

GRASP for the Uncapacitated

 -Allocation -hub Median Problem

Juanjo Peiró, Ángel Corberán, Rafael Martí
Departament d’Estadística i Investigació Operativa

Universitat de València, Spain

Abstract.

In this paper we propose several heuristics for the Uncapacitated

 -Allocation -Hub Median Problem. In the classical -hub problem, given a

set of nodes with pairwise traffic demands, we must select of them as hub

locations and route all traffics through them at a minimum cost. We target

here an extension, called the -allocation -hub median problem, recently

proposed by Yaman (2011), in which every node is assigned to of the

selected hubs () and we are restricted to route the traffic of the nodes

through their associated hubs.

As it is usual in this type of problems, our method has three phases: location,

assignment and routing. Specifically, we propose a heuristic based on the

GRASP methodology in which we consider three local search procedures.

The combinatorial nature of this problem makes them time-consuming. We

therefore propose a filtering mechanism to discard low-quality constructions

and skip its improvement, saving its associated running time. We perform

several experiments to first determine the values of the key-search

parameters of our methods and then to compare with previous algorithms.

Computational results on 465 instances show that while only small instances

can be optimally solved with exact methods, the heuristics are able to find

high-quality solutions on larger instances in short computing times.

Moreover, when targeting the classical -hub versions (with or),

our heuristic is competitive with the state of the art methods.

Key-Words: -hub, heuristics, GRASP, combinatorial optimization.

Uncapacitated r-Allocation p-Hub Median Problem

2

1. INTRODUCTION

The -hub problem is a classical optimization problem (O’Kelly, 1987) in which, given a set of

nodes with pairwise traffic demands, we have to choose of them as hub locations and route

all the traffic through these hubs at a minimum cost. For each pair of nodes and , there is a

traffic that needs to be transported. It is generally assumed that direct transportation

between non-hub nodes is not possible, and the traffic travels on a path ,

where and are hubs assigned to and , respectively.

There are two extensively studied versions of the -hub problem regarding the allocation

strategy: the single allocation and the multiple allocation versions. In the single allocation -

hub problem, each node is assigned to one of the hubs , only allowing to send and receive

traffic through this single hub. In the multiple allocation -hub problem, each node can send

and receive traffic through any of the hubs.

Transporting the units flow through the path has an associated cost

 , usually computed as (

), where
 is the distance

between and (similarly for the
 and), and and are unit rates for collection

(origin-hub), transfer (hub-hub) and distribution (hub-destination), respectively. Generally,

is used as a discount factor to provide reduced unit costs on arcs between hubs, so typically

 and . Therefore, a solution is determined by a set of hubs, the node-to-hubs

assignments, and the travel paths for each pair of nodes. The sum of the values for

all (,) pairs is the solution cost or value. The problem then consists of finding the hubs,

assignments and paths that minimize the total cost of transportation.

During the last years -hub problems have been widely studied due to the increase in the

number of applications in telecommunications, transportation and logistics. The -hub

network, based on transshipment nodes, provides a better utilization of transporters.

Different versions of the problem include, single and multiple hub allocations (as mentioned

above), capacity constraints, fixed costs, and maximum travel time, to mention the most

common ones. The -hub median problem belongs to the class of -hard problems. Even

when the set of hubs is given, the sub-problem of optimal allocation of non-hub nodes to hubs

is also -hard (Love, Morris and Wesolowski, 1988). We refer the reader to Kratica et al.

(2007), Milanović (2010), Ilić et al. (2010), Gelareh and Nickel (2011), García, Landete and

Marín (2012), and Campbell and O'Kelly (2012) for some of the most interesting papers on the

subject.

A new evolutionary approach was presented by Milanović (2010) for solving the multiple

allocation version of the problem. Integer encoding of individuals was used to ensure their

feasibility, whose quality was evaluated using a fitness function. By applying genetic operators

of selection, crossover, and mutation, future generations were produced. Duplicated

individuals were removed from the population in the next generation, being also limited to a

certain percentage the individuals with the same objective value but different genetic code.

Fine grained tournament selection (FGTS) was used, as well as standard one-point crossover

operator and the idea of frozen bits to increase the diversity of the genetic material. The

Uncapacitated r-Allocation p-Hub Median Problem

3

results demonstrate the usefulness of the proposed approach with new best solutions for

three standard instances.

A VNS approach was presented by Ilić et al. (2010) for the single version of the problem. Three

neighborhoods were proposed for the VNS scheme, using the idea of hubs as clusters: allocate

tries to change the allocations of every non-hub node, leaving all other elements unchanged;

alternate preserves all clusters, changing the location of a hub from one node to other from

the same cluster, assigning the remaining nodes of the cluster to this new hub; new locate tries

to increase the diversity of solutions obtained selecting nodes from out of a cluster to be hub

and then assigning the nodes at the cluster to other hubs. The authors also presented how to

efficiently update data structures for calculating new total flow and cost in the network. Both

sequential and nested strategies of the VNS were proposed, outperforming the best-known

heuristic in terms of effort and quality solutions for the single version.

Recently, Yaman (2011) proposed a very interesting variant of this problem in which each node

can be connected to at most of the hubs, called the Uncapacitated -Allocation -Hub

Median Problem (UrApHMP). The motivation of this variant comes from the fact that the

single allocation version, in which a node is connected (assigned) to a single hub is too

restricted for real-world situations, while the multiple allocation variant, where each node can

use any of the hubs to route its traffic, results in high fixed costs and complicated networks.

The -allocation -hub problem, being , generalizes both versions of the -hub median

problem. When we are at the single allocation version, whereas if , we have the

multiple allocation version. Yaman (2011) proposed a mixed integer programming formulation

for this generalized version and performed a computational study to first compare the -

allocation version with the single and multiple variants, and then to optimally solve small and

medium size instances. She observed in instances with 50 and 75 nodes (and 3, 4, and 5 hubs),

that when a node is allowed to be allocated to two hubs, the solutions are significantly

cheaper than the single allocation solutions (about 2.0% on average) and slightly more

expensive than the multiple version (about 0.3% on average).

