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Abstract: This chapter discusses the principles and foundations behind scatter search and 
its application to the problem of training neural networks.  Scatter search is an 
evolutionary method that has been successfully applied to a wide array of hard 
optimization problems.  Scatter search constructs new trial solutions by 
combining so-called reference solutions and employing strategic designs that 
exploit context knowledge.  In contrast to other evolutionary methods like 
genetic algorithms, scatter search is founded on the premise that systematic 
designs and methods for creating new solutions afford significant benefits 
beyond those derived from recourse to randomization.  Our implementation 
goal is to create a combination of the 5 elements in the scatter search 
methodology that proves effective when searching for optimal weight values 
in a multilayer neural network.  Through experimentation, we show that our 
instantiation of scatter search can compete with the best-known training 
algorithms in terms of training quality while keeping the computational effort 
at a reasonable level. 
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1. INTRODUCTION 

Scatter search (SS) was first introduced by Glover (1977) as a heuristic 
for integer programming. In the original proposal, solutions are purposely 
(i.e., non-randomly) generated to take account of characteristics in various 
parts of the solution space.  The orientation of SS is to explore 
systematically relative to a set of reference points that typically consist of 
good solutions obtained by prior problem solving efforts, where the criteria 
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for “good” are not restricted to objective function values.  In this way, SS 
shares with other evolutionary methods the philosophy of operating on a set 
of solutions rather than on a single solution at a time.  It also shares the 
conceptual framework of embedding procedures for combining these 
solutions to create new ones.  However, the meaning of “combining” and the 
way is carried out have a rather special origin and character in the SS setting.  
A distinguishing feature of scatter search is its intimate association with the 
Tabu Search (TS) metaheuristic (Glover and Laguna 1997), which explains 
its adoption of the principle that search can benefit by incorporating special 
forms of adaptive memory, along with procedures particularly designed for 
exploiting that memory.  In fact, scatter search and tabu search share 
common origins, and initially SS was simply considered one of the 
component processes available within the TS framework.  However, most of 
the TS literature and the preponderance of TS implementations have 
disregarded this component, with the result that the merits of scatter search 
did not come to be recognized until quite recently.  Nowadays it is a well 
established methodology within the metaheuristic community, although 
general awareness of the procedure still lags behind that of other population-
based methods such as genetic algorithms and evolutionary strategies. 

Artificial neural networks (ANNs) offer a general framework for 
representing non-linear mappings from several input variables to several 
output variables.  They are built by tuning a set of parameters known as 
weights, and can be considered as an extension of the multitude of 
conventional mapping techniques discussed in the literature.  While in 
classification or recognition problems the outputs of a neural network are 
categories, in prediction or approximation problems they are continuous 
variables.  Although this paper is focused on the prediction problem, most of 
the key issues in the functionality of a neural network are common to both. 

In this chapter we have considered the most commonly employed 
architecture for prediction and classification: a multilayer feed-forward 
network with a single hidden layer.  A schematic representation of such a 
network appears in Figure 1. 
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Figure 8-1. Neural network with one hidden layer and one output 

Note that the weights in the network depicted in Figure 1 are numbered 
sequentially starting with the first input to the first hidden neuron.  
Therefore, the weights for all the inputs to the first hidden neuron are w1 to 
wn.  The bias term for the first hidden neuron is wn+1. 

In the process of training the neural network (supervised learning), the 
problem is to find the values of the weights w that minimize the error across 
a set of input/output pairs (patterns).  This set is referred to as the training set 
E.  For a single output and input vector x, the error measure is typically the 
root mean squared difference (RMSE) between the predicted output p(x,w) 
and the actual output value f(x) for all the elements x in E; therefore, the 
training is an unconstrained nonlinear optimization problem, where the 
decision variables are the weights and the objective is to reduce the training 
error: 
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In the remainder of the chapter, we first introduce in Section 2 the scatter 
search methodology, and then describe in Section 3 the SS method by 
Laguna and Martí (2000) for the neural network training.  Section 4 is 
devoted to the computational experiments and the chapter finishes with 
relevant conclusions. 
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2. SCATTER SEARCH METHODOLOGY 

Scatter Search derives its foundations from earlier strategies for 
combining decision rules and constraints.  Historically, the antecedent 
strategies for combining decision rules were introduced in the context of 
scheduling methods to obtain improved local decision rules for job shop 
scheduling problems (Glover, 1963).  New rules were generated by creating 
numerically weighted combinations of existing rules, suitably restructured so 
that their evaluations embodied a common metric. 

