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ABSTRACT 

In this paper, we address an optimization problem resulting from the combination of the well-
known traveling salesman and knapsack problems.  In particular, we target the orienteering 
problem, originated in the context of sports, which consists of maximizing the total score 
associated with the vertices visited in a path within the available time.  The problem, also 
known as the selective travelling salesman problem, is NP-hard and can be formulated as an 
integer linear program. Since the 1980s, several solution methods for this problem have been 
developed and applied to a variety of fields, particularly in routing and tourism. We propose a 
heuristic method – based on the Greedy Randomized Adaptive Search Procedure and the Path 
Relinking methodologies – for finding approximate solutions to this optimization problem. We 
explore different constructive methods and combine two neighborhoods in the local search of 
GRASP.  Our experimentation with 73 previously reported instances shows that the proposed 
procedure obtains high quality solutions employing short computing times. 
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1. Introduction 

The orienteering problem (OP), originated in the context of sports, consists of determining a 
path from an origin to a destination in a graph (directed or undirected), through a subset of 
locations in order to maximize the sum of the scores of the visited locations.  Not all locations 
(vertices in the graph) can be visited since the available time (or total distance) is limited.  The 
OP belongs to the well-known family of routing problems with many different applications (see 
for example Pacheco et al., 2009) and variants, including multi-objective approaches 
(Jozefowiez et al., 2008; Schilde et al., 2009).  Different applications for this problem can be 
found, for example in tourism, we want to plan a tourist route in a large city, giving scores to 
the locations (in terms of their cultural interest for instance) and the tour visiting the selected 
vertices cannot exceed a maximum length or time (Tsiligirides, 1984). 
 
Let        be a complete directed graph where   (       ) and   (       ) represent 
respectively the set of vertices and arcs.  Each vertex      has a non-negative score    for 
       , and each arc         has an associated travel time     for          .  The OP 

consists of determining a path from    to    visiting some of the vertices in   in a way that the 
total travel time does not exceed a pre-established limit     , maximizing the sum of the 
associated scores. 
 
We can formulate the OP as a linear integer problem (Vansteenwegen et al., 2011) by defining 
the binary variables        if vertex   is visited followed by vertex  , and        otherwise, 

for          .  In this formulation, originally proposed by Miller et al. (1960) in the context 
of the TSP, we also need the integer variables    with the position of vertex   in the path, 
       .  In mathematical terms: 
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In the formulation above, constraints (1) force the path to start at vertex 1 and to end at 
vertex  , while constraints (2) guarantee that every vertex in the graph is visited at most once.  
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The time limit constraint (3) and the sub-tour elimination constraints (4 and 5) complement 
the formulation. 
 
We do not include a discussion of previous work on the orienteering problem because fairly 
complete reviews have appeared in recent publications, including Vansteenwegen et al. 
(2011).  They clearly stated that the methods proposed in the most recent solution approach 
for the OP (Schilde et al., 2009), Ant colony optimization and VNS, improve upon all the 
previous approximate methods, including the classic five-step heuristic of Chao et al. (1996). A 
Path Relinking approach was applied for the Team Orienteering Problem in Souffriau et al., 
(2010), in this variant of the OP, a set of routes have to maximize the total score of the visited 
vertices, each route cannot exceed a common limit time. On the other hand, we have also 
identified an exact branch-and-cut algorithm to optimally solve this problem (Fischetti et al., 
1998).  Our main contribution is the development of a solution method for the OP based on 
the Greedy Randomized Adaptive Search Procedure (GRASP) and Path Relinking (PR) 
methodologies (Resende and Ribeiro, 2001), using several constructive methods.  We compare 
our different designs and test them over a collection of instances with optimum known and 
also with a wider set of instances (in which we consider the best known solutions up to now). 
The experimentation shows that our methods compete with the best heuristics reported in the 
literature. 
 
 

2. Constructive Methods 

In this section, we propose four constructive methods for the orienteering problem based on 
GRASP (Resende and Ribeiro, 2003). 
 
Given a graph       , constructive method C1 starts with a path of length one in which we 
directly go from 1 to   through the arc      .  The set   {   } represents the partial 
solution under construction and    its associated travel time (initially       ).  The 
candidate list    is formed with all the vertices not present in the path that can be added 
within the time limit     . Specifically, in the first step 
 

   {                   } . 
 
At each step, C1 selects a candidate element      to be included in the partial solution. C1 
implements a typical GRASP construction in which first each candidate element is evaluated 
with a greedy function to construct the restricted candidate list      and then an element is 
selected at random from the     .  In particular, we compute the maximum score      of the 
elements in    as 
 

                , 
 
then we construct the      with all the candidate elements with a score value within a 
fraction   (the so-called greediness parameter) of the maximum score.  In mathematical 
terms: 
 

     {               } . 
 
