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1. Introduction

Arc Routing Problems (ARPs) typically deal with traversing a set of
connecting edges (in the undirected case) or connecting arcs (in the directed
one) at the minimum possible cost. We may find many types of objectives and
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constraints modeling different applications, from garbage collection to meter
reading, and constitute nowadays a well-established field in combinatorial
optimization.

As Corberán and Laporte (2014) described in their reference book in
vehicle routing, “the study of modern arc routing truly started in 1960 with
the first publication on the Chinese Postman Problem”. Over the years, arc
routing has evolved into a relevant research area, which might include real-
life characteristics such as multiple criteria, soft constraints, or stochastic
travel times, just to name a few.

We can find different variants of ARPs according to the characteristics of
the network (directed or undirected), vehicles (homogeneous/heterogeneous
fleet), depot (single, multiple or mobile), demand, and objective. These
two later elements contain many subcategories, reflecting the interest of re-
searchers and practitioners on these topics. In particular, among the most
important ones are the inclusion of time windows, time-dependent service
cost, or multiple objectives, including service and labor cost, length, and du-
ration of routes.

In this paper, we target an interesting variant of the classic arc routing
problem. We consider problems with profits, which deal with situations
where clients have an associated profit that is collected when servicing them.
They basically consist of designing one or more routes providing service to
some chosen clients, in such a way that a certain objective is optimized. This
objective is usually defined in terms of the cost (distance or travel time)
or/and the profit. A routing problem with profits is called profitable when
its objective is to maximize the difference between the collected profit and
the traveling cost (Feillet et al. (2005)).

In arc routing problems, the service is typically performed while the ve-
hicle traverses an arc of the graph. However, in the last few years, advances
in new technologies, such as radio-frequency identification (RFID), permit to
perform some tasks remotely; and therefore, the concept of providing a ser-
vice needs to be redefined. In the case of ARP models, we need to introduce
the concept that while a vehicle, or a drone (Dell’Amico et al. (2021)), tra-
verses an arc, it may provide service not only to this specific arc, but also to
other elements not present in this arc. For example, RFID makes it possible
to remotely collect consumption data, such as gas, electricity, or water from
their meters without being in their specific location (house or facility). The
meter sends a signal with the consumption information, which is read by the
receiver if it is close-enough (i.e., less than a certain distance threshold given
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by technological specifications). Thus, the operator only has to enter the
meter’s coverage area to perform the service, without the need to physically
visit all the clients (Gulczynski et al., 2006). Applications in the context
of meter reading over a street network can be found in Hà et al. (2014), in
which clients (meters in these applications) are not necessarily nodes of the
network, and are served when a close-enough street is traversed.

The problems described above can be grouped under the generic term
“close-enough models”. As a matter of fact, we can find this type of situation,
in which the service is provided remotely, not only in ARPs, but also in
node routing problems, and even in location problems. Figure 1 shows a
classification of close-enough models in these three families: node-routing
problems (Nodes), ARPs (Arcs), and facility location. In the first family we
can find the Close-Enough Traveling salesman Problem (CETSP), and the
Covering Tour Problem (CTP), which is an undirected version of the CETSP.
As can be seen in this figure, we can find many ARPs variants with close-
enough models. Specifically, we have identified the following six problems,
where the first four of them consider 1 vehicle, and the last two are built
based on several vehicles:

• CEARP - Close-Enough Arc Routing Problem

• GARP - Generalized Arc Routing Problem

• SCEARP- Stochastic Close-Enough Arc Routing Problem

• PCEARP - Profitable Close-Enough Arc Routing Problem

• DC-CEARP - Distance-Constrained Close-Enough ARP

• MM-CEARP - Min-Max Close-Enough Arc Routing Problem

The third category displayed in Figure 1 is devoted to close-enough facility
location models, and we have only identified one contribution in this family.
This figure also includes the associated references for a complete picture of
the area.

In this paper we consider the Profitable Close Enough Arc Routing Prob-
lem (PCEARP) in which the required arcs are grouped into families associ-
ated with clients, and to service them it is enough to traverse one of their
associated arcs. Note that in this problem not all clients have to be served,
but the model has to select those with a relatively large profit. It must be
noted that routing problems traditionally consider that clients are located
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either in the nodes or the arcs of the underlying graph. The PCEARP, pro-
posed in Bianchessi et al. (2022b), introduces more flexibility to model the
new requirements associated with providing a remote service; however, as
will be shown, it translates into more complexity in terms of its resolution.
In particular, clients are not located in arcs or nodes, but can be served from
certain arcs. This is why we consider families of arcs associated to clients,
indicating that traversing any arc in the family provides the service to that
client. As the PCEARP generalizes both the CEARP (when the profits asso-
ciated with all the clients are very large) and the PRPP (when each required
arc defines a client), it is an NP-hard problem covering different practical
applications.

A PCEARP real-life application is found in inventory management. Large
companies competing in the global market usually work with many products
and references. In fact, in these companies, inventory management is be-
coming a complicated and costly task, making very difficult to keep track
the number of articles of each reference in each warehouse, thus causing
the so-called shrinkage (loss of items in retail stores). This is not only the
case of private companies, but also of the public institutions. According
to Fadel Adib, Assistant Professor of Media Arts and Sciences, “Between
2003 and 2011, the U.S. Army lost track of $5.8 billion of supplies among
its warehouses. Similarly, the U.S. National Retail Federation reported that
shrinkage averaged around $45.2 billion in 2016”. In this context, an efficient
way to record and maintain the level of storage in both companies and insti-
tutions is necessary. In the work Miao et al. (2022), the authors state that
“Strategic inventories are considered a vital bargaining tool for retailers and
an essential means to promote supply chain coordination and reduce double
marginal benefits”.

