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Abstract 
 
 
Multi-objective optimization problems deal with the presence of different conflicting objectives.  Given 
that it is not possible to obtain a single solution by optimizing all the objectives simultaneously, a 
common way to face these problems is to obtain a set of efficient solutions called the non-dominated 
frontier.  In this paper we address the problem of routing school buses with two objectives: minimize 
the number of buses, and minimize the longest time a student would have to stay in the bus.  The trade-
off in this problem is between service level, which is represented by the maximum route length, and 
operational cost, which is represented by the number of buses in the solution.  We present different 
constructive solution methods and a tabu search procedure to obtain non-dominated solutions.  The 
procedure is coupled with an intensification phase based on the path relinking methodology; a strategy 
proposed several years ago, which has been rarely used in actual implementations.  Computational 
experiments with real data in the context of routing school buses in a rural area, establish the 
effectiveness of our procedure in relation to the approach previously identified to be best. 
 
Key Words: Meta-Heuristics, Bus Routing, optimization. 
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1. Introduction 

The multi-objective optimization problem consists in finding the values for a set of decision variables 
that satisfy a set of constraints and that optimize a vector function whose elements represent the 
objectives.  These functions are a mathematical representation of performance criteria that are usually 
in conflict.  Hence, an optimum solution is that which leads to objective function values that are 
acceptable to a decision maker. 
 
In this paper we address a common variant of the bus routing problem that appears in sparse rural areas 
of Spain.  It consists of transporting a group of students from their homes to a school.  The students live 
in locations that are geographically dispersed around the school and the set of available buses have the 
same capacity.  We consider the objectives of minimizing the total number of buses (operational cost) 
while simultaneously minimizing the maximum time that a student spends in the bus (service level).  
This specific problem was introduced in Corberan et al. (2002) where a scatter search algorithm was 
proposed.  The authors mentioned several characteristics of this problem that can be summarized as: 
 
� in a rural area, routes tend to be long and the buses do not reach their maximum 

physical capacity. 
� due to the definition of transportation time we can ignore the time required to reach 

the first student. 
� it is a single load problem (routes either pick up or deliver students to a single 

school). 
 
Additional characteristics for a variety of routing and scheduling problems, including those related to 
school buses, are described in other previous works (Bodin and Berman, 1979, or Bodin, et al., 1983).  
We view our work as an extension of the paper by Corberan et al. (2002) since we consider the same 
problem and propose a new solution procedure, based on the tabu search methodology, that 
outperforms their scatter search implementation.  We will follow their notation to give a formal 
description of the problem objectives: 
 

N = { 0, 1, …, n } : a set of locations where 0 indicates the school and  j (for j = 1, 
…, n) is the index of a location where one or more students live. 

M = { 1, …, m } : a set of buses 
Ri = { ri(1), …, ri(ni) } : the route for bus i, where ri(j) is the index of the jth location 

visited and ni is the number of locations in the route.  We assume 
that every route finishes at the school, i.e., ri(ni+1) = 0. 

tjk : the direct traveling time from location j to location k, for 
j = 0, …, n and k = 0, …, n and tjk = 0 for j = k. 

c : the capacity of a bus 
qj : the number of students to be picked up at location j, for j = 1, …, 

n 
 
Note that according to these definitions, the length of route i, length(i), given by the maximum 
traveling time corresponding to the students picked up at the first location, is computed as: 
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and the maximum time in the bus of all the routes (of an entire solution) is given by: 
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The bus routing problem is to find a set of routes in order to minimize the number of buses (m) and to 
minimize also the maximum time in the bus (tmax).  Then, the objectives of the problem can be formally 
stated as (1) Minimize  m , and (2)  Minimize tmax.  Both objectives clearly are in conflict (i.e., a 
solution that minimizes the number of buses tends to increase the maximum traveling time, and vice 
versa).  As it is usual in routing problems, routes must satisfy the capacity constraints; i.e. the total 
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number of students picked up in a route cannot exceed the capacity of the bus.  Moreover, routes in this 
problem must satisfy a “social” requirement that specifies that their length cannot exceed a maximum 
pre-established value (TMAX). 
 
