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Abstract. 

In this paper we propose several heuristics for the Uncapacitated                           

 -Allocation  -Hub Median Problem.  In the classical  -hub problem, given a 

set of nodes with pairwise traffic demands, we must select   of them as hub 

locations and route all traffics through them at a minimum cost.  We target 

here an extension, called the  -allocation  -hub median problem, recently 

proposed by Yaman (2011), in which every node is assigned to   of the   

selected hubs (   ) and we are restricted to route the traffic of the nodes 

through their associated   hubs. 

As it is usual in this type of problems, our method has three phases: location, 

assignment and routing.  Specifically, we propose a heuristic based on the 

GRASP methodology in which we consider three local search procedures.  

The combinatorial nature of this problem makes them time-consuming.  We 

therefore propose a filtering mechanism to discard low-quality constructions 

and skip its improvement, saving its associated running time.  We perform 

several experiments to first determine the values of the key-search 

parameters of our methods and then to compare with previous algorithms.  

Computational results on 465 instances show that while only small instances 

can be optimally solved with exact methods, the heuristics are able to find 

high-quality solutions on larger instances in short computing times.  

Moreover, when targeting the classical  -hub versions (with     or    ), 

our heuristic is competitive with the state of the art methods. 

 

Key-Words:   -hub, heuristics, GRASP, combinatorial optimization. 
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1. INTRODUCTION 

The  -hub problem is a classical optimization problem (O’Kelly, 1987) in which, given a set of 

nodes with pairwise traffic demands, we have to choose   of them as hub locations and route 

all the traffic through these hubs at a minimum cost.  For each pair of nodes   and  , there is a 

traffic     that needs to be transported.  It is generally assumed that direct transportation 

between non-hub nodes is not possible, and the     traffic travels on a path          , 

where    and    are hubs assigned to   and  , respectively.  

There are two extensively studied versions of the  -hub problem regarding the allocation 

strategy: the single allocation and the multiple allocation versions. In the single allocation  -

hub problem, each node is assigned to one of the   hubs , only allowing to send and receive 

traffic through this single hub.  In the multiple allocation  -hub problem, each node can send 

and receive traffic through any of the   hubs. 

Transporting the     units flow through the path           has an associated cost 

          , usually computed as         (     
       

      ), where     
 is the distance 

between   and    (similarly for the      
 and     ), and     and   are unit rates for collection 

(origin-hub), transfer (hub-hub) and distribution (hub-destination), respectively.  Generally,   

is used as a discount factor to provide reduced unit costs on arcs between hubs, so typically 

    and    .  Therefore, a solution is determined by a set of hubs, the node-to-hubs 

assignments, and the travel paths for each pair of nodes.  The sum of the            values for 

all ( ,  ) pairs is the solution cost or value.  The problem then consists of finding the hubs, 

assignments and paths that minimize the total cost of transportation. 

During the last years  -hub problems have been widely studied due to the increase in the 

number of applications in telecommunications, transportation and logistics.  The  -hub 

network, based on transshipment nodes, provides a better utilization of transporters.  

Different versions of the problem include, single and multiple hub allocations (as mentioned 

above), capacity constraints, fixed costs, and maximum travel time, to mention the most 

common ones.  The  -hub median problem belongs to the class of   -hard problems. Even 

when the set of hubs is given, the sub-problem of optimal allocation of non-hub nodes to hubs 

is also   -hard (Love, Morris and Wesolowski, 1988). We refer the reader to Kratica et al. 

(2007), Milanović (2010), Ilić et al. (2010), Gelareh and Nickel (2011),  García, Landete and 

Marín (2012), and Campbell and O'Kelly (2012)  for some of the most interesting papers on the 

subject. 

A new evolutionary approach was presented by Milanović (2010) for solving the multiple 

allocation version of the problem. Integer encoding of individuals was used to ensure their 

feasibility, whose quality was evaluated using a fitness function. By applying genetic operators 

of selection, crossover, and mutation, future generations were produced. Duplicated 

individuals were removed from the population in the next generation, being also limited to a 

certain percentage the individuals with the same objective value but different genetic code. 

Fine grained tournament selection (FGTS) was used, as well as standard one-point crossover 

operator and the idea of frozen bits to increase the diversity of the genetic material. The 
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results demonstrate the usefulness of the proposed approach with new best solutions for 

three standard instances. 

A VNS approach was presented by Ilić et al. (2010) for the single version of the problem. Three 

neighborhoods were proposed for the VNS scheme, using the idea of hubs as clusters: allocate 

tries to change the allocations of every non-hub node, leaving all other elements unchanged; 

alternate preserves all clusters, changing the location of a hub from one node to other from 

the same cluster, assigning the remaining nodes of the cluster to this new hub; new locate tries 

to increase the diversity of solutions obtained selecting nodes from out of a cluster to be hub 

and then assigning the nodes at the cluster to other hubs. The authors also presented how to 

efficiently update data structures for calculating new total flow and cost in the network. Both 

sequential and nested strategies of the VNS were proposed, outperforming the best-known 

heuristic in terms of effort and quality solutions for the single version. 

Recently, Yaman (2011) proposed a very interesting variant of this problem in which each node 

can be connected to at most   of the   hubs, called the Uncapacitated  -Allocation  -Hub 

Median Problem (UrApHMP).  The motivation of this variant comes from the fact that the 

single allocation version, in which a node is connected (assigned) to a single hub is too 

restricted for real-world situations, while the multiple allocation variant, where each node can 

use any of the   hubs to route its traffic, results in high fixed costs  and complicated networks.  

The  -allocation  -hub problem, being    , generalizes both versions of the  -hub median 

problem. When     we are at the single allocation version, whereas if    , we have the 

multiple allocation version.  Yaman (2011) proposed a mixed integer programming formulation 

for this generalized version and performed a computational study to first compare the  -

allocation version with the single and multiple variants, and then to optimally solve small and 

medium size instances.  She observed in instances with 50 and 75 nodes (and 3, 4, and 5 hubs), 

that when a node is allowed to be allocated to two hubs, the solutions are significantly 

cheaper than the single allocation solutions (about 2.0% on average) and slightly more 

expensive than the multiple version (about 0.3% on average). 

