
Strategic Oscillation for the capacitated

hub location problem with modular links

Ángel Corberán(a), Juanjo Peiró(a), Fred Glover(b), and Rafael Mart́ı(a)

(a)Departament d’Estad́ıstica i Investigació Operativa, Universitat de València,
Spain

(b)OptTek Systems, Boulder (CO), USA

March 21, 2014

Abstract

The capacitated single assignment hub location problem with mod-
ular link capacities is a variant of the classical hub location problem in
which the cost of using edges is not linear but stepwise, and the hubs
are restricted in terms of transit capacity rather than in the incoming
traffic. This problem was introduced by Yaman and Carello in [18] and
treated by a branch-and-cut and a tabu search metaheuristic. We pro-
pose a metaheuristic algorithm based on Strategic Oscillation, which
was originally introduced in the context of tabu search. Our method in-
corporates several designs for constructive and destructive algorithms,
together with associated local search procedures, to balance diversifica-
tion and intensification for an efficient search. Computational results
on 118 instances show that, in contrast to exact methods that can
only solve small instances optimally, our metaheuristic is able to find
high-quality solutions on larger instances in short computing times.
In addition, our new method which joins tabu search strategies with
strategic oscillation outperforms the previous tabu search implemen-
tation.

Keywords and phrases: hub location problem, modular link costs,
tabu search, strategic oscillation, iterated greedy.

1 Introduction

Discrete facility location problems related to the design of transportation
networks are one of the most extensively studied problems in combinatorial

1

optimization due to the variety and importance of their fields of application.
There are several variants of discrete facility location problems. Some of
the most important are: the p-median problem, the p-center problem, the
maximal covering location problem, and the hub location problem, to name
just a few. In all of them, one is given a network G = (V,E) with a set of
demand nodes V , and a set of edges E. For each pair of nodes i and j ∈ V ,
there is a traffic tij (of goods, people, etc.) that needs to be transported.
Depending on each variant of the problem, additional specific characteristics
can be found, such as a fixed cost of opening a facility at a potential location,
or limitation on its capacity. We refer the reader to the excellent surveys
[3] and [12] for a detailed description of the most prominent facility location
problems.

In this paper we study the Hub Location Problem (HLP), in which a
set of facility locations is selected from a given set of potential locations V .
The goal is to identify an optimal subset of facilities in order to minimize
a transportation cost function while satisfying a set of constraints. For the
sake of simplicity, we call these facilities distribution centers or simply hub
nodes. The rest of the nodes in the network are called terminal nodes. It is
assumed that direct transportation between terminals is not possible and,
therefore, the traffic tij travels along a path i→ hi → hj → j, where i and j
are assigned to hubs hi and hj , respectively. The reader can find in [1] and
[6] a complete description of HLP variants.

Among the family of Hub Location Problems, we focus on a specific
variant known as the Capacitated Single assignment Hub Location Problem
with Modular Link Capacities (CSHLPMLC). This problem was formulated
as a quadratic mixed integer programming problem by Yaman and Carello
[18]. These authors also proposed a branch-and-cut algorithm to solve op-
timally the problem together with a metaheuristic to obtain good initial
solutions. As proved in [17], the CSHLPMLC is NP-hard. In what follows
we summarize the characteristics of this problem:

• G is a connected network. V is the set of demand nodes. For each
pair of nodes i and j, there is a traffic tij to be transported through
the edges E.

• All the nodes in the network are demand points (i.e. terminal nodes),
as well as potential hub locations (i.e. hub nodes).

• Each node i is assigned to only one hub hi.

• Hubs can be located at any node i of the network, with an associated
installation cost Cii.

• The number of hubs used is not fixed a priori. A solution can have
any number of hubs (from 1 to |V |).
• All hubs have the same capacity Qh, which limits the total traffic tran-

siting through them.

2

• Edges between hubs have capacity Qb. If the traffic between two hubs
exceeds this amount, additional edges with Qb capacity are added.

The CSHLPMLC consists of selecting a subset of nodes to be hubs and
assigning the rest of the nodes to them in such a way the transportation
cost is minimized while satisfying the capacity constraints.

Many heuristics and metaheuristics have been proposed to solve different
variants of hub location problems, including GRASP [14], VNS [9], Tabu
Search [18], and several complex hybrid techniques. In this paper we present
a simple, easily adaptable and powerful algorithm, based on the Iterated
Greedy–Strategic Oscillation (SO) methodology. The purpose of this paper
is to investigate the SO proposal, which alternates between constructive and
destructive phases as a basis for creating a competitive method for this hub
location problem.

The structure of the remainder of this paper is as follows. We begin
by summarizing the previous work by Yaman and Carello [18], which as
far as we know is the only published paper devoting attention to this spe-
cific problem. In particular, the problem definition, the notation used, as
well as the formulation proposed in [18] are described in Section 2, while
the heuristic method in [18] is described in Section 3. We then describe in
Section 4 the elements of our SO method, including the memory structures
employed in our implementation. Finally, Section 5 presents a comparison
between methods, optimal results, as well as several experiments to deter-
mine the values of the key-search parameters. Computational outcomes on
150 instances show that, while only small instances can be optimally solved
with exact methods, our metaheuristic is able to find high-quality solutions
on larger instances in short computing times, and outperforms the previous
tabu search implementation.

2 A non-linear programming formulation

Let G = (V,E) be a network with node set V = {1, . . . , n} and edge set E.
For any pair of nodes i, j ∈ V , tij denotes the traffic to be transported from
i to j, where tii = 0 for any node i.

Each node i is either a terminal node or a hub node (terminal and hub
for short). A terminal can only be assigned to a single hub. A hub is
assigned to itself. The hubs and the edges among them define a complete
subgraph. Let H ⊆ V be the subset of hubs. Opening a hub at node i has
a fixed installation cost Cii. Each hub i has a capacity Qh limiting the total
amount of traffic transiting through i.

There are two types of edges between nodes: edges of the first type
are used to connect terminals with hubs, and we call them access edges in
reference to the access to the network they provide. Let mi be the number
of access edges needed to route the incoming and outgoing traffic at node

3

i, and let Qa be the maximum capacity an access edge allows to transfer
through it. So,

mi = max

{⌈∑
j∈V tij

Qa

⌉
,

⌈∑
j∈V tji

Qa

⌉}
.

The cost of installing mi edges between terminal i and hub k is denoted by
Cik. Edges of the second type are used to transfer traffics between hubs, and
we call them backbone edges. EB denotes the set of backbone edges, defined
as EB = {{k, l} : k, l ∈ H, k < l}. Each backbone edge has a maximum
traffic capacity of Qb (in each direction). We define A as the set of arcs
associated with the edges in EB, A = {(k, l) : k, l ∈ H, k 6= l}.

