

xijkl ≥ 0, ∀i, j, k, l ∈ V (8)

yij ∈ {0, 1}, ∀i, j ∈ V (9)

zik ∈ {0, 1}, ∀i, k ∈ V. (10)

The objective function (1) represents the total cost. It consists of the allo-
cation cost of terminals to hubs and the transportation cost of the traffics. The
first term refers to the assignment cost, aik, of each node i ∈ V to a particular
hub k ∈ V , regardless of the amount of traffic node i sends or receives through
k. The second term represents the cost of transporting all traffics tij through
the hubs, where χ, α, and δ are unit rates for collection (origin-hub), transfer
(hub-hub) and distribution (hub-destination), respectively. In this term, cik,
ckl, and clj denote the cost of shipping all the traffic tij via the edges (i, k),
(k, l), and (l, j), respectively. The last term of the objective function describes
the cost of transporting traffics using non-stop services. In this term, dij denotes
the cost of shipping the traffic tij using a non-stop service. Note that there is
also a fixed cost, bij , associated with the use of this direct edge between i and
j.

Constraint (2) imposes to use exactly p nodes as hubs, while constraints (3)
restrict any node to be assigned to at most r of the p hubs. Constraints (4)
assure that if node k is not a hub, node i cannot be assigned to it. Moreover,
constraints (5) and (6) guarantee that if nodes i and j are not assigned to hubs k
and l, no traffic can be sent between i and j through those hubs. Constraints (7)
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ensure that all traffic of the network is routed, either using the hub connections
or non-stop services. Finally, the variables domains are stated in constraints
(8)–(10).

2.2 A two-stage stochastic model

We introduce next a stochastic version of the above problem. In particular we
assume that demands and transportation costs are not known in advance but
can be captured by a probability distribution. This is motivated by the follow-
ing observations: (i) a hub location problem has embedded a network design
problem (locating the hubs and allocating the terminals to the hubs) whose
related decisions often have a long-lasting effect. Hence, these are intrinsically
strategic decisions typically made before having perfect information about the
future. On the other hand, the decisions about transportation of the traffics
are often operational decisions that can be made just in time, when precise
information is available, i.e., after uncertainty is revealed. (ii) What is more,
transportation costs are often related to the price of resources like electricity
or oil, and therefore they are quite difficult to predict. However, the actual
transportation costs incurred will depend on how the network design decisions
were made since the latter condition the former.

The above observations also motivate the use of a two-stage stochastic pro-
gramming optimization model in which the here-and-now decisions (first-stage)
concern the network design and the recourse decisions (second-stage) regard the
transportation of the traffics. The latter are called “recourse decisions” because
they are made in such a way that the best response is given (depending on
the occurring scenario) to the setting defined by the first-stage decisions. This
modeling framework is not new within the context of hub location. In the works
by Contreras et al. (2011a) and Alumur et al. (2012) we can observe stochastic
hub location problems with the network design decisions separated from the
transportation decisions.

We call scenario a complete realization of all the uncertain parameters. The
number of possible scenarios can be either finite or infinite, depending on the
supports of the random variables involved in the problem. In fact, if, for every
i, j ∈ V , the traffic tij is assumed to be a random variable, the same happening
with the costs cij and dij , (i, j) ∈ E, then the random vector underlying the
problem is ξ =

[
[tij ]i,j∈V , [cij ](i,j)∈E , [dij ](i,j∈E)

]
. Each realization of this ran-

dom vector is a scenario. We assume that it is possible to compute or estimate
accurately the probability associated with each scenario (the reader can refer to
Alumur et al. 2012, for a deeper discussion on this issue).

We can introduce a stochastic version of the UrApHMP-NSS, as follows:

min
∑

i,k∈V,i 6=k

aikzik +Q(z) (11)

s.t. (2)− (4), (10),

where Q(z) = Eξ[Q(z, ξ)] is the mathematical expectation with respect to ξ,
and

Q(z, ξ) = min
∑

i,j,k,l∈V

tij(χcik + αckl + δclj)xijkl
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+
∑
i,j∈V

(tijdij + bij)yij (12)

s.t.
∑
l∈V

xijkl ≤ zik, ∀i, j, k ∈ V (13)∑
k∈V

xijkl ≤ zjl, ∀i, j, l ∈ V (14)∑
k∈V

∑
l∈V

xijkl + yij = 1, ∀i, j ∈ V : tij > 0 (15)

xijkl ≥ 0, ∀i, j, k, l ∈ V (16)

yij ∈ {0, 1}, ∀i, j ∈ V. (17)

If the support, say Ξ, of the random vector ξ is finite, we can index the sce-
narios in the set S = {1, . . . , |Ξ|}. Accordingly, we can also index the stochastic
parameters and the second-stage decision as follows: for s ∈ S, tijs is the traffic
to be sent from i to j under scenario s, ciks, ckls, and cljs correspond to the
cost of shipping all the traffic tijs via the edges (i, k), (k, l), and (l, j), respec-
tively, under scenario s, dijs denotes the cost of shipping the traffic tijs using a
non-stop service under scenario s, xijkls is the the proportion of the traffic tij
from node i to node j that travels along the path i→ k → l → j, where k and
l are the nodes that will be used as hubs, and yijs is a binary variable equal to
1 if a non-stop service is used in scenario s for shipping the traffic tijs and 0
otherwise.