Finally, C1 randomly selects an element of the      and the selected element is inserted in 
the best position in the path   (i.e., the one that produces the least increase in the path travel 
time). C1 performs iterations reconstructing the    as long as new vertices can be added to 
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the partial path (i.e., as long as the    is not empty).  When no element out of the path can be 
inserted in it within the time limit, C1 stops and returns the path as the solution. 
 
The randomization in C1 permits running it several times, say Max_iter iterations. Performing 
multiple GRASP iterations may be interpreted as a means of strategically sampling the solution 
space.  Based on empirical observations, it has been found that the sampling distribution 
generally has a mean value that is inferior to the one obtained by a deterministic construction 
(that one with the same GRASP elements but replacing the random selection with the best 
available one), but the best overall trial dominates the deterministic solution with a high 
probability.  The intuitive justification of this phenomenon is based on the ordering statistics of 
sampling.  It implements a way of independently sampling the solution space and each 
construction consists of an independent algorithm.  In this sense, GRASP is a memory-less 
method since no information is recorded from one construction to the next. 
 
We now consider C2, an alternative construction procedure introduced in Resende and 
Werneck (2004) as random plus greedy construction, which has been successfully applied in 
for example Resende et al., (2010). At each step in C2 we first construct   , as in the case of 
the constructive method C1  The restricted candidate list      is constructed, determining 
first its cardinality from a fraction       of the elements in    (       ⌈     ⌉) with 
no repetitions, then a random sample of size        is taken from   , and the element 
       with the maximum score    is selected. Like C1, C2 inserts the selected element in 
the best position (i.e., the one that produces the least increase in the path travel time) in the 
path  . It performs iterations as long as new vertices can be added to the partial path (i.e., 
while    is not empty). Note that the role of   is not the same in C1 and in C2. In C1 the 
greater   is the lesser random the method of selection, while in C2   computes the fraction of 
the candidates independently of the element quality.  In other words, any element in       
can be selected at any iteration, whilst in C1 the best elements of      have a greater 
probability of being selected. 

 
Constructive method C3 also implements a typical GRASP construction, as C1, in which first 
each candidate element is evaluated by a greedy function to construct    , from which an 
element is randomly selected.  The candidate set of elements    is computed in the same way 
as in C1 and C2, but the greedy evaluation    of element  , consists now on the quotient 
between the score    and the smallest increment in the time,    , when the element is 
inserted in the path. In mathematical terms: 

   
  

   
 

 
As is customary in GRASP, we construct      with the elements in    with an evaluation 
within a fraction   of the maximum value.  In mathematical terms: 
 

     {               }   where                   
 

Finally, C4 differs from C3 in the way the random and the greedy choices are made (as C2 
differs from C1).  In particular, C4 first constructs the restricted candidate list      with a 
random sample of the elements in    of size        ⌈     ⌉ where no repetitions are 
allowed. Then, it evaluates all the elements in     , computing    for all       , and selects 
the best one, i.e. the element with maximum quotient between the score    and the time 
increment    . As the three previous methods, C4 inserts the selected element in the best 
position (i.e., the one that produces the least increase in the path travel time) in the path 
under construction. 
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2.1 Comparison of Methods 

When we design a constructive method as a part of a larger solving method it has to be able to 
produce good starting points for the master method.  This is especially true in the case of 
GRASP with PR in which we apply first the local search and then the PR to the constructed 
solutions.  In this context, we want the constructive method to obtain good solutions in terms 
of the objective function, but also diverse to reach different regions of the solution space. 
 
Considering the four constructive methods proposed above, a way of comparing them is to 
generate a set of solutions with each one and compare their quality and diversity.  Since the 
quality is directly measured by the objective function, we now propose a measure of diversity.  
Given two solutions,   {              } and   {              } we compute their 
diversity,         , as the number of elements (vertices in the graph) in   not present in  , 
plus the number of elements in   not present in  . To make this value independent of the size 
of the problem and of the maximum time limit     , we divide it by the total number of 
elements, excluding origin and destination, present in both solutions (i.e.,    ). 
 
To illustrate, suppose two solutions in a graph with     ,   {                     } with 
7 elements (without computing the origin 1 and destination 21) and   {                } 
with 5 elements.  The number of elements in   not present in   is 4, and the number of 
elements in   not present in   is 2. Then, the diversity value between   and   is: 
 

         
   

   
     

 

We then generate 100 solutions with each constructive method and compute the average 
diversity value between all pairs of solutions.  On the other hand, we compute the objective 
function value of each solution and its associated relative deviation from the optimal solution 
value. The averages of these deviation and diversity values provide an overall evaluation of the 
method. 
 