If nodes k and l are hubs, the amount of traffic on arc (k, l), denoted
as zkl, is the sum of the traffics that have to be transported from nodes
assigned to k to nodes assigned to l. The capacity Qb of a given edge {k, l}
cannot be less than the maximum of traffic on its corresponding arcs (k, l)
and (l, k), and the cost of installing the edge is denoted by Rkl. This edge
capacity Qb can, for example, be understood as the capacity of an airplane.
If 2×Qb ≥ zkl > Qb, two copies of the edge (two airplanes) are needed, even
if the second one transports less than Qb passengers, and a fixed cost Rkl for
each airplane has to be paid. This reflects the non-linear nature of the costs
Rkl. This modular link characteristic makes this model much more realistic
that the linear cost version.

If nodes k and l are hubs, the amount of traffic on arc (k, l), denoted
as zkl, is the sum of the traffics that have to be transported from nodes
assigned to k to nodes assigned to l. The capacity Qb of a given edge {k, l}
cannot be less than the maximum of traffic on its corresponding arcs (k, l)
and (l, k), and the cost of installing the edge is denoted by Rkl. This edge
capacity Qb can be understood as the capacity of an airplane, for instance.
If zkl > Qb, several copies of the edge (like considering several airplanes)
are needed. This reflects the non-linear nature of the costs Rkl. We pay a
fixed cost Rkl for an airplane which transports a maximum of Qb passengers
between hubs k and l. If two airplanes are needed, 2 × Rkl would be the
cost to pay, even if one of the airplanes transports less than Qb passengers.
This modular link characteristic makes this model much more realistic that
the linear cost version.

Three different costs have to be considered in this problem: The opening
costs of the hubs (Ckk), the assignment costs of terminals to hubs (Cik),
and the traffic costs between hubs. While cost Cik corresponds to that of
transporting all the traffic involving i through hub k, Rkl represents the
cost of using only one edge {k, l}. This last cost has to be multiplied by
the number of copies needed of the edge {k, l}. So, we face to two types
of decisions, the binary decision of assigning a terminal to a hub and the
integer decision associated with how many copies of the edges among hubs
will be used. Figure 1 shows a diagram which represents the hubs as shaded

4

Binary decision

Integer decision Backbone edge capacity = Qb

Hub capacity = Qh

Access edge capacity = Qa

Hub nodes

Terminal nodes

Figure 1: Different costs in the CSHLPMLC

squares, the terminals as circles, the assignments of terminals to hubs in
dashed lines, and the different capacities involved.

The following variables are defined in [18] in order to provide the follow-
ing mathematical programming model:

• The assignment variable xik is equal to 1 if terminal i is assigned to
hub k, and 0 otherwise. If node i receives a hub, then xii takes value 1.

• zkl is the traffic on a backbone arc (k, l) ∈ A and wkl is the number of
copies of the edge {k, l} ∈ EB.

Then, the capacitated single assignment hub location problem with mod-
ular link capacities can be formulated as follows ([18]):

Min
∑
i∈V

∑
k∈V

Cikxik +
∑
{k,l}∈E

Rklwkl (1)

∑
k∈V

xik = 1 ∀i ∈ V (2)

xik ≤ xkk ∀i ∈ V, ∀k ∈ V \ {i} (3)∑
i∈V

∑
j∈V

(tij + tji)xik −
∑
i∈V

∑
j∈V

tijxikxjk ≤ Qhxkk ∀k ∈ V (4)

zkl ≥
∑
i∈V

∑
j∈V

tijxikxjl ∀(k, l) ∈ A (5)

Qbwkl ≥ zkl ∀{k, l} ∈ E (6)

Qbwkl ≥ zlk ∀{k, l} ∈ E (7)

5

xik ∈ {0, 1} ∀i, k ∈ V (8)

wkl ∈ Z+ ∀{k, l} ∈ E (9)

Constraints (2) imply that each node has to be assigned to only one
hub. Constraints (3) force node k to be a hub if node i is assigned to it.
Constraints (4) say that the capacity of a given hub k cannot be less than
the amount of traffic that transits through it, thus prohibiting allocations
to k beyond its maximum capacity Qh. Constraints (5) add up the traffics
through a given backbone arc (k, l). Finally, constraints (6) and (7) fix the
number of copies needed of each backbone edge.

We have tested this formulation on a small set of instances to check if our
metaheuristic would be able to catch the optimal solution obtained using
exact methods on this formulation. Results of this comparison can be found
in Subsection 5.4.

3 Previous methods

A metaheuristic and a branch-and-bound algorithm are proposed for the
CSHLPMLC in [18] based on the idea of finding a set of hub nodes that
represents, in a sense, the best hubs that can be selected heuristically. This
set is called the concentration set. The resulting reduced problem, where
hubs can be chosen only among the nodes of the concentration set, is called
the concentrated problem, and is solved by a branch-and-cut method. The
metaheuristic is based on two methodologies: a tabu search (TS) for the
hub location subproblem and a local search for assigning terminals to hubs.

As described in [8], tabu search is a metaheuristic that guides a local
search procedure to explore the solution space beyond local optimality.

The main steps of the proposed metaheuristic algorithm [18] are:

1. To construct an initial feasible solution by means of a greedy algorithm
that starts with an empty set of hubs and adds hubs one by one until
a feasible solution is reached. The hubs are added trying to keep the
assignment cost as low as possible.

2. To apply a tabu search to the location subproblem. The neighborhood
is generated by applying three different moves: a new hub is opened
(adding move), a hub is removed from the set of hubs (removing move),
and a hub is removed and a new one is opened in another terminal
(swapping move).

3. To apply a local search to the 20 best solutions found in the previous
step for the assignment subproblem. The neighborhood is generated

6

by applying two different moves: a terminal is moved from a hub to
another, and two terminals swap their hubs.

A comparison between the above tabu search, PrevTS, and the one we
propose in Section 4 is presented in Section 5.

4 Strategic Oscillation

The structure of a neighborhood in tabu search goes beyond that used in
local search by embracing the types of moves used in constructive and de-
structive processes (where the foundations for such moves are accordingly
called constructive neighborhoods and destructive neighborhoods). Follow-
ing basic tabu search principles, memory structures can be implemented
within a constructive process to favor (or avoid) the inclusion of certain el-
ements in the solution previously identified as attractive (or unattractive).
Such expanded uses of the neighborhood concept reinforce a fundamental
perspective of TS, which is to define neighborhoods in dynamic ways that
can include serial or simultaneous consideration of multiple types of moves.

This dynamic neighborhood approach applies not only to the types of
neighborhoods used in “solution improvement methods” (sometimes called
“local search methods”) but also applies to constructive neighborhoods used
in building solutions from scratch - as opposed to transitioning from one solu-
tion to another. Although it is commonplace in the metaheuristic literature
to restrict the word “neighborhood” to refer solely to transitions between so-
lutions as embodied in improvement methods, constructive neighborhoods
have been proposed as an important ingredient of search processes from
the very beginning of the TS methodology, as documented by Glover and
Laguna [8]. Nevertheless, tabu search methods for exploiting constructive
neighborhoods have rarely been applied in computational studies.