In this paper we propose a heuristic for the Uncapacitated -Allocation -Hub Median

Problem. It is based on the GRASP methodology, and implements three local search

procedures. Additionally, we propose a filtering mechanism to discard low-quality solutions

and selectively apply the local searches to “promising” solutions to obtain high quality

solutions in short computing times. As far as we know, these are the first heuristics proposed

for this more general -hub median model. Computational results on 465 instances show that

while only small instances can be optimally solved with exact methods, the heuristics are able

to find high-quality solutions on larger instances in short computing times. Moreover, when

targeting the classical -hub versions (with or), our heuristic is competitive with

the state of the art methods.

Uncapacitated r-Allocation p-Hub Median Problem

4

2. MATHEMATICAL PROGRAMMING FORMULATION

The single allocation version of the -hub median problem was formulated for the first time by

O’Kelly (1987) as a quadratic integer program. This formulation resulted in a very difficult

problem to be solved. Campbell (1994) formulated the -hub median problem as an integer

program, but this formulation contained many variables and constraints (). In the

following paragraphs we briefly describe the formulation that we use in our computational

study to evaluate the performance of the proposed heuristics.

Given a network with a set of nodes and a set of arcs , let be the amount of traffic to be

routed from node to node , i.e., through the arc , and let be its associated unit

routing cost. The -allocation -hub problem is then formulated (Yaman, 2011) in terms of the

following variables: Given a node , if the node is a hub (i.e., if a hub is set or located

at this node), and otherwise. Given a non-hub node and a hub , if node is

assigned or allocated to node , and 0 otherwise. Finally, is the proportion of the traffic

 from node to node that travels along the path , where and are hubs.

With these variables, the problem can be formulated as follows:

 ∑ ∑ ∑ ∑ ()

∑

∑

∑ ∑

∑

∑

 { }

Constraints (2) ensure that each node is allocated to at most hubs, where hubs are assigned

according to (3). In addition, constraint (4) limits to the number of hubs. Finally, constraints

Uncapacitated r-Allocation p-Hub Median Problem

5

(5) to (7) are associated with the routing of the traffic between each pair of nodes through

their corresponding hubs .

In our computational experiments, we have tested this formulation and studied the

effectiveness of our heuristics in terms of their ability to find the optimal solution on small size

instances.

3. GRASP

The GRASP methodology was developed in the late 1980s by Feo and Resende (1989) and the

acronym was coined in Feo and Resende (1995). Basically, each GRASP iteration consists in

constructing a trial solution with some greedy randomized procedure and then applying local

search to the constructed solution. The construction phase is iterative, randomized, greedy,

and adaptive. This two-phase process is repeated until some stopping condition is satisfied. A

best local optimum found over all local searches is returned as the solution of the heuristic.

We refer the reader to Festa and Resende (2011) for a recent survey of this metaheuristic.

The algorithm in Figure 1 shows the pseudo-code for a generic GRASP for minimization. The

greedy randomized construction seeks to produce a diverse set of good-quality solutions from

which to apply the local search phase. Let be the partial solution under construction in a

given iteration and let be the candidate set with all the remaining elements that can be

added to . The GRASP construction uses a greedy function to measure the contribution

of each candidate element to the partial solution . A restricted candidate list is the

subset of candidate elements from with good evaluations according to . In particular, if

 and are the minimum and maximum evaluations of in respectively, then

 { },

where is a number in .

begin GRASP
1 ;
2 while stopping criterion not satisfied do
3 ;
4 Compute with the candidate elements that can be added to ;
5 while do
6 For all compute . and ;
7 Define { } with ;
8 Select at random from
9 Add to partial solution: { };
10 Update with the candidate elements that can be added to ;
11 end-while
12 if is infeasible then
13 Apply a repair procedure to make feasible;
14 end
15 ;
16 if then
17 ;
18 end
19 end
20 return ;

Figure 1. GRASP algorithm for minimization of .

Uncapacitated r-Allocation p-Hub Median Problem

6

3.1 Construction

To obtain a solution for the UrApHMP we first select the hubs (step 1) and then determine

the assignments of each node to of the hubs (step 2). Finally (step 3), for each pair of

nodes we identify the routing of their traffic through the appropriated hubs. Figure 2

illustrates these steps.

 Step 1. Locating hubs Step 2. Assigning hubs Step 3. Routing traffics

Figure 2. Construction steps

Let be a candidate location for a hub. For any node that could be assigned to in step 2 we

need to consider that all the traffic from to any other node , could be routed through , and

in the objective function we would have this traffic multiplied by . We therefore

consider the evaluation of this assignment, , as:

 ∑

Note that, since we want to evaluate the attractiveness of to be a hub, we compute

for every node in the graph. On the other hand, it is reasonable to assume that if is a hub,

only a fraction of the nodes will be assigned to it. This is the reason to consider, for the

evaluation of , only the nodes with lowest value. Let us assume that they are

 . In mathematical terms, ∑
 . We now apply the standard method in

GRASP to construct a restricted candidate list with good hub locations according to this

greedy evaluation , computing and as described above. Note that, as it is

customary in GRASP, is an adaptive function. Once a hub is selected, in the following

construction steps, when computing for a new candidate , we do not sum the term

 since hubs do not need to be assigned to other hubs to route their traffic. We finish step

1 when the hubs have been selected. Let { } be the set of these hubs.

In the step 2 of our constructive method, of the hubs are allocated to each node in the

graph. Specifically, for each node we evaluate its allocation value to any hub

previously selected. Note that for any node to which we need to send traffic from , this

traffic has to be sent through some of their assigned hubs In other words, to transport the

units, a path will be used. To simplify the combinatorial problem of

determining simultaneously and , we compute as

Uncapacitated r-Allocation p-Hub Median Problem

7

 ∑

 ∑

where the first term computes the cost associated with the arc from to , and the second

one estimates the cost associated with the arcs from to all destinations . We then compute

 , and assign to the hubs with the best (minimum) allocation

values. Let be the set of hubs assigned to node ().

Note that in step 1 we select hubs in a greedy randomized fashion and in step 2 we assign

them to nodes in a greedy way without any random element. We have empirically found that

the randomization in step 1 is enough to obtain a diversified set of solutions in our problem.

Adding a randomized component in step 2 would result in lower quality solutions.

Finally, in step 3, we route all the traffics at their minimum cost. For each pair and , we have

to determine the hubs and minimizing the routing cost. In mathematical

terms, from the expression of the objective function, and given and , we

denote

 (

).

The routing cost from to , , is then obtained by searching the hubs and

minimizing the expression above, i.e.