To test this point with our four constructive methods and the different values of their 
associated parameter, we consider 33 instances with optimum known in Fischetti et al. (1998).  
Table 1 shows for each method, C1, C2, C3 and C4, and each value of the parameter   tested, 
0.2, 0.4, 0.6 and 0.8, the average across the 33 instances of the average deviation value (Dev) 
and the average diversity value (Div).  
 

 

   0.2 0.4 0.6 0.8 

C1 
Dev 19.3% 13.5% 12.1% 13.0% 

Div 0.57 0.49 0.43 0.32 

C2 
Dev 7.2% 7.9% 8.4% 9.9% 

Div 0.28 0.20 0.15 0.11 

 C3 
Dev 11.8% 13.1% 13.8% 14.2% 

Div 0.41 0.33 0.27 0.21 

C4 
Dev 7.4% 7.3% 7.9% 9.2% 

Div 0.25 0.18 0.14 0.11 

Table 1. Average deviation from optimal values and diversity of constructive methods. 
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Table 1 shows that the best method in terms of quality is C2 (with      ) since it is able to 
obtain a 7.2% deviation, which compares favorably with the rest of the methods.  We also 
observe that the best method in terms of diversity is C1 with an average value of 0.57.  Given 
their different nature and range, it is difficult to directly compare both measures (Div. and 
Dev.) in order to establish the best constructive method overall. Figure 1 depicts a point for 
each of the 16 methods reported in Table 1 (the four methods with the four values of  ). The 
x-axis represents the diversity value (Div) and the y-axis the deviation value in the range [0,1] 
(i.e., we represent the 1-Dev value).  In this way, for both values in the diagram we have that 
the larger the value the better the method. 

 

 
Figure 1. Quality and diversity of constructive methods. 

 
If we analyze the points in Figure 1 from a bi-objective perspective, in which an objective is to 
maximize the quality (1-Dev) and the other to maximize diversity (Div), we conclude that there 
are only five non-dominated points (methods): C1(0.2), C1(0.4), C1(0.6), C2(0.2), and C3(0.2).  
We say that a method is non-dominated if there is no other method with a better value in one 
objective and a better or equal value in the other. 
 
It is difficult to say if the quality is more or less important than the diversity in a constructive 
method.  We are not able to anticipate which one can influence more in the application of the 
local search to the solutions obtained with the construction.  We then cannot conclude which 
of these five methods is the best and will test them with the local search. 
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3. Improvement Method based on Local Search 

We have implemented a two phase local search procedure. The first phase is based on 
exchanges while the second one is based on insertions. 

 
The neighborhood of the first phase is based on the exchange between a vertex   in the path 
  and another vertex   not in   (without exceeding the maximum time limit     ). The 
difference between the scores of both vertices (     ) provides the associated move value.  
We examine the vertices in the path and, for each vertex   in  , we consider to exchange it 
with each vertex out of the path.  We compute the value of each combination and perform the 
exchange with the largest improvement found. If for a vertex   in   no associated move 
qualifies to be performed (all of them are non-improving moves), we try to reduce the length 
of the path without decreasing the total score.  Specifically, we explore again the vertices   
not in   but now we focus on those with the same score value than   and check if the 
exchange reduces the length of the path. In this case we perform the move; otherwise, we 
resort to the next vertex   in the path  . 
 
When a one-to-one exchange is performed, we try an insertion move in which a vertex not 
present in the current path is considered to be added to it. Note that in this problem the 
insertion of a new point into the path could not necessarily increment its length (some points 
are in the same location). It could even reduce the total length because the matrix distance 
does not necessarily satisfy the triangular inequality in some instances, and therefore after we 
add a vertex to the path we have to check the addition of more vertices. This is why after an 
exchange we consider insertions as long as we can add vertices in the path without exceeding 
    .  The added vertices are inserted in the best position. 
 
The local search procedure examines the vertices in their order in the path and tries to 
perform exchanges and insertions for all of them as described above.  If a move has been 
performed for any vertex in the path, we explore again all the vertices in the current path until 
no further improvement is possible. 

 
 
3.1 Comparison of Methods 

In the previous section we tested sixteen constructive methods (four algorithms with four 
values of parameter  ) on 33 instances.  We identified five of them, C1(0.2), C1(0.4), C1(0.6), 
C2(0.2), and C3(0.2) as the best ones in terms of quality and diversity.  Now, we are going to 
see their performance when the local search is applied to the 100 solutions constructed with 
each one.  For each method and each instance, we compute the best solution found over the 
100 constructions plus the local search described above.  Table 2 shows the average deviation 
with respect to the optimum value (Dev) and the number of best solutions that each method is 
able to match (#best). 