Our tabu search approach for the CSHLPMLC is additionally based on
the strategic oscillation methodology [7, 8]. Strategic oscillation (SO) is
closely linked to the origins of tabu search, and operates by orienting moves
in relation to a critical level, as identified by a stage of construction. In
particular, we consider a constructive/destructive type of strategic oscilla-
tion, where constructive steps “add” elements and destructive steps “drop”
elements.

More recently, constructive and destructive neighborhoods have been
applied within a simplified and effective method known as Iterated Greedy
(IG) [10], which generates a sequence of solutions by iterating over a greedy
constructive heuristic which, like strategic oscillation, uses two main phases:
destruction and construction. IG is a memory-less metaheuristic easy to
implement that has exhibited state-of-the-art performance in some settings
(see for example [5, 11, 15]). We sketch the form of this method because its

7

simplicity gives a convenient foundation for embedding it in a more complete
strategic oscillation approach.

Briefly described, the destruction phase of IG removes selected solution
components from a previously constructed complete candidate solution. The
construction procedure then applies a greedy constructive heuristic to recon-
struct a complete candidate solution. Once a candidate solution has been
completed, an acceptance criterion decides whether the newly constructed
solution will replace the incumbent solution. The algorithm iterates over
these steps until a stopping criterion is met. Optionally, a local search can
be applied after construction phases for improved outcomes. Algorithm 1
shows an outline of the IG method.

As shown in Algorithm 1, the IG method starts from a complete ini-
tial solution S (Initialise()) and then iterates through a main loop which
first generates a partial candidate solution Sp by removing a fixed num-
ber of elements (nh hubs in our case) from the complete candidate solution
S (Destruction-phase(S, nh)) and next reconstructs a complete solution Sc
starting with Sp (Construction-phase(Sp)). In the local search phase (Local-
Search-phase(Sc)), an improvement procedure is performed in order to find
better solutions near the reconstructed solution. Before continuing with
the next loop, an acceptance criterion (AcceptanceCriterion(S, Si)) decides
whether the solution returned by the local search procedure, Si, becomes
the new incumbent solution. The process iterates through these phases un-
til a computation limit tmax is reached. The best solution, Sbest, generated
during the iterative process is kept to provide the final result.

Input: G, tmax, nh
Output: Sbest
S ← Initialise();1

Sbest ← S;2

while tmax is not reached do3

Sp ← Destruction-phase(S, nh);4

Sc ← Construction-phase(Sp);5

Si ← Local-Search-phase(Sc);6

if Si is better than Sbest then7

Sbest ← Si;8

end9

if AcceptanceCriterion(S, Si) then10

S ← Si;11

end12

end13

Algorithm 1: Iterated Greedy pseudocode

We have considered two different acceptance criteria in the scheme shown

8

in Algorithm 1:

• ‘Replace if better’ acceptance criterion. The new solution is accepted
only if it provides a better objective function value [19].

• ‘Random walk’ acceptance criterion. An IG algorithm using the above
criterion may lead to stagnation situations of the search due to insuffi-
cient diversification [16]. At the opposite extreme is the random walk
acceptance criterion, which always applies the destruction phase to
the most recently visited solution, irrespective of its objective function
value. This criterion clearly favors diversification over intensification,
because it promotes a stochastic search in the space of local optima.

4.1 Strategic Oscillation for the CSHLPMLC

The metaheuristic we propose for solving the capacitated single assignment
hub location problem with modular link capacities embodies the iterated
greedy approach within the strategic oscillation method by including sim-
ple recency and frequency memory strategies derived from tabu search, as
proposed in the original SO methodology.

Finding an initial feasible solution

We define a feasible solution S to be an assignment of the terminal nodes
to hubs in such a way traffics from every origin to every destination can be
transferred using these hubs.

Let h be a candidate location node for a hub. For any node j that can
be assigned to h, with cost Cjh, we have to consider that all the traffic from
and to j has to be routed through h. In order to evaluate the attractiveness
of h as a hub, g(h), we consider first the nodes with the lowest Cjh value,
adding as many nodes as the capacity permits. Let us assume, without loss
of generality, that they are j1, . . . , ju(h). In mathematical terms,

g(h) = Chh +

∑u(h)
s=1 Cjsh

u(h)
,

where the first term in the expression corresponds to the installation cost.
The hub h1 with lowest evaluation g(h) is selected as a hub and the

terminals used in the computation of g(h1) are assigned to it. Then, the
attractiveness function is computed again for the remaining nodes without
considering the terminals already assigned to h1. This iterative procedure
is applied until we have selected enough hubs to assign all the nodes in the
network.

At this stage, a feasible solution S = (H,A) is available, where H is
the set of hubs, and A the set of assignments. We represent by (i, h) the

9

assignment of terminal i to hub h. The set A contains the n pairs reflecting
these assignments. Since hub h is assigned to itself, A contains the pair
(h, h). Moreover, Ah denotes the set of nodes assigned to h, i.e. Ah = {i ∈
V : (i, h) ∈ A}.

Evaluation of a feasible solution

Different nature costs are involved when evaluating S:

• The fixed cost of opening/installing hubs.

• The fixed cost of assigning each terminal to its associated hub.

• The cost of installing the backbone edges needed to transfer the traffic
between hubs. This cost is computed as follows. Given two hubs k
and l, the total amount of traffic on the arc (k, l) ∈ A is obtained as

zkl =
∑
i∈Ak

∑
j∈Al

tij .

Then, the maximum amount of traffic that will travel through the edge
{k, l} is Tkl = max{zkl, zlk}. Since each edge {k, l} has a maximum

capacity Qb, it will be necessary to replicate this edge wkl =
⌈
Tkl

Qb

⌉
times. Given that Rkl is the cost of installing a copy of edge {k, l},
the total cost is

∑
{k,l}∈EB

Rklwkl.

Destruct and construct to improve the hubs selection

Since we apply this constructive procedure several times, we have modified
g(h) to incorporate information about previous constructions. Specifically,
we define the frequency freq(h) as the number of times (solutions) in which
node h has been selected as a hub. Then, to discourage the selection of
those nodes already selected as hubs, we consider, instead of g(h), a new
evaluation function g′(h):

g′(h) =
g(h)

maxg
+ γ

freq(h)

maxfreq
,

where γ is a search parameter that weights the second term in g′(h).
Following the strategy described in the Iterated Greedy approach, once a

solution S is constructed (using g′(h) to guide the process), we partially de-
construct it by removing some of its elements, obtaining Sp. In our context,
it means that we deselect some of its hub nodes. Note that the terminals
that were assigned to these unselected hubs are now unassigned. We have
called these unassigned nodes, including the deselected hubs, orphan nodes,
and denoted as O the set of all of them, i.e. O =

⋃
h∈HS\HSp

Ah.