Since there is a small number of hubs assigned to each node (typically takes a value between

2 and 6), an exhaustive exploration in this final step can be performed. Specifically, for each

pair we consider the associated pairs of hubs to determine the minimum cost .

Note that even when and have a common hub, it cannot be ensured that the best route

will be through that hub, and the computation of all the possibilities mentioned above is

needed.

3.2 Solution representation

As described in Subsection 3.1, three steps are applied to construct a solution: location,

assignment and routing. Therefore, to represent a solution we need to specify these three

aspects. In particular, a solution is given by a set of hubs , a matrix of assignments , and

two matrices of hubs and specifying the traffic routes. In particular,

 , where:

 { }

 []

 [
]

 [

]

Uncapacitated r-Allocation p-Hub Median Problem

8

The set specifies the hubs in the solution. Each row of matrix contains the hubs

assigned to node , . Finally, for each pair of nodes and , we need to represent the path

 used to route the traffic. Matrix provides the first hub in the route and

matrix the second one, i.e. and .

Note that the best hubs to route the traffic from to may be different than those to route

the traffic from to . As described above, the best hubs to route are those minimizing

the cost expression (

), which is not a symmetric

expression in terms of and when the coefficients and take different values. Since we

need to specify the hubs in the path from to and the hubs in the path from to , a solution

is represented using two separated matrices. Given a pair , { }

denote the hubs assigned to in the two associated paths. Similarly,

{ } are the hubs assigned to . In particular, , ,

 , and . This is illustrated in Figure 3.

Figure 3. Paths between and .

3.3 Improvements

Since the proposed method consists of three steps, and the last one is solved optimally, we can

apply two types of improvements to the results obtained at step 1 and step 2: changing the

hubs selected, and changing the assignments of hubs to nodes.

Given a solution , we consider two neighborhoods, and , to improve

 . implements a classical exchange in which a hub node is removed from , and a non-

hub node
 becomes a hub. In other words, we move the hub from node to node

 , thus obtaining {

 }. On the other hand, neighborhood does not

change the hub selection and it only considers the node assignments. In particular, for a node

 with assigned hubs { } , this neighborhood exchanges an assigned

hub with a non-assigned one. In mathematical terms, we replace with

obtaining
 {

 }.

Specifically, the first neighborhood () explores the possibility of exchanging a hub, replacing

a node in by another node
 . The element to be removed from the solution

Uncapacitated r-Allocation p-Hub Median Problem

9

is chosen by an evaluation cost that determines the most expensive hub in in terms of its

contribution to the objective function. For a pair of nodes , we route its traffic in

through the path with cost (

). We

split this cost into two parts:

 (

) and
 (

)

We consider that
 reflects the cost associated with the use of in the path

 . Similarly,
 provides an evaluation of the cost of using in this path. In order to

measure the total cost associated to a given hub, we sum these values up for all pairs of nodes:

 ∑

 ∑

Hence, we express the evaluation of the cost associated with each hub as

Now, is selected as the hub such that { }. In other words, is,

according to this estimation, the most expensive hub in the solution. Therefore, it can be

considered as a good candidate to be replaced.

The local search performs moves in as long as the objective function improves. At

each iteration, it selects the hub with the largest contribution to the objective function

(according to the estimation above) and searches for a non-hub node to reduce the solution

value. We implement here the so-called first strategy, in which we perform the first improving

move in the neighborhood (instead of scanning the entire neighborhood to determine the best

one). Starting from a random element, we examine in increasing order the non-hub nodes

searching for the first improving exchange. terminates when no improving move is found

and the current solution is returned as the output of the procedure.

Note that the evaluation of a move in is quite time consuming. Given a solution

 , any change in affects the rest of components in . Specifically, when

node is replaced by node
 in , it is needed to re-evaluate the hub assignment of all the

vertices assigned to , since they cannot use this hub anymore and could use any other hub to

route their traffic, not necessarily
 . In mathematical terms, for any vertex such that

 the best hub { } {
 } replacing in has to be selected. Therefore, we

have to scan all the vertices assigned to to compute the value associated with this exchange

and re-compute matrix . Moreover, to evaluate these assignments we need to compute and

evaluate the routes (i.e., to re-compute and). Note that even those routes not using

 have to be re-computed since the new hub in could provide a better route than the

current one. Since the update of and requires a significant computational effort,

an alternative would be just to replace with
 in , remaining all the other elements in

the same. We explore this alternative in the next neighborhood, but we can anticipate that, as

expected, it produces lower quality solutions in lower running times (as compared with the

entire exploration). The complete evaluation of any trial move has been implemented in .

The second neighborhood only considers moves on without changing . In other words,

 explores the possibility of exchanging a hub assigned to node with one of the hub

Uncapacitated r-Allocation p-Hub Median Problem

10

nodes
 not assigned to . Based on this neighborhood, we propose two local

search procedures, and . implements a simple exploration consisting of

replacing with
 in all the routes from/to node . As mentioned above, this could lead to

sub-optimal solutions since we are not exploring all the assignments. Consider, for example,

the update of the route when we replace with
 in . With we

would obtain the path
 . Specifically, given a solution ,

when performs a move changing by
 , a new solution is obtained in which

remains unchanged, only changes in one element (with
 in row), changes

with
 in row (in all its appearances), and similarly in column . Note that this move can

be done very quickly but it does not consider whether any other hub in can provide a better

route from to . The local search procedure performs moves in as long as the

objective function improves, exploring the assignments in increasing order, and performing the

first improving move found. This local search terminates when no improving move is found,

and the current solution is returned as the output of the method.

Method also exchanges the hub assigned to a node (as) but also explores the other

hubs in { } to determine the best one for each particular route starting and finishing at

 . Given a solution , when performs a move and changes with
 ,

a new solution is obtained in which remains unchanged, the matrix only changes one

element (with
 in row), but now and are completely recomputed. Since we

cannot assure that any hub in a route remains unchanged, routes are computed from scratch

in Step 3 of the constructive method. It is clear that this move is computationally more

expensive than the one implemented in . However, as it will be shown in the comparison

of both methods in Section 5, the extra running time is justified in those cases in which we

want to match the optimal solution, since is not able to reach it although it obtains very

good results. In order to reduce the computational effort of the algorithm, a filtering

mechanism to discard low-quality constructions is proposed. It is described in the next section.

