
1

Chapter 8

SCATTER SEARCH

Manuel Laguna1 and Rafael Martí2
1Leeds School of Business, University of Colorado at Boulder, laguna@colorado.edu;
2Dpto. de Estadística e Investigación Operativa, Universidad de Valencia, rafael.marti@uv.es

Abstract: This chapter discusses the principles and foundations behind scatter search and
its application to the problem of training neural networks. Scatter search is an
evolutionary method that has been successfully applied to a wide array of hard
optimization problems. Scatter search constructs new trial solutions by
combining so-called reference solutions and employing strategic designs that
exploit context knowledge. In contrast to other evolutionary methods like
genetic algorithms, scatter search is founded on the premise that systematic
designs and methods for creating new solutions afford significant benefits
beyond those derived from recourse to randomization. Our implementation
goal is to create a combination of the 5 elements in the scatter search
methodology that proves effective when searching for optimal weight values
in a multilayer neural network. Through experimentation, we show that our
instantiation of scatter search can compete with the best-known training
algorithms in terms of training quality while keeping the computational effort
at a reasonable level.

Key words: Metaheuristics, neural networks, optimization

1. INTRODUCTION

Scatter search (SS) was first introduced by Glover (1977) as a heuristic
for integer programming. In the original proposal, solutions are purposely
(i.e., non-randomly) generated to take account of characteristics in various
parts of the solution space. The orientation of SS is to explore
systematically relative to a set of reference points that typically consist of
good solutions obtained by prior problem solving efforts, where the criteria

2 Chapter 8

for “good” are not restricted to objective function values. In this way, SS
shares with other evolutionary methods the philosophy of operating on a set
of solutions rather than on a single solution at a time. It also shares the
conceptual framework of embedding procedures for combining these
solutions to create new ones. However, the meaning of “combining” and the
way is carried out have a rather special origin and character in the SS setting.
A distinguishing feature of scatter search is its intimate association with the
Tabu Search (TS) metaheuristic (Glover and Laguna 1997), which explains
its adoption of the principle that search can benefit by incorporating special
forms of adaptive memory, along with procedures particularly designed for
exploiting that memory. In fact, scatter search and tabu search share
common origins, and initially SS was simply considered one of the
component processes available within the TS framework. However, most of
the TS literature and the preponderance of TS implementations have
disregarded this component, with the result that the merits of scatter search
did not come to be recognized until quite recently. Nowadays it is a well
established methodology within the metaheuristic community, although
general awareness of the procedure still lags behind that of other population-
based methods such as genetic algorithms and evolutionary strategies.

Artificial neural networks (ANNs) offer a general framework for
representing non-linear mappings from several input variables to several
output variables. They are built by tuning a set of parameters known as
weights, and can be considered as an extension of the multitude of
conventional mapping techniques discussed in the literature. While in
classification or recognition problems the outputs of a neural network are
categories, in prediction or approximation problems they are continuous
variables. Although this paper is focused on the prediction problem, most of
the key issues in the functionality of a neural network are common to both.

In this chapter we have considered the most commonly employed
architecture for prediction and classification: a multilayer feed-forward
network with a single hidden layer. A schematic representation of such a
network appears in Figure 1.

8. Scatter Search 3

1

2

j

n

1

k

m

o

w1

w2

wj
wn

wn+1

wk(n+1)
w(k-1)(n+1)+j

w(k-1)(n+1)+n

wm(n+1)w(m-1)(n+1)+n

wm(n+1)+1

wm(n+1)+k

wm(n+1)+m

wm(n+2)+1

1

2

j

n

1

k

m

o

w1

w2

wj
wn

wn+1

wk(n+1)
w(k-1)(n+1)+j

w(k-1)(n+1)+n

wm(n+1)w(m-1)(n+1)+n

wm(n+1)+1

wm(n+1)+k

wm(n+1)+m

wm(n+2)+1

Figure 8-1. Neural network with one hidden layer and one output

Note that the weights in the network depicted in Figure 1 are numbered
sequentially starting with the first input to the first hidden neuron.
Therefore, the weights for all the inputs to the first hidden neuron are w1 to
wn. The bias term for the first hidden neuron is wn+1.