In this paper we follow the common approach when dealing with multi-objective problems; to solve the 
problem considering both objective functions separately and giving the decision maker (administrators 
and school officers in this case), a set of solutions that represent the “the best possible service” at a 
given cost.  Since the value of the first objective, number of routes (buses), is a discrete number 
(bounded by the number of locations), we follow the simple an efficient method that consists of 
minimize the second objective, the maximum length of a route, for each possible value of the first one. 
 
In this paper we present different constructive solution procedures and a tabu search method.  Section 2 
revises two previous constructive procedures and introduces two new heuristics to obtain good initial 
solutions for the search method.  Section 3 describes our tabu search implementation.  The 
intensification component of the tabu search method is strengthening with a path relinking strategy.  
Section 4 is devoted to this strategy, which operates on a set of elite solutions recorded during the 
application of the basic tabu search method.  Section 5 summarizes the computational experiments, and 
the paper finishes with the associated conclusions. 

2. Constructive Methods 

Corberán et al. (2002) propose two constructive heuristics for this problem (H1 and H2), the former is 
based on a clustering mechanism, while the latter performs a sweep to determine the routes.  In this 
section we briefly describe both approaches and introduce two new methods (H3 and H4).  H3 is based 
on the well known heuristic for the VRP due to Fisher and Jaikumar (1981), and H4 implements an 
insertion mechanism.  H3 and H4 construct a solution for a given value of the number of buses (routes) 
m.  The number of buses in a solution of H1 and H2 is an output of the method and cannot be pre-
specified (although in the case of H2 could be indirectly done).  The objective of the four methods is to 
create a solution with a relative low value of the maximum length of the routes. 

Constructive Heuristic H1 

The procedure starts with n routes (one for each location, Ri = { i } for i = 1, …, n) and, at each 
iteration, two routes are merged.  Instead of considering all pairs of routes, an ordered candidate list 
with the best pairs is constructed.  The best pair of routes is the one with the minimum traveling time 
between the two routes, and the candidate list contains the pairs whose traveling time is within a 
percentage of the best pair.  At each iteration, the algorithm randomly selects one pair from the 
candidate list and attempts to merge the routes.  The procedure attempts to merge up to a prefixed 
number of pairs using the same candidate list.  After these merging attempts, the candidate list is 
rebuilt.  The process stops when no more routes can feasibly merge. 
 
The method only considers two ways to combine routes Ri and Rk: 
 

R′ = { ri(1), …, ri(ni), rk(1), …, rk(nk) } and  R″ = { rk(1), …, rk(nk), ri(1), …, ri(ni) } 
 
Note that there are two feasibility conditions for each route; route length ≤ TMAX, and number of 
students in the bus ≤ c. Then, a feasible merging of routes Ri and Rk is such that the resulting route 
satisfies both inequalities. 

Constructive Heuristic H2 

This constructive heuristic is based on creating sectors around locations that are sequentially chosen.  
The size of a sector is determined by an input parameter.  When a location is selected and it does not 
belong to an already defined sector, a new sector is defined around the chosen location.  This is the 
case, for instance, when the procedure starts and the first location is chosen. 
 
The locations are ordered according to the decreasing value of tj0 (the traveling time from location j to 
the school) for j = 1, …, n.  Let tm be the traveling time of the first location in the list (which is the 
unassigned location that is farthest away from the school).  The next location to be assigned is 
randomly chosen from all those unassigned locations with traveling time to school larger than or equal 
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to tm*α, where α is a parameter for this heuristic.  A chosen location is either assigned to an existing 
sector if the assignment does not violate the feasibility constraints or a new sector is defined.  In the 
former case, the chosen location is inserted in the position of the route that causes the least increase in 
length.  When a new route is created, we allow for either the first location or the last location of 
existing routes in the same sector to move to the new route if this move decreases tmax. 