 

 
C1(0.2)+LS C1(0.4)+LS C1(0.6)+LS C2(0.2)+LS C3(0.2)+LS 

Dev 3.42% 3.97% 5.65% 3.96% 7.76% 

#best 17 13 7 16 7 

Table 2. Avg. deviation and number of best solutions of constructive methods plus local search. 

 
Table 2 shows that the best solutions are obtained with the C1(0.2)+LS, which is able to 
achieve a 3.42% deviation and 17 best solutions out of the 33 instances.  Anyway, all the 
methods perform very well considering that their running times are extremely short (below 0.1 
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seconds on each instance on an Intel Core i5 650 at 3.20 GHz).  If we check the best solutions 
that each method is able to identify, we find out that some of them are obtaining different 
best solutions.  This is especially true when we compare two methods based on different 
constructive algorithms.  For example, if we compare the 16 best solutions obtained with 
C2(0.2)+LS and the 17 obtained with C1(0.2)+LS, we realize that only 10 of them are the same 
and both together are able to match 23 best solutions.  As a matter of fact, these are the two 
methods sharing the least number of best solutions and therefore they are suitable to be 
combined for improved outcomes. 
 
We have performed a further preliminary experiment to compare the value of the constructive 
method with the value of the construction coupled with the local search.  In particular, we 
have generated 100 solutions on instance gil262 with C1(0.2) computed their value, improved 
them with LS and computed the value of the improved solution.  Figure 2 depicts a scatter-plot 
with 100 points, where the coordinates of each one is the pair of values of each solution (the 
score of the constructed solution on the x-axis and the score of the improved solution on the 
y-axis). 

 

 
Figure 2. Objective function on gil262 instance with C1(0.2) 

 
The points in Figure 2 range in the x-axis from 6,691 to 8,813 while in the y-axis they go from 
9,998 to 10,940.  We observe two effects, the first one is that, as expected, the values in the y-
axis are larger than those in the x-axis.  The second one is that the range in the y-axis is 
narrower (942) than the range in the x-axis (2,122).  Moreover, the best solution found with 
the LS with value 10,940 does not come from the best construction value 8,813, which can be 
interpreted that diversity is as important as quality when apply the local search.  However, the 
correlation coefficient between both variables is        , which indicates that the 
correlation is weak, but significantly positive as stated by a t-test.  Therefore, we cannot 
conclude with a high confidence that the good solutions of the local search come from the 
good constructions, and the performance of the entire method is also explained by its 
diversification power.  For the sake of simplicity we only depict here an example although we 
have empirically found that this behavior is representative over the instances tested. 
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4. Path Relinking 

Path Relinking was suggested as an approach to integrate intensification and diversification 
strategies in the context of tabu search (Glover and Laguna, 1997). This approach generates 
new solutions by exploring trajectories that connect high-quality solutions – by starting from 
one of these solutions, called the initiating solution, and generating a path in the 
neighborhood space that leads toward the other solutions, called guiding solutions. This is 
accomplished by selecting moves that introduce attributes contained in the guiding solutions, 
and incorporating them in an intermediate solution initially originated in the initiating solution. 
 
Laguna and Martí (1999) adapted PR in the context of GRASP as a form of intensification. The 
relinking in this context consists in finding a path between a solution found with GRASP and a 
chosen elite solution. Therefore, the relinking concept has a different interpretation within 
GRASP since the solutions found in different GRASP iterations are not linked by a sequence of 
moves (as in the case of tabu search). Resende and Ribeiro (2003) present numerous examples 
of GRASP with PR. 
 
Let   {              } and   {              } be two solutions (paths from   to  ) 
of the orienteering problem. The path relinking procedure         starts with the first 
solution  , and gradually transforms it into the second one  , by swapping out elements in   
with elements in  . The elements in both solutions   and  , remain in the intermediate 
solutions generated in the path between them.  Let      be the set of vertices in   and not 

present in   and symmetrically, let      be the set of vertices in   and not present in  . 

 
To apply         we order the vertices in      according to their score, where the vertex 

with the largest score comes first.  In the first step of the path, we insert the first vertex from 
     in   in the best position according to the total time of the path.  If the obtained path is 

feasible (its total time does not exceed     ) we have obtained a better solution than  , 
which is considered the first intermediate solution; otherwise, we remove from this path 
vertices of      consecutively until the solution becomes feasible (vertices in      are 

selected by increasing score). In further steps of the method, we insert into the intermediate 
solution the next vertex in      and remove, if necessary, vertices in      to generate a 

sequence of feasible solutions until we finally reach  . 
 