10

The greediness of the construction process results, in some cases, in
hubs with more capacity than the used by their assigned nodes. In fact,
we have empirically found that some of the orphan nodes could eventually
be assigned to some of the remaining hubs in Sp. Hence, the first step
in our reconstruction process is to check if the remaining capacity of the
hubs belonging to Sp permits to assign any orphan node to them (thus
removing it from set O). Afterwards, we select as a new hub the node
h∗ ∈ O with the lowest g′(h) value. We remove h∗ and its terminal nodes
from O, update freq(h∗) by adding one unit, and iteratively perform more
construction steps until all the nodes in O have been assigned or selected
as hubs, obtaining a new feasible solution Sc. This destructive-constructive
process is repeated until a stopping criterion is met, which in our algorithm
is simply a maximum number of iterations defined as η.

In our SO method we remove hubs from the solution at random. A
second search parameter δ indicates the percentage of removed hubs. This
randomization implies a strong diversification component in the search which
balances the intensification of our greedy constructive algorithm. Given the
second term in the g′ value with the frequency record, the removed hubs
are unlikely to be selected in the next iterations. In Section 5 we study the
performance of the proposed algorithm, denoted as SO1, for different values
of γ, η, and δ.

In SO1 the evaluation function g
′
(h) penalizes the choice as hubs of those

nodes that were already selected in previous iterations. A second SO algo-
rithm, SO2, where we use the original evaluation function g(h) and a classic
tabu list (the customary type of tabu search recency memory embodied in
a tabu list) has also been considered. These two designs are usual ways
of implementing a recency memory structure in a constructive method. We
believe that their comparison is therefore of interest to disclose their relative
merit (see Section 5 for our conclusions on this point).

In SO2 we construct an initial solution according to the g(h) evaluation.
Then, we randomly remove a percentage δ of the hubs. The removed hubs
are added to a tabu list and become tabu for a given number of iterations
(constructions) denoted by τ (tabu tenure). The same construction method,
guided here by g(h), is applied to reconstruct the solution by selecting new
non-tabu hubs. Thus, SO1 applies a strategic oscillation based on frequen-
cies, while SO2 is based on a short term tabu list.

In order to speed up the process and search for new solutions, we have
included a slight modification in the assignment of orphan nodes in the SO2
procedure. In particular, when we check if an orphan node can be assigned
to a non removed hub, we follow the order given by the tabu list. We first
try to assign the tabu nodes since they cannot be hubs in this iteration.
Moreover, within the tabu nodes, we try first those that recently gain the
tabu status (those that we strongly forbid to be hubs). As is usually done in
tabu search implementations, we include an aspiration criterion to override

11

the tabu status by permitting, in this case, a tabu node to be a hub if the
capacity constraints would compel this in the assignment process.

Improvements on the assignments

When a new feasible solution Sc = (H,A) is obtained, an improvement
procedure on the assignment of terminals to hubs is applied. Two neighbor-
hoods, Npairs and Nalone, are proposed to improve Sc:

Npairs implements a classical exchange in which two terminals i and j,
assigned to hubs k and l, swap their corresponding hubs. This exchange
can be done when nodes i and j are not hubs, they are assigned to different
hubs, and when the new assignments do not violate the capacity constraints.
To compute the cost of this exchange:

• Only the assignment costs of i and j are updated: Cik + Cjl is sub-
tracted from the total assignment cost and the new assignment costs
Cil + Cjk are added.

• The cost of the backbone edges also need to be recomputed. Given
a backbone edge {p, q}, the new traffic T

′
pq traversing {p, q} is T

′
pq =

max{z′
pq, z

′
qp}, where the values of z

′
pq and z

′
qp are computed as follows:

– If p 6= k, l and q 6= k, l, the traffics through backbone edge {p, q}
do not change, z

′
pq = zpq and z

′
qp = zqp.

– If exactly one end node of {p, q} is k or l, for instance p = k
(q 6= l),

z
′
pq = zpq−

∑
s∈Aq

tis+
∑
s∈Aq

tjs and z
′
qp = zqp−

∑
s∈Aq

tsi+
∑
s∈Aq

tsj .

– If {p, q} = {k, l},

z
′
pq = zpq−

∑
s∈Al

tis−
∑

s∈Ak\{i}

tsj +
∑

s∈Al\{j}∪{i}

tjs +
∑

s∈Ak\{i}

tsi

and

z
′
qp = zqp−

∑
s∈Ak

tjs−
∑

s∈Al\{j}

tsi +
∑

s∈Ak\{i}∪{j}

tis +
∑

s∈Al\{j}

tsj .

From the new traffics T
′
pq traversing the backbone edges {p, q} ∈ EB,

we compute the number of copies that are needed of each edge and its

cost,

⌈
T

′
pq

Qb

⌉
×Rpq. Only if the total cost of the new assignment is lower

than the cost of the current solution (first improvement strategy), the
exchange is done.

12

Sometimes Npairs proves to be a poor neighborhood as it is quite re-
strictive. For this reason we also propose Nalone, which implements another
classical movement. In Nalone, a terminal i, previously assigned to hub k, is
now assigned to another hub l. To compute the cost of the new assignment:

• Only the assignment cost of i needs to be updated from the total
assignment cost: Cik is subtracted from the total cost and Cil is added.

• The cost of the backbone edges also need to be recomputed. Let
i ∈ Ak. We try to assign i to another hub l in order to get a cost
reduction. As in Npairs, given a backbone edge {p, q}, the values of
z
′
pq and z

′
qp to obtain T

′
pq are computed as follows:

– If p 6= k, l and q 6= k, l, the traffics through backbone edge {p, q}
do not change, z

′
pq = zpq and z

′
qp = zqp.

– If p = k or q = k, since hub k looses its assigned node i (suppose
p = k),

z
′
pq = zpq −

∑
s∈Aq

tis and z
′
qp = zqp −

∑
s∈Aq

tsi.

– If p = l or q = l, since node i is assigned now to hub l (suppose
p = l),

z
′
pq = zpq +

∑
s∈Aq

tis and z
′
qp = zqp +

∑
s∈Aq

tsi.

– If p = k and q = l,

z
′
pq = zpq−

∑
s∈Al

tis+
∑

s∈Ak\{i}

tsi and z
′
qp = zqp−

∑
s∈Al

tsi+
∑

s∈Ak\{i}

tis.

As in Npairs, from the new traffics T
′
pq we compute the cost of the

copies needed of each backbone edge. Again, the exchange is done
only if the new cost is lower than the cost of the current solution.

Special solutions

Throughout this study we have been able to identify, from time to time, two
kinds of special solutions regarding the number of hubs installed: solutions
where there is only one hub and all nodes are assigned to it, and solutions
where all nodes are hubs and each node is assigned to itself. We call
them special solutions because in both cases the assignment of terminals to
hubs cannot be modified. This makes useless the previously described local
search procedures.