4. FILTERING SOLUTIONS

After a number of iterations, it is possible to estimate the fractional improvement achieved by

the application of the improvement phase and use this information to increase the efficiency

of the search (Laguna and Martí, 1999). Let us define the fractional improvement in the

iteration as:

where is the solution constructed at iteration , is its value, and
 is the improved

solution obtained applying an improvement method to (and
 is its value). This

improvement method can be any of the three described in Section 3.3, , or , or a

combination of them.

Uncapacitated r-Allocation p-Hub Median Problem

11

After iterations, the mean ̂ and standard deviation ̂ of the improvement can be

estimated as:

 ̂
∑

 ̂ √

∑ ̂

Then, at a given iteration , these estimates can be used to determine whether it is

“likely” that the improvement phase will be able to improve enough the current construction

to produce a better solution than the current best one, . If this is not the case, we could

discard the constructed solution and skip its improvement, saving its associated running time.

In particular, we calculate the minimum fractional improvement that is necessary for a

construction to be better than , as:

 ()

 ()

If is close to ̂, applying the improvement method to the current solution would

probably produce a solution
 better than . Therefore, in order to save computing time,

the improvement method is only applied to the promising solutions , according to this

estimation. We can formulate this filtering mechanism as:

if
 ̂

 ̂, then apply the improvement method to ; otherwise, discard it.

 is a search parameter representing a threshold on the number of standard deviations away

from the estimated mean percentage improvement. Preliminary experiments to test the effect

of different values have been performed and are reported in Section 5.

5. COMPUTATIONAL EXPERIMENTS

This section describes the computational experiments performed to test the efficiency of the

GRASP heuristics. The procedures have been implemented in C and the integer linear

programming formulation described in Section 2 have been solved using CPLEX 12.4, the most

recent version of CPLEX when the experiments were carried out. The results reported in this

section were obtained with an Intel i7 @ 2.7 GHz and 4GB of RAM computer running Windows

7. The metrics that we use to measure the performance of the algorithms are:

 Value: Average objective value of the best solutions obtained with the algorithm on

the instances considered in the experiment.

 Dev: Average percentage deviation from the best-known solution (or from the optimal

solution, if available).

 Best: Fraction of instances in a set for which a procedure is able to find the best-known

solution.

 CPU: Average computing time in seconds employed by the algorithm.

Uncapacitated r-Allocation p-Hub Median Problem

12

5.1 Test Problems

We have tested our algorithms on three sets of instances:

(1) The CAB (Civil Aviation Board) data set. It is based on airline passenger flows between

some important cities in the United States. It consists of a data file, presented by

O’Kelly in 1987, with the distances and flows of a 25 nodes graph. From this original

file, 75 instances with 25 nodes and 1,…, 5, and 1,…, have been generated

by several authors. The following parameter values have been widely used:

 and 0.2, 0.4, 0.6, 0.8, and 1.

(2) The AP (Australian Post) data set. It is based on real data from the Australian postal

service and was presented by Ernst and Krishnamoorthy in 1996. The size of the

original data file is 200 nodes. Smaller instances can be obtained using a code from

ORLIB. As with CAB, many authors have generated different instances from the

original file. We have extended this set of instances by generating 360 instances with

 40, 50, 70, 75, 80, 85, 90, 95, 100, 150 and 200 nodes. For those instances with

 , ranges from 1 to 5. For those with , ranges from 1 to 8,

and for those with , takes values between 1 and 20. In all these

cases, { }. According with previous articles, cost parameter values are

 , and . Regarding the flows between nodes, these instances do not

have symmetric flows (i.e., for a given pair of nodes and is not necessarily equal

to). Moreover, flows from one node to itself can be positive (i.e., can be strictly

positive for a given).

(3) The USA423 data set. This is a new family of instances that we introduce here based

on real airline data. It consists of a data file concerning 423 cities in the United States,

where real distances and passenger flows for an accumulated 3 months period are

considered. From the original data, 30 instances have been generated with

{ } and . For each combination of parameters and , two

different values for have been used: 0.1, 0.07, 0.09, and 0.09, 0.075, 0.08,

respectively.

5.2 Parameter calibration

From the set of 465 instances derived from the CAB, AP and USA423 data sets described

before, we have used a subset of 45, with different sizes and values of and , to calibrate the

parameters in our method. The entire set, as well as this training set, are available at

http://www.optsicom.es.

In our first experiment we study the constructive method described in Section 3.1 in terms of

solution quality and diversification power. Clearly, the performance of this solution generator

depends on the value of its two parameters, , defining the size of the Restricted Candidate

List, and , determining the number of elements in which the evaluation is based on. In order

to determine effective values for these parameters, we have created a measure of diversity for

http://www.optsicom.es/

Uncapacitated r-Allocation p-Hub Median Problem

13

a set of solutions. To perform an effective exploration of the solution space, the constructive

method has to be able to generate solutions of a different structure which, in our specific

problem, can be interpreted in terms of using different hubs. We therefore compute, in a set

of constructed solutions, the number of different hubs used. Specifically, given a set of

solutions { } where are their corresponding sets of hubs, the

diversity measure, is the number of elements in the set obtained as the union of these

sets of hubs. In mathematical terms,

 |⋃

|

This diversity metric can be easily interpreted as the number of different hubs in the set of

solutions. The larger this value is, the more diversity the algorithm is able to produce. In the

first experiment we have generated solutions with the constructive method, ,

and different values of . Table 1 shows the metrics described above: Dev, Best and CPU, as

well as the average diversity measure, on the 45 instances of the training set. This table

indicates that the best solutions in terms of quality are obtained with since the

algorithm is able to obtain an average percentage deviation of 3.3% and 13 best known

solutions, which compares favorably with the other results. Moreover, with , we also

obtain the best results in terms of diversity since the statistic exhibits a value of 64, which

is larger than or equal to the rest of diversity values in this table. We therefore set in

the rest of the experiments.

 Dev Best CPU

0.1 11.0% 12 27 0.483

0.2 6.7% 12 41 0.486

0.3 6.7% 3 51 0.485

0.4 5.3% 6 56 0.484

0.5 5.4% 2 58 0.485

0.6 4.7% 3 61 0.489

0.7 4.6% 2 62 0.493

0.8 3.3% 13 64 0.485

0.9 3.3% 11 64 0.487

random 3.5% 10 62 0.468

Table 1. Constructive method with different values.