Our implementation of path relinking has two phases.  In the first one a set of different 
solutions is generated with the GRASP method (i.e., we remove from the set those solutions 
that are equal).  Instead of retaining only the best solution overall when running GRASP, this 
phase stores all the different solutions obtained with the method.  In the second phase we 
apply the relinking process to each pair of solutions in the set.  Given the pair      , we 
consider two paths: from   to   (where   is the initiating solution and   the guiding one), and 
from   to   (where they interchange their roles). In short, we apply         and        . 

 
We have experimentally found that in most cases this relinking process by itself does not 
produce better solutions than the initiating and guiding solutions.  It is convenient to add a 
local search exploration from some of the visited solutions in order to produce improved 
outcomes.  These results are in line with those reported in Laguna and Martí (1999) for the arc 
crossing problem.  Specifically, we have applied the local search method introduced in the 
previous section to the best solution generated in the path if it improves either the initiating or 
the guiding solution, or both. 
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4.1 Comparing GRASP and GRASP with Path Relinking 

In this section we compare GRASP and GRASP with PR on the 33 instances used in Sections 2 
and 3 to evaluate the contribution of the path relinking post-processing.  Table 3 shows the 
objective function (Value), the average deviation with respect to the optimum value (Dev), the 
number of optimal solutions (#opt) and best solutions (#best) that each of both methods is 
able to match (comparing only the results of both methods), and the CPU time in seconds 
(Time).  We run GRASP for 500 constructions and then apply, in GRASP with PR, the path 
relinking to all pairs of different solutions. 

 

 
GRASP GRASP with PR 

Value 2078.30 2099.82 

Dev. 1.75% 0.84% 

#best 14 33 

#opt 14 18 

Time  1.72 26.87 

Table 3. Comparison over 33 instances. 

 
Results in Table 3 clearly indicate that the PR post-processing significantly improves the GRASP 
method.  This is especially true with the number of best solutions since GRASP only obtains 14 
best values by itself and when it is coupled with PR the combined method is able to match 33 
best values.  However, Path Relinking consumes much longer running times than GRASP. 
 

 
Figure 3. Search profile on instance cmt200vrpC 

 
To complement the results above, we study now the search profile of our two methods. Figure 
3 shows the progression of the best solutions found by GRASP and GRASP with PR, for a 
representative problem instance (cmt200vrpC), during 325.71 seconds of search time.  This 
figure shows how most improvements on the best solution are achieved early in the search 
(i.e., within 10 percent of the total search time, corresponding to 30 seconds approximately).  
After that point, GRASP stagnates, while GRASP with PR exhibits an improving trajectory 
throughout the entire search horizon.  In this experiment the best solution found has a score 
of 2,852 while the optimal value reported in Fischetti et al. (1998) is 2,881 with a CPU time of 
17,389.9 seconds on an HP Apollo 9000/720 at 80 MHz, with 58 MIPS, and 18 MFlops.  We 
have performed the same experiment with different instances and the profile follows the same 
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pattern depicted in this figure: GRASP with PR outperforms GRASP over the long search 
horizon. 

 

5. Comparison with Previous Methods 

In this section we report our computational experiments to compare the methods proposed in 
the sections above with the best previous heuristics.  Specifically, we compare our GRASP and 
GRASP with PR with the following four methods: 
 

 CGW by Chao et al. (1996) 
 GLS by Vansteenwegen, et al. (2009) 
 ACO by Schilde et al. (2009) 
 VNS by Schilde et al. (2009) 

 
The first benchmark for this problem was proposed by Tsiligirides (1984), which consists of 49 
instances with vertices ranging from 21 to 33.  These small instances have optimum known and 
as described in Schilde et al. (2009) most of the current methods are able to match these 
optima.  More recently, Chao et al. (1996) proposed a benchmark with 40 larger instances in 
two sets: the first set, called p64, has 14 of them with 64 vertices, and the second set, called 
p66, the other 26 with 66 vertices each one.  All the instances in a set are based on the same 
graph and they only differ in the time limit value (    ).  We employ these 40 instances to 
compare our method with the four previous ones.  
 
 

     CGW GLS ACO VNS 

   value time value time 
15 96 96 96 0.007 96 0.000 
20 294 294 294 0.017 294 0.002 
25 390 390 390 0.025 390 0.022 
30 474 474 474 0.034 474 / 468 1.217 
35 570 552 576 / 570 0.508 576 0.148 
40 714 702 714 0.409 714 2.453 
45 816 780 816 / 804 7.013 816 0.587 
50 900 888 900 / 894 4.492 900 / 894 3.872 
55 984 972 984 / 978 8.323 984 / 966 3.011 
60 1044 1062 1062 / 1056 0.991 1062 / 1050 1.606 
65 1116 1110 1116 0.711 1116 8.268 
70 1176 1188 1188 2.281 1188 / 1182 0.975 
75 1224 1236 1236 0.721 1236 / 1230 1.158 
80 1272 1260 1284 / 1278 2.109 1284 / 1278 12.593 