The development of RFID tags revolutionized supply chain management
a few years ago (Chen et al. (2014)) by allowing warehouse managers to
log inventory much more efficiently, keeping track of the real stock when
products enter and leave the warehouse. However, since part of the process
was still manual, it resulted in time-consuming operations. This means that
mismatches were often overlooked until they were exposed by client requests.
In order to make this task easier, MIT researchers have developed a device
that allows aerial drones to read RFID tags from tens of meters away and
identify the tags location with accuracy (with an average error lower than
20 centimeters). In this way, to check the stock of each product, the drone
only needs to be close enough to the product location (Duric et al. (2018)).
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If we consider the products as clients and assign a profit to those products
for which we are interested in knowing the stock, we would be referring to
a PCEARP in which the drones move through the aisles of the warehouse.
In this way, we can state that the model considered in this paper is applied
to solve an important problem in supply chain, which constitutes a critical
pillar in modern economy.

2. Problem definition and formulation

Given a strongly connected digraph G = (V,A), where V is the set of
vertices, and A the set of arcs, we consider dij ≥ 0 as the distance (or length)
of arc (i, j) ∈ A. Without loss of generality, vertex 1 denotes the depot. As
described in the introduction, in this problem we consider an additional set
of clients H, which is not necessarily located in the vertices or arcs of the
graph. As a matter of fact, each client c ∈ H receives service if any of its
associated arcs is traversed. Let Hc ⊆ A be this set of associated arcs to
c. We also define the profit pc ≥ 0 of client c. This profit is collected (only
once) if the client is serviced. Note that the subsets Hc are not necessarily
disjoints.

The Profitable Close-Enough Arc Routing Problem (PCEARP) consists
in finding a route on G that starts and ends at the depot. This route,
usually called tour or “closed walk”, constitutes a solution of the PCEARP.
Its objective is to maximize the difference between the sum of the profits
collected in the route, and its total length.

In arc routing problems, the concept of required arcs is usually straight-
forward and implies that a feasible solution has to traverse it. As mentioned
above, we use here a broad scope of this concept, and we called required to
those arcs that provide service to one or more clients. In line with this, we
define the set of required arcs AR = ∪c∈HHc. Note that a feasible solution
may or may not traverse these arcs; but if it traverses them, the associated
profits are collected. Symmetrically, non-required arcs, employed to connect
the required arcs in the tour, are in the set ANR = A \ AR.

Given a set of vertices S ⊂ V , we define its out-cutset δ+(S) as the set
of arcs from S to V \S. In mathematical terms: δ+(S) = {(i, j) ∈ A : i ∈
S, j ∈ V \S}. Similarly, we define the in-cutset of S, δ−(S), as the set of
arcs from V \S to S: δ−(S) = {(i, j) ∈ A : i ∈ V \S, j ∈ S}.

The PCEARP can be formulated in mathematical terms by representing
a tour on G with an integer vector x = (xij) ∈ Z|A| where, for each arc
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(i, j) ∈ A, xij is equal to the number of times that it is traversed. A solution
to the PCEARP is thus represented by (x, z), where x is the integer vector
associated to the tour, and z = (zc) ∈ Z|H| is the binary vector associated
with the clients, in which:

zc =

{
1, if the client c is serviced,
0, otherwise.

The PCEARP is modeled in Bianchessi et al. (2022b) as an integer linear
program based on the (x, z) variables. In particular, the objective function
and constraints are computed as follows:

Maximize
∑
c∈H

pczc −
∑

(i,j)∈A

dijxij

s.t.:

x(δ+(i)) = x(δ−(i)) ∀ i ∈ V (1)

x(δ+(S)) ≥ zc − x(Hc ∩ A(V \ S)) ∀S ⊆ V \ {1}, ∀c ∈ H (2)

x(Hc) ≥ zc ∀c ∈ H (3)

xij ∈ Z+ ∀(i, j) ∈ A (4)

zc ∈ {0, 1} ∀c ∈ H, (5)

In this formulation, for a set of arcs F ⊂ A, x(F ) =
∑

(i,j)∈F xij. Con-

straints (1) are the typical symmetry conditions of arc routing problems to
guarantee that vertices are balanced (i.e., their in-degree match their out-
degree). Constraints (2) ensure that the routes are connected either if clients
are serviced or not. Inequalities (3) imply that, if a client c is served, at least
an arc in Hc is traversed. Finally, (4)–(5) include variables definition.

As described in Bianchessi et al. (2022b), this is a partial formulation of
the PCEARP in the sense that it may produce solutions disconnected from
the depot (with the so-called subtours satisfying (1)–(5)). However, the
authors proved that when maximizing the objective function, the model is
indirectly penalizing the existence of subtours, and then its optimal solution
is always a connected tour (i.e, a closed route without subtours).

It is important to note that we are facing here a typical situation when
modeling complex combinatorial problems; although we know an explicit
formulation of the problem, we cannot use it directly on a solver. This is
because the number of constraints is too large to be included (it actually
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reflects the exponential growth of the model in terms of the size of the data).
Specifically, Constraints (2) are defined in terms of the number of vertices
of any subset S of V , which translates into 2|V |, which is too large even for
medium size instances. This is why Bianchessi et al. (2022b) proposed a
branch and cut algorithm to efficiently solve these instances. We will use
their results when assessing the performance of our heuristic.

In the next section, we define the PCEARP, and formulate it in mathe-
matical terms. The main contributions of this paper are: (a) to review pre-
vious heuristics for the PCEARP (Section 3), (b) to propose a new heuristic
based on the Variable Neighborhood Search for the PCEARP (Section 4),
which includes new search strategies for an efficient explorationof the so-
lutions space, and (c) to perform an empirical comparison on previously
reported instances to assess the efficiency of the proposed heuristic with re-
spect to both previous heuristics and optimal solutions. The paper finishes
with the associated conclusions.