Using this new notation and representing by πs the probability associated
with scenario s ∈ S, we can present the so-called extensive form of the deter-
ministic equivalent:

min
∑

i,k∈V,i 6=k

aikzik

+
∑
s∈S

πs

 ∑
i,j,k,l∈V

tijs(χciks + αckls + δcljs)xijkls

+
∑
i,j∈V

(tijsdijs + bijs)yijs

 (18)

s.t. (2)− (4), (10)∑
l∈V

xijkls ≤ zik, ∀i, j, k ∈ V, s ∈ S (19)∑
k∈V

xijkls ≤ zjl, ∀i, j, l ∈ V, s ∈ S (20)∑
k∈V

∑
l∈V

xijkls + yijs = 1, ∀i, j ∈ V, s ∈ S (21)

xijkls ≥ 0, ∀i, j, k, l ∈ V, s ∈ S (22)

yijs ∈ {0, 1}, ∀i, j ∈ V, s ∈ S. (23)

The above model will be denoted by P. We note that the non-anticipativity
principle is implicit in this model since the choice to be made for the z-variables
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should will result the same no matter the occurring scenario. In other words,
the challenge here is to select a set of hubs and assign the terminals to these
hubs in a way that performs well in every possible situation (scenario).

2.3 Making a decision under uncertainty—A minmax re-
gret model

The stochastic model just presented lies on the assumption that the probabil-
ities πs are known. If this is not the case, then, alternatives are necessary for
formulating the problem. One possibility explored within the context of hub
location by Alumur et al. (2012) is to consider a min-max regret model. We can
propose the same type of model for the UrApHMP-NSS under uncertainty.

We first notice that model (2)-(4), (10), (18)–(23) can be solved for a subset
of scenarios and, in particular, the model can be solved for a single scenario
s ∈ S by setting πs = 1. The resulting solution is the optimal solution for
scenario s whose value we can denote by Vs.

After having computed the values Vs, s ∈ S we can compute the so-called
regret of some solution (x,y, z) with respect to a scenario s. This is done as
follows:

Rs =
∑

i,k∈V,i6=k

aikzik +

 ∑
i,j,k,l∈V

tijs(χciks + αckls + δcljs)xijkls

+
∑
i,j∈V

(tijsdijs + bijs)yijs

 − Vs, s ∈ S. (24)

The problem consists of finding the solution (x,y, z) that minimizes the
maximum regret we can observe according to:

min

{
max
s∈S

Rs

}
(25)

s.t. (2)− (4), (10), (19)− (23)

Rs =
∑

i,k∈V,i 6=k

aikzik +

 ∑
i,j,k,l∈V

tijs(χciks + αckls + δcljs)xijkls

+
∑
i,j∈V

(tijsdijs + bijs)yijs

− Vs, s ∈ S. (26)

3 A Greedy Attributive Scenario based Con-
structive Method

In this section we present an algorithm for the Stochastic UrApHMP-NSS. Since
problem P is a mixed-integer linear program with a large number of binary vari-
ables even for small instances, it is a very hard task to solve it to optimality
Hence, we propose a heuristic algorithm for finding high-quality feasible solu-
tions to the problem. The idea is to iteratively build solutions to P using the
solutions of single-scenario problems.
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For each scenario s ∈ S, let us denote by Ps the problem associated with s:

min
∑

i,k∈V,i 6=k

aikzik +
∑

i,j,k,l∈V

tijs(χciks + αckls + δcljs)xijkls

+
∑
i,j∈V

(tijsdijs + bijs)yijs (27)

s.t. (2)− (4), (10)∑
l∈V

xijkls ≤ zik, ∀i, j, k ∈ V (28)∑
k∈V

xijkls ≤ zjl, ∀i, j, l ∈ V (29)∑
k∈V

∑
l∈V

xijkls + yijs = 1, ∀i, j ∈ V (30)

xijkls ≥ 0, ∀i, j, k, l ∈ V (31)

yijs ∈ {0, 1}, ∀i, j ∈ V. (32)

The solutions for problems Ps, s ∈ S, may render different network designs,
i.e., distinct hubs selected as well as distinct allocations of terminals. Even,
the number of hubs to which a terminal is assigned to may be different for one
scenario to another. Moreover, problems Ps are also NP − hard (they have
the classical multiple allocation hub location problem as a particular case) and
thus they can hardly be solved to optimality even using a specially tailored
algorithm. Accordingly, we can also resort to heuristics in order to find good
feasible solutions.

The algorithm we proposed next is based upon the idea that good solutions
for the single-scenario problems Ps, s ∈ S, may contain information about the
good attributes of a good solution (possibly optimal) to P. Furthermore, a well-
known feature of the optimal solutions to stochastic programming problems is
that they represent a trade-off between the solutions for the different scenarios
(for the different realizations of the uncertainty).