The scatter search methodology is very flexible, since each of its 
elements can be implemented in a variety of ways and degrees of 
sophistication.  In this section we give a basic design to implement scatter 
search based on the “five methods” given in the well-known template 
(Glover 1998).  The advanced features of scatter search are related to the 
way these five methods are implemented.  That is, the sophistication comes 
from the implementation of the SS methods instead of the decision to 
include or exclude some elements.  An extensive description of advanced 
designs can be found in Laguna and Martí (2003) and the integration of 
additional elements with tabu search memory is treated in Glover (2004).  

The fact that the mechanisms within scatter search are not restricted to a 
single uniform design allows the exploration of strategic possibilities that 
may prove effective in a particular implementation.  These observations and 
principles lead to the following “five-method template” for implementing 
scatter search. 

 
1. A Diversification Generation Method to generate a collection of diverse 

trial solutions, using an arbitrary trial solution (or seed solution) as an 
input. 

2. An Improvement Method to transform a trial solution into one or more 
enhanced trial solutions.  (Neither the input nor the output solutions are 
required to be feasible, though the output solutions will more usually be 
expected to be so.  If no improvement of the input trial solution results, 
the “enhanced” solution is considered to be the same as the input 
solution.) 

3. A Reference Set Update Method to build and maintain a reference set 
consisting of the b “best” solutions found (where the value of b is 
typically small, e.g., no more than 20), organized to provide efficient 
accessing by other parts of the method.  Solutions gain membership to 
the reference set according to their quality or their diversity. 

4. A Subset Generation Method to operate on the reference set, to produce a 
subset of its solutions as a basis for creating combined solutions. 
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5. A Solution Combination Method to transform a given subset of solutions 

produced by the Subset Generation Method into one or more combined 
solution vectors. 
 
The Diversification Generation Method is used to build a large set P of 

diverse solutions.  The size of P (PSize) is typically at least 10 times the size 
of RefSet.  The initial reference set is built according to the Reference Set 
Update Method.  It could consist of selecting b distinct and maximally 
diverse solutions from P. 

The reference set, RefSet, is a collection of both high quality solutions 
and diverse solutions that are used to generate new solutions by way of 
applying the Combination Method.  We can use a simple mechanism to 
construct an initial reference set and then update it during the search.  The 
size of the reference set is denoted by b = b1 + b2 = |RefSet|.  The 
construction of the initial reference set starts with the selection of the best b1 
solutions from P.  These solutions are added to RefSet and deleted from P.  
For each solution in P-RefSet, the minimum of the distances to the solutions 
in RefSet is computed.  Then, the solution with the maximum of these 
minimum distances is selected.  This solution is added to RefSet and deleted 
from P and the minimum distances are updated.  The process is repeated b2 
times, where b2 = b – b1.  The resulting reference set has b1 high quality 
solutions and b2 diverse solutions. 

Solutions in RefSet are ordered according to quality, where the best 
solution is the first one in the list.  The simplest form of the Subset 
Generation Method consists of generating all pairs of reference solutions.  
That is, the method would focus on subsets of size 2 resulting in (b2-b)/2 of 
them when all solutions in the reference set are new (that is, they have not 
been combined).  After the first iteration, the number of subsets generated 
depends on the number of new solutions admitted to the RefSet.  The subsets 
are put in a list and then are selected one at a time in lexicographical order to 
apply the Solution Combination Method that generates one or more trial 
solutions.  These trial solutions are subjected to the Improvement Method. 