3. Previous heuristics

The PCEARP was recently introduced in the context of a branch-and-
price algorithm for a related problem, the min-max close-enough arc routing
problem. This variant based on profits, was identified by Bianchessi et al.
(2022a) in the pricing problem that has to be solved as a part of their exact
method. The authors proposed a GRASP heuristic to speed up the column
generation applied in the nodes of the search tree in the branch-and-price
algorithm. It must be noted, that their GRASP (GRASP BP) solves the
minimization problem involved in the pricing part, so we adapted it here
to target the PCEARP, which is equivalent but modeled as a maximization
problem. Note also that it exhibits short computational times, as required by
an algorithm that is repeatedly applied. A short description of the method
follows.

GRASP BP starts by computing, for each required arc a ∈ AR, the profit
p(a) of the clients served by the tour going from the depot to the arc (i.e., the
sum of its individual profits), and coming back to the depot, minus its total
distance. In other words, it computes the objective function value of this
tour under construction. The method builds a set Aini with the arcs with a
relatively large p(a) value to initiate a route. In particular, this set contains

the min{50, |AR|
2
} arcs with the largest p-value. GRASP BP is applied a
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number of iterations equal to the cardinality of Aini, and at each iteration,
a route is initialized by selecting an arc in Aini (without replacement).

After the initialization, we have a partial route r with an objective func-
tion value f(r) that computes the sum of the profits of clients served, minus
the distance traveled. A GRASP BP iteration tries to first complete it by
adding more arcs and serving more clients, and then to improve the resulting
route by replacing some arcs in it. Let AR(r) be the set of required arcs
in route r. Note that r may contain non-required arcs (i.e., arcs that do
not serve any client), that are necessary to connect the required arcs. These
non required arcs are typically computed as the shortest paths joining the
required arcs.

Construction phase. At each step of the GRASP BP construction, the method
computes, for each required arc a not in the route (a ∈ AR \AR(r)), its value
ψa, as the change in the objective function if a is inserted in route r (in the
best possible position). Note that, if a is added to r, to compute the objective
function value of the new route r′, we have to update in f(r) both the sum of
profits of the route, and the sum of distances. It is expected that new clients
are now served and therefore the sum of profits will probably increase, but at
a price that comes from the increment in the total distance to visit them (to
traverse the arcs serving them). In mathematical terms, f(r′) = f(r) + ψa.

As it is customary in GRASP, a restricted candidate list (RCL) is built
with the arcs with a good evaluation, and the method randomly selects one
of them. Let ψmax and ψmin be the maximum and minimum respectively of
the ψa values for all the required arcs not in the current route. Then,

RCL = {a ∈ AR \ AR(r) : ψa ≥ α(ψmax − ψmin) + ψmin},

where the parameter α balances the greediness and the randomization
in the selection from RCL. Specifically, if α = 0 the method is completely
random since all the required arcs (not in the route) are in RCL. On the
other hand, if α = 1 the method is entirely greedy since only the best arcs
(those with maximum ψa) are in RCL. The authors applied this method
with α = 0.9 to reflect the strategy of considering a small randomization
component.

The selected arc is added to the route, and its value updated. A GRASP BP
construction performs iterations, adding arcs to the partial route, until no
further improvement is possible, and at that point, the resulting route is
submitted to the improvement method.
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Improvement phase. The method applies a post-processing procedure to im-
prove each constructed solution by exploring its neighborhood. In particular,
it consists of a destroy-and-repair method (Corberán et al., 2019) that first
removes some arcs from the route, and then add new arcs to improve the
resulting solution. It is indeed more complex than the standard local search
usually applied in GRASP, in an effort to obtain improved outcomes.

In the Destroy step of the algorithm, a small number of required arcs, η,
are randomly selected and removed from the route. The authors proposed to
alternate η between 1 and 3 in consecutive iterations. Then, in the Repair
step, the best required arc a ∈ AR \AR(r), is included in it, if it improves its
value. Further required arcs are added to the solution as long as they improve
it. An improvement iteration finishes when no further improvement is possi-
ble adding extra arcs. Then, it resorts to the destroy step. The improvement
phase alternates between both steps, destroy and repair, until a cutoff point
is reached. The authors recommended to establish this limit as a function of
the problem size. Specifically, they set it as mLS = min{L

2
, |AR(r)|

2
}, where L

is the number of clients and |AR(r)| the number of required arcs in the route.
As mentioned above, this GRASP BP was originally proposed in the con-

text of a branch-and-price method, and was applied for a very short comput-
ing time (2 seconds), in line with its role to operate as a subroutine. Since we
are considering it now as solver itself, we will apply it in our computational
testing for a longer running time (60 seconds), similar to the other heuristics
considered.

Another heuristic procedure for the PCEARP has been proposed in Bianchessi
et al. (2022b), where a detailed study of the problem is conducted. In that
paper, the authors provide an iterative algorithm that combines a construc-
tive heuristic and a local search heuristic. This method can be considered an
extension of the previous heuristic, in which they improve the construction
strategies to obtain a high-quality bound in their branch-and-cut algorithm.
As a matter of fact, this improved heuristic permits to identify many optimal
solutions to the exact procedure in relatively short running times for small
instances.