These facts motivate our method, which aims at combining the information
provided by the single-scenario problems to obtain a solution for P.

The full procedure, whose pseudo-code is shown in Algorithm 1, is performed
until a previously defined number of iterations or time limit is reached. The final
solution is the best found throughout the process.

3.1 A heuristic for the UrApHMP-NSS.

In this section we describe the heuristic method devised to obtain feasible so-
lutions to a problem Ps, s ∈ S, which turns out to be a heuristic for the
UrApHMP-NSS. It consists of a constructive phase followed by a local search
phase.

3.1.1 Constructive procedure

A solution to the UrApHMP-NSS is fully determined by (i) selecting the p hubs,
(ii) allocating each terminal to at most r hubs, and (iii) transporting the traffics.
Each of this components can be looked at as a subproblem. The constructive
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Algorithm 1: Main loop of the algorithm to solve P
Input: G, tmax, itermax
Initialize β∗ ← +∞ and βs ←∞,∀s ∈ S1

while tmax is not reached do2

foreach s ∈ S do3

value of (z, x, y)s ← +∞4

for iter ← 1 to itermax do5

Construct (z, x, y)siter6

LSchange((z, x, y)siter)7

LSreduce((z, x, y)siter)8

// Update the incumbent solution9

if value of (z, x, y)siter < value of (z, x, y)s then10

(z, x, y)s ← (z, x, y)siter11

update βs;12

Obtain (z, x, y)P from (z, x, y)s, for all s ∈ S ;13

if value of (z, x, y)P < β∗ then14

β∗ ← value of P15

(z, x, y)∗ ← (z, x, y)P16

Output: (z, x, y)∗

procedure (denoted by Construct (z, x, y)siter in Algorithm 1, line 6) is outlined
in Algorithm 2.

Selecting p hubs

In order to determine the set H containing the p nodes that will be selected
as hubs (lines 1 to 17 in Algorithm 2) we start by selecting q (q < p) nodes;
afterwards we select the remaining p− q nodes.

Initially, we compute the values

Ti =
∑
j∈V

(tij + tji),∀i ∈ V,

representing the total traffic originated and destined to each node i ∈ V . Defin-

ing T =
∑
i∈V Ti we can compute the weights wi =

Ti
T
∈ [0, 1] and such that∑

i∈V wi = 1. One node, say h, is randomly selected according to the values
(probabilities) wi and we set H ← {h}.

For selecting the following q − 1 hubs, we update T as T =
∑
i∈V \H Ti and

the weights wi,∀i ∈ V \ H, accordingly, and proceed as before until we get
|H| = q. This way of selecting the first q hubs gives advantage to the nodes
having the largest amount of traffics.

The remaining p−q hubs are now selected using a different criterion: for each
h ∈ H, we compute chmax = maxi∈V \H{ chi+cih

2 } and chmin = mini∈V \H{ chi+cih
2 },

and define a threshold T as

T =

∑
h∈H

(
chmax + chmin

)
|H|

.
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Algorithm 2: Construct (z, x, y)siter.

Input: q, λ
// Choose the first q hubs1

foreach i ∈ V do2

Ti ←
∑
j∈V (tij + tji)3

H ← ∅4

while |H| < q do5

T ←
∑
i∈V \H Ti6

wi ← Ti/T . i ∈ V \H7

select h ∈ V \H in V \H according to the discrete probability8

distribution induced by the values wi, i ∈ V \H
H ← H ∪ {h}9

// Choose the remaining p− q hubs10

while |H| < p do11

foreach h ∈ H do12

chmin ← mini∈V \H{(chi + cih)/2} chmax ← maxi∈V \H{(chi + cih)/2}13

T ← λ
∑

h∈H(chmax+c
h
min)

|H|14

D ←
{
i ∈ V \H |

∑
h∈H(cih+chi)

|H| ≤ T
}

15

select h ∈ D according to a uniform distribution in V \H16

H ← H ∪ {h}17

// Assign each terminal to a single hub18

foreach i ∈ V \H do19

bestMeasure(i) ← +∞;20

foreach h ∈ H do21

Compute Measure(i, h)22

if Measure(i, h) ≤ bestMeasure(i) then23

bestMeasure(i) ← Measure(i, h)24

h∗ ← h ;25

Hi ← {h∗}26

// Increase of the terminals assignments27

foreach i ∈ V \H do28

repeat29

Compute c(Ti)30

Let h∗ = arg minh∈H\Hi
{aih}31

Compute c′(Ti)32

if c′(Ti) + aih∗ ≤ c(Ti) then33

Hi ← Hi ∪ h∗34

else35

continue ← FALSE;36

until (|Hi| = r) or (continue is FALSE) ;37

// Traffic transportation38

Solve optimally the routing problem to obtain (z, x, y)siter39

Output: (z, x, y)siter
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Now, the set of terminals with average transporting cost to and from the hubs
less than or equal to the computed threshold is defined:

D =

{
i ∈ V \H :

∑
h∈H(cih + chi)

|H|
≤ T

}
.