In this paper we propose a heuristic for the Uncapacitated  -Allocation  -Hub Median 

Problem. It is based on the GRASP methodology, and implements three local search 

procedures.  Additionally, we propose a filtering mechanism to discard low-quality solutions 

and selectively apply the local searches to “promising” solutions to obtain high quality 

solutions in short computing times.  As far as we know, these are the first heuristics proposed 

for this more general  -hub median model. Computational results on 465 instances show that 

while only small instances can be optimally solved with exact methods, the heuristics are able 

to find high-quality solutions on larger instances in short computing times.  Moreover, when 

targeting the classical  -hub versions (with     or    ), our heuristic is competitive with 

the state of the art methods. 
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2. MATHEMATICAL PROGRAMMING FORMULATION 

The single allocation version of the  -hub median problem was formulated for the first time by 

O’Kelly (1987) as a quadratic integer program. This formulation resulted in a very difficult 

problem to be solved. Campbell (1994) formulated the  -hub median problem as an integer 

program, but this formulation contained many variables and constraints (     ). In the 

following paragraphs we briefly describe the formulation that we use in our computational 

study to evaluate the performance of the proposed heuristics. 

Given a network with a set of nodes   and a set of arcs  , let     be the amount of traffic to be 

routed from node   to node  , i.e., through the arc      , and let     be its associated unit 

routing cost. The  -allocation  -hub problem is then formulated (Yaman, 2011) in terms of the 

following variables:  Given a node  ,       if the node is a hub (i.e., if a hub is set or located 

at this node), and       otherwise.  Given a non-hub node   and a hub  ,       if node   is 

assigned or allocated to node  , and 0 otherwise.  Finally,       is the proportion of the traffic 

    from node   to node   that travels along the path         ,  where   and   are hubs.  

With these variables, the problem can be formulated as follows: 

 

   ∑ ∑ ∑ ∑   (              )     

            

         

                                      

∑      

   

                    

                            

∑        

   

                            

∑ ∑       

      

                        

∑                      

   

             

∑                       

   

               

                                             

    {    }                                  

Constraints (2) ensure that each node is allocated to at most   hubs, where hubs are assigned 

according to (3).  In addition, constraint (4) limits to   the number of hubs. Finally, constraints 
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(5) to (7) are associated with the routing of the traffic between each pair of nodes     through 

their corresponding hubs    . 

In our computational experiments, we have tested this formulation and studied the 

effectiveness of our heuristics in terms of their ability to find the optimal solution on small size 

instances. 

3. GRASP 

The GRASP methodology was developed in the late 1980s by Feo and Resende (1989) and the 

acronym was coined in Feo and Resende (1995). Basically, each GRASP iteration consists in 

constructing a trial solution with some greedy randomized procedure and then applying local 

search to the constructed solution. The construction phase is iterative, randomized, greedy, 

and adaptive. This two-phase process is repeated until some stopping condition is satisfied. A 

best local optimum found over all local searches is returned as the solution of the heuristic. 

We refer the reader to Festa and Resende (2011) for a recent survey of this metaheuristic.  

The algorithm in Figure 1 shows the pseudo-code for a generic GRASP for minimization. The 

greedy randomized construction seeks to produce a diverse set of good-quality solutions from 

which to apply the local search phase. Let   be the partial solution under construction in a 

given iteration and let   be the candidate set with all the remaining elements that can be 

added to  . The GRASP construction uses a greedy function      to measure the contribution 

of each candidate element     to the partial solution  . A restricted candidate list     is the 

subset of candidate elements from   with good evaluations according to  . In particular, if 

     and       are the minimum and maximum evaluations of   in   respectively, then 

      {                             }, 

where   is a number in      .  

begin GRASP 
1      ; 
2  while stopping criterion not satisfied do 
3      ; 
4   Compute   with the candidate elements that can be added to  ; 
5   while     do 
6    For all     compute     .                    and                ; 
7    Define       {                            } with          ; 
8    Select    at random from         
9    Add    to partial solution:     {  }; 
10    Update   with the candidate elements that can be added to  ; 
11   end-while 
12   if   is infeasible then 
13    Apply a repair procedure to make   feasible; 
14   end 
15                     ; 
16   if              then 
17                    ; 
18   end 
19  end 
20  return   ; 

Figure 1. GRASP algorithm for minimization of     . 
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3.1 Construction 

To obtain a solution for the UrApHMP we first select the   hubs (step 1) and then determine 

the assignments of each node to   of the   hubs (step 2).  Finally (step 3), for each pair of 

nodes we identify the routing of their traffic through the appropriated hubs. Figure 2 

illustrates these steps. 

  Step 1. Locating   hubs       Step 2. Assigning   hubs        Step 3. Routing traffics 

Figure 2. Construction steps 

Let   be a candidate location for a hub.  For any node   that could be assigned to   in step 2 we 

need to consider that all the traffic from   to any other node  , could be routed through  , and 

in the objective function we would have this traffic     multiplied by    .  We therefore 

consider the evaluation of this assignment,       , as: 

          ∑   

 

   

 

Note that, since we want to evaluate the attractiveness of   to be a hub, we compute        

for every node   in the graph.  On the other hand, it is reasonable to assume that if   is a hub, 

only a fraction of the nodes will be assigned to it. This is the reason to consider, for the 

evaluation      of  , only the   nodes with lowest        value. Let us assume that they are 

       .  In mathematical terms,      ∑         
   . We now apply the standard method in 

GRASP to construct a restricted candidate list     with good hub locations according to this 

greedy evaluation  , computing      and      as described above. Note that, as it is 

customary in GRASP,   is an adaptive function.  Once a hub    is selected, in the following 

construction steps, when computing        for a new candidate  , we do not sum the term 

     since hubs do not need to be assigned to other hubs to route their traffic.  We finish step 

1 when the   hubs have been selected. Let   {           } be the set of these hubs. 

In the step 2 of our constructive method,   of the   hubs are allocated to each node in the 

graph.  Specifically, for each node   we evaluate its allocation value            to any hub   

previously selected.  Note that for any node   to which we need to send traffic from  , this 

traffic has to be sent through some of their assigned hubs   In other words, to transport the     

units, a path           will be used.  To simplify the combinatorial problem of 

determining simultaneously    and   , we compute            as  
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              ∑   

 

   

  ∑      

 

   

                  

where the first term computes the cost associated with the arc from   to  , and the second 

one estimates the cost associated with the arcs from   to all destinations  .  We then compute 

                           , and assign to   the   hubs with the best (minimum) allocation 

values.  Let    be the set of   hubs assigned to node   (     ). 