Table 2 shows the results of the second experiment in which we run the constructive method

with and different values of the parameter on the training set instances. Results in

this table show that obtains the best values in terms of quality and diversity. We

therefore set and in the rest of the experiments.

Uncapacitated r-Allocation p-Hub Median Problem

14

 Dev Best CPU

0.8 1.4% 30 63 0.480

0.9 1.6% 28 63 0.462

1.0 1.1% 33 64 0.462

1.1 1.2% 28 63 0.462

1.2 0.9% 31 64 0.462

1.3 1.8% 27 63 0.461

1.4 2.0% 25 63 0.462

1.5 1.7% 26 63 0.461

1.6 1.9% 26 63 0.462

1.7 1.8% 27 63 0.462

1.8 1.6% 29 63 0.462

1.9 1.4% 26 63 0.462

2.0 1.5% 25 63 0.463

Table 2. Constructive method with different values.

With the goal of supporting our conclusions about the performance of the proposed

procedures, we performed the non-parametric Friedman test for multiple correlated samples

to the best solutions obtained by the proposed constructive method with each parameter

value in Tables 1 and 2. This test computes, for each instance, the rank value of each method

according to solution quality. Then, it calculates the average rank value for each method

across all instances. If the averages differ greatly, the associated -value or level of

significance is small. The resulting -values of 0.001 and 0.034 obtained with the individual

best values in Tables 1 and 2, respectively, indicate that there are statistically significant

differences among the variants tested. The ranks values produced by these tests confirm the

selection of and .

5.3 Different GRASP designs

With the search parameters set as indicated above, we proceed to compare the relative merit

of the GRASP variants. In particular, we explore the contribution of the three local search

algorithms proposed in Section 3.3, , and , when applied separately or in

combination. Table 3 reports the results of five different methods when solving the 45

instances in the training set by generating 100 solutions for each instance. The first one is

simply the constructive method with no local search, , and it is considered as a baseline in

this experiment. The next two are GRASP algorithms formed with the constructive method

plus either or , denoted and , respectively. Finally, the last two

GRASP methods combine in their local search phase with or with . In particular,

in , each constructed solution is improved first with , and the resulting

local optimum is then submitted to , which provides the output of the entire method.

Similarly, applies to the solutions obtained with . Table 3 shows the

average results obtained according to the size of the instances, classified as small (

), medium () , and large ().

Uncapacitated r-Allocation p-Hub Median Problem

15

Algorithm Dev CPU

C 8.11% 0.09

large 8.59% 0.21

medium 10.81% 0.09

small 6.32% 0.01

C + LSH 0.25% 61.90

large 0.10% 179.16

medium 0.06% 34.87

small 0.46% 0.55

C + LSA2 7.85% 55.03

large 8.38% 169.66

medium 10.59% 18.99

small 6.00% 0.33

C + LSH + LSA1 0.20% 62.52

large 0.09% 181.17

medium 0.06% 34.94

small 0.35% 0.56

C + LSH + LSA2 0.00% 88.80

large 0.00% 260.83

medium 0.00% 45.48

small 0.00% 0.81

Table 3. Comparison of GRASP variants.

Results in Table 3 clearly show that, as expected, obtains the best solutions

overall (0.00% deviation from best), although it requires the longest running times of the five

methods (88.80 seconds on average). Comparing the 0.25% average deviation achieved by

 on 61.90 seconds with the 7.85% achieved by on 55.03 seconds, we can

confirm that performs a more efficient exploration of the search space than .

However, is not able to reach the best known solutions by itself, and it needs the post-

processing of to match the best values (as shown with).

We applied the Friedman test for paired samples to the data used to generate Table 3. The

resulting p-value of 0.000 obtained in this experiment clearly indicates that there are

statistically significant differences among the five methods tested. A typical post-test analysis

consists of ranking the methods under comparison according to the average rank values

computed with this test. According to this, we obtain that the method is the

best overall with an average rank of 1.36, followed by with an average rank of

2.24 and with 2.40. Finally, we obtain the two methods with larger rank values (as

compared with the previous methods): (4.09) and (4.91).

We compare now the results of and shown in Table 3 with two well-known

non-parametric tests for pairwise comparisons: the Wilcoxon test and the Sign test. The

former one answers the question: Do the two samples (solutions obtained with both methods

in our case) represent two different populations? The resulting p-value of 0.000 indicates that

the values compared come from different methods. On the other hand, the Sign test computes

the number of instances on which an algorithm supersedes another one. The resulting p-value

of 0.000 indicates that is the clear winner between both methods.

Uncapacitated r-Allocation p-Hub Median Problem

16

Figure 4. Search Profile.

To complement the results above, we study now the search profile of the most interesting

combinations of local searches. Figure 4 shows the progression of the average deviation found

by three methods for the training set of instances during 120 iterations of search time. The

figure shows how most improvements on the best solution obtained with the C+LSH+LSA2 and

C+LSH methods are achieved early in the search (i.e., within 10% of the number of iterations).

After that point, both methods stagnate, and only exhibit a marginal improvement in the next

iterations. On the other hand, C+LSA2 performs worse, with an average percentage deviation

of several orders of magnitude larger than the other methods.

 Dev CPU # of skip

 -1 0.152% 15.0 76.0

0 0.135% 34.4 44.5

 10 1 0.000% 53.9 16.3

 2 0.000% 60.7 4.2

 3 0.000% 62.4 1.1

 -1 0.151% 21.3 67.8

0 0.151% 39.1 39.9

 20 1 0.072% 53.9 14.8

 2 0.000% 59.4 2.9

 3 0.000% 60.3 0.6

Table 4. Filtering GRASP constructions.

In our next experiment we test the efficiency of the filtering mechanism described in Section 4.

Table 4 reports the results obtained with the method when running with

different values of the two filter parameters: , the number of initial iterations for which

we compute the mean ̂ and standard deviation ̂ of the improvement achieved with the

local search, and , the value to compute the filtering threshold ̂ ̂. Specifically, it

reports the average Dev and CPU, as in the previous experiments, and the average number of

solutions discarded for improvement, # of skip, out of the 100 solutions constructed.