Avg. 790.7 786.0 795.0 / 792.0 1.970 795.0 / 790.7 2.570 

Table 4. Comparison of previous best methods on p64 instances 
 
Table 4 shows the best values obtained with the four methods referenced above (CGW, GLS, 
ACO and VNS) on the p64 set of instances.  These values are taken from Table 1 in Schilde et al. 
(2009), and correspond to an Intel Pentium 4D at 3.2 Ghz.  Note that the running times are 
missing for CGW and GLS methods. On the other hand, ACO and VNS are replicated 10 times 
on each instance and they reported the best and worst values of the 10 runs (and only one 
value if both are the same).  The running times correspond to the elapsed seconds to reach the 
solution found in the best run out of the ten.  These results indicate that the ACO method is 
the best one and therefore we compare in Table 5 our GRASP and GRASP with PR with ACO.  
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To perform a fair comparison, we replicate our methods 10 times and report the elapsed time 
as Schilde et al. (2009) did with ACO.  However, running times of our two methods are 
computed on an Intel Core i5 650 at 3.20 GHz so a direct comparison of running times with 
ACO is not possible. 
 

     ACO GRASP GRASP + PR 

 value time value time value time 
15 96 0.007 96 0.015 96 0.015 
20 294 0.017 294 0.046 294 0.062 
25 390 0.025 390 0.062 390 0.140 
30 474 0.034 468 0.062 468 0.171 
35 576 / 570 0.508 576 0.078 576 0.280 
40 714 0.409 714/708 0.093 714 0.280 
45 816 / 804 7.013 816/804 0.093 816 0.296 
50 900 / 894 4.492 900 0.109 900 0.421 
55 984 / 978 8.323 984 / 978 0.171 984 / 978 0.296 
60 1062 / 1056 0.991 1062 / 1044 0.124 1062 / 1044 0.249 
65 1116 0.711 1116 0.109 1116 0.202 
70 1188 2.281 1188 0.093 1188 0.187 
75 1236 0.721 1236 0.093 1236 0.171 
80 1284 / 1278 2.109 1284 / 1278 0.093 1284 / 1278 0.140 

Avg. 795.0 / 792.0 1.970 794.6 / 791.1 0.089 795.0 / 792.9 0.208 

Table 5. Comparison with the previous best method on p64 instances 
 
Table 5 clearly shows that our methods are competitive with the best published heuristic for 
this problem. In particular GRASP obtains a best average value of 794.6 and a worst average 
value across the 10 replications of 791.1, and it exhibits an average CPU time of 0.089 to reach 
the best values.  GRASP with Path Relinking marginally improves these results and has an 
average best and worst values across the 10 runs of 795.0 and 792.9 respectively, which are 
slightly better than the 795.0 and 792.0 obtained with ACO.  Moreover, the average running 
time of GRASP+PR on an Intel Core i5 650 at 3.20 GHz is 0.208, while the CPU time required by 
ACO is 1.97 on an Intel Pentium 4D at 3.2 Ghz.  It is difficult to perform indirect comparisons of 
running times taken from different computers, but the ratio between the average CPU times of 
GRASP with PR and ACO is 1.97/0.21=9.47, which seems to indicate that GRASP+PR is faster 
than ACO. 
 
Table 6 shows the best values obtained with the two best previous heuristics, ACO and VNS, 
and our two methods, GRASP and GRASP with PR, on the p66 set of instances.  As in the 
previous experiment, the four methods are run 10 times on each instance and we report the 
best and worst value across the 10 replications.  Note that we only report both values when 
they differ.  The average best/worst values across the 10 runs of VNS and GRASP are 
respectively 952.3/947.5 and 952.3/948.3. On the other hand, ACO and GRASP with PR are 
able to match in the 10 runs the best known value for each of the 26 instances in the p66 set.  
This may indicate that these instances, p66, are easier to solve than those reported in Table 5, 
p64.  GRASP only requires an average running time of 0.07, while GRASP with PR needs 0.12 
seconds on average.  ACO and VNS require 0.26 and 1.38 seconds respectively.  However, they 
were run on an older computer than GRASP and GRASP with PR, so we can conclude that 
GRASP has a similar performance than VNS, and GRASP with PR a similar performance than 
ACO in this set of instances. 
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     ACO VNS GRASP GRASP with PR 