Set D would correspond to those nodes that, if they were selected as hubs, the
transportation costs between them and the hubs already in H would be small.
This is motivated by the fact that most of the traffics of the network will traverse
the arcs among the hubs; thus the inter-hubs transportation costs are desirably
small.

Once set D is defined, a first node h is selected at random from this set and
inserted into H. If |H| < p, chmax and chmin are updated for all h ∈ H, T and D
to choose another hub.

Although q has been thought as a search parameter, we think that for the
values of p we consider in our computational experiments (3 ≤ p ≤ 5), a fixed
value of 2 for q is reasonable, and this is the value we have used in all the
experiments.

Allocating terminals to hubs

We are interested in finding a good feasible solution as earliest as possible. This
is guaranteed by allocating each terminal to (at least) a single hub. Accordingly,
in order to find an assignment of terminals to hubs, we assume as a starting
point that all the outgoing/ingoing traffics from/to a terminal are transported
through a single hub.

With this purpose, we considered three different measures to help making a
decision about the allocation allocating of a terminal i to a hub h (Measure(i,h)
in Algorithm 2).

The first measure is simply defined by the assignment cost aih of terminal i
to hub h; the second one takes into account the unitary transportation cost. It
is defined as follows:

χcih + δchi + α

(∑
`∈H\{h} ch`

|H| − 1

)
. (33)

In the above expression, the third term is motivated by the fact that it is
expected that most of the traffic will be routed through the hub subnetwork.
In particular, we are considering the average unitary cost between hub h and
all the other hubs. A drawback of measure (33) is that is does not take into
account the cost associated with non-stop services.

The third measure attempted, overcomes this issue; it captures in a single
value the promising features of the previous measures:

aih + χcih
∑
j∈V

tij + δchi
∑
j∈V

tji + Tiα

(∑
`∈H\{h} ck`

|H| − 1

)
. (34)

Each terminal i is allocated to the hub k∗ yielding the lowest value of the
adopted measure. At this point, we have |Hi| = 1,∀i ∈ V \H.

After the initial allocation of terminals is performed, we check whether it
compensates to increase the number of hubs to which each terminal is allocated.

13



For every terminal i ∈ V \ H, define c(Ti) as the cost associated with the
transportation of all the traffics to and from i via Hi and through the hub
network induced by H. It is evident that is convenient allocating i to another
hub h∗ ∈ H \ Hi if c′(Ti) + aih∗ ≤ c(Ti), where c′(Ti) represents the cost of
transporting all the traffics to and from i in the network defined by H, where
Hi := Hi ∪ h∗ and all the other subsets Hj ,∀j 6= i, have not been modified.
Since computing all the possibilities is too much time consuming, not all hubs
h∗ ∈ H \ Hi are tried, only the hub h∗ for which aih∗ = minh∈H\Hi

{aih}. If
c′(Ti) + aih∗ ≤ c(Ti), we set Hi := Hi ∪ h∗ and repeat the procedure for the
same terminal i, while |Hi| ≤ r; otherwise, we proceed with another terminal j.

The whole allocation procedure is summarized in lines 18 to 37 in Algo-
rithm 2.

Traffics transportation

Once the set of hubs is known, as well as the allocation of terminals to hubs, the
problem of finding the optimal route for the traffics among any pair of nodes
is solved by computing the shortest paths and considering non-stop services as
well. Note that for a given pair of nodes i and j, the optimal route for the traffic
tij may be different to the one associated with traffic tji.

When the optimal routes for sending the traffics have been computed, we
have a feasible solution to the UrApHMP-NSS, or, taking into account the
context of the stochastic problem, to a single-scenario problem Ps, s ∈ S.

3.1.2 Improving the solution

Two local search procedures are devised for improving the solution obtained us-
ing the constructive algorithm. They correspond to lines 7 and 8 in Algorithm 1,
and are based on changing the subsets Hi, i ∈ V \ H, as well as on reducing
their size, for some terminals i. These two procedures (denoted by LSchange and
LSreduce in Algorithm 2), are described next.

Changing the assignments of terminals to hubs (LSchange)

Consider a terminal i ∈ V \ H as well as the set of hubs, Hi, to which it is
currently allocated. The procedure LSchange iteratively explores the possibility
of replacing one hub ` ∈ Hi by another hub `′ ∈ H \Hi. It should be noticed
that in order to check whether such a move “improves” the current solution, we
need to recompute the cost associated with the transportation of all the traffics
involving node i, and not just those transported through hub `. We start by
computing

R(i) =

1
|Hi|

∑
k∈Hi

aik

Ti
, i ∈ V \H.

Note that the numerator of R(i) is the average allocation cost of i to its asso-
ciated hubs. Hence, R(i) is a ratio between that cost and all the traffic to and
from i. Therefore, we obtain a unitary traffic average cost involving terminal i.

The values of R(i) are now sorted non-increasingly. This induces a sequence
for nodes in V \ H that we denote by (i1, . . . , i|V \H|). The improvement pro-
cedure takes the terminals iteratively, according to this sequence. For each
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terminal i ∈ V \ H, all the possible pairs (`, `′), with ` ∈ Hi and `′ ∈ H \ Hi

are tested. The pseudo-code associated with this procedure is detailed in Algo-
rithm 3.