Note that in step 1 we select hubs in a greedy randomized fashion and in step 2 we assign 

them to nodes in a greedy way without any random element.  We have empirically found that 

the randomization in step 1 is enough to obtain a diversified set of solutions in our problem.  

Adding a randomized component in step 2 would result in lower quality solutions. 

Finally, in step 3, we route all the traffics at their minimum cost. For each pair   and  , we have 

to determine the hubs       and       minimizing the routing cost.  In mathematical 

terms, from the expression of the objective function, and given       and      , we 

denote 

              (     
       

      ). 

The routing cost from   to  ,    , is then obtained by searching the hubs       and       

minimizing the expression above, i.e.  

                       
              

Since there is a small number of hubs assigned to each node (  typically takes a value between 

2 and 6), an exhaustive exploration in this final step can be performed. Specifically, for each 

pair       we consider the    associated pairs of hubs to determine the minimum cost    .  

Note that even when    and    have a common hub, it cannot be ensured that the best route 

will be through that hub, and the computation of all the possibilities mentioned above is 

needed. 

 

3.2 Solution representation 

As described in Subsection 3.1, three steps are applied to construct a solution: location, 

assignment and routing. Therefore, to represent a solution we need to specify these three 

aspects.  In particular, a solution   is given by a set of hubs  , a matrix of assignments  , and 

two matrices of hubs    and    specifying the traffic routes. In particular, 

             , where: 

  {          }    

  [   ]                
          

   [   
 ]

                
      

            
  [   

 ]
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The set   specifies the   hubs in the solution.  Each row   of matrix   contains the   hubs 

assigned to node  ,   .  Finally, for each pair of nodes   and  , we need to represent the path 

          used to route the traffic.  Matrix    provides the first hub in the route and 

matrix    the second one, i.e.            and           . 

Note that the best hubs to route the traffic     from   to   may be different than those to route 

the traffic     from   to  .  As described above, the best hubs to route     are those minimizing 

the cost expression               (     
       

      ), which is not a symmetric 

expression in terms of   and   when the coefficients   and   take different values. Since we 

need to specify the hubs in the path from   to   and the hubs in the path from   to  , a solution 

is represented using two separated matrices. Given a pair      ,            {         } 

denote the hubs assigned to   in the two associated paths.  Similarly,            

{         } are the hubs assigned to  .  In particular,             ,             , 

            , and             . This is illustrated in Figure 3. 

 

 

 

 

 

 

Figure 3. Paths between   and  . 

 

3.3 Improvements 

Since the proposed method consists of three steps, and the last one is solved optimally, we can 

apply two types of improvements to the results obtained at step 1 and step 2: changing the 

hubs selected, and changing the assignments of hubs to nodes. 

Given a solution              , we consider two neighborhoods,    and   , to improve 

 .     implements a classical exchange in which a hub node    is removed from  , and a non-

hub node   
       becomes a hub. In other words, we move the hub from node    to node 

  
 , thus obtaining    {           

      }.  On the other hand, neighborhood    does not 

change the hub selection and it only considers the node assignments.  In particular, for a node 

  with assigned hubs    {               }   , this neighborhood exchanges an assigned 

hub with a non-assigned one.  In mathematical terms, we replace        with    
       

obtaining   
  {         

       }. 

Specifically, the first neighborhood (  ) explores the possibility of exchanging a hub, replacing 

a node    in   by another node   
     .  The element     to be removed from the solution 
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is chosen by an evaluation cost that determines the most expensive hub in   in terms of its 

contribution to the objective function.  For a pair of nodes      , we route its traffic     in   

through the path           with cost               (     
       

      ).  We 

split this cost into two parts: 

   
         (     

  
 

 
     

)   and      
         ( 

 

 
     

      ) 

We consider that    
      reflects the cost associated with the use of    in the path      

    .  Similarly,    
      provides an evaluation of the cost of using    in this path.  In order to 

measure the total cost associated to a given hub, we sum these values up for all pairs of nodes: 

  
  ∑   

    

   

     
  ∑   

    

   

 

Hence, we express the evaluation of the cost associated with each hub   as         
    

    

Now,    is selected as the hub such that              {     }.  In other words,    is, 

according to this estimation, the most expensive hub in the solution. Therefore, it can be 

considered as a good candidate to be replaced. 

The local search     performs moves in    as long as the objective function improves.  At 

each iteration, it selects the hub with the largest contribution to the objective function 

(according to the estimation above) and searches for a non-hub node to reduce the solution 

value.  We implement here the so-called first strategy, in which we perform the first improving 

move in the neighborhood (instead of scanning the entire neighborhood to determine the best 

one). Starting from a random element, we examine in increasing order the non-hub nodes 

searching for the first improving exchange.      terminates when no improving move is found 

and the current solution is returned as the output of the procedure. 

Note that the evaluation of a move in     is quite time consuming.  Given a solution 

             , any change in   affects the rest of components in  .  Specifically, when 

node    is replaced by node   
  in  , it is needed to re-evaluate the hub assignment of all the 

vertices assigned to   , since they cannot use this hub anymore and could use any other hub to 

route their traffic, not necessarily   
 .  In mathematical terms, for any vertex   such that 

      the best hub     {  } {  
 } replacing    in    has to be selected.  Therefore, we 

have to scan all the vertices assigned to    to compute the value associated with this exchange 

and re-compute matrix  .  Moreover, to evaluate these assignments we need to compute and 

evaluate the routes (i.e., to re-compute    and   ).  Note that even those routes not using 

   have to be re-computed since the new hub in    could provide a better route than the 

current one.  Since the update of      and    requires a significant computational effort, 

an alternative would be just to replace    with   
  in   , remaining all the other elements in   

the same. We explore this alternative in the next neighborhood, but we can anticipate that, as 

expected, it produces lower quality solutions in lower running times (as compared with the 

entire exploration).  The complete evaluation of any trial move has been implemented in    . 