     value time  value time 

5 10 0.01 10 0.00 10 0.00 10 0.00 
10 40 0.01 40 0.00 40 0.00 40 0.00 
15 120 0.01 120 0.00 120 0.02 120 0.02 
20 205 0.06 205 0.01 205 0.02 205 0.02 
25 290 0.02 290 0.01 290 0.03 290 0.03 
30 400 0.02 400 0.01 400 0.05 400 0.05 
35 465 0.03 465 0.13 465 0.06 465 0.06 
40 575 0.04 575 1.94 575/555 0.06 575 0.28 
45 650 0.05 650 0.03 650 0.08 650 0.08 
50 730 0.05 730 0.13 730 0.09 730 0.09 
55 825 0.06 825 3.04 825 0.09 825 0.09 
60 915 0.13 915 0.04 915 0.11 915 0.11 
65 980 0.08 980 1.63 980 0.11 980 0.11 
70 1070 0.08 1070 0.40 1070 0.11 1070 0.11 
75 1140 0.09 1140/1135 0.06 1140 0.11 1140 0.11 
80 1215 1.27 1215/1195 2.61 1215 0.12 1215 0.12 
85 1270 0.22 1270/1265 0.97 1270 0.12 1270 0.12 
90 1340 0.48 1340/1330 0.61 1340 0.12 1340 0.12 
95 1395 0.39 1395/1390 0.85 1395 0.11 1395 0.11 

100 1465 1.41 1465/1445 11.1 1465/1455 0.11 1465 0.41 
105 1520 0.15 1520/1495 0.33 1520/1510 0.11 1520 0.51 
110 1560 0.32 1560/1550 1.33 1560 0.09 1560 0.09 
115 1595 0.16 1595/1585 8.46 1595 0.09 1595 0.09 
120 1635 1.22 1635/1625 1.18 1635/1625 0.08 1635 0.22 
125 1670 0.19 1670/1665 1.07 1670/1655 0.08 1670 0.19 
130 1680 0.19 1680 0.02 1680/1640 0.00 1680 0.02 

 952.3 0.26 952.3/947.5 1.38 952.3/948.3 0.07  952.3 0.12 

Table 6. Comparison of best methods on p66 instances 
 
Fischetti et al. (1998) proposed an exact procedure (a branch-and-cut algorithm) for the special 
case in which the origin and destination are in the same location, and compute the optimal 
value for some instances (their method requires about 5 hours of CPU time to obtain the 
optimum in some of their larger instances).  As shown in the previous sections, we have used 
these instances to calibrate our algorithm (find the best values for key search parameters) and 
compare different search strategies.  We also use them in this section to compare the results 
of our two methods with the optimal solutions when solving this particular case. 

 
Note that in the VRP instances reported in Fischetti et al. (1998), the customer demand is 
interpreted as the vertex score. Table 7 reports, for each of the 33 instances in this set, the 
optimal value (opt) and the corresponding CPU time to obtain it with the branch and cut in 
Fischetti et al. (1998), and the value of GRASP and GRASP with PR with the associated running 
time in seconds. These three methods were run on the same computer (an Intel Core i5 650 at 
3.20 GHz).  As expected, the branch and cut requires a running time much longer than the 
heuristic methods: 1060.46 seconds on average versus 3.43 for GRASP and 90.57 for GRASP 
with PR, although it obtains the optimum in the 33 instances while the heuristics approximate 
it.  GRASP with PR performs remarkably well considering that it is able to match 19 optima and 
its average percent deviation from the optimal solution of 1.42%. 
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Branch and Cut GRASP GRASP with PR 