Constructive Heuristic H3 

We adapt the classical method for the VRP by Fisher and Jaikumar (1981) to this problem.  The 
method reformulates the routing in terms of a Generalized Assignment Problem (GAP) to determine a 
feasible assignment of locations to vehicles.  Then, a traveling salesman problem (TSP) is solved to 
establish a pick up sequence for the locations assigned to each vehicle. 
 
The assignment step starts by determining m seeds points w1, w2, ..., wm in the plane.  To this end, the 
plane is partitioned into m cones corresponding to the m buses or routes.  Then wi is located on the ray 
bisecting cone i.  The cost cij of assign location i to cluster (bus) j, for the symmetric case, is given by 
the following expression (we have replaced the original Euclidean distances with the traveling times): 
 

cij = t0i+tiwj-t0wj 
 
The procedure then solves a GAP with these costs, location weights qi, and bus capacity c.  In the 
second step, a TSP is solved for each cluster corresponding to the GAP solution. 
 
In our implementation (H3), we consider the heuristic by Martello and Toth (1981) to solve the GAP.  
We modified this heuristic to keep ordered the locations assigned to a cluster (route).  When a location 
is assigned to a cluster, we check all the possible positions for insertion in this cluster, and then assign 
the location to the position that minimizes the length.  Therefore, after the application of this 
assignment step, we already have a solution of the second step (we have a pick up sequence in each 
route) and we don’t need to solve a TSP.  Of course, this solution could be easily improved by applying 
a local search procedure. 
 
At each step of H3, a location is selected and inserted into a route.  We compute the candidate list of 
feasible routes CL(i) for each location i with those routes satisfying that if i is inserted, the length of the 
new route will be lower than the current value of tmax, and the number of students in the bus will not 
exceed the capacity c.  If there is no route satisfying the first condition, then it is ignored and CL(i) is 
computed with all the feasible routes (with respect to the capacity and the TMAX value).  Then, as 
proposed in Martello and Toth ( ), we compute bi=ci j’’(i) - ci j’(i) where: 
 

ijiCLjiji cc
)()(' min
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The location i* with maximum b-value is selected and inserted in route Rj’(i*) in the position that 
minimizes its length.  The procedure finishes when all the locations have been inserted into one of the 
m routes. 

Constructive Heuristic H4 

In this method, we first compute an order of the locations.  Then, at each step, the next location i in the 
list is selected for insertion in a route.  As in the previous method, we construct a candidate list CL(i) of 
feasible routes where location i can be inserted.  Then, for each route j in CL(i), we compute value(i,j) 
as the value of the length when i is inserted in the best position, p(i,j), in the route.  Inspired in the 
construction step of the GRASP methodology (Resende and Ribeiro, 2003), we consider now a 
restricted candidate list RCL(i) with those elements in CL(i) with an attractive value: 
 

RCL(i) = {j ∈CL(i) / value(i,j) ≤ αMinVal(i) + (1-α)MaxVal(i) }, where 
 

),(min)(
)(

jivalueiMinVal
iCLj∈
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iCLj∈
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Then, a route j* is randomly selected in RCL(i) and the location i is inserted in the best position of Rj* 
to minimize its length.  The constructive method H4 repeats this procedure niter times and keeps the 
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best solution found across the different constructions.  We have considered five strategies to construct 
the initial order of locations: 
 
� Far:  distance to school, where the farthest location is the first in the list 
� Close:  distance to school, where the closest location is the first in the list 
� Angle: the angle with a fixed line with origin in the school 
� Dif:  according to the differences bi computed in H3. 
� TSP:  according to a heuristic TSP solution considering  all the locations together. 

 
In the computational experiments reported in Section 4, we will compare these five strategies to select 
the best one. 

3.  Tabu Search Procedure 

Tabu search is by now one of the most successful metaheuristics.  It is based on the general telnets of 
intelligent problem solving, implementing the “memory” in a very strategic and direct way.  This 
methodology is rapidly becoming the method of choice for designing solution procedures for hard 
combinatorial optimization problems.  A comprehensive examination can be found in the book by 
Glover and Laguna (1997). 
 