Similarly to the method described above, in each iteration the construc-
tive algorithm is first applied to construct a solution. Then, each solution
(route) can be improved by applying the local search algorithm. After ap-
plying both phases, construction and improvement, iteratively, the output of
the method (final solution) is the route associated with the best profit among
those calculated. The authors call it the iterative algorithm, but considering
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Algorithm 1 GRASP BP Algorithm

1: function GRASP(tl, α)
2: it← 1
3: itLS ← 1
4: Aini ← GenerateSet ()
5: while t < tl & it ≤ |Aini| do
6: a← Aini(i)
7: r ← ConstructionPhase (a, α)
8: η ← 1
9: while η ≤ 3 do

10: while itLS < mLS do
11: r′ ← ImprovementPhase (r, η)
12: if f(r′) > f(r) then
13: f(r)← f(r′)
14: itLS ← 1
15: else
16: itLS ← itLS + 1

17: η ← η + 1

18: it← it+ 1

19: return r

that it is a greedy randomized adaptive search procedure, we will refer it as
GRASP IT.

It is very interesting to note that both methods apply a greedy random-
ized strategy in the construction process. However, in the case of the previous
GRASP BP the method first evaluates all the potential candidates, creating
the so-called Restricted Candidate List with the good elements, from which
one of them is randomly selected. On the other hand, the GRASP IT de-
scribed in what follows alternates the order in which these two strategies,
greedy and random, are applied. In particular, it first selects some elements
completely at random (performing a random sampling in the candidate list),
and then, after evaluating them, select the best one.

To introduce new strategies based on clients, we will use additional no-
tation to the one we have presented above. Given a route r, in addition to
the ordered set of required arcs AR(r), the set of clients that are served by
this route is specified with C(r). Given a ∈ AR, the set Ca will be the set
of clients served when a is traversed. Each iteration starts by computing the
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Algorithm 2 GRASP IT Algorithm

1: function GRASP(tl, itmax,mC ,mLS)
2: it← 1
3: Aini ← GenerateSet ()
4: A ← Aini

5: while t < tl & it ≤ itmax do
6: for a← 1 to |A| do
7: r ← ConstructionPhase (a,mC)
8: itLS ← 1
9: while itLS < mLS do

10: r′ ← ImprovementPhase (r, η)
11: if f(r′) > f(r) then
12: f(r)← f(r′)
13: itLS ← 1
14: else
15: itLS ← itLS + 1

16: it← it+ 1

17: Aini2 ← GenerateSet ()
18: A ← Aini2;

19: return r

list of required arcs Aini in a similar way than the GRASP BP described
above. There are however, some improvements over the previous algorithm.
Specifically, for each client c ∈ H, the arc a = (i, j) ∈ Hc with minimum
distance from the depot is added to Aini. In other words, instead of scanning
the list of arcs in search for a good element (as the GRASP BP does), the
method explores the clients and from them, examines the arcs.

Once a route is initialized with an arc ai ∈ Aini, then all the clients in
Cai are included in C(r). It is next checked if the required arcs traversed
from the depot to ai and from ai to the depot (if any) can service other
unassigned clients. If that is the case, both the arcs and the clients are
inserted in AR(r) and C(r), respectively. In line with the objective function,
the method looks in each route r for a subset of clients/arcs with high profits
(in order to add them to r). This is done by first sampling clients at random,
and then selecting the best of them. In particular, ⌊(|H| − |C(r)|)/4⌋ clients
not included in C(r) are randomly selected, and the client c and the arc a
producing the best change in the objective value are selected and AR(r) and
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C(r).
Each constructed solution is improved with the local search heuristic

based on the destroy-and-repair mechanism proposed by Bianchessi et al.
(2022a) in GRASP. Once all the routes associated with the arcs in Aini have
been studied, we can perform further iterations if the stopping criterion is not
met, by applying a different arc selection rule to initialize routes. Specifically,
for each arc a ∈ Aini, a client c is randomly selected from the max{10, |H|/50}
clients closest to a in H \Ca. The arc a ∈ Hc, which produces the best value
of the objective function when added to the route initialized with a, is se-
lected to define, together with a, the new initial route r. In this way, it is
built a new list Aini2, where each component is a pair of required arcs, to
initialize the routes.

The GRASP IT (Algorithm 2) is executed for a maximum number of
itmax = 100 · |H| iterations and tl = 60 seconds. The maximum number
of iterations without improvement has been set to mC = min{|H|/4, 25}
for the constructive heuristic and to mLS = min{|H|/2, 50} for the local
search heuristic. The number of consecutive arcs removed while applying
the destroy-and-repair mechanism has been set to η = min{|Ar

R|, 5}.

4. A Variable Neighborhood Search Heuristic

In this paper we consider the Variable Neighborhood Search (VNS); a
metaheuristic based on exploring several neighborhoods during the solution
search to overcome the limitations of local optimality. VNS was introduced
by Mladenović and Hansen (1997) and, since then, this methodology has
continuously evolved resulting in several extensions and variants. See Hansen
et al. (2016) for a reference text.

As stated by Mladenovic and Hansen, VNS is based on three principles:

• A local minimum with respect to one neighborhood is not necessarily
so with another.

• A global minimum is a local minimum with respect to all possible
neighborhood structures.

• For many problems local minima with respect to one or several neigh-
borhoods are relatively close to each other.
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The second principle is true for all the optimization problems. Principles 1
and 3 may or may not hold but they are usually true in many combinatorial
optimization problems.

We propose a MultiStart-VNS (MS-VNS) to solve the Profitable Close-
Enough Arc Routing Problem (PCEARP). VNS combines deterministic and
random changes of neighborhood structures in order to find a balance be-
tween diversification and intensification. Incorporating VNS in a multi-start
scheme allows us to perform several independent iterations to further improve
the diversification ability of the procedure. Algorithm 4 shows the associated
pseudo-code. We first start with the definition of the four neighborhoods in
our method, and then present the description of the algorithm.