Algorithm 3: LSchange

Input: (z, x, y)siter
continue ← TRUE;1

while continue is TRUE do2

continue ← FALSE3

compute R(i),∀i ∈ V \H4

find a sequence (i1, . . . , i|V \H|) induced by sorting the values R(i)5

(i ∈ V \H) non-increasingly
foreach j = 1, ..., |V \H| do6

foreach ` ∈ Hij do7

foreach `′ ∈ H \Hij do8

if (cost using `′) < (cost using `) then9

replace ` by `′ in Hij10

continue ← TRUE11

Output: (z, x, y)siter

Reducing the number of allocations to hubs (LSreduce)

This procedure, which is detailed in Algorithm 4, aims at reducing the cardi-
nality of some subsets Hi, |Hi| ≥ 2, i ∈ V \H, in case we conclude that this is
advantageous from a cost perspective. In order to accomplish this, we compute

R′(i) =

∑
k∈Hi

aik

Ti

for all terminals i ∈ V \H, which is the average allocation cost of i per traffic
unit. As before, a sequence of terminals is induced by sorting the values R′(i)
non-increasingly. The terminals are them analyzed according to this sequence.

For a terminal i ∈ V \ H such that |Hi| ≥ 2 we check the possibility of
decreasing |Hi| by choosing the hub ` ∈ Hi that appears the least in the paths
associated with traffics Ti (that we denote by Paths(i)). If the total cost de-
creases by removing the allocation of node i to hub `, then we do so. In order
to check whether the costs decreases, we only need to recompute the paths in
Paths(i∗) that make use of hub `. Note that removing ` from Hi increases
the transportation cost but decreases the total cost by ai`. This process, that
attempts to remove one allocation, is performed for all terminals in V \ H.
Afterwards, R′(i) is recomputed for the terminals i for which the cardinality
of Hi has been reduced and the procedure restarts but considering only such
terminals. The process continues until no decrease in the cost can be achieved.
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Algorithm 4: LSreduce

Input: (z, x, y)siter
continue ← TRUE;1

while continue is TRUE do2

continue ← FALSE3

Compute R′(i),∀i ∈ V \H : |Hi| ≥ 24

find a sequence (i1, . . . , iL) induced by sorting non-increasingly the5

values R′(i), i ∈ V \H : |Hi| ≥ 2
foreach j = 1, . . . , L do6

Select ` ∈ Hij as the hub used less times in Paths(ij)7

Compute Cost as the cost of routing traffics Tij using Hij8

Compute Cost as the cost of routing traffics Tij using Hij \ {`}9

if Cost < Cost+ aij` then10

Hij ← Hij \ {`}11

continue ← TRUE12

Output: (z, x, y)siter

3.2 Constructing a feasible solution to the stochastic prob-
lem

In this section we introduce a mechanism that allows the combination of at-
tributes from solutions to the single-scenario problems in order to build a feasible
solution to the overall problem P

We denote by β = (β1, . . . , β|S|) the vector containing the value of the best
solution found for the single-scenario problems, Ps, s ∈ S. Additionally, let zsik
be the values of the z-variables in the solution found for Ps, s ∈ S.

Furthermore, consider the |V | × |V | matrix, denoted by U , whose generic

entry is uij = π1z
1
ij + π2z

2
ij + . . . + π|S|z

|S|
ij =

∑
s πsz

s
ij , i, j ∈ V . Let Uj be

the j-th column of U (j ∈ V ). Taking into account that zij = 1 if terminal i is
assigned to hub j, and uij contains the same information averaged across the
different scenarios, when we examine matrix U we have to consider that each
row i represents a terminal node and each column j a potential hub.

In order to quantify the “attractiveness” of a node to become a hub in
the solution for the overall problem P, we compute the marginal vector, u,
resulting from summing all rows of U , i.e., a vector whose generic component is
uj =

∑
i∈V uij , j ∈ V .

The starting point for building a feasible solution to U is to randomly se-
lect a scenario s∗ according to the probabilities π1, . . . , π|S|. Then, a process
inspired on the Path Relinking methodology (Glover and Laguna 1997) that
gradually transforms an initiating solution by incorporating to it attributes of
some guiding solutions is devised. In particular, we propose here to consider the
attributes of the best solutions obtained in each scenario averaged according to
their probability. This information is contained in matrix U . The steps of the
process can be summarized as follows:

(i) Consider the set of p hubs, Hs∗ , in the feasible solution obtained for Ps∗ .

(ii) Find the p indices associated with the larges values of uj for j ∈ V \Hs∗ .
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(iii) Denote by J=(j1, ..., jp) a sequence of the indices found in (iii) resulting
from sorting the corresponding values of uj non-increasigly.

(iv) Set ` = j1.

(v) For each h ∈ Hs∗ ,

(a) denote by H ′s∗(h) the set of hubs resulting from replacing h by `;

(b) for each k ∈ H ′s∗(h) and for each i ∈ V , if uik > 0 set zik = 1, i.e.,
allocate node i to hub k.