In this section we propose a tabu search algorithm for the routing problem (TS_RP) to improve the 
solutions generated with the constructive methods described above.  Therefore, for each possible value 
of the number of routes, a solution is first constructed and then improved with TS_RP.  This 
improvement method keeps the number of routes fixed while tries to reduce the tmax value.   
 
Tabu search begins in the same way as ordinary local search, proceeding iteratively from one solution 
to another until a chosen termination criterion is satisfied.  Exchanges, as introduced in Taillard et al. 
(1997), are used as the primary move mechanism in TS_RP.  We define 
EXCHANGE_MOVE(Ri,s,Rj,t,l) as the exchange of the chain of locations ri(s), ri(s+1), …, ri(s+l) from 
route Ri with the chain of locations rj(t), rj(t+1), …, rj(t+l) from route Rj.  This operation results in the 
new routes Ri′ and Rj′, as follows: 
 

Ri′ = { ri(1), …, ri(s-1), rj(t), rj(t+1), …, rj(t+l), ri(s+l+1), …, ri(ni) } 
Rj′ = { rj(1), …, rj(t-1), ri(s), ri(s+1), …, ri(s+l), rj(t+l+1), …, rj(nj) } 

 
Figures 1 and 2 illustrates this move.  Figure 1 shows an initial configuration of two contiguous routes, 
and Figure 2 shows the new routes after applying EXCHANGE_MOVE(Ri,s,Rj,t,l). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Initial configuration of two contiguous routes 
 
 
 
 
 

ri(s-1) 

ri(s)  
ri(s+l) 

ri(s+l+1) 

rj(t-1) 

rj(t)  

rj(t+l) 

rj(t+l+1) 
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Figure 2.  Final configuration after applying EXCHANGE_MOVE(Ri,s,Rj,t,l). 
 
 
Since our aim is to modify the routes in order to reduce the current value of tmax, we construct a 
candidate list of moves based on a set of critical and near-critical routes.  A critical route Ri is one for 
which length(i)=tmax , while a near-critical route Rj is one for which length(j)≥ α * tmax 

 and 1 > α > 0.  
Near-critical routes do not determine the value of the objective function tmax in the current solution, but 
they are considered likely to do so in subsequent iterations.  In other words, if a move is able to 
eliminate a critical route, it is likely that a near-critical route will become critical in subsequent 
iterations.  The set that consists of both critical and near-critical routes can be defined as: 
 

CR(α ) = { Ri / length(i)≥ α * tmax 
 } , 

 
where 1 ≥ α ≥ 0.  In any given iteration, a move is generated by randomly choosing a route Ri in CR.  
We consider all the moves that can be obtained from EXCHANGE_MOVE(Ri, s, Rj, t, l) where Rj, is 
any of the other m-1 routes, s and t are locations in Ri  and Rj respectively, and l is a search parameter.  
As it is usual in neighborhood exploration, two strategies can be considered.  The best strategy selects 
the move with the largest move value among all the moves in the neighborhood.  The first strategy, on 
the other hand, scans the list of routes (in order of proximity) seeking for the first route with an 
associated movement that results in an strictly positive move value.  Both strategies, as well as different 
l-values, will be tested in Section 5. 
 
One of the key elements in heuristic search is the definition of the value of a move.  Although the most 
common practice is to define the move value as the change in the objective function value, in the 
context of maximum traveling time, the change in the objective function value tmax provides little 
information during the search.  As a result, we have defined the value of a 
EXCHANGE_MOVE(Ri,s,Rj,t,l) as  
 

MoveValue(Ri, Rj) = max{ length(i), length(j)} – max { length(i’), length(j’)}, 
 
where Ri′ and Rj′, are the new routes after the move.  The move is executed even when the move value 
is not positive, resulting in an increasing of a length’s route, and eventually, in a deterioration of the 
current objective function value tmax.  The moved locations become tabu-active for TabuTenure 
iterations, and therefore they cannot be moved back to route Ri during this time.  We apply the default 
aspiration criteria consisting of permitting tabu moves when tmax is reduced. 
 