4.1. Neighborhoods definition

Swaps are the primary mechanism in our neighborhood definition. In the
neighborhood N1−1, as it is shown in Figure 2, we exchange a required arc in
the solution with another required arc not present in the solution. We apply
the so-called first strategy, in which we perform the first improvement move
and skip the examination of the rest of the neighborhood.

We consider the set of required arcs AR(r) in route r as an ordered set,
reflecting the order of the route that starting from the depot traverses each
arc in the set. It is assumed that the route follows the shortest path from
the final vertex of any required arc in the sequence to the initial vertex
of the next one. Starting with the first arc in AR(r), a1, our exploration
of N1−1 tries to remove it from the route, and to replace it with another
required arc. In particular, the method randomly selects a customer c ∈ H
not served by r, and explores all the arcs providing service to c (i.e, the arcs
b ∈ Hc). The exchange of a1 with b, evaluates the insertion of b in the best
possible position of route r. Note, that this evaluation also computes the
shortest paths necessary to reconnect route r. The method considers all the
arcs b ∈ Hc and if any of them results in a better route, the best move is
performed and the route is updated with both required and non-required arcs.
Figure 2 illustrates this move. It is worth mentioning that when including
the shortest path to reconnect the route, it may happen that a non-served
client is served now, and therefore, the evaluation has to accurately reflect
it. If all the arcs b ∈ Hc has been explored and no improving exchange
has been found, the method considers the next required arc a2 in AR(r)
and applies the same process again with another randomly selected client.
The neighborhood exploration continues, as long as improvement swaps are
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performed, scanning AR(r) in order consecutively; and it stops after a full
examination of AR(r) without improvement.

a1

a5

a2

a3 a4

a6

a1a2

a3 a4

a6

b

Figure 2: Neighborhood Change - N1−1

In the neighborhood N2−1, we exchange two required arcs in route r
with one required arc not present in the solution. Specifically, we start by
considering to swap a1 and a2 in AR(r) with an arc b ∈ Hc for a randomly
selected customer c not served in the current route r. The method follows the
same procedure described above, evaluating the insertion of the arcs b ∈ Hc

in the best possible position, and finally performing the best associated move,
if it improves the solution. After that, it considers the next pair of arcs in
the ordered set AR(r), namely a2 and a3 and proceeds in the same fashion.
The local search based on this neighborhood performs swaps of 2 required
arcs with 1 required arc not in the solution as long as any improvement is
found.

From the description of the two neighborhoods above, N1−1 and N2−1, we
can easily understand how operate our two other neighborhoods, N1−2 and
N2−2. In particular, in N1−2 (Figure 3) we consider swaps of 1 required arc
with 2 required arcs not in the solution, while in N2−2 we exchange two arcs
with two arcs. Search strategies are implemented in line with the methods
above, scanning the ordered set AR(r) in search for an improving move,
and selecting at random two non-served clients to insert in the solution one
required arc associated with each of them.

A criticism to the explorations proposed above is that they rely on a
random selection of the client not served in the current route to identify the
required arc or arcs to be inserted. We have also considered an alternative
selection mechanism based on a deterministic criterion. In particular, for each
required arc in the route, we compute its closets required arcs not present
in the route. In this way, when we evaluate a swap, its closest arc is the
first candidate to try to replace it. This can be easily generalize to the four
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Figure 3: Neighborhood Change - N1−2

neighborhoods described, since instead of considering the closest arc, we can
consider the closest and second closest arcs.

We cannot establish before hand which of both alternative designs is
better. The random client selection, clearly favors the diversification in
the exploration, but at a cost of considering many alternatives, with the high
computational cost involved. On the other hand, the deterministic arc
selection of the closest required arc reduces the exploration of alternatives,
but clearly performs a narrow exploration losing diversification power. We
therefore will test both designs in our computational experience.

4.2. VND Algorithm

The VND algorithm is based on a systematic change of the neighborhood
structure. In particular, when the local search does not obtain an improved
solution in the neighborhood of the current one, then, it resorts to another
neighborhood. To do it in a systematic way, we first order the four neighbor-
hoods described above for our routing problem. As it is customary in this
methodology, we order them from the simplest to the most complex one, in
order to reduce the computational effort of exploring them. Specifically, we
consider the following order: N1−1, N1−2, N2−1, and N2−2. Additionally, in
each of these neighborhoods we can perform a random client or a deter-
ministic arc selection, resulting in lmax = 8 neighborhoods. Algorithm 3
shows the pseudo-code of the method.

The VND procedure in Algorithm 3 starts with a solution r0, that is stored
as the current best, r, in step 2. In the main loop in steps 4-10 is where the
method performs multiple iterations. Starting with the first neighborhood in
the list, l = 1, the method applies the first improvement strategy and returns
in step 5 solution r′ in the neighborhood. If it improves upon the best so
far, r, then in step 7 it is updated, r = r′, and in step 8 we resort to the
first neighborhood in the list (l = 1) to continue the exploration; otherwise,
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Algorithm 3 Variable Neighborhood Descendent

1: function VND(r0, lmax)
2: r ← r0;
3: l← 1;
4: while l < lmax do
5: r′ ← FirstInNeighborhood(r, l)
6: if f(r′) > f(r) then
7: r ← r′

8: l← 1;
9: else

10: l← l + 1;

11: return r

we change the neighborhood in step 10 by making l = l + 1. The method
stops when no further neighborhood can be explored. At this stage, the final
solution r cannot be improved with any of the neighborhoods considered,
and therefore it is locally optimal in all of them.

4.3. MultiStart-VNS Algorithm

The MultiStart-VNS method, MS-VNS, performs multiple calls to the
VND from different initial solutions obtained with the application of the
Shake method that perturbs the current solution.