The Reference Set Update Method is applied once again.  A typical and 
quite simple form of the application of this method is the so-called static 
update.  Trial solutions that are constructed as combination of reference 
solutions are placed in a solution pool, denoted by Pool.  After the 
application of both the Combination Method and the Improvement Method, 
the Pool is full and the reference set is updated.  The new reference set 
consists of the best b solutions from the solutions in the current reference set 
and the solutions in the pool, i.e., the update reference set contains the best b 
solutions in RefSet ∪ Pool. 
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If RefSet changes after the application of the Reference Set Update 
Method a flag indicates that at least one new solution has been inserted in 
the reference set.  The procedure terminates after all subsets generated 
within the current iteration are subjected to the Combination Method and 
none of the improved trial solutions are admitted to RefSet under the rules of 
the Reference Set Update Method. 

2.1 Advanced Designs 

In the basic design, the new solutions that become members of RefSet are 
not combined until all eligible pairs are subjected to the Combination 
Method.  The new reference set is built with the best solutions in the union 
of Pool and the solutions currently in RefSet.  The alternative to this static 
update is the Dynamic Update strategy, which applies the Combination 
Method to new solutions in a manner that combines new solutions faster 
than in the basic design.  That is, if a new solution is admitted to the 
reference set, the goal is to allow this new solution to be subjected to the 
Combination Method as quickly as possible.  Instead of waiting until all the 
combinations have been performed to update the reference set, if a new trial 
solution warrants admission in the reference set, the set is immediately 
updated before the next combination is performed.  Therefore, there is no 
need for an intermediate pool in this design, since solutions are either 
discarded or become part of the RefSet as soon as they are generated. 

RefSet Rebuilding is another advanced design that is triggered when no 
new trial solutions are admitted to the reference set.  This update adds a 
mechanism to partially rebuild the reference set when the Combination and 
Improvement Methods do not provide solutions of sufficient quality to 
displace current reference solutions.  The RefSet is partially rebuilt with a 
diversification update that works as follows and assumes that the size of the 
reference set is b = b1 + b2.  Solutions bb xx ,,11 K+  are deleted from RefSet.  
The Diversification Generation Method is reinitialized considering that the 
goal is to generate solutions that are diverse with respect to the reference 
solutions 1,,1 bxx K .  Then, the Diversification Generation Method is used to 
construct a set P of new solutions.  The b2 solutions bb xx ,,11 K+  in RefSet 
are sequentially selected from P with the criterion of maximizing the 
diversity.   It is usually implemented with a distance measure defined in the 
context of the problem being solved.  Then, maximum diversity is achieved 
by maximizing the minimum distance.  The max-min criterion, which is part 
of the Reference Set Update Method, is applied with respect to solutions 

1,,1 bxx K  when selecting solution 11+bx , then it is applied with respect to 
solutions 11 1,, +bxx K  when selecting solution 21+bx , and so on.  
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Solution Combination Methods in scatter search typically are not limited 
to combining just two solutions and therefore the Subset Generation 
Method in its more general form consists of creating subsets of different 
sizes.  The scatter search methodology assures that the set of combined 
solutions may be produced in its entirety at the point where the subsets of 
reference solutions are created.  Therefore, once a given subset is created, 
there is no merit in creating it again.  This creates a situation that differs 
noticeably from those considered in the context of genetic algorithms, where 
the combinations are typically determined by the spin of a roulette wheel.  

The procedure for generating subsets of reference solutions uses a 
strategy to expand pairs into subsets of larger size while controlling the total 
number of subsets to be generated.  In other words, the mechanism avoids 
the extreme type of process that creates all the subsets of size 2, then all the 
subsets of size 3, and so on until reaching the subsets of size b-1 and finally 
the entire RefSet.  This approach clearly would not be practical, considering 
that there are 1013 subsets in a reference set of a typical size b = 10.  Even 
for a smaller reference set, combining all possible subsets is not effective 
because many subsets will be almost identical.  The following approach 
selects representative subsets of different sizes by creating subset types:  

 
– Subset Type 1: all 2-element subsets. 
– Subset Type 2: 3-element subsets derived from the 2-element subsets by 

augmenting each 2-element subset to include the best solution not in this 
subset. 