Once the whole process of destruction-construction ends, we check if
such special cases correspond to feasible solutions with which compare the
best solution found during the strategic oscillation process.

13

5 Computational experiments

In this section we describe the computational experiments performed to
test the efficiency of the proposed strategic oscillation metaheuristic. The
algorithm has been implemented in C using Mingw 4.6 compiler. The math-
ematical programming formulation described in Section 2 has been solved
using Cplex 12.5, the most recent version of Cplex when the experiments
were carried out. The results reported in this section were obtained with
an Intel i7-3770 at 3.40GHz and 16GB of RAM computer running Windows
7 – 64 bits. The metrics that we use to measure the performance of the
algorithms are:

• Value: Average objective value of the best solutions obtained with the
algorithm on the instances considered in the experiment.

• Dev: Average percentage deviation from the best-known solution (or
from the optimal solution, if available).

• Best: Number of instances for which a procedure is able to find the
best-known solution.

• CPU: Average computing time in seconds employed by the algorithm.

5.1 Test instances

To test the performance of the proposed metaheuristic, we have generated
a new set of 118 instances from two well-known instances in the ORLIB1

[2] and from another instance recently proposed in [14]. Unfortunately, it
has not been possible to obtain the original instances used by Yaman and
Carello [18]. A detailed description of our instances follows:

1. The CAB (Civil Aviation Board) data set, based on airline passenger
flows between some important cities in the United States. It consists
of a data file, presented by O’Kelly in 1987 [13], with the distances
and flows of a 25 nodes network. From this original file, a total of 15
instances with 10, 15, 20 and 25 nodes have been generated.

2. The AP (Australian Post) data set, based on real data from the Aus-
tralian postal service and presented by Ernst and Krishnamoorthy in
1996 [4]. The size of the original data file is 200 nodes. Smaller in-
stances can be obtained using a code from ORLIB. As with CAB, we
have generated different instances from the original file. We have ex-
tended this set of instances by generating 60 instances with n ranging
from 10 to 200. Regarding the flows between nodes, these instances
do not have symmetric flows (i.e., for a given pair of nodes i and j,

1ORLIB website http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

14

tij is not necessarily equal to tji). Moreover, in the original instance
some flows from one node to itself are positive (i.e., tii > 0 for a given
i). We have modified them in such a way tii = 0, ∀i, in order to adapt
the data to the model definition.

3. The USA423 data set. This family of instances was introduced by
Peiró, Corberán and Mart́ı in [14], and is based on real airline data.
It consists of a data file concerning 423 cities in the United States,
where real distances and passenger flows for an accumulated 3 months
period are considered. From the original data, 43 instances have been
generated with n ranging from 10 to 185.

Each original instance includes the traffic and the traveling cost per unit
matrices. From these two, we have generated the matrices tij , Cij , Rkl, and
the capacity values Qa, Qb, Qh. While the tij traffic matrix is the original
one, matrices Cij and Rkl have been created to incorporate the assignment,
installation, and inter-hub transportation costs.

The experiments are divided into two main blocks. The first block (Sec-
tions 5.2 and 5.3) is devoted to study the behavior of the components of the
solution procedure, as well as to determine the best values for the search
parameters. The second block of experiments (Sections 5.4 and 5.5) has the
goal of comparing our procedure with the best published methods. To be
able to test the effectiveness of our strategies, the first set of experiments is
performed on a subset of instances to test how well our choices generalize
to the entire set of problems.

From the 118 instances derived from the CAB, AP and USA423 data
sets, the tuning experiments are performed on the following subset of 36
instances: 3 instances from the CAB set with 15 ≤ n ≤ 25, 21 instances
with 10 ≤ n ≤ 195 from the AP set, and 12 instances with 20 ≤ n ≤ 150
from USA423. We refer to these 36 instances as the training set and to the
remaining 82 instances as the testing set. On the other hand, the instances
have been classified as small (10 ≤ n ≤ 50), medium (55 ≤ n ≤ 100),
and large (105 ≤ n ≤ 200). The entire set of instances is available at
www.optsicom.es.

5.2 Parameter calibration

We initially perform several experiments to study the constructive-destructive
method described in Section 4 in terms of solution quality and diversifica-
tion power. In all the preliminary experiments we executed the strategic
oscillation method for 100 global iterations (η = 100).

We first compare in SO1 the Random Walk and the Replace if Better
acceptance criteria for different values of δ. The results are shown in Table
1, in which the average percentage deviation of the solution values with
respect to the best value obtained in this experiment are given. As can be

15

seen, the best results are obtained with the values δ = 40% and δ = 50%
for the first and second criteria, respectively. In order to compare both
sets of results we have performed two well-known non-parametric tests for
pairwise comparisons: the Wilcoxon test and the Sign test. On the one
hand, the Wilcoxon test answers the question: Do the two samples (the
solutions obtained with both methods in our case) represent two different
populations? The resulting probability value of 0.001 indicates that the
compared values come from different methods. On the other hand, the Sign
test computes the number of instances on which an algorithm beats the other
one. The resulting probability value of 0.004 indicates that the Replace if
Better criterion is significantly better than Random Walk.

Average deviations for different δ values

10% 20% 30% 40% 50% 60% 70% 80%

Random Walk

small 10.6% 11.0% 7.2% 8.1% 6.6% 9.4% 9.2% 9.8%
medium 9.8% 12.6% 12.2% 12.9% 13.2% 13.2% 14.9% 14.1%

large 14.2% 12.1% 13.7% 11.3% 12.6% 13.3% 11.9% 13.3%
average 11.5% 11.9% 11.0% 10.7% 10.8% 12.0% 12.0% 12.4%

Replace if Better

small 17.5% 14.3% 12.4% 8.0% 7.3% 7.4% 9.2% 13.5%
medium 13.2% 5.5% 2.4% 4.3% 6.7% 9.7% 10.3% 10.3%

large 14.4% 13.4% 11.7% 10.8% 6.5% 9.0% 10.5% 9.6%
average 15.0% 11.1% 8.8% 7.7% 6.8% 8.7% 10.0% 11.1%

Table 1: Comparison of the two acceptance criteria for different values of δ

In a second experiment, the effect of parameter γ on the SO1 method
is studied. According to the conclusion of the previous experiment, the
Replace if Better strategy is the one selected. Table 2 shows the average
percentage deviations obtained for all the γ values tested. Additionally,
we tested a random-based variant, labeled as Rand, in which an integer
random number is uniformly selected between 1 and 9 at each iteration.
The results in this table clearly show that this last variant outperforms the
others. Therefore, from now on, this variant (SO1 with Replace if Better
strategy, δ = 50% and random selection of γ), denoted SO1 for short, is the
one selected for the rest of experiments.