Algorithm 4 MultiStart-VNS

1: function MS-VNS(kmax, lmax)
2: rbest ← ∅
3: tmax ← 60
4: while t ≤ tmax do
5: r ← Construct()
6: k ← 1
7: while k ≤ kmax do
8: r′ ← Shake(r, k)
9: r′′ ← VND(r′, lmax)

10: k ← NeighborhoodChange(r, r′′, k)

11: UpdateBest(r, rbest, tmax)
return rbest

17



The MS-VNS algorithm takes as input parameters the time limit tmax and
the largest neighborhood to be explored kmax. The method first initializes
the best solution found, rbest, as an empty set in step 2 of the algorithm.
Both rbest and tmax will be updated during the search when the solution
found so far is improved. At each iteration a solution r is generated with
the constructive algorithm of the GRASP IT method described in Section 3
(step 5). The solution is locally improved with the VND in step 9. It must
be noted that the Shake method does not apply in its first call of the while
loop as explained below.

To perform an efficient search, we define the maximum time to run our
method tmax as a reactive parameter, updated as a function of the improve-
ments found. As shown in Algorithm 4, initially we set a time limit of 60
seconds, which is the maximum time to run the algorithm. However, the
UpdateBest(t, rbest, tmax) function updates tmax every time we find a fea-
sible solution that improves the existing one, that is, when we improve the
rbest. As it is customary in heuristic search, we consider the time to target,
ttarget, as the time until the best solution is found. When a better solution
than the incumbent one is found, with the current time ttarget we update
tmax = ⌈10 · ttarget⌉, if 60− ⌈ttarget⌉ > ⌈10 · ttarget⌉; otherwise, the maximum
time remains as tmax = 60 seconds.

The Shake method has the objective of diversify the search by perform-
ing a random change (perturbation) in the current solution. In our routing
problem, this method simply removes part of the route in the solution (and
rebuilds it performing the necessary GRASP IT iterations). To remove it,
Shake randomly selects an arc in the route, and then removes a percentage
%k of consecutive arcs from the total number of arcs in the route. In its
first call, k = 0%, meaning that no change is performed, and the constructed
solution is directly submitted to the VND method described in the previous
subsection. If the solution returned by VND in step 8, r′′, does not improve
the best solution rbest, then the NeighborhoodChange method in step
9, increases k by making k = 10%. In this way, we will change a larger
part of the solution in the next iteration of the while loop. Following in
this fashion, when the VND method is able to improve upon the best solu-
tion, the NeighborhoodChange restores k = 0%; otherwise, it increases
k in steps of 10% up to the maximum percentage of change considered with
kmax = 50%.

In the outer for loop in Algorithm 4, we can see how the MS-VNS gen-
erates an initial solution in step 4 to start a complex search that alternates
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shaking and improvement in the inner while loop (steps 6-9). As mentioned,
the Shake method has a diversification role, and the VND an intensification
one, and their alternation provides an efficient and economical way to explore
the solution space. Note that, on top of that, we superimpose a multi-start
framework (outer while loop) that permits us to launch the search repeat-
edly from good initial solutions, obtaining in this way a final high-quality
solution.

5. Computational Experiments

In this section, we evaluate the performance of the proposed MS-VNS
algorithm. We first present the testing environment including the instances,
and then we conduct the analysis of the algorithm performance. Our exper-
imentation is performed on a set of randomly generated instances previously
reported for this problem, from which we consider a 10% of them to set up
the key search parameters of our algorithm. In this way, by considering a
fraction of the instances (the so-called training set) to empirically tune our
algorithm, we prevent the over training of the method. We conduct a scien-
tific testing analyzing the performance of the fastest neighborhood changes
when embedded into the VND framework (shown in Algorithm 3). Finally,
we compare our method described in Algorithm 4 with the state-of-the-art
methods for the PCEARP: GRASP BP and GRASP IT and with the opti-
mal solutions size permitting.

All the algorithms described in this paper have been implemented in the
C++ programming language. For a fair comparison, all the tests have been
run on the same machine equipped with an Intel Core i7 at 3.4 GHz with 32
GB RAM and using a single thread.

5.1. Benchmark instances

For testing purposes, 396 PCEARP benchmark instances from the liter-
ature are used. The instance were generated by Bianchessi et al. (2022b)
by extending CEARP instances for the Profitable CEARP. They are di-
vided into two groups: Albaida and Madrigueras, with graphs representing
street networks of two Spanish towns, and Random, which corresponds to
randomly generated instances with up to 400 vertices. For each CEARP
instance, the authors defined three intervals for the profit, generating three
scenarios. Specifically, the profits were defined depending on the percentage
of clients serviced, on average, in the optimal around 60%, 80%, and 90% of
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|A| |AR| |ANR| |H|
#Inst |V | Min Max Min Max Min Max Min Max

Albaida 72 116 259 305 124 172 109 162 18 33
Madrigueras 72 196 453 544 224 305 197 281 22 47
Random50 36 50 296 300 105 292 7 193 10 100
Random75 36 75 448 450 143 438 10 305 15 150
Random100 36 100 498 500 134 490 10 366 20 200
Random150 36 150 749 750 256 731 19 493 30 300
Random200 36 200 997 1000 321 972 27 679 40 400
Random300 36 300 1498 1500 502 1457 43 998 60 600
Random400 36 400 1999 2000 675 1936 63 1324 80 800

Table 1: Characteristics of the benchmark instances

the total number of clients. Table 1 shows the main characteristics of the
sets of instances. These instances and the best solutions found for all the
sets can be found at http://www.uv.es/corberan/instancias.htm in the class
PCEARP.