In the process of training the neural network (supervised learning), the
problem is to find the values of the weights w that minimize the error across
a set of input/output pairs (patterns). This set is referred to as the training set
E. For a single output and input vector x, the error measure is typically the
root mean squared difference (RMSE) between the predicted output p(x,w)
and the actual output value f(x) for all the elements x in E; therefore, the
training is an unconstrained nonlinear optimization problem, where the
decision variables are the weights and the objective is to reduce the training
error:

E

wxpxf
wEerrorMin Ex

w

∑
∈

−
=

2)),()((
),(

In the remainder of the chapter, we first introduce in Section 2 the scatter
search methodology, and then describe in Section 3 the SS method by
Laguna and Martí (2000) for the neural network training. Section 4 is
devoted to the computational experiments and the chapter finishes with
relevant conclusions.

4 Chapter 8

2. SCATTER SEARCH METHODOLOGY

Scatter Search derives its foundations from earlier strategies for
combining decision rules and constraints. Historically, the antecedent
strategies for combining decision rules were introduced in the context of
scheduling methods to obtain improved local decision rules for job shop
scheduling problems (Glover, 1963). New rules were generated by creating
numerically weighted combinations of existing rules, suitably restructured so
that their evaluations embodied a common metric.

The scatter search methodology is very flexible, since each of its
elements can be implemented in a variety of ways and degrees of
sophistication. In this section we give a basic design to implement scatter
search based on the “five methods” given in the well-known template
(Glover 1998). The advanced features of scatter search are related to the
way these five methods are implemented. That is, the sophistication comes
from the implementation of the SS methods instead of the decision to
include or exclude some elements. An extensive description of advanced
designs can be found in Laguna and Martí (2003) and the integration of
additional elements with tabu search memory is treated in Glover (2004).

The fact that the mechanisms within scatter search are not restricted to a
single uniform design allows the exploration of strategic possibilities that
may prove effective in a particular implementation. These observations and
principles lead to the following “five-method template” for implementing
scatter search.

1. A Diversification Generation Method to generate a collection of diverse

trial solutions, using an arbitrary trial solution (or seed solution) as an
input.

2. An Improvement Method to transform a trial solution into one or more
enhanced trial solutions. (Neither the input nor the output solutions are
required to be feasible, though the output solutions will more usually be
expected to be so. If no improvement of the input trial solution results,
the “enhanced” solution is considered to be the same as the input
solution.)

3. A Reference Set Update Method to build and maintain a reference set
consisting of the b “best” solutions found (where the value of b is
typically small, e.g., no more than 20), organized to provide efficient
accessing by other parts of the method. Solutions gain membership to
the reference set according to their quality or their diversity.

4. A Subset Generation Method to operate on the reference set, to produce a
subset of its solutions as a basis for creating combined solutions.

8. Scatter Search 5

5. A Solution Combination Method to transform a given subset of solutions

produced by the Subset Generation Method into one or more combined
solution vectors.

The Diversification Generation Method is used to build a large set P of

diverse solutions. The size of P (PSize) is typically at least 10 times the size
of RefSet. The initial reference set is built according to the Reference Set
Update Method. It could consist of selecting b distinct and maximally
diverse solutions from P.

The reference set, RefSet, is a collection of both high quality solutions
and diverse solutions that are used to generate new solutions by way of
applying the Combination Method. We can use a simple mechanism to
construct an initial reference set and then update it during the search. The
size of the reference set is denoted by b = b1 + b2 = |RefSet|. The
construction of the initial reference set starts with the selection of the best b1
solutions from P. These solutions are added to RefSet and deleted from P.
For each solution in P-RefSet, the minimum of the distances to the solutions
in RefSet is computed. Then, the solution with the maximum of these
minimum distances is selected. This solution is added to RefSet and deleted
from P and the minimum distances are updated. The process is repeated b2
times, where b2 = b – b1. The resulting reference set has b1 high quality
solutions and b2 diverse solutions.

Solutions in RefSet are ordered according to quality, where the best
solution is the first one in the list. The simplest form of the Subset
Generation Method consists of generating all pairs of reference solutions.
That is, the method would focus on subsets of size 2 resulting in (b2-b)/2 of
them when all solutions in the reference set are new (that is, they have not
been combined). After the first iteration, the number of subsets generated
depends on the number of new solutions admitted to the RefSet. The subsets
are put in a list and then are selected one at a time in lexicographical order to
apply the Solution Combination Method that generates one or more trial
solutions. These trial solutions are subjected to the Improvement Method.