Average deviations for different γ values

1 3 5 7 9 Rand
small 4.4% 4.4% 4.4% 4.4% 4.4% 0.4%

medium 3.1% 3.1% 3.1% 3.1% 3.1% 2.2%
large 2.4% 2.4% 2.4% 2.4% 2.4% 1.2%

average 3.3% 3.3% 3.3% 3.3% 3.3% 1.3%

Table 2: Results obtained for different values of γ

The effectiveness of generating multiple solutions in our strategic oscil-

16

Constructions Improvements

Figure 2: Boxplot of 100 iterations for instance 150-1000-69-60-80-1-69-USA

lation method has also been tested, since this algorithm relies on obtaining
good and diverse solutions to serve as the starting point for the local search
procedures. Figure 2 shows the boxplot of the SO1 method with and without
the local search on a representative instance (150-1000-69-60-80-1-69-USA).
The left boxplot shows the values of the 100 solutions found without applying
the local search procedures, while the right one shows the results obtained
after applying them. This plot clearly shows that different solutions are
obtained in most of the runs. As expected, the variant with the local search
obtains better solutions, as compared with the one without improvements,
but with lower dispersion.

Another experiment was carried out to calibrate the value of the τ pa-
rameter in SO2. Since we did not observe any significant differences among
the tested values, we do not report here the obtained results. A default
value for parameter τ of 4 has been chosen.

5.3 Algorithm designs

In this section we compare the two strategic oscillation variants according
to the memory structure used. SO1 applies g

′
(h) for hub selection, while

SO2 uses g(h) and implements a tabu list. The results obtained in this
experiment are summarized in Table 3, where we report the number of best
solutions found, out of 36, by each variant, as well as the average computing
time used. This table shows that SO1 obtains better solutions than SO2.
In particular, SO1 is able to match all the best known solutions, while SO2

17

only obtains 11 out of 36 instances, which represents an average percentage
deviation of 9.2%. As a result of this experiment, from now on we select
SO1 and simply denote it by SO.

SO1 SO2

Dev # Best CPU Dev # Best CPU

small 0.0% 12 0.32 9.2% 4 0.24
medium 0.0% 12 6.57 13.2% 1 3.41

large 0.0% 12 181.65 5.3% 6 151.56

summary 0.0% 36 62.85 9.2% 11 51.74

Table 3: Comparison between SO1 and SO2

5.4 Comparison with optimal values

In Section 2 we have described the formulation proposed in [18] for the
CSHLPMLC, which contains quadratic constraints. We used Cplex to solve
30 instances with n ranging from 10 to 30, and only 11 instances could be
solved to optimality. As far as we know, solving such an instance depends
on the properties of its constraint matrix. The results obtained with Cplex
for the optimally solved instances are reported in Table 4, as well as those
obtained with the SO metaheuristic. In particular, it shows the average
percentage deviation with respect to the optimal solution obtained with
Cplex and the computing time used by each method.

Table 4 shows that the SO method is able to obtain the optimal solution
in most cases (9 out of 11). In fact, for the only two instances in which
SO was not able to find the optima, we allowed the algorithm to run for
200 iterations, but the results did not improve. As expected, Cplex required
much more computing time than SO to obtain the optimal value. It is worth
mentioning that Cplex used the total number of cores of the CPU (8 cores
in our case) compared to only a few used by the SO algorithm.

5.5 Comparison with a tabu search algorithm

Since it was not possible to compare the SO procedure with Cplex on larger
instances, in order to test its behavior we have compared our algorithm with
the tabu search algorithm (PrevTS) described in [18]. In this section we use
the instances in the training and testing sets. Table 5 shows the average
percentage deviation with respect to the best solution known (Dev), the
number of best solutions found (# Best), and the computing time (CPU)
of both methods on the 36 training set instances.

Table 5 clearly shows that our SO method (which incorporates tabu
search memory structures) outperforms the previously proposed tabu search

18

Cplex SO

Value CPU Dev CPU

A1H 72710 24.02 4.0% 0.13
A2H 105477 254.30 0.0% 0.02
A3H 77516 23.69 20.7% 0.13
A4H 188200 139.00 0.0% 0.02
B1H 45636 75.80 0.0% 0.13
B2H 23818 4.66 0.0% 0.12
B3H 51387 31.08 0.0% 1.54
B4H 25410 4.71 0.0% 0.03
C1H 43526 4297.98 0.0% 0.29
C2H 43505 3304.48 0.0% 0.28
C3H 57905 33891.33 0.0% 0.30

Table 4: Comparison between Cplex and SO on small-size instances

PrevTS SO

Dev # Best CPU Dev # Best CPU

small 4.87% 5 1.44 1.28% 7 0.33
medium 4.68% 1 18.57 0.52% 11 6.61

large 16.79% 2 240.50 1.33% 10 154.31

summary 8.78% 8 86.84 1.04% 28 53.75

Table 5: Comparison between PrevTS and SO on the training set instances

19

approach. In particular, SO matches 28 out of 36 instances, while PrevTs
is only able to match 8 instances. On the other hand, SO exhibits a 1.04%
average percent deviation and PrevTS 8.78% achieved in 53.75 and 86.84
seconds, respectively. It must be noted that, as mentioned in [18], the
objective of the authors when developing PrevTS was to obtain relatively
good initial solutions for their exact method, while our SO has been designed
to obtain high quality solutions in short running times.

We compare now the performance of SO and PrevTS on the testing
set, to measure the ability of our algorithm (SO) to target instances not
included in the training set. In particular, we consider 82 instances classified
according to their size into small, medium and large. Note that the large
set includes instances with n = 200. Table 6 shows the results of this
experiment in terms of the average deviation with respect to the best known
value (Dev) and number of instances in which each method is able to match
this best value (# Best). This table shows that SO obtains better results
than PrevTS in significantly lower running times. Specifically, PrevTS has
an average deviation of 8.18% obtained in 379.33 seconds, while SO has an
average deviation of 1.23% obtained in 78.82 seconds. Additionally, we have
performed the Sign and Wilcoxon test with the results of this experiment.
The probability values of 0.00 obtained in both tests confirm the superiority
of SO. Tables 7, 8 and 9 in the Appendix show the individual results of this
experiment, to provide the reader with a detailed information for further
experimentation.

In our last experiment, we compare SO and PrevTs over the time. Figure
3 shows the evolution throughout the search of the best value obtained with
each method on a representative instance. The search profile depicted in
this figure shows that SO (dashed line) obtains better solutions than PrevTS
from the very beginning of the search. On the other hand, the PrevTS needs
some time to reach relatively good solutions, and after 200 seconds, it seems
to stagnate, while SO still exhibits a marginal improvement.