5.2. Algorithm tuning

In order to analyse the best combination of procedures and set the param-
eters value, we consider training set with a subset of instance with the 10%
of the total number in the benchmark set. To do that, we randomly select
30 instances in which there are at least one instance of each set. It means,
that the training set contains Albaida, Madrigueras and Random instances
with the three intervals of profit.

The first experiment is devoted to study the combination of neighbor-
hoods assuming the order: N1−1, N1−2, N2−1, and N2−2. As the complexity
of the associated movements increases when the number of changes increases,
our aim is to define the combination in which it is more efficient to be ex-
ecuted within the algorithm. For this purpose, several combinations of the
neighborhood changes have been tested in a VND algorithm by applying the
two insertion strategies (random and deterministic). Here we constructed an
initial feasible solution and then applied the VND algorithm to try to improve
it. To denote each neighborhood changes we will use the following notation.
A random neighborhood change in which we remove i required arcs from the
route and then insert other j containing any unassigned clients, is NR

i−j. If
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instead of using the random client selection, we use the deterministic arc
one, we refer to it as ND

i−j. The following are the different combinations that
we have considered:

• VNDR: N
R
1−1, N

R
1−2, N

R
2−1, and N

R
2−2 (all random)

• VND0: N
R
1−1, N

D
1−2, N

D
2−1, and N

R
2−2

• VND1: N
D
1−1, N

R
1−2, N

R
2−1, and N

D
2−2

• VND2: N
R
1−1, N

D
1−2, N

R
2−1, and N

D
2−2

• VND3: N
D
1−1, N

R
1−2, N

D
2−1, and N

R
2−2

• VNDD: N
D
1−1, N

D
1−2, N

D
2−1, and N

D
2−2 (all deterministic)

In order to avoid the randomization procedure leading to miss-leading con-
clusions, for each of the 30 instances of the trainig set, we run the method
10 times and calculate the average obtained. Table 2, shows the average
results of each VND variant. Column “Net Profit” contains the average of
the objective function obtained, i.e., the average of the net profit, and col-
umn “# Improv.” the total number of improvements achieved. Additionally,
column “GAP(%)” shows the average of the relative percentage deviation of
the solutions. For each instance i, GAPi is calculated as BKSi−fi

BKSi
· 100, where

fi denotes the objective function of the solution found by the method, and
BKSi the Best Known Solution found for the instance. Note that, as the
computation time of the VND is extremely short, a few milliseconds, we do
not consider it a measure that provides relevant information in this case.

Net Profit # Improv GAP(%)

VNDR 1193.46 611 0.554
VND0 1132.03 425 0.568
VND1 1147.49 481 0.566
VND2 1074.16 232 0.595
VND3 1158.84 499 0.558
VNDD 1126.63 385 0.572

Table 2: Tuning VND Training set instances

Given the results in Table 2, the combination that provides the best per-
formance is VNDR, since it yields the largest number of improvements and,
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consequently, the best solutions on average. Although the results obtained
by VND3 were very similar, it is obvious that this is the best combination. It
can be concluded because if this is achieved in a single iteration, the advan-
tage of the random procedures is that when we repeat the procedure many
times, it increases the solutions space explored. On the other case, the de-
terministic variant converges many times to the same movement, and the
local search remains more static. Therefore, with this combination of neigh-
borhood changes, we define the structure of the MultiStart-VNS, that it is
lmax = 4 and the order NR

1−1, N
R
1−2, N

R
2−1, and N

R
2−2.

5.2.1. Comparison with previous methods

Finally, we compare the MultiStart-VNS with the previous algorithms in
the literature; namely GRASP IT and GRASP BP. In particular, we embed
the best version of the VND, the VNDR, in the MS-VNS framework shown
in Algorithm 4. In order to perform a fair comparison under the same con-
ditions, all the tests have been performed on the same machine, described
above, and with the same maximum computing time of 60 seconds. Note
that some methods, such as GRASP BP, have their own termination cri-
terion that makes them to finish earlier than the maximum of 60 seconds
considered in our experimentation. The comparison has been performed on
the 396 instances on our test-bed taken from the PCEARP literature.

Table 3 shows the results obtained with the two previous heuristics to-
gether with our method, MS-VNS, grouped by data-set. Each row in this
table shows the average results on each data-set, where “#Inst.” is the num-
ber of instances per set. For each algorithm, the column “NetProfit” reports
the average objective function value of the best solution that this method is
able to find, and “CPU(s)” is its the average running time (in seconds). This
table clearly illustrates that GRASP BP is very fast but it is not competitive
in terms of solution quality with the other heuristics. In particular it obtains
an average net profit of 1341.5, while GRASP IT obtains 1652.1, and MS-
VNS 1751.7. This is to be expected, since it was designed to feed a complex
branch and price method with a relatively good solution. Therefore, From
now on, we compare our MS-VNS heuristic with the previous GRASP IT
that performs relatively well.

In our second final experiment, we test the ability of our method, MS-
VNS, and the best previous method, GRASP IT, to match the best known
solution for each instance in the test-bed. Table 4 reports, for each data
set, the number of instances in which each method reaches the best known
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MS-VNS GRASP IT GRASP BP

#Inst. Net Profit CPU(s) Net Profit CPU(s) Net Profit CPU(s)

Albaida 72 851.7 1.7 848.7 0.9 712.3 0.0
Madrigueras 72 1204.0 12.9 1172.6 4.0 834.9 0.0
Random50 36 1025.8 8.6 1017.4 17.8 885.3 0.1
Random75 36 1481.6 19.4 1453.1 29.6 1296.2 0.4
Random100 36 1689.1 25.7 1626.4 33.0 1297.9 0.8
Random150 36 2261.9 43.0 2137.1 44.5 1640.4 2.6
Random200 36 2469.2 46.8 2266.9 46.4 1921.9 7.4
Random300 36 2567.3 48.4 2289.8 53.4 1771.9 17.2
Random400 36 3663.1 56.7 3340.1 60.0 2848.4 27.8

1751.7 25.2 1652.1 26.8 1341.5 5.1

Table 3: Comparison of MS-VNS, with the two previous heuristics per datasets.

solution, “#BKS”, the average relative percentage deviation of each solution
from the best known one, “GAP(%)”, and the average running time (in
seconds), “CPU(s)”.