The second neighborhood    only considers moves on   without changing  .  In other words, 

   explores the possibility of exchanging a hub     assigned to node   with one of the hub 
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nodes    
       not assigned to  .  Based on this neighborhood, we propose two local 

search procedures,      and     .       implements a simple exploration consisting of 

replacing     with    
  in all the routes from/to node  .  As mentioned above, this could lead to 

sub-optimal solutions since we are not exploring all the assignments.  Consider, for example, 

the update of the route            when we replace     with    
  in   .  With      we 

would obtain the path      
      . Specifically, given a solution              , 

when      performs a move changing     by    
 , a new solution is obtained in which   

remains unchanged,   only changes in one element (    with    
   in row  ),    changes     

with    
   in row   (in all its appearances), and similarly    in column  . Note that this move can 

be done very quickly but it does not consider whether any other hub in    can provide a better 

route from   to  .  The local search procedure      performs moves in    as long as the 

objective function improves, exploring the assignments in increasing order, and performing the 

first improving move found. This local search terminates when no improving move is found, 

and the current solution is returned as the output of the method. 

Method      also exchanges the hub assigned to a node   (as     ) but also explores the other 

hubs in    {   } to determine the best one for each particular route starting and finishing at 

 .  Given a solution              , when      performs a move and changes     with    
 , 

a new solution is obtained in which   remains unchanged, the matrix   only changes one 

element (    with    
   in row  ), but now    and    are completely recomputed.  Since we 

cannot assure that any hub in a route remains unchanged, routes are computed from scratch 

in Step 3 of the constructive method.  It is clear that this move is computationally more 

expensive than the one implemented in     .  However, as it will be shown in the comparison 

of both methods in Section 5, the extra running time is justified in those cases in which we 

want to match the optimal solution, since      is not able to reach it although it obtains very 

good results. In order to reduce the computational effort of the algorithm, a filtering 

mechanism to discard low-quality constructions is proposed. It is described in the next section. 

 

4. FILTERING SOLUTIONS 

After a number of iterations, it is possible to estimate the fractional improvement achieved by 

the application of the improvement phase and use this information to increase the efficiency 

of the search (Laguna and Martí, 1999).  Let us define the fractional improvement in the 

iteration   as: 

     
          

  

     
 

where    is the solution constructed at iteration  ,       is its value, and   
  is the improved 

solution obtained applying an improvement method to    (and     
   is its value).  This 

improvement method can be any of the three described in Section 3.3,    ,      or     , or a 

combination of them.  
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After      iterations, the mean   ̂ and standard deviation   ̂ of the improvement   can be 

estimated as: 

  ̂  
∑         

   

 
   ̂  √

∑         ̂      
   

      
 

Then, at a given iteration       , these estimates can be used to determine whether it is 

“likely” that the improvement phase will be able to improve enough the current construction 

to produce a better solution than the current best one,      .  If this is not the case, we could 

discard the constructed solution and skip its improvement, saving its associated running time.  

In particular, we calculate the minimum fractional improvement       that is necessary for a 

construction    to be better than      , as: 

      
 (  )          

 (  )
 

If       is close to   ̂, applying the improvement method to the current solution    would 

probably produce a solution   
  better than      .  Therefore, in order to save computing time, 

the improvement method is only applied to the promising solutions   , according to this 

estimation.  We can formulate this filtering mechanism as: 

if        
 ̂

    ̂, then apply the improvement method to   ; otherwise, discard it. 

  is a search parameter representing a threshold on the number of standard deviations away 

from the estimated mean percentage improvement. Preliminary experiments to test the effect 

of different   values have been performed and are reported in Section 5. 

 

5. COMPUTATIONAL EXPERIMENTS 

This section describes the computational experiments performed to test the efficiency of the 

GRASP heuristics. The procedures have been implemented in C and the integer linear 

programming formulation described in Section 2 have been solved using CPLEX 12.4, the most 

recent version of CPLEX when the experiments were carried out. The results reported in this 

section were obtained with an Intel i7 @ 2.7 GHz and 4GB of RAM computer running Windows 

7.  The metrics that we use to measure the performance of the algorithms are:  

 Value: Average objective value of the best solutions obtained with the algorithm on 

the instances considered in the experiment. 

 Dev: Average percentage deviation from the best-known solution (or from the optimal 

solution, if available). 

 Best: Fraction of instances in a set for which a procedure is able to find the best-known 

solution. 

 CPU: Average computing time in seconds employed by the algorithm. 
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5.1 Test Problems 

We have tested our algorithms on three sets of instances: 

(1) The CAB (Civil Aviation Board) data set. It is based on airline passenger flows between 

some important cities in the United States. It consists of a data file, presented by 

O’Kelly in 1987, with the distances and flows of a 25 nodes graph.  From this original 

file, 75 instances with 25 nodes and    1,…, 5, and    1,…,   have been generated 

by several authors. The following parameter values have been widely used: 

         and    0.2, 0.4, 0.6, 0.8, and 1. 

(2) The AP (Australian Post) data set. It is based on real data from the Australian postal 

service and was presented by Ernst and Krishnamoorthy in 1996. The size of the 

original data file is 200 nodes. Smaller instances can be obtained using a code from 

ORLIB.  As with CAB, many authors have generated different instances from the 

original file.  We have extended this set of instances by generating 360 instances with 

   40, 50, 70, 75, 80, 85, 90, 95, 100, 150 and 200 nodes.  For those instances with 

       ,   ranges from 1 to 5.  For those with        ,   ranges from 1 to 8, 

and for those with          ,   takes values between 1 and 20.  In all these 

cases,   {     }.  According with previous articles, cost parameter values are   

 ,        and    . Regarding the flows between nodes, these instances do not 

have symmetric flows (i.e., for a given pair of nodes   and       is not necessarily equal 

to    ).  Moreover, flows from one node to itself can be positive (i.e.,     can be strictly 

positive for a given  ). 

(3) The USA423 data set. This is a new family of instances that we introduce here based 

on real airline data. It consists of a data file concerning 423 cities in the United States, 

where real distances and passenger flows for an accumulated 3 months period are 

considered. From the original data, 30 instances have been generated with   

{         } and        . For each combination of parameters   and  , two 

different values for       have been used: 0.1, 0.07, 0.09, and 0.09, 0.075, 0.08, 

respectively. 

 

5.2 Parameter calibration 

From the set of 465 instances derived from the CAB, AP and USA423 data sets described 

before, we have used a subset of 45, with different sizes and values of   and  , to calibrate the 

parameters in our method.  The entire set, as well as this training set, are available at 

http://www.optsicom.es. 