instance opt time value time value time 

op33A 250 0.08 250 0.06 250 0.30 

att48vrpA 13 0.35 13 0.12 13 0.19 

eil30vrpA 2650 0.13 2650 0.03 2650 0.03 

eil51vrpA 264 0.17 264 0.12 264 0.84 

eil76vrpA 490 0.77 490 0.06 490 7.30 

eil101vrpA 572 733.61 572 0.12 572 23.85 

cmt101vrpA 530 0.87 520 0.03 530 5.01 

cmt121vrpA 412 4.73 408 0.12 412 50.19 

cmt151vrpA 824 6.60 814 0.39 824 58.05 

cmt200vrpA 1205 0.51 1162 0.80 1182 113.49 

gil262vrpA 4466 4745.02 4167 0.36 4342 284.88 

op33B 500 0.08 500 1.40 500 2.59 

att48vrpB 30 0.07 30 2.51 30 6.18 

eil30vrpB 7600 0.51 7600 6.07 7600 0.09 

eil51vrpB 508 0.14 508 11.31 508 4.60 

eil76vrpB 907 0.19 897 0.11 907 24.04 

eil101vrpB 1049 0.33 1020 0.34 1032 34.59 

cmt101vrpB 1030 0.73 990 0.05 1020 28.75 

cmt121vrpB 715 11194.4 702 0.22 707 44.12 

cmt151vrpB 1537 123.76 1501 0.70 1526 86.31 

cmt200vrpB 2198 5217.42 2076 1.39 2103 147.75 

gil262vrpB 8456 1370 7896 0.86 8004 341.86 

op33C 660 0.09 660 1.73 660 4.32 

att48vrpC 39 0.09 39 4.52 39 9.19 

eil30vrpC 11550 0.20 11550 11.17 11550 0.34 

eil51vrpC 690 0.15 690 22.74 690 5.13 

eil76vrpC 1186 0.60 1180 0.09 1181 15.21 

eil101vrpC 1336 967.49 1295 0.36 1304 31.70 

cmt101vrpC 1480 0.41 1450 0.09 1480 41.06 

cmt121vrpC 1134 218.24 1108 0.25 1119 116.84 

cmt151vrpC 2003 623.05 1973 0.73 1992 137.37 

cmt200vrpC 2881 1031.19 2794 1.33 2852 318.99 

gil262vrpC 11195 8752.81 10922 1.15 11019 1043.63 

Average 2132.12 1060.46 2081.55 3.43 2101.58 90.57 

Table 7. Comparison with optimal values 

6. Conclusions 

The orienteering is a difficult combinatorial optimization problem and a perfect platform to 
study the effectiveness of search mechanisms.  Of particular interest in our work has been 
testing the effect of combining two different neighborhoods within the local search of GRASP 
as well as studying the effect of a post-processing based on Path Relinking.  Through extensive 
experimentation, we have been able to determine the benefits of adding enhanced search 
strategies to basic procedures.  We have compared our methods with the best identified in 
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previous studies. The comparison clearly shows that our proposals are competitive with the 
state-of-the-art methods. 

Acknowledgments 

This research has been partially supported by the Ministerio de Educación y Ciencia of Spain 
(Grant Refs. TIN2009-07516 and TIN2012-35632-C02). The authors thank Profs Schilde, 
Doerner, Hartl, and Kiechle for sharing their results with them. The authors also thank Profs. 
Fischetti, Salazar, and Toth for sharing their branch-and-cut code with them. 
 

References 

Chao, I.M., Golden, B.L. and Wasil, E.A. (1996) A fast and effective heuristic for the 
orienteering problem, European Journal of Operational Research 88, 475-489. 

Fischetti, M., Salazar, J.J. and Toth, P. (1998) Solving the orienteering problem through branch 
and cut, INFORMS Journal on Computing 10, 133- 148. 

Glover, F. , Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers, Boston. 

Jozefowiez, N., F. Glover, and M. Laguna (2008) Multi-objective Meta-heuristics for the 
Traveling Salesman Problem with Profits. Journal of Mathematical Modelling and 
Algorithms 7(2), 177-195. 

Laguna, M. and Martí, R. (1999) GRASP and path relinking for 2-layer straight line crossing 
minimization. INFORMS Journal on Computing, 11:44–52. 

Miller, C. E., A. W. Tucker, and Zemlin, R. A. (1960) Integer programming formulations and 
traveling salesman problems, Journal ACM, 7, 326–329. 

Pacheco, J., A. Alvarez, S. Casado and J. L. González-Velarde (2009) A Tabu Search Approach to 
an Urban Transport Problem in Northern Spain, Computers and Operations Research 36, 
pp. 967-979. 

Resende, M.G.C. and Werneck, R.F. (2004) A hybrid heuristic for the p-median problem, 
Journal of Heuristics, 10:59–88. 

Resende, M.G.C. and Ribeiro, C.C. (2003) Greedy randomized adaptive search procedures. F. 
Glover, G. Kochenberger, eds. State-of-the-art Handbook in Metaheuristics, Kluwer 
Academic Publishers, Boston, MA. 219–250. 

Resende, M.G.C., R. Martí, M. Gallego and A. Duarte (2010), GRASP and Path Relinking for the 
Max-Min Diversity Problem, Computers and Operations Research 37(3), 498-508 

Schilde, M., Doerner, K.F., Hartl, R.F.and Kiechle, G. (2009), Metaheuristics for the bi-objective 
orienteering problem, Swarm Intell., 3, 179 -201. 

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G. and Oudheusden, D.V. (2010) A path 
relinking approach for the team orienteering problem, Computers and Operations 
Research, 37, 1853-1859. 

Tsiligirides, T. (1984) Heuristic methods applied to orienteering, Journal of the Operational 
Research Society, 35(9), 797—809. 

Vansteenwegen, P., Souffriau, W. and Oudheusden, D.V. (2011) The orienteering problem: A 
survey, European Journal of Operational Research 209, 1-10. 

Vansteenwegen, P., Souffriau, W., Vanden Berghe, G. and Oudheusden, D.V. (2009) A guided 
local search metaheuristic for the team orienteering problem. European Journal of the 
Operational Research, 196(1), 118-127. 