PrevTS SO

Dev # Best CPU Dev # Best CPU

small 8.26% 7 1.27 0.25% 20 0.33
medium 5.95% 5 88.15 1.23% 20 12.33

large 9.86% 7 902.18 1.99% 29 192.09

summary 8.18% 19 379.33 1.23% 69 78.82

Table 6: Comparison between PrevTS and SO on the testing set instances

20

0 50 100 150 200 250 300

800

1000

1200

1400

CPU time

Figure 3: Search Profile for SO (dashed line) and PrevTs (plain line)

6 Conclusions and future research

We have proposed a new metaheuristic based on Strategic Oscillation for
the Capacitated Single assignment Hub Location Problem with Modular
Link Capacities. This problem was introduced by Yaman and Carello [18]
as an interesting variant of the classical hub location problem in which the
cost of using edges is not linear but stepwise, and the hubs are restricted
in terms of transit capacity rather than in the incoming traffic. Our pro-
posed method incorporates several designs for constructive and destructive
algorithms making use of tabu search memory structures together with as-
sociated local search procedures. The computational experiments show that
our algorithm is able to find high-quality solutions in short computing times,
and outperforms a previously published tabu search procedure.

We envision that future enhancements of our method may be possible
by employing additional strategies derived from the strategic oscillation and
tabu search methodology, such as replacing the recourse to randomization
with more strategic elements (as by removing hubs strategically using tabu
search memory in the destructive phases), and joining recency memory and
frequency memory instead of treating them independently.

Acknowledgements

This work was supported by the Spanish Ministerio de Economı́a y Com-
petitividad (projects TIN-2012-35632-C02, MTM-2012-36163-C06-02, and
grant BES-2013-064245) and by the Generalitat Valenciana (project Prom-
eteo 2013/049). Authors want to thank Hande Yaman for providing us some
data files for the test problems in Table 4.

21

References

[1] S. Alumur and B. Y. Kara. Network hub location problems: The state
of the art. European Journal of Operational Research, 190(1):1–21,
2008.

[2] J. E. Beasley. OR-library: distributing test problems by electronic mail.
Journal of the Operational Research Society, 41(11):1069–1072, 1990.

[3] J. F. Campbell and M. E. O’Kelly. Twenty-five years of hub location
research. Transportation Science, 46(2):153–169, 2012.

[4] A. T. Ernst and M. Krishnamoorthy. Efficient algorithms for the un-
capacitated single allocation p-hub median problem. Location Science,
4(3):139–154, 1996.

[5] L. Fanjul-Peyroa and R. Ruiz. Iterated greedy local search methods for
unrelated parallel machine scheduling. European Journal of Operational
Research, 207(1):55–69, 2010.

[6] R. Z. Farahani, M. Hekmatfar, A. B. Arabani, and E. Nikbakhsh.
Hub location problems: A review of models, classification, solution
techniques, and applications. Computers & Industrial Engineering,
64(4):1096–1109, 2013.

[7] F. Glover. Heuristics for integer programming using surrogate con-
straints. Decision Sciences, 8(1):156–166, 1977.

[8] F. Glover and M. Laguna. Tabu search. Kluwer, Norwell, MA, 1997.

[9] A. Ilić, D. Urošević, J. Brimberg, and N. Mladenović. A general vari-
able neighborhood search for solving the uncapacitated single alloca-
tion p-hub median problem. European Journal of Operational Research,
206(2):289–300, 2010.

[10] L.W. Jacobs and M.J. Brusco. A local-search heuristic for large set-
covering problems. Naval Research Logistics, 42(7):1129–1140, 1995.

[11] M. Lozano, D. Molina, and C. Garćıa-Mart́ınez. Iterated greedy for
the maximum diversity problem. European Journal of Operational Re-
search, 214(1):31–38, 2011.

[12] M. T. Melo, S. Nickel, and F. Saldanha da Gama. Facility location and
supply chain management - a review. European Journal of Operational
Research, 196(2):401–412, 2009.

[13] M. E. O’Kelly. A quadratic integer program for the location of interact-
ing hub facilities. European Journal of Operational Research, 32(3):393–
404, 1987.

22

[14] J. Peiró, A. Corberán, and R. Mart́ı. Grasp for the uncapacitated r-
allocation p-hub median problem. Computers & Operations Research,
43(1):50–60, 2014.

[15] R. Ruiz and T. Stützle. An iterated greedy heuristic for the se-
quence dependent setup times flowshop problem with makespan and
weighted tardiness objectives. European Journal of Operational Re-
search, 187(3):1143–1159, 2008.

[16] R. Ruiz and T. Stützle. A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European Journal of
Operational Research, 177(3):2033–2049, 2008.

[17] H. Yaman. Concentrator Location in Telecommunication Networks.
PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, Dec 2002.

[18] H. Yaman and G. Carello. Solving the hub location problem with mod-
ular link capacities. Computers & Operations Research, 32(12):3227–
3245, 2005.

[19] K.C. Ying and H.M. Cheng. Dynamic parallel machine scheduling with
sequence-dependent setup times using an iterated greedy heuristic. Ex-
pert Systems with Applications, 37(4):2848–2852, 2010.

23

Appendix

PrevTS SO

Type Instance Value Dev CPU Value Dev CPU

Small

10 700 50 60 8 1 60CAB 243854 0.00% 0.02 246501 1.09% 0.00
10 700 69 40 8 1 50CAB 246610 0.00% 0.02 246610 0.00% 0.00
10 800 60 60 6 1 69AP 283138 19.50% 0.03 236944 0.00% 0.00

10 800 60 60 6 1 69CAB 238144 0.00% 0.02 238144 0.00% 0.01
10 800 60 80 8 1 80CAB 240872 0.00% 0.02 242976 0.87% 0.01
15 600 80 89 6 1 69CAB 291191 0.00% 0.09 291695 0.17% 0.02
20 700 50 60 8 1 60AP 405786 1.15% 0.24 401162 0.00% 0.06

20 700 50 60 8 1 60CAB 205817 16.93% 0.21 176011 0.00% 0.05
20 700 50 60 8 1 60USA 137854 7.31% 0.13 128464 0.00% 0.05
20 700 69 40 8 1 50AP 432081 1.34% 0.32 426347 0.00% 0.05

20 700 69 40 8 1 50CAB 214323 17.11% 0.18 183015 0.00% 0.04
20 800 60 60 6 1 69CAB 191608 15.06% 0.21 166528 0.00% 0.04
20 800 60 80 8 1 80AP 385461 4.50% 0.56 368864 0.00% 0.04

20 800 60 80 8 1 80CAB 197141 14.23% 0.23 172585 0.00% 0.03
25 600 80 60 6 1 40CAB 245429 16.07% 0.46 211448 0.00% 0.12
25 600 80 89 8 1 60CAB 242246 15.53% 0.49 209684 0.00% 0.12
25 650 69 69 6 1 70CAB 221333 19.05% 0.83 185921 0.00% 0.15
30 700 69 40 8 1 50USA 246833 29.63% 0.77 190419 0.00% 0.12
35 600 80 89 8 1 60AP 478595 0.00% 0.27 491376 2.67% 0.45