In our first experiment we study the constructive method described in Section 3.1 in terms of 

solution quality and diversification power.  Clearly, the performance of this solution generator 

depends on the value of its two parameters,  , defining the size of the Restricted Candidate 

List, and  , determining the number of elements in which the evaluation is based on.  In order 

to determine effective values for these parameters, we have created a measure of diversity for 

http://www.optsicom.es/
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a set of solutions.  To perform an effective exploration of the solution space, the constructive 

method has to be able to generate solutions of a different structure which, in our specific 

problem, can be interpreted in terms of using different hubs.  We therefore compute, in a set 

of constructed solutions, the number of different hubs used.  Specifically, given a set of 

solutions   {          }  where            are their corresponding sets of hubs, the 

diversity measure,         is the number of elements in the set obtained as the union of these 

sets of hubs. In mathematical terms, 

       |⋃  

 

   

|   

This diversity metric can be easily interpreted as the number of different hubs in the set of 

solutions. The larger this value is, the more diversity the algorithm is able to produce.  In the 

first experiment we have generated       solutions with the constructive method,      , 

and different values of  . Table 1 shows the metrics described above: Dev, Best and CPU, as 

well as the average diversity measure,      on the 45 instances of the training set.  This table 

indicates that the best solutions in terms of quality are obtained with        since the 

algorithm is able to obtain an average percentage deviation of 3.3% and 13 best known 

solutions, which compares favorably with the other results.  Moreover, with      , we also 

obtain the best results in terms of diversity since the     statistic exhibits a value of 64, which 

is larger than or equal to the rest of diversity values in this table.  We therefore set       in 

the rest of the experiments. 

  Dev Best     CPU 

0.1 11.0% 12 27 0.483 

0.2 6.7% 12 41 0.486 

0.3 6.7% 3 51 0.485 

0.4 5.3% 6 56 0.484 

0.5 5.4% 2 58 0.485 

0.6 4.7% 3 61 0.489 

0.7 4.6% 2 62 0.493 

0.8 3.3% 13 64 0.485 

0.9 3.3% 11 64 0.487 

random 3.5% 10 62 0.468 

Table 1. Constructive method with different   values. 

Table 2 shows the results of the second experiment in which we run the constructive method 

with       and different values of the   parameter on the training set instances.  Results in 

this table show that       obtains the best values in terms of quality and diversity. We 

therefore set       and       in the rest of the experiments. 
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  Dev Best     CPU 

0.8 1.4% 30 63 0.480 

0.9 1.6% 28 63 0.462 

1.0 1.1% 33 64 0.462 

1.1 1.2% 28 63 0.462 

1.2 0.9% 31 64 0.462 

1.3 1.8% 27 63 0.461 

1.4 2.0% 25 63 0.462 

1.5 1.7% 26 63 0.461 

1.6 1.9% 26 63 0.462 

1.7 1.8% 27 63 0.462 

1.8 1.6% 29 63 0.462 

1.9 1.4% 26 63 0.462 

2.0 1.5% 25 63 0.463 

Table 2. Constructive method with different   values. 

With the goal of supporting our conclusions about the performance of the proposed 

procedures, we performed the non-parametric Friedman test for multiple correlated samples 

to the best solutions obtained by the proposed constructive method with each parameter 

value in Tables 1 and 2.  This test computes, for each instance, the rank value of each method 

according to solution quality.  Then, it calculates the average rank value for each method 

across all instances.  If the averages differ greatly, the associated  -value or level of 

significance is small.  The resulting  -values of 0.001 and 0.034 obtained with the individual 

best values in Tables 1 and 2, respectively, indicate that there are statistically significant 

differences among the variants tested.  The ranks values produced by these tests confirm the 

selection of       and      . 

 

5.3 Different GRASP designs 

With the search parameters set as indicated above, we proceed to compare the relative merit 

of the GRASP variants. In particular, we explore the contribution of the three local search 

algorithms proposed in Section 3.3,    ,      and     , when applied separately or in 

combination.  Table 3 reports the results of five different methods when solving the 45 

instances in the training set by generating 100 solutions for each instance. The first one is 

simply the constructive method with no local search,  , and it is considered as a baseline in 

this experiment.  The next two are GRASP algorithms formed with the constructive method 

plus either     or     , denoted       and       , respectively.  Finally, the last two 

GRASP methods combine in their local search phase     with      or with     .  In particular, 

in           , each constructed solution is improved first with    , and the resulting 

local optimum is then submitted to     , which provides the output of the entire method.  

Similarly,            applies      to the solutions obtained with    .  Table 3 shows the 

average results obtained according to the size of the instances, classified as small (    

  ), medium (       ) , and large  (         ). 
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Algorithm       Dev CPU  

C 8.11% 0.09 

large 8.59% 0.21 

medium 10.81% 0.09 

small 6.32% 0.01 

C + LSH 0.25% 61.90 

large 0.10% 179.16 

medium 0.06% 34.87 

small 0.46% 0.55 

C + LSA2 7.85% 55.03 

large 8.38% 169.66 

medium 10.59% 18.99 

small 6.00% 0.33 

C + LSH + LSA1 0.20% 62.52 

large 0.09% 181.17 

medium 0.06% 34.94 

small 0.35% 0.56 

C + LSH + LSA2 0.00% 88.80 

large 0.00% 260.83 

medium 0.00% 45.48 

small 0.00% 0.81 

Table 3. Comparison of GRASP variants. 

Results in Table 3 clearly show that, as expected,            obtains the best solutions 

overall (0.00% deviation from best), although it requires the longest running times of the five 

methods (88.80 seconds on average).  Comparing the 0.25% average deviation achieved by 

      on 61.90 seconds with the 7.85% achieved by        on 55.03 seconds, we can 

confirm that     performs a more efficient exploration of the search space than     . 

However,     is not able to reach the best known solutions by itself, and it needs the post-

processing of      to match the best values (as shown with           ). 

We applied the Friedman test for paired samples to the data used to generate Table 3.  The 

resulting p-value of 0.000 obtained in this experiment clearly indicates that there are 

statistically significant differences among the five methods tested.  A typical post-test analysis 

consists of ranking the methods under comparison according to the average rank values 

computed with this test.  According to this, we obtain that the            method is the 

best overall with an average rank of 1.36, followed by            with an average rank of 

2.24 and       with 2.40.  Finally, we obtain the two methods with larger rank values (as 

compared with the previous methods):        (4.09) and   (4.91). 