The Reference Set Update Method is applied once again. A typical and
quite simple form of the application of this method is the so-called static
update. Trial solutions that are constructed as combination of reference
solutions are placed in a solution pool, denoted by Pool. After the
application of both the Combination Method and the Improvement Method,
the Pool is full and the reference set is updated. The new reference set
consists of the best b solutions from the solutions in the current reference set
and the solutions in the pool, i.e., the update reference set contains the best b
solutions in RefSet ∪ Pool.

6 Chapter 8

If RefSet changes after the application of the Reference Set Update
Method a flag indicates that at least one new solution has been inserted in
the reference set. The procedure terminates after all subsets generated
within the current iteration are subjected to the Combination Method and
none of the improved trial solutions are admitted to RefSet under the rules of
the Reference Set Update Method.

2.1 Advanced Designs

In the basic design, the new solutions that become members of RefSet are
not combined until all eligible pairs are subjected to the Combination
Method. The new reference set is built with the best solutions in the union
of Pool and the solutions currently in RefSet. The alternative to this static
update is the Dynamic Update strategy, which applies the Combination
Method to new solutions in a manner that combines new solutions faster
than in the basic design. That is, if a new solution is admitted to the
reference set, the goal is to allow this new solution to be subjected to the
Combination Method as quickly as possible. Instead of waiting until all the
combinations have been performed to update the reference set, if a new trial
solution warrants admission in the reference set, the set is immediately
updated before the next combination is performed. Therefore, there is no
need for an intermediate pool in this design, since solutions are either
discarded or become part of the RefSet as soon as they are generated.

RefSet Rebuilding is another advanced design that is triggered when no
new trial solutions are admitted to the reference set. This update adds a
mechanism to partially rebuild the reference set when the Combination and
Improvement Methods do not provide solutions of sufficient quality to
displace current reference solutions. The RefSet is partially rebuilt with a
diversification update that works as follows and assumes that the size of the
reference set is b = b1 + b2. Solutions bb xx ,,11 K+ are deleted from RefSet.
The Diversification Generation Method is reinitialized considering that the
goal is to generate solutions that are diverse with respect to the reference
solutions 1,,1 bxx K . Then, the Diversification Generation Method is used to
construct a set P of new solutions. The b2 solutions bb xx ,,11 K+ in RefSet
are sequentially selected from P with the criterion of maximizing the
diversity. It is usually implemented with a distance measure defined in the
context of the problem being solved. Then, maximum diversity is achieved
by maximizing the minimum distance. The max-min criterion, which is part
of the Reference Set Update Method, is applied with respect to solutions

1,,1 bxx K when selecting solution 11+bx , then it is applied with respect to
solutions 11 1,, +bxx K when selecting solution 21+bx , and so on.

8. Scatter Search 7

Solution Combination Methods in scatter search typically are not limited
to combining just two solutions and therefore the Subset Generation
Method in its more general form consists of creating subsets of different
sizes. The scatter search methodology assures that the set of combined
solutions may be produced in its entirety at the point where the subsets of
reference solutions are created. Therefore, once a given subset is created,
there is no merit in creating it again. This creates a situation that differs
noticeably from those considered in the context of genetic algorithms, where
the combinations are typically determined by the spin of a roulette wheel.

The procedure for generating subsets of reference solutions uses a
strategy to expand pairs into subsets of larger size while controlling the total
number of subsets to be generated. In other words, the mechanism avoids
the extreme type of process that creates all the subsets of size 2, then all the
subsets of size 3, and so on until reaching the subsets of size b-1 and finally
the entire RefSet. This approach clearly would not be practical, considering
that there are 1013 subsets in a reference set of a typical size b = 10. Even
for a smaller reference set, combining all possible subsets is not effective
because many subsets will be almost identical. The following approach
selects representative subsets of different sizes by creating subset types:

– Subset Type 1: all 2-element subsets.
– Subset Type 2: 3-element subsets derived from the 2-element subsets by

augmenting each 2-element subset to include the best solution not in this
subset.

– Subset Type 3: 4-element subsets derived from the 3-element subsets by
augmenting each 3-element subset to include the best solutions not in this
subset.

– Subset Type 4: the subsets consisting of the best i elements, for i = 5 to b.