(c) For each node i ∈ V check whether the allocations set for the terminal
are feasible. If not, repair them. Three cases can be distinguished:

c1. terminal i has been assigned to more than r hubs (i.e., |Hi| >
r). In this case, the |Hi| − r assignments of i to the hubs in
H ′s∗(h) having the smallest values uij are discarded by setting
the corresponding z-variables to 0.

c2. terminal i has not been assigned to any hub (i.e., |Hi| = 0). This
may be the case of a node i assigned only to hub h. The assign-
ment of i to the existing hubs is evaluated at each scenario using
the measure (34) described in Section 3.1.1, and the number of
times a hub is identified as the best for i is calculated. The hub
k appearing most is the one selected for allocating i to.

c3. Node i is a hub and was allocated to other hubs. In this case,
all the assignments of i to other hubs are removed.

(d) consider H ′s∗(h) as the set of operating hubs together with the allo-
cations zik resulting from (b) and (c). For each scenario s ∈ S do
the following:

1. compute the cost under scenario s, if we implement such feasible
network design for that particular scenario. Denote that cost by ĉsh.

2. compute the value rsh =
ĉsh−βs

βs
. This value represents a sort of relative

“regret” if the network design implemented in scenario s is the one
induced by H ′s∗(h) instead of the best network design known so far
for that scenario. (Recall that the incumbent upper bound on the
optimal value for scenario s is βs.).

3. Compute rmax
h = maxs∈S{rsh} as the maximum relative “regret”

across all scenarios if we take the network design induced by H ′s∗(h)
with the allocations resulting from (b) and (c).

(vi) p sets of p nodes result from (v), since ` is replacing in turn every hub
h ∈ Hs∗ . The next step is to compare those sets of hubs and decide for
one of them. To do so, we use the values rmax

h computed in (v)(d)(3.). In
particular, we select the hub set Hs∗(h

′) such that

h′ ∈ arg min
h∈Hs∗

{rmax
h }.

(vii) Setting the network design induced by Hs∗(h
′) as explained above for the

overall problem P, we can now easily solve the resulting transportation
problem and eventually get a complete feasible solution to the stochastic
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problem. Accordingly, we should update the best incumbent solution for
P if the cost found is smaller than the cost of the incumbent (in case some
already exists).

(viii) This mechanism proceeds now by setting ` = j2 and analyzing the p − 1
ways of replacing a column in Hs∗ \ {j1} by `.

(ix) When, finally, we set ` = jp there is only one possible replacement in
Hs∗ \ {j1, . . . , jp−1} which is the only one attempted.

(x) The best solution for P is updated each time a new solution with less cost
is obtained.

We note that the above mechanism can (and should) be repeated several
times since the starting point is randomized.

The steps (i)–(x) above, define the heuristic procedure we propose for ob-
taining feasible solutions to the stochastic UrApHMP-NSS.

Note that if in step (v)(d) we find a negative “regret” for some scenario, this
means that we have found a feasible solution under that scenario better than
the best one known so far. In this case, we should update the corresponding
value of βs in accordance to the new upper bound found.

It is worth noticing that the above presented scheme is quite flexible. In
fact, it is modular in the sense that some parts can simply be replaced without
the need of changing the global structure. For instance, if a different approach
is considered for tackling the single-scenario problems, the above structure can
be adopted exactly as presented.

4 Computational experiments

In this section we describe the characteristics of the instances tested and the
computational results obtained with the above proposed algorithm.

4.1 Test instances

Since the Stochastic UrApHMP-NSS has been introduced in this paper, there are
no benchmark instances available. Hence, we have generated a set of instances
in order to evaluate the behavior of our new method.

In order to generate instances for the Stochastic UrApHMP-NSS we have
followed a similar reasoning as the one proposed by Alumur et al. (2012) taking
as starting point the CAB25 data set introduced by O’Kelly (1987).

From the original CAB data file, which contains information on distances
and traffics between 25 major cities in the USA, we have generated a total of
74 instances with:

• |V | ∈ {15, 20, 25};

• p ∈ {3, 4, 5};

• r ∈ {2, . . . , p− 1}.
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As it is often done when using the CAB data, the traffics are scaled (by
dividing them by the total traffic) so that the total demand is equal to 1. The
values for parameters χ and δ, representing the unit rates for collection (origin-
hub) and distribution (hub-destination), are set to 1. Parameter α (the unit
rate for transfer hub-hub) takes values in the set {0.2, 0.4, 0.6, 0.8, 1.0}. The
other parameters are generated according to the following:

• From the traffics τij in the original CAB instances, we have generated
traffics tij for each scenario as follows:

(i) a number w is randomly generated in the interval [1, 100];

(ii) if w ≤ 66, tij is randomly selected in the interval [0.01τij , 5τij ];

otherwise, tij is randomly selected in ]5τij , 10τij ].

• The assignment costs, aik, i, k ∈ V have been randomly generated in the
interval [10 log

∑
j∈V tij , 20 log

∑
j∈V tij ].

• For each scenario, the costs cij , have been randomly generated in the
interval [0.5γij , 1.5γij ], where γij (i, j ∈ V ) represent the original costs.