The experimental results shown in Table 4 across the 9 benchmark data-
sets clearly proved that the proposed method outperforms the previous heuris-
tic, GRASP IT. Specifically, MS-VNS is able to obtain 249 best solutions out
of the 396 instances in the experimentation, while GRASP IT only reaches
161 best known solutions. Considering the average gap, MS-VNS also ex-
hibits better performance than GRASP IT since it obtains a remarkable
3.42% compared with the 6.13% of the previous method. NOte that both
heuristics consume a modest running time of a few seconds (lower than half
a minute), so both can be considered good methods.

We complement the information reported in Table 4 with the bar-chart
shown in Figure 4. This figure represents the average percentage deviation
of the best solutions obtained with each method to the best known solutions
in each instance set. In this way, we can observe two effects. The first
one is that our MS-VNS heuristic consistently obtains better solutions than
the previous GRASP IT heuristic, since in all sets it has lower deviation
values. The second effect is to conclude, from the observation of the average
deviations, the difficulty of the instances. Considering that, for example in
the Random300 set both heuristics have deviations larger than 10%, we can
say that these instances are challenging for heuristic methods. On the other
hand, considering that for example in the Albaida set both methods exhibit
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very small deviations, lower than 1%, we can say that this set is easy to solve
for them, and do not seem to pose a challenge for modern heuristics.

MS-VNS GRASP IT

#Inst. GAP(%) CPU(s) # BKS GAP(%) CPU(s) # BKS

Albaida 72 0.19 1.7 68 0.44 0.9 59
Madrigueras 72 0.82 12.9 58 3.03 4.0 39
Random50 36 0.06 8.6 33 0.77 17.8 23
Random75 36 0.18 19.4 34 2.38 29.6 13
Random100 36 0.84 25.7 26 2.69 33.0 13
Random150 36 2.22 43.0 16 6.89 44.5 6
Random200 36 4.57 46.8 6 10.73 46.4 6
Random300 36 11.98 48.4 6 17.25 53.4 2
Random400 36 15.70 56.7 2 19.78 60.0 0

3.42 25.2 249 6.13 26.8 161

Table 4: Comparison of MS-VNS and GRASP IT w.r.t the best known solutions.

Figure 4: Comparison GAP(%) - MS-VNS and GRASP IT

We conclude the experimentation with a final experiment to test the
ability of our heuristic to match the optimal solutions. The branch and price
of Bianchessi et al. (2022a) is able to obtain most of the optimal solutions in
the data set within 1 hour of computing time (362 out of the 396 instances).
Table 5 reports, for each data-set, the total number of instances, “#Inst.”,
and those with optimum known,“#Opt.”. It also includes, as the previous
tables, the average running time (in seconds), “CPU(s)”, the average relative
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#Opt./#Inst. CPU(s) GAP(%) ttarg(s) #OptHeur

Albaida 72/72 1.7 3.48 0.1 68
Madrigueras 72/72 12.9 4.20 2.4 58
Random50 36/36 8.6 0.73 0.7 33
Random75 36/36 19.4 3.32 3.5 34
Random100 36/36 25.7 3.02 6.6 26
Random150 35/36 42.5 4.04 19.1 16
Random200 35/36 47.1 5.41 20.4 6
Random300 23/36 41.8 17.30 20.3 6
Random400 17/36 52.9 20.46 25.4 2

362/396 22.0 8.37 7.9 249

Table 5: MS-VNS results w.r.t the optimal solutions.

percentage deviation of each instance not optimally solved, “GAP(%)”, the
average time in seconds of the heuristic required to reach the optimal solution,
ttarg(s), and the number of instances optimally solved with the heuristic,
“#OptHeur”.

Results in Table 5 confirms that our MS-VNS method is able to obtain
high-quality results in very short computing times. In particular, it is able to
match 249 optimal solutions out of the 362 instances with optimum known.
This is remarkable considering that, although our heuristic is run for 22
seconds on average, it needs less than 8 seconds (on average) to reach the
optimal solution. On the other hand, there are some instances, mostly in
the Random300 and Random400 sets, for which it is not able to obtain the
optimal solution, and the heuristic solution is on average at 8.37% from the
optimal solution. In line with our comments above, we can label these in-
stances as the difficult ones, and that they constitute a challenge for heuristic
methods.

6. Conclusions

In this paper, we study a recently proposed variant in arc routing, the
profitable close-enough arc routing problem. In spite of its practical impor-
tance, this variant has been ignored in the area of routing and distribution.
We propose an efficient heuristic based on the variable neighborhood search
methodology.

A mathematical model and an exact method were already proposed for
this problem, but the literature lacked of efficient heuristics for it, as required
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by logistic expert systems to deal with daily operations in the supply chain.
We study different neighborhoods and disclose the best combination of them,
in order to design our solving heuristic.

An extensive experimentation shows that the proposed method is able
to obtain very good solutions, optimal in many cases, in very short running
times. Additionally, it outperforms the two previous heuristics identified in
the scientific literature, obtaining better solutions in shorter running times.
There are however, some difficult instances for which our method is not able
to match the optimal solution. We hope that this study triggers the interest
of researchers on this applied problem and continue the research in this line.
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