After performing a move, we apply an improvement method to each of both modified routes.  We adapt 
the 3-opt swapping heuristic proposed in Or(1976) in which a chain of consecutive elements is 
reallocated in another position within the route.  We restrict our implementation to chains of 1, 2 or 3 
consecutive locations.  Specifically, for route Ri and from j=1, 2, …, ni-1, the procedure tests the 
reduction of length(i) produced by removing {ri(j)}, {ri(j), ri(j+1)} or {ri(j), ri(j+1), ri(j+2)} from its 
current position and, inserting it in a posterior position in Ri (all posterior positions are tested).  If 
length(i) is reduced, the chain of locations is moved.  The procedure stops when no more moves are 
possible that result in a shorter route length. 

ri(s-1) 

ri(s)  
ri(s+l) 

ri(s+l+1) 

rj(t-1) 

rj(t)  

rj(t+l) 

rj(t+l+1) 
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4.  Path Relinking Procedure 

Path relinking (PR) was originally suggested as an approach to integrate intensification and 
diversification strategies in the context of tabu search (Glover and Laguna, 1997).  This approach 
generates new solutions by exploring trajectories that connect high-quality solutions, by starting from 
one of these solutions, called an initiating solution, and generating a path in the neighbourhood space 
that leads toward the other solutions, called guiding solutions.  This is accomplished by selecting 
moves that introduce attributes contained in the guiding solutions. 
 
The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to 
incorporate attributes of high quality solutions, by creating inducements to favor these attributes in the 
moves selected.  However, instead of using an inducement that merely encourages the inclusion of such 
attributes, the path relinking approach subordinates other considerations to the goal of choosing moves 
that introduce the attributes of the guiding solutions, in order to create a “good attribute composition” 
in the current solution.  The composition at each step is determined by choosing the best move, using 
customary choice criteria, from a restricted set — the set of those moves currently available that 
incorporate a maximum number (or a maximum weighted value) of the attributes of the guiding 
solutions.  (Exceptions are provided by aspiration criteria, as subsequently noted.) The approach is 
called path relinking either by virtue of generating a new path between solutions previously linked by a 
series of moves executed during a search, or by generating a path between solutions previously linked 
to other solutions but not to each other. 
 
There are many variants of the path relinking methodology (Laguna and Marti, 2003).  In this section 
we propose a “multiple guiding solutions” method for the vehicle routing problem (PR_RP) with the 
goal of intensify the search in those areas where good solutions have been found. 
 
The procedure stores a small set of high quality (elite) solutions to be used for guiding purposes.  
Specifically, after each niter iterations of the TS_RP, the current solution is compared to the best nelite 
solutions found during the search.  If the new solution is better than any one in the elite set, the set is 
updated.  Instead of using attributes of all the elite solutions for guiding purposes, we only use the best 
half, and the others are used as initiating solutions. 
 
The relinking process implemented in our search may be summarized as follows.  The set of elite 
solutions is constructed during the application of the tabu search method.  Every solution of the worst 
nelite / 2 in the elite set (called the initiating solution) is subject to a relinking process by performing 
moves that incorporate attributes of the best nelite / 2 solutions in the elite set (called the guiding  
solutions) into it.  We apply the 3-opt swapping heuristic described above to each initiating solution 
with modified traveling times t’ij.  For each pair of locations (i,j) we define freq(i,j) as the number of 
times both locations appear in consecutive positions in a route in any of the best nelite / 2 solutions in 
the elite set.  Then,  t’ij is defined as: 
 

t’ij = tij  ((nelite / 2) - freq(i,j) ) 
 
This modified traveling times, encourages the presence of “good” locations’ chains in the re-linked 
solutions, thus, altering the way in which the solution space is explored.  Note that the minimization of 
the objective function tmax is now subordinated to the incorporation of “elite” attributes in the solutions. 
 