We point out that an earlier proposal for generating subsets of different

sizes using tabu search mechanisms, which apparently remains unexplored,
appears in Glover (1994).

3. THE TRAINING METHOD

In this section we describe Laguna and Martí (2000) adaptation of scatter
search to the neural network training problem. A pseudo-code of the
algorithm is outlined in Figure 2 in which we refer to w as a solution to the
training problem.

8 Chapter 8

Figure 8-2. Outline of training procedure

The procedure starts with the input and output data normalization. After
this normalization, an initial reference set (RefSet) of b solutions is created.
A set P of PSize solutions w (bounded between wlow and whigh) is built
with the following diversification method, based on a controlled
randomization scheme (Glover, Laguna and Martí, 2000). The range
(wlow, whigh) is subdivided into 4 sub-ranges of equal size. Then, a
solution w is constructed in two steps. First a sub-range is randomly
selected. The probability of selecting a sub-range is inversely proportional
to its frequency count. Then a value is randomly generated within the
selected sub-range. The number of times sub-range j has been chosen to
generate a value for wi is accumulated in the frequency counter freq(i, j).
The main goal of the diversification generator is to create solutions that are
diverse with respect to those solutions that have been already generated in
the past. That is, the frequency counts work as “seed solutions” from which
the diversification attempts to move away.

The reference set RefSet is filled with the best b/2 solutions in P to which
an improvement method is applied (see below). The RefSet is completed
with b/2 more solutions generated as perturbations of the first b/2. The
perturbation consists of multiplying each weight by 1 + U[a,b], where U[a,b]

8. Scatter Search 9

is the uniform distribution with parameters a and b. In step 2, the solutions
in RefSet are ordered according to quality, where the best solution is the first
one in the list. In step 3, the NewPairs set is constructed. NewPairs consists
of all the new pairs of solutions that can be obtained from RefSet, where a
“new pair” contains at least one new solution. Since all the solutions are
new in the initial RefSet, the initial NewPairs consists of (b2-b)/2 pairs. The
pairs in NewPairs are selected one at a time in lexicographical order to
create linear combinations in step 5. We consider the following three types
of linear combinations, where we assume that the reference solutions are

)(iw and)(jw , and r is a random number in the range (0, 1):

C1: dww i −=)(

C2: dww i +=)(
2

)()(ji wwrd −
=

C3: dww j +=)(

The following rules are used to generate solutions with these three types

of linear combinations:

– If i ≤ b/2 and j ≤ b/2 then 4 solutions are generated by applying C1 and
C3 once and C2 twice.

– If i ≤ b/2 and j > b/2 then 3 solutions are generated by applying C1, C2
and C3 once.

– If i > b/2 and j > b/2 then 2 solutions are generated by applying C2 once
and randomly choosing between applying C1 or C3.

The solutions created as linear combinations of solutions in the reference

set are added to the NewSolutions set. Once all combinations have been
made, the best b solutions in NewSolutions are subjected to the improvement
method in step 6. Each improved solution w is then tested for admission into
RefSet. If a newly created solution improves upon the worst solution
currently in RefSet, the new solution replaces the worst and RefSet is
reordered.

The procedure now intensifies the search around the best-known solution.
In step 7, the counter IntCount is increased and the best solution is copied to
a temporary memory location w. The solution is perturbed and the
improvement method is applied in step 8. The best solution is updated if the
perturbation plus improvement generates a better solution. When the best
solution is improved, the intensification count IntCount is reset. If IntLimit
intensification iterations are performed without improving the best solution,
the procedure abandons the intensification phase.

10 Chapter 8

Finally, steps 9 and 10 operate on the entire RefSet. Step 9 applies the
improvement method to the best b/2 solutions in RefSet and step 9 replaces
the worst b/2 solutions with perturbations of the best b/2. The training
procedure stops when the number of objective function evaluations
(NumEval) reaches the total allowed (TotalEval). Note that the evaluation of
the objective function g(w) consists of the calculation of the mean squared
error.

The SS procedure employs the well known Nelder and Mead (1965)
optimizer as an improvement method. Given a set of weights w, the Nelder
and Mead method starts by perturbing each weight to create an initial
simplex from which to begin the local search. We use the implementation of
the Nelder-Mead method in Press, et al. (1992) with the default parameters
for 500 iterations. Note that this improvement method is used in three
different situations during the search: (1) to improve upon the best b/2
solution in the initial RefSet, (2) to improve upon the b best solution that
result from the linear combinations, (3) to improve upon the perturbed
solutions generated during the intensification, and (3) to improve upon the
b/2 best solutions when rebuilding RefSet in steps 9 and 10.