• The non-stop transportation costs dij have been randomly selected in the
interval [0.2(χ+ α+ δ)γij , 0.8(χ+ α+ δ)γij ].

• The costs bij have been randomly chosen in [10 log(tij + tji), 20 log(tij +
tji)].

Nine scenarios have been considered for all the instances, and the probabilities
πs associated with the scenarios have been randomly generated.

4.2 Computational results

In this section we report the computational results obtained with the method we
proposed in Section 3 for solving the Stochastic UrApHMP-NSS. The procedure
has been implemented in C using GCC 4.8.4 with optimization flag -O3. The
results of the proposed method reported in this section have been obtained with
an Intel core i7–3770 at 3.40GHz using a single thread and 16GB of RAM,
under Ubuntu 14.04.03 GNU/Linux – 64 bits operating system, while those
corresponding to CPLEX have been obtained with a SGI Altix UV 1000 system
with 20 processors (out of 64) at 2.67 GHz, 120 cores, and 120GB of RAM.

A relevant component in the heuristic procedure described in Section 3.2
is the algorithm proposed for the deterministic (single-scenario) problems. For
this reason, we start by analyzing the quality of the feasible solutions obtained
by that algorithm. The information can be found in Table 1, where each row
contains average results for the 9 single-scenario instances generated for each
combination of n, p, r, α.

In this table, the column headed with “CPLEX” contains the average CPU
time (seconds) required to solve the instances to optimality using this solver. We
then observe 3 groups of columns (4 columns each). The first group contains the
results (percentage deviation w.r.t. optimum and CPU time when 100 or 1000
iterations were performed) for the feasible solutions provided by Algorithm 2.
The second and third groups of columns contain the results obtained when
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Algorithm 3 (second group) and Algorithm 3 followed by 4 (third group) were
performed for improving the initial feasible solution.

Observing Table 1 we conclude that the complete procedure (Algorithms 2–
4) is a very efficient tool for obtaining high-quality solutions to the (determinis-
tic) UrApHMP-NSS. In particular, we observe that running the whole procedure
1000 times renders extremely sharp upper bounds at the expenses of a negli-
gible increase in the computational effort. The results obtained indicate that
Algorithm 1 is a good element to put at the core of the overall procedure for
the stochastic problem.

CPLEX Heur 1000 Heur 2000

n p # inst CPU Dev (%) CPU Dev (%) CPU

15 3 5 271.5 1.0 9.5 1.0 18.8
15 4 10 65.3 3.2 18.2 2.2 36.1
15 5 15 44.7 1.9 29.6 1.3 58.9
20 3 5 16261.2 1.6 18.8 1.2 37.2
20 4 10 10479.9 2.2 37.0 1.4 72.7
20 5 15 10080.7 2.9 61.9 1.8 123.2
25 5 14? 129615.7 3.9 104.3 3.8 207.2

Summary 74 29116.4 2.6 47.7 2.0 94.6

Table 2: Computational results on the 74 CAB instances.

Table 2 reports the results obtained using the procedure developed in Sec-
tion 3.2 for the Stochastic UrApHMP-NSS. The information presented in each
row corresponds to the average values obtained for all the instances with the
characteristics described. First two columns show the number of nodes of the
group of instances and the number of hubs to be open, respectively. As men-
tioned before, one instance was generated for each value of p, r ∈ {2, . . . , p−1},
and α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. The number of instances in each group is shown
in column “# inst”.

For n = 25 and p = 5 we report results for 14 out of the 15 CAB instances
considered. This is marked with “?”. The omitted instance (corresponding to
r = 4 and α = 0.6), has been removed from the table since CPLEX was unable
of providing even a lower bound after 5 days of computing time.

All the instances reported have been solved to optimality with CPLEX and
heuristically with our algorithm.

The CPU time (seconds) required by CPLEX as well as by two alternatives
for our method (1000 and 2000 iterations in total) and the average percentage
deviation with respect to the optimal solution are reported in columns “CPU”
and “Dev (%)”.

The results obtained give strong evidence to the high efficiency of the new
heuristic proposed. In particular, we can observe an average deviation of 2.6%
after 1000 runs of the procedure in less than 50 seconds (on average), while
the average deviation reduces to 2% when 2000 runs are performed which is
accomplished in less that 100 seconds. Additionally, it is worth noticing that
for 1000 runs, a deviation smaller than 1% was obtained for 15 out of the 74
instances, and a maximum deviation of 7.1% was observed; when 2000 runs
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were performed, the method led to a deviation smaller than 1% in 23 out of the
74 instances, while the maximum deviation obtained was 5.5%. Note that the
average CPU time required by CPLEX for solving the instances in the last group
is approximately 36 hours, while in some of the instances it takes up to 5 days
to find the optimal solution with the SGI Altix UV 1000 system. The detailed
results (for each instance tested) are reported in Table 4 in the Appendix.