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 51 101

C + LSH

C + LSA2

C + LSH + LSA2

Uncapacitated r-Allocation p-Hub Median Problem

17

Table 4 shows that, as expected, the larger the value, the longer the CPU time. In other

words, with low values the method discards more constructed solutions and therefore

requires less CPU time than with larger values (given that it saves the computation of the local

search associated with the discarded solutions). For example, with and , an

average of 39.9 out of the 100 solutions constructed are discarded and the method only

applies the local search to the remaining solutions. This has two consequences; the first one is

that the CPU time is 39.1, which is lower than the 88.80 reported in Table 3 in which no

filtering was applied and the 100 constructed solutions were submitted to the local search.

The second one is that the average percentage deviation is 0.151% instead of the 0.00% of the

unfiltered GRASP. On the other hand, this table shows that there are small differences when

 or with a slightly improvement in the former case. Therefore, in the following

experiments we set and denote the method as GRASP() selecting the value in

each experiment according to this trade-off between computing time and solution quality.

5.4 Comparison with Optimal Values

In Section 2 we have described the integer formulation proposed in Yaman (2011) for the

UrApHMP. We have applied this formulation with CPLEX to solve 105 small instances with

ranging from to , and and . Table 5 reports the average percentage

deviation with respect to the optimal solution of GRASP() with , which filters many

constructions as shown above, and , in which the filter is basically not applied. Note that

in this experiment, instead of reporting the number of best solutions found, we report the

number of instances in which the method is able to match the optimal solution (Opt).

 GRASP(0) GRASP(3)

n p # instances Opt Dev CPU Opt Dev CPU

 1 5 5 0.00% 0.04 5 0.00% 0.05

 2 10 10 0.00% 0.12 10 0.00% 0.21

25 3 15 15 0.00% 0.22 15 0.00% 0.49

 4 20 15 0.17% 0.42 15 0.17% 1.17

 5 25 24 0.03% 0.92 24 0.03% 2.14

 Total 75 69 0.06% 0.48 69 0.06% 1.15

 1 1 1 0.00% 0.16 1 0.00% 0.27

 2 2 2 0.00% 0.56 2 0.00% 1.04

40 3 3 3 0.00% 0.79 3 0.00% 2.18

 4 4 4 0.00% 2.48 4 0.00% 5.75

 5 5 4 0.04% 4.18 4 0.04% 9.10

 Total 15 14 0.01% 2.30 14 0.01% 5.16

 1 1 1 0.00% 0.27 1 0.00% 0.50

 2 2 2 0.00% 1.09 2 0.00% 1.85

50 3 3 3 0.00% 3.29 3 0.00% 5.22

 4 4 4 0.00% 7.16 4 0.00% 11.46

 5 5 5 0.00% 11.01 5 0.00% 19.77

 Total 15 15 0.00% 6.40 15 0.00% 10.97

Table 5. GRASP deviations from the optimal value.

Uncapacitated r-Allocation p-Hub Median Problem

18

Table 5 shows that the GRASP method is able to obtain the optimal solution in most cases.

Even the filtered variant, GRASP(), obtains 98 optimal values out of the 105 instances

considered. It is worth mentioning that CPLEX requires up to 3 hours of computing time to

obtain the optimal value on the instances with , and that larger instances cannot be

solved due to memory requirements. Therefore we cannot provide the optimal values for

larger instances.

5.5 Comparison with Optimal Assignments

As it has been described before, to obtain a solution for this problem we face a three step

process:

1. Selecting the hubs,

2. Determining the assignments of each node to of the hubs, and

3. Identifying, for each pair of nodes, the traffic through the appropriated hubs.

In the previous section, we have considered the linear integer formulation in Yaman (2011) to

obtain the optimal solution for the small instances of this problem. In order to measure the

quality of the results obtained with our method, and considering that we cannot solve larger

instances using this formulation, we have adapted it to optimally solve the assignment and

routing subproblems (steps 2 and 3 above). In particular, we first use our heuristic to select

the set of hubs . Then, to assign the nodes to hubs and compute the traffics among nodes,

we solve the following integer problem:

 ∑ ∑ ∑ ∑ ()

∑

∑ ∑

∑

∑

 { }

The formulation above, in which the set of hubs is fixed, is a special case of the one described

in Section 2. We solve it with CPLEX 12.4 and obtain the optimal solution of the assignment

and routing subproblems for this specific set of hubs. It is clear that since has been obtained

heuristically, the optimality of the resulting solution cannot be guaranteed. However, with this

Uncapacitated r-Allocation p-Hub Median Problem

19

experiment, we are able to test whether our algorithm is obtaining or not the optimal solution

in steps 2 and 3 for a given solution of step 1.

Table 6 shows, for the 318 medium and large instances in the AP set, its number of nodes (),

the number of instances tested for each value of (# instances), the number of instances in

which the GRASP obtains the optimal solution in steps 2 and 3 (Opt), and the average

percentage deviation with respect to the assignment and routing optimal values (Dev). The

results in this table clearly show that our GRASP algorithm is able to match the optimal

assignment and routing values in all the AP instances tested.

Size # instances Opt Dev

 70 35 35 0.00%

 75 35 35 0.00%

Medium 80 35 35 0.00%

85 35 35 0.00%

 90 35 35 0.00%

 95 35 35 0.00%

 Total 210 210 0.00%

100 36 36 0.00%

Large 150 36 36 0.00%

 200 36 36 0.00%

 Total 108 108 0.00%

Table 6. GRASP deviations from the assignment and routing optimal values on AP instances.

In order to study the behavior of our algorithm on larger instances, we have repeated the

above experiment on the set of 30 instances generated from the USA423 set. As it has been

mentioned, all the 30 instances have 423 nodes, while takes values in { } and

 { }. Two different sets of values for the cost parameters have been used

for each instance: 0.1, 0.07, 0.09 (denoted by A), and 0.09, 0.075, 0.08 (denoted by B). The

results are shown in Table 7, which are average values for all the instances with a given value

of and values of { } CPU GRASP column denotes the maximum time allowed

to the GRASP, while CPU CPLEX shows the time needed by CPLEX to get the optimal allocation

and routing values for the set of hubs obtained with the GRASP. All times are shown in

minutes.

Although in these instances the GRASP algorithm cannot match the optimal assignment and

routing values, in our opinion the results shown in Table 7 are very good. They show a

deviation from the optimal values that never exceeds a 0.85% on average, and only in two out

of the 30 instances slightly exceeds 1%. Note that CPLEX needs more than 20 hours of

computing time on average to solve these instances.