4. COMPUTATIONAL EXPERIMENTS

For our computational testing, we implemented, in C, the classical Back-
Propagation method (BP), the extended tabu search method, ETS, of Sexton
et al. (1998) and the SS method described in the previous section (SS). We
run these three methods to approximate the 15 test functions introduced in
El-Fallahi and Martí (2003). This test set includes well known multimodal
functions such as the Six-Hump-Camelback, the Goldstein or the Schwefel
instances. After preliminary experimentation we set the number of hidden
neurons equal to 9 (and we keep this parameter fixed for all the functions).

The main goal in the design of an ANN is to obtain a model which makes
good predictions for new inputs (i.e. to provide a good generalization). The
standard way to measure how well this goal is accomplished consists of
introducing an additional set of points in the domain of f called the validation
set V. We assume that no point in V belongs to E (the training set) and f(x) is
known for all x ∈ V. Once the optimization has been performed and the
weights w* that minimize E have been set, the validation set V is presented to
the resulting network and the corresponding errors are computed
(error(T,w*)). The network must exhibit a good fit between the target f-
values and the output (prediction) in the training set and also in the
validation set. In our experiments, the training set consists of 200
observations with data randomly drawn from [-100, 100] for x1 and [-10,10]

8. Scatter Search 11

for x2. The validation set consists of 100 additional observations drawn from
the same uniform distributions.

Tables 1 and 2 report, respectively, the training and validation errors
obtained with the three methods when applied to the 15 problems
considered. In order to obtain statistically valid results, we ran 20 times each
method on each function and report the average and standard deviation of
the 20 runs (each run is limited to ten minutes). In all the cases, we have
considered the same training and validation sets.

Table 8-1. Training errors for three different training methods
Problem BP ETS SS

1 1.60 ± 0.26 0.04 ± 0.02 0.00 ± 0.00
2 8.32 ± 4.30 1.79 ± 0.78 0.05 ± 0.03
3 1.63 ± 0.21 0.34 ±0.03 0.4 ± 0.19
4 45.52 ± 7.82 17.66 ±6 0.2 ± 0.08
5 12.62 ± 3.87 18.98 ±5.26 0.27 ± 0.26
6 13.98 ± 1.58 53.28 ±3.94 1.98 ± 0.29
7 16.09 ± 5.80 63.26 ±1.18 0.55 ± 0.01
8 0.20 ± 0.06 0.01 ±0.00 0.07 ± 0.03
9 7.35E+09±1.07E+09 3.30E+09±8.44E+07 4.95E+04±5.01E+03

10 21.40 ± 1.49 22.22± 4.12 4.6 ± 0.22
11 5.28E+06±1.34E+06 4.17E+06±1.28E+05 1.03E+03±1.07E+02
12 107.95 ± 3.01 156.12±5.57 0.1 ± 0.05
13 3.93 ± 1.97 10.13 ± 3.25 0.02 ± 0.1
14 5.58E+0 ± 6.76E+03 4.44E+04±2.48E+03 3.95E+04±2.01E+03
15 2.88 ± 0.5 527.14±3.07 0.39± 0.02

Table 8-2. Validation errors for three different training methods
Problem BP ETS SS

1 1.77 ± 1.6 0.05 ± 0.02 0.00 ± 0.14
2 8.59 ± 3.94 2.13 ± 0.95 0.00 ± 0.12
3 1.68 ± 0.22 0.48 ± 0.05 0.44 ± 0.43
4 43.89 ± 9.86 21.71 ± 7.49 8.76 ± 26.13
5 14.30 ± 5.50 19.85 ± 6.19 1.06 ± 2.42
6 15.32 ± 0.87 51.54 ± 6.07 106.11 ± 221.11
7 21.56 ± 11.97 60.62 ± 5.31 52.04 ± 137.21
8 0.19 ± 0.06 0.04 ± 0.0 0.01 ± 0.02
9 1.22E+10±1.24E+04 7.03E+09±5.38E+08 3.3049E+10±5.04E+10