One important element in the heuristic algorithm proposed in Section 3.2 for
the Stochastic UrApHMP-NSS concerns the vector β1, . . . , β|S| that contains the
best known upper bound for each of the |S| single-scenario problems. During the
process, the changes performed in the solutions to the stochastic problem may
allow finding better solutions for some single-scenario problems, which leads to
changes in the above vector. In Figure 1 we represent the evolution of the 9
βs, each one for one scenario, considered in the instance with n = 25, p = 5,
r = 2, and α = 1.00. In this figure, we also represent the evolution of the value
of the best known solution to the stochastic problem. The Figure shows that
changing the values of the β is something that the process takes advantage from.
Moreover, at least for this instance, we can observe larger improvements in an
earlier stage of the process, which also indicates that the overall procedure seems
to be effective not only when it comes to finding a good solution to the stochastic
problem, but also in terms of sharpening the best upper bounds known for the
single-scenario problems.

Figure 1: Beta evolution

Finally, we conclude the analysis of the results by evaluating the relevance of
considering the stochastic modeling framework proposed for the UrApHMP-NSS
instead of using a simplified deterministic model. We accomplish this analysis
by computing the so-called Expected Value of Perfect Information (EVPI) that
quantifies the amount that the decision maker would be willing to pay to ac-
cess the perfect future information. A high EVPI indicates that the decision
maker perceives as quite relevant having access to the perfect information which
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indicates that uncertainty may be a relevant factor in the problem.
The EVPI is obtained as follows:

• First, the Wait-and-See value is computed according to WS =
∑
s∈S πsVs,

where Vs is the optimal value of problem Ps.

• Second, the stochastic problem P is solved to optimality. Let V its value.

• Finally the EVPI is computed as: EVPI = V −WS.

Wait-and-see Optimal value of the Relative
n p r α optimal value Stochastic UrApHMP-NSS EVPI

15 4 2 0.2 2386.3 2393.1 0.28%
15 4 2 0.4 2533.1 2542.0 0.35%
15 4 2 0.6 2678.4 2690.8 0.46%
15 4 2 0.8 2795.4 2839.6 1.56%
15 4 2 1.0 2878.4 2957.6 2.68%
20 4 2 0.2 5078.3 5135.8 1.12%
20 4 2 0.4 5584.6 5705.3 2.12%
20 4 2 0.6 6050.5 6214.0 2.63%
20 4 2 0.8 6430.6 6654.4 3.36%
20 4 2 1.0 6672.3 7037.4 5.19%
20 5 2 0.2 4458.4 4499.1 0.91%
20 5 2 0.4 5053.2 5126.4 1.43%
20 5 2 0.6 5619.3 5753.8 2.34%
20 5 2 0.8 6077.5 6304.2 3.60%
20 5 2 1.0 6366.5 6696.2 4.92%
25 5 2 0.2 5256.0 5313.3 1.08%
25 5 2 0.4 5877.9 5961.2 1.40%
25 5 2 0.6 6443.6 6569.8 1.92%
25 5 2 0.8 6974.6 7159.2 2.58%
25 5 2 1.0 7469.8 7735.8 3.44%

Average 5134.2 5264.5 2.17%

Table 3: Exact Expected Value of the Perfect Information for some CAB in-
stances.

A more informative measure is the relative EVPI: 100V−WS
V , since the cor-

responding result (in percentage) ignores the magnitude of the values involved
in the problem. The results obtained for the test instances we have considered
can be observed in Table 3.

A first aspect emerging from this table is the increase of the relative EVPI
with α. This is not surprising since small values of α induce small inter-hub
costs, which makes the impact of the decisions associated with the hubs smaller
and thus the relevance of the uncertainty also decreases.

Overall, we observe percentages that are always positive and ranging up to
5.19%. Taking into account that we are working with fairly small instances (up
to 25 nodes) this values show that considering stochasticity in our problem may
be of great relevance.
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5 Conclusions

In this paper we have investigated a stochastic version of the r-Allocation p-
Hub Median Problem with Non-stop Services. We have started by extending
the already existing r-Allocation p-Hub Median Problem in order to capture
non-stop services. Afterwards we have developed a stochastic programming
modeling framework for the problem. Due to the difficulty in solving the prob-
lem to optimality, we have derived a heuristic approach for the new stochastic
problem. A side contribution is the development of a heuristic approach for the
deterministic (single-scenario) version of the problem. We have performed com-
putational tests using instances generated from the well-known CAB data set.
The results show the effectiveness of our new heuristic for obtaining high-quality
feasible solutions to the problem with a small CPU time.

One important aspect of our heuristic is its modularity. For instance, in case
a different algorithm is devised for finding feasible solutions to the single-scenario
problems, the methodology described in Section 3.2 is still valid. Another possi-
bility is to change the attribute matrix U . Again, the procedure would be valid
as presented.

The high quality of the results obtained in this work encourages the applica-
tion of the same type of heuristic methodology to other stochastic hub location
problems and even to consider more comprehensive models from a practical
point of view.
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Appendix

In this appendix we detail the results reported in Table 2. In particular, for each
combination n, p, r, α we report the results obtained using CPLEX to solve the
instance to optimality and also the results obtained after performing the new
heuristic proposed considering 1000 and 2000 runs. The information is gathered
in Table 4.
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