Uncapacitated r-Allocation p-Hub Median Problem

20

Cost parameters # instances Dev CPU GRASP CPU CPLEX

A 3 1 0.00% 30 21.5

A 4 2 0.01% 30 224.5

A 5 3 0.12% 30 197.7

A 6 4 0.21% 60 148.1

A 7 5 0.82% 60 1232.1

B 3 1 0.00% 30 0.5

B 4 2 0.01% 30 52.6

B 5 3 0.20% 30 38.7

B 6 4 0.19% 60 627.5

B 7 5 0.78% 60 280.4

Table 7. GRASP deviations from the assignment and routing optimal values on USA423 instances.

5.6 Comparison with Previous Heuristics

As far as we know, there is no previous heuristic for the , in which each node can

be connected to at most of the hubs. However, two particular cases of this general

problem, the single and the multiple allocation problems, have been extensively studied, and

we can compare our method with previously proposed heuristics for these two cases. In

particular, in the Uncapacitated Multiple Allocation -Hub Median Problem, each node can

send and receive traffic through any of the hubs, while in the Uncapacitated Single Allocation

 -Hub Median Problem, each node is assigned to one of the hubs, only allowing sending and

receiving traffic through this single hub. Although we have designed our GRASP algorithm to

solve the general Uncapacitated -Allocation -Hub Median Problem and it does not take

advantage of the specific characteristics of these two special cases, we can apply it to solve

them and to ascertain if the GRASP is able to compete with recently published methods

specially proposed for these multiple and single versions.

Table 8 shows the results of our GRASP when solving the multiple allocation problem. This

table shows the results obtained with the GRASP for a single iteration (one construction plus

the local search), denoted GRASP_1, and for 10 iterations, GRASP_10. The table also reports

the results of the evolutionary approach recently proposed by Milanović (2010) for the

multiple version. The three algorithms are applied on the 61 AP instances reported in that

paper. Specifically, Table 8 shows the size and number of instances in each row, and, for each

method, the number of instances in which it obtains the best known solution, the average

percentage deviation with respect to this best, and the CPU in seconds. Results for the

evolutionary method are directly taken from Milanović (2010), and therefore running times

are only indicative and cannot be directly compared with GRASP computing times.

Uncapacitated r-Allocation p-Hub Median Problem

21

 GRASP_1 GRASP_10 Evolutionary

n # instances Best Dev CPU Best Dev CPU Best Dev CPU

10 7 5 0.77% 0.00 7 0.00% 0.01 7 0.00% 0.05

20 7 6 0.27% 0.02 7 0.00% 0.10 7 0.00% 0.16

25 7 5 0.20% 0.04 7 0.00% 0.21 7 0.00% 0.24

40 9 7 0.28% 0.41 9 0.00% 1.94 9 0.00% 1.19

50 9 7 0.08% 0.83 8 0.00% 4.87 9 0.00% 7.36

100 11 6 0.22% 40.91 10 0.00% 321.00 10 0.01% 67.93

200 11 5 0.10% 780.42 9 0.00% 1879.25 9 0.08% 346.62

Total 61 41 0.25% 148.30 57 0.00% 373.12 58 0.01% 76.07

Table 8. GRASP vs. evolutionary method with .

Results in Table 8 clearly show that the GRASP algorithm is able to obtain state-of-the-art

results for the multiple allocation problem. Even GRASP_1, the version in which only one

solution is generated, performs remarkably well, obtaining results of similar quality to those

reported with the evolutionary method by Milanović (2010), specifically designed for this

problem. As expected, the GRASP_10 variant is more time consuming than GRASP_1 and is

able to match, and in some cases surpass, the evolutionary method. In particular, it obtains a

new best known value of 92646.38 in the AP instance with =200 and =15 for which the

previously best known value was 92669.64.

Table 9 shows the results for the single allocation problem. As in the previous experiment, we

report the results with GRASP_1 and GRASP_10. We also report in this table the results of the

Genetic Algorithm (GA) described in Kratica et al. (2007). This table shows the Dev and CPU

values for each method on the 14 AP instances reported in that paper.

 GRASP_1 GRASP_10 GA

n p Dev CPU Dev CPU Dev CPU

2 0.04% 0.17 0.04% 0.98 0.00% 13.29

 3 0.00% 0.41 0.00% 4.38 0.00% 16.64

 4 0.03% 0.41 0.03% 4.40 0.00% 17.76

100 5 0.04% 0.91 0.04% 5.29 0.00% 22.11

 10 0.00% 3.47 0.00% 34.80 0.00% 40.73

 15 1.43% 8.42 0.26% 111.51 0.00% 57.54

 20 0.04% 16.08 0.04% 67.89 0.00% 79.20

2 0.00% 1.82 0.00% 15.88 0.00% 100.72

 3 0.07% 3.61 0.07% 43.48 0.00% 111.77

 4 0.03% 5.78 0.03% 30.48 0.00% 131.16

200 5 0.45% 10.08 0.26% 54.43 0.08% 169.73

 10 0.39% 39.63 0.39% 454.83 0.00% 259.14

 15 1.07% 142.34 0.56% 1213.85 0.04% 313.02

 20 1.88% 331.82 0.11% 3432.02 0.20% 374.75

Average 0.39% 40.35 0.13% 391.02 0.02% 121.97

Table 9. GRASP vs. GA with .

Uncapacitated r-Allocation p-Hub Median Problem

22

To complement the information above, Table 10 reports the results of our two GRASP variants

and the VNS approach presented by Ilić et al. (2010) on the 8 AP instances reported in that

paper. Note that these are the hardest AP instances for this problem.

 GRASP_1 GRASP_10 VNS

n p Dev CPU Dev CPU Dev CPU

5 0.04% 0.91 0.04% 5.29 0.00% 0.08

 100 10 0.00% 3.47 0.00% 34.80 0.00% 0.67

 15 1.43% 8.42 0.26% 111.51 0.00% 3.22

 20 0.04% 16.08 0.04% 67.89 0.00% 3.57

5 0.45% 10.08 0.26% 54.43 0.00% 5.16

200 10 0.39% 39.63 0.39% 454.83 0.00% 5.60

 15 1.07% 142.34 0.56% 1213.85 0.00% 17.66

 20 1.88% 331.82 0.11% 3432.02 0.00% 12.98

Average 0.66% 69.09 0.21% 671.83 0.00% 6.12

Table 10. GRASP vs. VNS with .