10 13.67 ± 0.02 16.59 ± 0.57 107.24 ± 192.39
11 4.13E+06±4.02E+03 6.51E+06±6.02E+05 5.70E+07±1.33E+08
12 111.17 ± 6.93 149.31 ± 7.22 0.03 ± 0.04
13 5.25 ± 2.56 10.32 ± 0.60 0.10 ± 0.70
14 5.64E+04±2.62E+03 4.33E+04±1.94E+03 1.30E+07± 1.30E+07
15 2.93 ± 0.53 554.68 ± 22.76 275.41±173.12

This experiment shows that none of the methods can effectively handle

problems 9, 11 and 14 within the run time considered. (We also ran the

12 Chapter 8

training methods in these three instances for about half an hour of CPU time
with no significant improvement). Therefore, we can say that in practice the
neural network configuration that we tested is not able to approximate these
functions.

Considering the average values over the 20 runs, Table 1 shows that the
SS method is able to obtain the best solutions with respect to the training
error in 13 instances, while the ETS method obtains 2 best solutions. Table
2 shows similar results, with SS obtaining 10 best solutions with respect to
the testing error and ETS obtaining 5 (including instances 9, 11 and 14).
The results of the BP method are quite acceptable considering its simplicity.

5. CONCLUSIONS

In this chapter we have described the implementation of scatter search for
training a single-layer feed-forward neural network. The focus of scatter
search leads to a number of implications associated with the design of
improved optimization procedures. These research opportunities carry with
them an emphasis on producing systematic and strategically designed rules,
rather than following the policy of relegating decisions to random choices, as
often is fashionable in evolutionary methods. Our goal was to develop a
training procedure to obtain neural networks capable of providing high-
quality predictions. Our experiments show that the scatter search
implementation reaches a prediction accuracy that in most cases is
acceptable. The experimentation also shows that the SS implementation
improves upon the results found with a recently developed tabu search
method.

ACKNOWLEDGMENTS

Research by Rafael Martí is partially supported by the Ministerio de
Educación y Ciencia (refs. TIN2004-20061-E and TIC2003-C05-01) and by
the Agencia Valenciana de Ciència i Tecnologia (ref. GRUPOS03 /189).

6. REFERENCES

El-Fallahi, A. and Martí, R., 2003. Tabu and Scatter Search for Training Neural Networks,
Computational Modeling and Problem Solving in the Networked World, Hemant K.
Bhargava and Non Ye (Eds.), Interfaces in Computer Science and Operations Research,
79-96. Kluwer Academic Publishers.

8. Scatter Search 13

Glover F., 1963. Parametric Combinations of Local Job Shop Rules. ONR Research

Memorandum no. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA.
Glover, F., 1977. Heuristics for Integer Programming Using Surrogate Constraints, Decision

Sciences, vol. 8, pp. 156-166.
Glover, F., 1994. Tabu Search for Nonlinear and Parametric Optimization (with Links to

Genetic Algorithms), Discrete Applied Mathematics, vol. 49, pp. 231-255.
Glover, F., 1998. A Template for Scatter Search and Path Relinking. In: Hao, J.-K., Lutton,

E., Ronald, E., Schoenauer, M., Snyers, D. (Eds.), Artificial Evolution, Lecture Notes in
Computer Science 1363, Springer, pp. 13-54.

Glover, F., 2004. Parametric Tabu Search for Mixed Integer Programming, Technical Report,
University of Colorado at Boulder (downloadable from http://spot.colorado.edu/
~glover/Recentpapers.html).

Glover, F. and Laguna, M., 1997. Tabu Search, Kluwer Academic Publishers, Boston.
Glover, F., Laguna, M. and Martí, R., 2000. Fundamentals of Scatter Search and Path

Relinking, Control and Cybernetics, vol. 29, no. 3, pp. 653-684.
Laguna, M. and Martí R., 2000. Neural Network Prediction in a System for Optimizing

Simulations, IIE Transaction, vol. 34, no. 3, pp. 273-282.
Laguna, M., Martí, R., 2003. Scatter Search – Methodology and Implementations in C,

Kluwer Academic Publishers, Boston.
Sexton, R. S., B. Alidaee, R. E. Dorsey and J. D. Johnson, 1998. Global Optimization for

Artificial Neural Networks: A Tabu search Application, European Journal of Operational
Research, vol. 106, pp. 570-584.