During the path relinking phase, a number of intermediate solutions are generated.  These intermediate 
solutions are good candidates for additional exploration by way of applying a local search procedure.  
We apply a simple descent procedure with the EXCHANGE_MOVE neighborhood and with the 
original traveling times tij to intermediate solutions once every nrelink path-relinking iterations.  The 
procedure only performs improving moves until no further improvement is possible.  The rational for 
applying local search to every nrelink-th solution is based on the fact that consecutive intermediate 
solutions hardly differ.  Therefore, a local search procedure applied to consecutive intermediate 
solutions would likely converge to the same local optimum.  The path relinking process terminates 
when all nelite / 2 initiating solutions have been considered. 
 
 



Tabu Search for a Multi-Objective Routing Problem. / 8 

5. Computational Testing 

We have considered, for the experiments, the data of 58 schools in the province of Burgos (Spain) used 
in the previous work by Corberan et al. (2002).  Since the students are already assigned to each school, 
we have 58 different problems.  42 of these instances correspond to primary (elementary) schools and 
16 to secondary (middle) schools.  There are only 3 out of  the 42 elementary school problems, with 
enough locations to make the problem difficult enough to differentiate the solution methods (the other 
are trivial problems).  These problems have 46, 49 and 55 locations (i.e., pickup points), and we will 
refer to them as problems P7, P14 and P41, respectively.  All the instances from secondary schools will 
be considered in our study.  The actual transportation problem has a policy in which no route should be 
longer than 60 minutes, then we will set TMAX=60 in these experiments.   
 
Before testing the effectiveness of our procedure, we perform 4 preliminary experiments.  We use the 
three problems P7, P14 and P41 to perform an initial experiment consisting of comparing the solutions 
generated by the four constructive methods described in section 2.  We first compare the five strategies 
to construct the initial order of locations in method H4.  We have also added a new strategy labeled 
Random, used as a baseline in our comparison, in which the initial ordering of the locations is 
randomly chosen.  Table 1 reports the results (tmax for each m-value) obtained with the heuristic H4, 
with niter=200 and α=0.8, with these five strategies in the three problems considered.  It is shown in 
bold type the best solution found (minimum value of tmax) for each specific number of buses. 
 
 

Initial Order  m 
Far Close Angle Dif TSP Random 

8 75 83 101 93 100 68 
9 67 72 92 59 106 64 

10 62 73 86 69 106 60 
11 57 71 79 67 89 55 
12 52 69 73 59 82 55 
13 45 62 68 56 74 54 
14 45 61 68 53 71 53 
15 45 54 67 49 69 49 
16 45 55 64 46 62 49 
17 45 54 63 46 63 49 
18 45 52 58 45 61 48 
19 45 49 58 45 59 47 
20 45 49 56 45 56 48 

P7 

21 45 50 52 45 51 45 
4 60 43 77 57 79 58 
5 52 31 65 58 64 45 
6 36 31 54 45 59 40 
7 30 29 50 34 56 32 
8 28 28 45 29 53 28 
9 26 26 42 25 49 26 

10 22 25 39 30 48 26 

P14 

11 21 24 39 23 45 24 
10 59 66 87 60 73 67 
11 56 60 82 54 67 61 
12 54 59 76 53 57 57 
13 50 58 77 48 49 54 
14 47 59 74 53 49 51 
15 46 56 67 47 48 52 
16 46 56 66 50 46 50 

P41 

17 44 55 62 46 47 49 
 

Table 1.  Constructive method H4 with different strategies 
 
Table 1 shows that the best results are, in general, obtained with the “Far” strategy, since it is able to 
match the minimum value of tmax in 10 out of 14 cases for P7, 3 out of 8 for P14 and, 5 out of 8 cases 
for P41.  It is also interesting to observe that when the number of buses (m) is very limited (the firsts 
rows of each instance), this strategy fails in obtaining the best solution (with the exception of m=10 in 
P41).  Note also that the strategy “close” provides the best results in problem P14 given that it obtains 5 
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out of 8 minimum values.  We compare now the four constructive heuristics described in Section 2.  
Table 2 shows, in the same three instances considered above, the value of tmax that each method obtains 
for each particular value of m. 
 