35 600 80 89 8 1 60USA 232360 11.32% 1.30 208733 0.00% 0.48
40 700 80 50 8 1 69USA 330583 6.91% 3.13 309213 0.00% 0.85
45 700 69 40 8 1 50AP 611473 0.00% 2.45 621057 1.57% 1.21

45 700 69 40 8 1 50USA 339338 0.35% 3.29 338168 0.00% 0.97
50 700 69 40 8 1 50AP 669803 3.97% 9.06 644246 0.00% 1.51

50 700 80 50 8 1 69USA 374127 6.45% 7.43 351456 0.00% 1.86

Table 7: SO and PrevTS on small size instances of the testing set

24

PrevTS SO

Type Instance Value Dev CPU Value Dev CPU

Medium

55 500 60 69 60 1 50AP 525642 0.00% 8.65 581649 10.65% 2.80
55 500 60 69 60 1 50USA 378822 12.96% 9.63 335367 0.00% 2.54
55 800 69 50 80 1 60AP 609771 0.00% 7.06 657315 7.80% 2.87
60 500 60 69 60 1 50AP 615449 7.57% 5.90 572141 0.00% 3.86

60 600 60 69 60 1 69USA 391313 20.28% 18.07 325348 0.00% 3.53
60 800 69 50 80 1 60AP 702917 3.50% 4.94 679162 0.00% 3.55

60 800 69 50 80 1 60USA 424505 14.63% 18.86 370335 0.00% 3.59
65 500 60 69 60 1 50AP 665600 7.39% 12.27 619823 0.00% 6.18

65 800 69 50 80 1 60USA 402210 0.00% 18.98 419754 4.36% 5.37
70 600 60 69 60 1 69AP 658758 2.85% 22.66 640480 0.00% 8.38

70 600 60 69 60 1 69USA 428069 18.73% 38.43 360551 0.00% 6.79
70 800 69 50 80 1 60AP 728949 0.00% 27.69 782537 7.35% 8.13

75 600 60 69 60 1 69USA 568456 14.30% 77.59 497343 0.00% 9.64
75 800 69 50 80 1 60AP 868528 2.23% 36.96 849573 0.00% 9.85
80 500 60 69 60 1 50AP 780236 0.88% 58.75 773396 0.00% 14.69

80 500 60 69 60 1 50USA 724155 11.89% 92.88 647214 0.00% 13.57
80 800 69 50 80 1 60USA 690769 1.06% 94.44 683508 0.00% 13.35
85 500 60 69 60 1 50AP 886289 5.40% 152.40 840859 0.00% 17.97
85 800 69 50 80 1 60AP 1003536 2.50% 96.61 979071 0.00% 19.00

90 500 60 69 60 1 50USA 904709 13.10% 277.96 799944 0.00% 19.81
90 600 60 69 60 1 69USA 742016 2.43% 166.94 724440 0.00% 18.76
95 500 60 69 60 1 50AP 972840 5.25% 68.41 924290 0.00% 29.08
95 600 60 69 60 1 69AP 859425 1.79% 86.81 844308 0.00% 31.30

95 600 60 69 60 1 69USA 723454 0.00% 284.44 727768 0.60% 23.02
100 500 60 69 60 1 50USA 877730 0.08% 516.37 877069 0.00% 30.66

Table 8: SO and PrevTS on medium size instances of the testing set

25

PrevTS SO

Type Instance Value Dev CPU Value Dev CPU

Large

110 600 60 69 60 1 69AP 1174251 17.70% 154.39 997699 0.00% 25.32
120 500 60 69 60 1 50AP 1349557 15.87% 113.15 1164724 0.00% 38.85
125 500 60 69 60 1 50AP 1498128 21.36% 208.45 1234498 0.00% 38.01
130 600 60 69 60 1 69AP 1426980 12.67% 145.97 1266488 0.00% 39.19

130 800 69 50 80 1 60USA 1663758 18.14% 537.61 1408324 0.00% 44.06
135 600 60 69 60 1 69AP 1610997 30.12% 263.48 1238055 0.00% 61.29

135 800 69 50 80 1 60USA 1584036 10.60% 4960.59 1432262 0.00% 53.01
140 500 60 69 60 1 50AP 1691066 12.60% 579.65 1501836 0.00% 60.31
140 800 69 50 80 1 60AP 2130072 24.93% 293.33 1705035 0.00% 66.37
145 800 69 50 80 1 60AP 2114457 25.49% 381.02 1684972 0.00% 73.90

145 800 69 50 80 1 60USA 715853 0.00% 227.14 715853 0.00% 109.78
150 800 69 50 80 1 60AP 2200307 21.93% 698.27 1804633 0.00% 92.54

150 900 69 60 80 1 89USA 584419 0.00% 272.34 584419 0.00% 134.87
155 1000 69 60 80 1 69USA 727403 1.04% 430.02 719931 0.00% 85.78

155 800 69 50 80 1 60AP 2049217 22.06% 1408.05 1678796 0.00% 112.21
160 800 69 50 80 1 60AP 749451 0.00% 221.53 961809 28.34% 160.21

165 1000 69 60 80 1 69USA 712118 4.70% 783.95 680178 0.00% 174.06
165 800 69 50 80 1 60USA 767748 4.45% 838.54 735012 0.00% 199.45
170 500 60 69 60 1 50AP 588784 0.00% 207.78 690343 17.25% 177.26

170 900 69 60 80 1 89USA 623614 0.00% 872.50 623614 0.00% 205.92
175 500 60 69 60 1 50AP 889474 3.78% 615.16 857100 0.00% 202.84
175 600 60 69 60 1 69AP 710911 5.20% 695.56 675774 0.00% 203.61

175 800 69 50 80 1 60USA 790880 0.67% 1358.05 785590 0.00% 255.05
175 900 69 60 80 1 89USA 652884 0.95% 1466.26 646769 0.00% 225.42
180 1000 69 60 80 1 69USA 754360 2.26% 1536.09 737662 0.00% 234.88

180 600 60 69 60 1 69AP 840658 6.74% 764.75 787587 0.00% 281.14
185 800 69 50 80 1 60AP 796454 0.00% 1595.31 941838 18.25% 377.93

185 900 69 60 80 1 89USA 615474 0.00% 576.85 615474 0.00% 288.66
190 800 69 50 80 1 60AP 1212471 15.76% 631.85 1047414 0.00% 436.89
195 600 60 69 60 1 69AP 759008 4.64% 1971.14 725377 0.00% 459.45
200 500 60 69 60 1 50AP 868511 25.27% 1641.45 693294 0.00% 619.96
200 800 69 50 80 1 60AP 815087 6.76% 2419.51 763466 0.00% 608.59

Table 9: SO and PrevTS on large size instances of the testing set

26