We compare now the results of       and        shown in Table 3 with two well-known 

non-parametric tests for pairwise comparisons: the Wilcoxon test and the Sign test. The 

former one answers the question: Do the two samples (solutions obtained with both methods 

in our case) represent two different populations? The resulting p-value of 0.000 indicates that 

the values compared come from different methods. On the other hand, the Sign test computes 

the number of instances on which an algorithm supersedes another one. The resulting p-value 

of 0.000 indicates that       is the clear winner between both methods. 
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Figure 4. Search Profile. 

To complement the results above, we study now the search profile of the most interesting 

combinations of local searches. Figure 4 shows the progression of the average deviation found 

by three methods for the training set of instances during 120 iterations of search time. The 

figure shows how most improvements on the best solution obtained with the C+LSH+LSA2 and 

C+LSH methods are achieved early in the search (i.e., within 10% of the number of iterations). 

After that point, both methods stagnate, and only exhibit a marginal improvement in the next 

iterations. On the other hand, C+LSA2 performs worse, with an average percentage deviation 

of several orders of magnitude larger than the other methods. 

       Dev CPU # of skip 

 -1 0.152% 15.0 76.0 

 
0 0.135% 34.4 44.5 

 10 1 0.000% 53.9 16.3 

  2 0.000% 60.7 4.2 

  3 0.000% 62.4 1.1 

 -1 0.151% 21.3 67.8 

 
0 0.151% 39.1 39.9 

 20 1 0.072% 53.9 14.8 

  2 0.000% 59.4 2.9 

  3 0.000% 60.3 0.6 

Table 4. Filtering GRASP constructions. 

In our next experiment we test the efficiency of the filtering mechanism described in Section 4.  

Table 4 reports the results obtained with the            method when running with 

different values of the two filter parameters:     , the number of initial iterations for which 

we compute the mean   ̂ and standard deviation   ̂ of the improvement achieved with the 

local search, and  , the value to compute the filtering threshold   ̂     ̂.  Specifically, it 

reports the average Dev and CPU, as in the previous experiments, and the average number of 

solutions discarded for improvement, # of skip, out of the 100 solutions constructed. 

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 51 101

C + LSH

C + LSA2

C + LSH + LSA2



Uncapacitated r-Allocation p-Hub Median Problem  
 

17 
 

Table 4 shows that, as expected, the larger the   value, the longer the CPU time. In other 

words, with low   values the method discards more constructed solutions and therefore 

requires less CPU time than with larger values (given that it saves the computation of the local 

search associated with the discarded solutions). For example, with     and        , an 

average of 39.9 out of the 100 solutions constructed are discarded and the method only 

applies the local search to the remaining solutions.  This has two consequences; the first one is 

that the CPU time is 39.1, which is lower than the 88.80 reported in Table 3 in which no 

filtering was applied and the 100 constructed solutions were submitted to the local search.  

The second one is that the average percentage deviation is 0.151% instead of the 0.00% of the 

unfiltered GRASP.  On the other hand, this table shows that there are small differences when 

        or    with a slightly improvement in the former case. Therefore, in the following 

experiments we set         and denote the method as GRASP( ) selecting the    value in 

each experiment according to this trade-off between computing time and solution quality. 

5.4 Comparison with Optimal Values 

In Section 2 we have described the integer formulation proposed in Yaman (2011) for the 

UrApHMP.  We have applied this formulation with CPLEX to solve 105 small instances with   

ranging from    to   , and              and  . Table 5 reports the average percentage 

deviation with respect to the optimal solution of GRASP( ) with    , which filters many 

constructions as shown above, and    , in which the filter is basically not applied. Note that 

in this experiment, instead of reporting the number of best solutions found, we report the 

number of instances in which the method is able to match the optimal solution (Opt). 

 

      GRASP(0) GRASP(3) 

n p # instances Opt Dev CPU Opt Dev CPU 

  1 5 5 0.00% 0.04 5 0.00% 0.05 

  2 10 10 0.00% 0.12 10 0.00% 0.21 

25 3 15 15 0.00% 0.22 15 0.00% 0.49 

  4 20 15 0.17% 0.42 15 0.17% 1.17 

  5 25 24 0.03% 0.92 24 0.03% 2.14 

  Total 75 69 0.06% 0.48 69 0.06% 1.15 

  1 1 1 0.00% 0.16 1 0.00% 0.27 

  2 2 2 0.00% 0.56 2 0.00% 1.04 

40 3 3 3 0.00% 0.79 3 0.00% 2.18 

  4 4 4 0.00% 2.48 4 0.00% 5.75 

  5 5 4 0.04% 4.18 4 0.04% 9.10 

  Total 15 14 0.01% 2.30 14 0.01% 5.16 

  1 1 1 0.00% 0.27 1 0.00% 0.50 

  2 2 2 0.00% 1.09 2 0.00% 1.85 

50 3 3 3 0.00% 3.29 3 0.00% 5.22 

  4 4 4 0.00% 7.16 4 0.00% 11.46 

  5 5 5 0.00% 11.01 5 0.00% 19.77 

  Total 15 15 0.00% 6.40 15 0.00% 10.97 

Table 5. GRASP deviations from the optimal value. 
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Table 5 shows that the GRASP method is able to obtain the optimal solution in most cases. 

Even the filtered variant, GRASP( ), obtains 98 optimal values out of the 105 instances 

considered. It is worth mentioning that CPLEX requires up to 3 hours of computing time to 

obtain the optimal value on the instances with     , and that larger instances cannot be 

solved due to memory requirements. Therefore we cannot provide the optimal values for 

larger instances.  