 m H1 H2 H3 H4(Far) 
8 97 71 59 75 
9 96 69 55 67 

10 75 69 52 62 
11 61 69 52 57 
12 58 59 45 52 
13 56 59 45 45 
14 58 54 45 45 
15 48 57 45 45 
16 48 58 45 45 
17 48 58 45 45 
18 46 57 45 45 
19 46 57 45 45 
20 46 53 45 45 

P7 

21 45 56 51 45 
4 77 68 41 60 
5 34 41 31 52 
6 30 35 29 36 
7 28 35 26 30 
8 26 35 24 28 
9 23 32 22 26 

10 25 29 22 22 

P14 

11 21 24 21 21 
10 76 62 58 59 
11 56 62 47 56 
12 55 61 47 54 
13 48 60 44 50 
14 48 61 44 47 
15 48 53 44 46 
16 48 49 44 46 

P41 

17 44 49 44 44 
 

Table 2.  Comparison of constructive methods 
 
Table 2 shows that the method H3 clearly outperforms the other three constructive procedures.  H3 
obtains the best solution in all the cases considered (with the exception of m=21 in problem P7).  H4 
also produces relative quality solutions since it obtains 12 best solutions out of the 30 cases considered.  
Regarding the average percent deviation from the best solution known (the minimum value of tmax 
found for each instance and m-value after running all procedures during the experiment*), H1, H2, H3 
and H4 obtain 20.6%, 27.5%, 0.5% and 11.1% respectively. 
 
We have empirically found in these examples, that the tmax value obtained with the constructive method 
H3 cannot be reduced by applying a relative simple improvement mechanism.  Specifically, we have 
implemented a 3-opt exchange heuristic to reduce the length of each route after their construction.  This 
method is not able to reduce the length of the longest route (tmax) in none of the 30 cases shown in table 
2. 
 
In our third preliminary experiment we compare the ‘Best’ and ‘First’ strategies described in Section 3.  
To this end, we design two local search descent procedures, LS(Best) with the best strategy, and 
LS(First) with the first strategy.  These methods implement the neighborhood described in Section 3 
but they do not incorporate any tabu search element, since the purpose of the experiment is to 
determine which neighborhood exploration to implement within TS_RP.  They apply, from the solution 
constructed with H3, a simple descent procedure in which only improving moves are performed and 
they stop when no further improvement is possible.  Table 3 shows, in the same three instances 
considered in the previous experiments, the value of tmax that each method obtains for each particular 

                                                 
* We cannot assess how close these best values are from the optimal solutions (efficient frontier), so we are only using these 
values as a way of comparing the methods. 
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value of m.  This table shows that both strategies provide almost the same results.  Therefore, given that 
the ‘Best’ strategy performs a significantly higher number of operations than the ‘First’, we will 
implement the ‘First’ strategy in our solving method. 
 

 m H3 H3+LS(Best) H3+LS(First) 
8 59 58 58  
9 55 55  55  

10 52 51 51  
11 52 49 49  
12 45 45 45  
13 45 45 45  
14 45 45  45  
15 45 45  45  
16 45 45  45  
17 45 45  45  
18 45 45  45  
19 45 45  45  
20 45 45  45  

P7 

21 51 46  45  
4 41 41  41  
5 31 31  31  
6 29 29  29  
7 26 26  26  
8 24 23  23  
9 22 22  22  

10 22 22  22  

P14 

11 21 21  21  
10 58 58  58  
11 47 47  47  
12 47 47  47  
13 44 44  44  
14 44 44  44  
15 44 44  44  
16 44 44  44  

P41 

17 44 44  44  
 

Table 3.  Comparison of search strategies 
 
 
We performed a final preliminary experiment to determine the best values for the parameters in the 
TS_RP and PR_RP methods.  For each search parameter, we tested 3 values: 
 

α = 0.3, 0.5, 0.8 
l = 3, 5, 10 
nelite = 4, 10, 20 
nrelink = 3, 5, 7 

 
We do not reproduce now the tables for this experiment. The parameter combination that yielded the 
best results was α = 0.8, l = 3 nelite = 20 and nrelink = 3. These values are used throughout the rest of 
our experimentation. 
 