Tables 9 and 10 show that the GRASP variants are able to obtain good results on the single

allocation version, although they behave slightly worse than the specialized algorithms for this

problem. In particular, the GA by Kratica et al. (2007), see Table 9, shows an average

percentage deviation of 0.02% obtained in 121.97 seconds, while GRASP_1 and GRASP_10

obtain an average percentage deviation of 0.39% and 0.13% in 69.06 and 671.83 seconds,

respectively. The VNS by Ilić et al. (2010) performs remarkably well since it is able to achieve

an average percentage deviation of 0.00% in 6.12 seconds. Note, however, that the GRASP

algorithm is not designed to exploit the particular characteristics of the single version of this

problem, as it does the VNS, and the objective of this comparison is to show that it performs

relatively well across different types of -hub problems.

5.7 Run time distribution

Aiex, Resende and Ribeiro (2007) observed that the variable time-to-target-value usually has in

GRASP an exponential distribution. Time-to-target (TTT) plots display on the ordinate axis the

probability that an algorithm will find a solution at least as good as a given target value within

a given running time, shown on the abscissa axis. TTT plots are used to characterize the

running times of stochastic algorithms for combinatorial optimization. Specifically, for each

instance/target pair, the running times are sorted in increasing order. We associate with the -

th sorted running time a probability
 ⁄ and plot the points . The

resulting diagram shows the cumulative probability distribution plot and permits to check

whether a given algorithm has or not an exponential distribution.

We ran 100 times our GRASP for the UrApHMP on a representative instance, stopping when a

solution is found with objective value equal to the best known for this instance. For each run

we recorded the running time. Each run is independent of the other by using a different initial

seed for the random number generator. With these 100 running times, we plot the time-to-

target plot (run time distributions) shown in Figure 4, in which we add the theoretical

Uncapacitated r-Allocation p-Hub Median Problem

23

exponential distribution. This experiment confirms the expected exponential runtime

distribution for our GRASP. Therefore, linear speed is expected if the algorithm is implemented

in parallel.

Figure 4. Time to target plot.

6. CONCLUSIONS

We have developed a heuristic procedure based on the GRASP methodology that provides high
quality solutions for the Uncapacitated -Allocation -Hub Median Problem. We have
explored the critical issue of which solution-generation-method proves effective to obtain a
good set of solutions in terms of quality and diversity. We have defined three neighbourhoods
in the local search and a filtering mechanism to selectively apply it.

Overall experiments with 465 instances were performed to assess the merit of the procedures
developed here. Our implementation was shown to be competitive in a set of instances
previously reported in the literature. Moreover, the procedure has been shown to be robust
in terms of solution quality within a reasonable computational effort. The proposed method
was compared with the linear integer formulation implemented in CPLEX and with previous
heuristics for different -hubs variants (single and multiple allocation problems). The
experimentation shows that the GRASP method is able to obtain high quality solutions across
different -hub problems.

Finally, a new set of instances, USA423, has been proposed. It is based on real airline data and
consists of a data file concerning 423 cities in the United States, where real distances and
passenger flows for an accumulated 3 months period are considered.

ACKNOWLEDGEMENTS

This work was supported by the research projects TIN2009-07516, MTM2009-14039-C06-02,
TIN2012-35632-C02, and MTM2012-36163-C06-02.

Authors want to thank the company Data In, Information Out (DIIO) for providing us with new
real data for the test problems. DIIO (www.diio.net) is a world leader firm in aviation business
intelligence tools.

http://www.diio.net/

Uncapacitated r-Allocation p-Hub Median Problem

24

REFERENCES

Aiex, R. M., M. G. C. Resende, and C. C. Ribeiro. 2007. TTT plots: A perl program to create time-
to-target plots. Optimization Letters 1, no. 4: 355-366.

Campbell, J. F. 1994. Integer programming formulations of discrete hub location
problems. European Journal of Operational Research 72, no. 2: 387-405.

Campbell, J. F. and M. E. O'Kelly. 2012. Twenty-five years of hub location
research. Transportation Science 46, no. 2: 153-169.

Ernst, A. and M. Krishnamoorthy. 1996. Efficient algorithms for the uncapacitated single
allocation p-hub median problem. Location Science 4, no. 3: 139–154.

Feo, T. A. and M. G. C. Resende. 1989. A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters 8, no. 2: 67-71.

Feo, T. A. and M. G. C. Resende. 1995. Greedy randomized adaptive search procedures. Journal
of Global Optimization 6, no. 2: 109-133.

Festa, P. and M. G. C. Resende. 2011. GRASP: Basic components and enhancements.
Telecommunication Systems 46, no. 3: 253-271.

García, S., M. Landete, and A. Marín. 2012. New formulation and a branch-and-cut algorithm
for the multiple allocation p-hub median problem. European Journal of Operational
Research 220, no. 1: 48-57.

Gelareh, S. and S. Nickel. 2011. Hub location problems in transportation networks.
Transportation Research Part E: Logistics and Transportation Review 47, no. 6: 1092-1111.

Ilić, A., D. Urošević, J. Brimberg, and N. Mladenović. 2010. A general variable neighborhood
search for solving the uncapacitated single allocation p-hub median problem. European
Journal of Operational Research 206, no. 2: 289-300.

Kratica, J., Z. Stanimirović, D. Tošić, and V. Filipović. 2007. Two genetic algorithms for solving
the uncapacitated single allocation p-hub median problem. European Journal of
Operational Research 182, no. 1: 15-28.

Laguna, M. and R. Martí. 1999. GRASP and path relinking for 2-layer straight line crossing
minimization. INFORMS Journal on Computing 11, no. 1: 44-52.

Love, R.F., Morris, J.G., and Wesolowski, G.O. 1988. Facilities location: Models and methods.
Elsevier Science Publishing Co., New York.

Milanović, M. 2010. A new evolutionary based approach for solving the uncapacitated
multiple allocation p-hub median problem. In Soft Computing in Industrial Applications,
AISC 75 (X. Z. Gao et al., eds.). Springer-Verlag, Berlin, pp: 81-88.

O'Kelly, M. E. 1987. A quadratic integer program for the location of interacting hub facilities.
European Journal of Operational Research 32, no. 3: 393-404.

Yaman, H. 2011. Allocation strategies in hub networks. European Journal of Operational
Research 211, no. 3: 442-451.