5.5 Comparison with Optimal Assignments 

As it has been described before, to obtain a solution for this problem we face a three step 

process: 

1. Selecting the   hubs, 

2. Determining the assignments of each node to   of the   hubs, and 

3. Identifying, for each pair of nodes, the traffic through the appropriated hubs. 

In the previous section, we have considered the linear integer formulation in Yaman (2011) to 

obtain the optimal solution for the small instances of this problem. In order to measure the 

quality of the results obtained with our method, and considering that we cannot solve larger 

instances using this formulation, we have adapted it to optimally solve the assignment and 

routing subproblems (steps 2 and 3 above).  In particular, we first use our heuristic to select 

the set of   hubs  .  Then, to assign the nodes to hubs and compute the traffics among nodes, 

we solve the following integer problem: 

   ∑ ∑ ∑ ∑   (            )     

            

         

                                      

∑      

   

                    

∑ ∑       

      

                         

∑                            

   

             

∑                             

   

               

                                              

    {    }                                        

The formulation above, in which the set of hubs is fixed, is a special case of the one described 

in Section 2.  We solve it with CPLEX 12.4 and obtain the optimal solution of the assignment 

and routing subproblems for this specific set of hubs.  It is clear that since   has been obtained 

heuristically, the optimality of the resulting solution cannot be guaranteed.  However, with this 
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experiment, we are able to test whether our algorithm is obtaining or not the optimal solution 

in steps 2 and 3 for a given solution of step 1. 

Table 6 shows, for the 318 medium and large instances in the AP set, its number of nodes ( ), 

the number of instances tested for each value of   (# instances), the number of instances in 

which the GRASP obtains the optimal solution in steps 2 and 3 (Opt), and the average 

percentage deviation with respect to the assignment and routing optimal values (Dev).  The 

results in this table clearly show that our GRASP algorithm is able to match the optimal 

assignment and routing values in all the AP instances tested. 

Size   # instances Opt Dev 

 70 35 35 0.00% 

 75 35 35 0.00% 

Medium  80 35 35 0.00% 

 
85 35 35 0.00% 

  90 35 35 0.00% 

  95 35 35 0.00% 

  Total 210 210 0.00% 

 
100 36 36 0.00% 

Large  150 36 36 0.00% 

  200 36 36 0.00% 

  Total 108 108 0.00% 

Table 6. GRASP deviations from the assignment and routing optimal values on AP instances. 

In order to study the behavior of our algorithm on larger instances, we have repeated the 

above experiment on the set of 30 instances generated from the USA423 set. As it has been 

mentioned, all the 30 instances have 423 nodes, while   takes values in {         } and 

  {       }. Two different sets of values for the cost parameters       have been used 

for each instance:  0.1, 0.07, 0.09 (denoted by A), and 0.09, 0.075, 0.08 (denoted by B). The 

results are shown in Table 7, which are average values for all the instances with a given value 

of   and values of   {       }   CPU GRASP column denotes the maximum time allowed 

to the GRASP, while CPU CPLEX shows the time needed by CPLEX to get the optimal allocation 

and routing values for the set of   hubs obtained with the GRASP. All times are shown in 

minutes. 

 

Although in these instances the GRASP algorithm cannot match the optimal assignment and 

routing values, in our opinion the results shown in Table 7 are very good. They show a 

deviation from the optimal values that never exceeds a 0.85% on average, and only in two out 

of the 30 instances slightly exceeds 1%.  Note that CPLEX needs more than 20 hours of 

computing time on average to solve these instances. 
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Cost parameters   # instances Dev CPU GRASP CPU CPLEX 

A 3 1 0.00% 30 21.5 

A 4 2 0.01% 30 224.5 

A 5 3 0.12% 30 197.7 

A 6 4 0.21% 60 148.1 

A 7 5 0.82% 60 1232.1 

      

B 3 1 0.00% 30 0.5 

B 4 2 0.01% 30 52.6 

B 5 3 0.20% 30 38.7 

B 6 4 0.19% 60 627.5 

B 7 5 0.78% 60 280.4 

Table 7. GRASP deviations from the assignment and routing optimal values on USA423 instances. 

 

5.6 Comparison with Previous Heuristics 

As far as we know, there is no previous heuristic for the         , in which each node can 

be connected to at most   of the   hubs.  However, two particular cases of this general 

problem, the single and the multiple allocation problems, have been extensively studied, and 

we can compare our method with previously proposed heuristics for these two cases.  In 

particular, in the Uncapacitated Multiple Allocation  -Hub Median Problem, each node can 

send and receive traffic through any of the   hubs, while in the Uncapacitated Single Allocation 

 -Hub Median Problem, each node is assigned to one of the   hubs, only allowing sending and 

receiving traffic through this single hub.  Although we have designed our GRASP algorithm to 

solve the general Uncapacitated  -Allocation  -Hub Median Problem and it does not take 

advantage of the specific characteristics of these two special cases, we can apply it to solve 

them and to ascertain if the GRASP is able to compete with recently published methods 

specially proposed for these multiple and single versions. 

Table 8 shows the results of our GRASP when solving the multiple allocation problem. This 

table shows the results obtained with the GRASP for a single iteration (one construction plus 

the local search), denoted GRASP_1, and for 10 iterations, GRASP_10.  The table also reports 

the results of the evolutionary approach recently proposed by Milanović (2010) for the 

multiple version.  The three algorithms are applied on the 61 AP instances reported in that 

paper.  Specifically, Table 8 shows the size and number of instances in each row, and, for each 

method, the number of instances in which it obtains the best known solution, the average 

percentage deviation with respect to this best, and the CPU in seconds. Results for the 

evolutionary method are directly taken from Milanović (2010), and therefore running times 

are only indicative and cannot be directly compared with GRASP computing times. 
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    GRASP_1 GRASP_10 Evolutionary 

n # instances Best Dev CPU Best Dev CPU Best Dev CPU 

10 7 5 0.77% 0.00 7 0.00% 0.01 7 0.00% 0.05 

20 7 6 0.27% 0.02 7 0.00% 0.10 7 0.00% 0.16 

25 7 5 0.20% 0.04 7 0.00% 0.21 7 0.00% 0.24 

40 9 7 0.28% 0.41 9 0.00% 1.94 9 0.00% 1.19 

50 9 7 0.08% 0.83 8 0.00% 4.87 9 0.00% 7.36 

100 11 6 0.22% 40.91 10 0.00% 321.00 10 0.01% 67.93 

200 11 5 0.10% 780.42 9 0.00% 1879.25 9 0.08% 346.62 

Total 61 41 0.25% 148.30 57 0.00% 373.12 58 0.01% 76.07 

Table 8. GRASP vs. evolutionary method with     . 