In the experiment to test the efficiency of the proposed method, we employ the 16 problem instances 
corresponding to secondary (middle) schools ( S1, S2,.. , S16).  We compare the performance of tabu 
search with path relinking method (TS_RP) and scatter search, as implemented in Corberan et al. 
(2002) (SS_RP).  We also compare against the solutions currently implemented in practice.  Table 4 
shows the results of this experiment.  The columns in this table consist of: (1) identifier of instances, 
(2) objective values (m/tmax) of the solutions currently implemented, (3-7) a partial segment of the 
approximation of the efficient frontier generated with our TS_RP procedure (columns labeled m-1 to 
m+3 show the respective tmax value), (8-12) a partial segment of the approximation of the efficient 
frontier generated with the scatter search method.  The m variable used in columns 3-12 corresponds to 
the current value given in column 2. 
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Problem Current             TS_RP             SS_RP 

 m / tmax m-1 m m+1 m+2 m+3 m-1 m m+1 m+2 m+3 
S1 12 / 70  52 51 48 47 48 57 56 53 51 48 
S2 5 / 45 46 36 32 29  46 36 32 29  
S3 6 / 60 52 45 43 39  54 46 43 39  
S4 3 / 70  52 41 37 33  52 42 37 33 
S5 4 / 60 55 45 39   55 44 39   
S6 4 / 80 79 62 52 45 43 81 62 53 47 44 
S7 6 / 60 51 45 37 36  51 45 38 36  
S8 9 / 75 59 53 48 45 42 61 59 50 47 44 
S9 5 / 90 90 65 53 49 46 82 65 53 50 48 

S10 6 / 60 43 41 40   44 41 40   
S11 4 / 60 42 40 40 40  67 51 45 39  
S12 2 / 25  15 14 9   15 14 9  
S13 6 / 45 40 34 29 29  39 34 32 29  
S14 5 / 60 53 45 37   53 46 37   
S15 7 / 50 49 42 41 40  50 44 42 40  
S16 2 / 60 84 51 38 35  84 51 38 35  

 
Table 4.  Comparison of the methods 

 
The results in Table 4 disclose the advantage of using tabu search with path relinking (TS_RP) when 
compared to scatter search (SS_RP) for this bus routing problem.  The TS_RP approach is able to 
obtain better tmax values than SS in 10 problems for the m-values considered.  SS_RP obtains better 
results in 1 out of the 16 problems considered, and in the remaining 5 examples, both methods provide 
the same results.  For instance, in problem S8, the TS_RP solution has a tmax of 53 minutes with 9 buses 
while SS_RP yields a tmax of 59 minutes with the same number of buses (see entry in row S8 and 
column m for both methods).  Moreover, the quality of the solutions found by our new method comes 
at a remarkable low computational effort.  TS_RP presents an average running time of 0.29 seconds 
while SS_RP averages 1.41 seconds (the experiments were performed in a Pentium 4 2.4 GHz).  
Anyway, the solution times are not critical in this context, because the routes do not change in real 
time, so there is no problem on spending a few minutes to compute the routes that will be used for a 
whole academic year.  Both procedures clearly outperform the solution currently implemented in 
practice. 
 
Figure 3 shows the average tmax values, across the 16 problems considered, of  the approximation of the 
efficient frontier generated with both methods.  This figure clearly shows the improvement achieved 
with our proposed method compared with the previous approach in terms of approximating the efficient 
frontier with better non-dominated solutions ( a 3% of improvement on average). 
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Figure 3.  Approximation of the efficient frontier 
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Conclusions 

We have developed a heuristic procedure based on the tabu search methodology to provide high quality 
solutions to the problem of routing school buses in a rural area.  Our method deals with the two 
objective functions of this problem simultaneously, cost and quality of service, thus providing an 
approximation of the efficient frontier.  The implementation was shown competitive in a set of problem 
instances for which a recently scatter search method was applied.  Tabu search with path relinking 
performed remarkably well, outperforming this scatter search implementation, which up to now was 
the best procedure reported in the literature for this problem.  Our method, as well as the scatter search, 
outperform the solutions currently implemented in practice. 
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