Results in Table 8 clearly show that the GRASP algorithm is able to obtain state-of-the-art 

results for the multiple allocation problem.  Even GRASP_1, the version in which only one 

solution is generated, performs remarkably well, obtaining results of similar quality to those  

reported with the evolutionary method by Milanović (2010), specifically designed for this 

problem.  As expected, the GRASP_10 variant is more time consuming than GRASP_1 and is 

able to match, and in some cases surpass, the evolutionary method.  In particular, it obtains a 

new best known value of 92646.38 in the AP instance with  =200 and  =15 for which the 

previously best known value was 92669.64. 

Table 9 shows the results for the single allocation problem. As in the previous experiment, we 

report the results with GRASP_1 and GRASP_10.  We also report in this table the results of the 

Genetic Algorithm (GA) described in Kratica et al. (2007).  This table shows the Dev and CPU 

values for each method on the 14 AP instances reported in that paper.  

    GRASP_1 GRASP_10 GA 

n p Dev CPU Dev CPU Dev CPU 

 
2 0.04% 0.17 0.04% 0.98 0.00% 13.29 

  3 0.00% 0.41 0.00% 4.38 0.00% 16.64 

  4 0.03% 0.41 0.03% 4.40 0.00% 17.76 

100  5 0.04% 0.91 0.04% 5.29 0.00% 22.11 

  10 0.00% 3.47 0.00% 34.80 0.00% 40.73 

  15 1.43% 8.42 0.26% 111.51 0.00% 57.54 

  20 0.04% 16.08 0.04% 67.89 0.00% 79.20 

 
2 0.00% 1.82 0.00% 15.88 0.00% 100.72 

  3 0.07% 3.61 0.07% 43.48 0.00% 111.77 

  4 0.03% 5.78 0.03% 30.48 0.00% 131.16 

200  5 0.45% 10.08 0.26% 54.43 0.08% 169.73 

  10 0.39% 39.63 0.39% 454.83 0.00% 259.14 

  15 1.07% 142.34 0.56% 1213.85 0.04% 313.02 

  20 1.88% 331.82 0.11% 3432.02 0.20% 374.75 

Average 0.39% 40.35 0.13% 391.02 0.02% 121.97 

Table 9. GRASP vs. GA with     . 

 



Uncapacitated r-Allocation p-Hub Median Problem  
 

22 
 

To complement the information above, Table 10 reports the results of our two GRASP variants 

and the VNS approach presented by Ilić et al. (2010) on the 8 AP instances reported in that 

paper.  Note that these are the hardest AP instances for this problem. 

     GRASP_1 GRASP_10 VNS 

n p Dev CPU Dev CPU Dev CPU 

 
5 0.04% 0.91 0.04% 5.29 0.00% 0.08 

 100 10 0.00% 3.47 0.00% 34.80 0.00% 0.67 

  15 1.43% 8.42 0.26% 111.51 0.00% 3.22 

  20 0.04% 16.08 0.04% 67.89 0.00% 3.57 

 
5 0.45% 10.08 0.26% 54.43 0.00% 5.16 

200  10 0.39% 39.63 0.39% 454.83 0.00% 5.60 

  15 1.07% 142.34 0.56% 1213.85 0.00% 17.66 

  20 1.88% 331.82 0.11% 3432.02 0.00% 12.98 

Average 0.66% 69.09 0.21% 671.83 0.00% 6.12 

Table 10. GRASP vs. VNS with     . 

Tables 9 and 10 show that the GRASP variants are able to obtain good results on the single 

allocation version, although they behave slightly worse than the specialized algorithms for this 

problem. In particular, the GA by Kratica et al. (2007), see Table 9, shows an average 

percentage deviation of 0.02% obtained in 121.97 seconds, while GRASP_1 and GRASP_10 

obtain an average percentage deviation of 0.39%  and 0.13%  in 69.06 and 671.83 seconds, 

respectively.  The VNS by Ilić et al. (2010) performs remarkably well since it is able to achieve 

an average percentage deviation of 0.00% in 6.12 seconds. Note, however, that the GRASP 

algorithm is not designed to exploit the particular characteristics of the single version of this 

problem, as it does the VNS, and the objective of this comparison is to show that it performs 

relatively well across different types of  -hub problems. 

5.7 Run time distribution 

Aiex, Resende and Ribeiro (2007) observed that the variable time-to-target-value usually has in 

GRASP an exponential distribution. Time-to-target (TTT) plots display on the ordinate axis the 

probability that an algorithm will find a solution at least as good as a given target value within 

a given running time, shown on the abscissa axis. TTT plots are used to characterize the 

running times of stochastic algorithms for combinatorial optimization. Specifically, for each 

instance/target pair, the running times are sorted in increasing order. We associate with the  -

th sorted running time    a probability        
 ⁄     and plot the points        .  The 

resulting diagram shows the cumulative probability distribution plot and permits to check 

whether a given algorithm has or not an exponential distribution. 

We ran 100 times our GRASP for the UrApHMP on a representative instance, stopping when a 

solution is found with objective value equal to the best known for this instance. For each run 

we recorded the running time. Each run is independent of the other by using a different initial 

seed for the random number generator. With these 100 running times, we plot the time-to-

target plot (run time distributions) shown in Figure 4, in which we add the theoretical 
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exponential distribution. This experiment confirms the expected exponential runtime 

distribution for our GRASP. Therefore, linear speed is expected if the algorithm is implemented 

in parallel. 

 

Figure 4. Time to target plot. 

6. CONCLUSIONS 

We have developed a heuristic procedure based on the GRASP methodology that provides high 
quality solutions for the Uncapacitated  -Allocation  -Hub Median Problem.  We have 
explored the critical issue of which solution-generation-method proves effective to obtain a 
good set of solutions in terms of quality and diversity.  We have defined three neighbourhoods 
in the local search and a filtering mechanism to selectively apply it.  

Overall experiments with 465 instances were performed to assess the merit of the procedures 
developed here.  Our implementation was shown to be competitive in a set of instances 
previously reported in the literature.  Moreover, the procedure has been shown to be robust 
in terms of solution quality within a reasonable computational effort.  The proposed method 
was compared with the linear integer formulation implemented in CPLEX and with previous 
heuristics for different  -hubs variants (single and multiple allocation problems).  The 
experimentation shows that the GRASP method is able to obtain high quality solutions across 
different  -hub problems. 

Finally, a new set of instances, USA423, has been proposed. It is based on real airline data and 
consists of a data file concerning 423 cities in the United States, where real distances and 
passenger flows for an accumulated 3 months period are considered.  
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