– Subset Type 3: 4-element subsets derived from the 3-element subsets by 
augmenting each 3-element subset to include the best solutions not in this 
subset. 

– Subset Type 4: the subsets consisting of the best i elements, for i = 5 to b. 
 
We point out that an earlier proposal for generating subsets of different 

sizes using tabu search mechanisms, which apparently remains unexplored, 
appears in Glover (1994). 

3. THE TRAINING METHOD 

In this section we describe Laguna and Martí (2000) adaptation of scatter 
search to the neural network training problem. A pseudo-code of the 
algorithm is outlined in Figure 2 in which we refer to w as a solution to the 
training problem. 
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Figure 8-2. Outline of training procedure 

The procedure starts with the input and output data normalization.  After 
this normalization, an initial reference set (RefSet) of b solutions is created.  
A set P of PSize solutions w (bounded between wlow and whigh) is built 
with the following diversification method, based on a controlled 
randomization scheme (Glover, Laguna and Martí, 2000).  The range 
(wlow, whigh) is subdivided into 4 sub-ranges of equal size.  Then, a 
solution w is constructed in two steps.  First a sub-range is randomly 
selected.  The probability of selecting a sub-range is inversely proportional 
to its frequency count.  Then a value is randomly generated within the 
selected sub-range.  The number of times sub-range j has been chosen to 
generate a value for wi is accumulated in the frequency counter freq(i, j).  
The main goal of the diversification generator is to create solutions that are 
diverse with respect to those solutions that have been already generated in 
the past.  That is, the frequency counts work as “seed solutions” from which 
the diversification attempts to move away. 

The reference set RefSet is filled with the best b/2 solutions in P to which 
an improvement method is applied (see below).  The RefSet is completed 
with b/2 more solutions generated as perturbations of the first b/2.  The 
perturbation consists of multiplying each weight by 1 + U[a,b], where U[a,b] 
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is the uniform distribution with parameters a and b.  In step 2, the solutions 
in RefSet are ordered according to quality, where the best solution is the first 
one in the list.  In step 3, the NewPairs set is constructed.  NewPairs consists 
of all the new pairs of solutions that can be obtained from RefSet, where a 
“new pair” contains at least one new solution.  Since all the solutions are 
new in the initial RefSet, the initial NewPairs consists of (b2-b)/2 pairs.  The 
pairs in NewPairs are selected one at a time in lexicographical order to 
create linear combinations in step 5.  We consider the following three types 
of linear combinations, where we assume that the reference solutions are 

)(iw  and )( jw ,  and r is a random number in the range (0, 1): 
 
C1: dww i −= )(  

C2: dww i += )(     
2

)()( ji wwrd −
=  

C3: dww j += )(  
 
The following rules are used to generate solutions with these three types 

of linear combinations: 
 

– If i ≤ b/2 and j ≤ b/2 then 4 solutions are generated by applying C1 and 
C3 once and C2 twice. 

– If i ≤ b/2 and j > b/2 then 3 solutions are generated by applying C1, C2 
and C3 once.  

– If i > b/2 and j > b/2 then 2 solutions are generated by applying C2 once 
and randomly choosing between applying C1 or C3.  
 
The solutions created as linear combinations of solutions in the reference 

set are added to the NewSolutions set.  Once all combinations have been 
made, the best b solutions in NewSolutions are subjected to the improvement 
method in step 6.  Each improved solution w is then tested for admission into 
RefSet.  If a newly created solution improves upon the worst solution 
currently in RefSet, the new solution replaces the worst and RefSet is 
reordered. 

The procedure now intensifies the search around the best-known solution.  
In step 7, the counter IntCount is increased and the best solution is copied to 
a temporary memory location w.  The solution is perturbed and the 
improvement method is applied in step 8.  The best solution is updated if the 
perturbation plus improvement generates a better solution.  When the best 
solution is improved, the intensification count IntCount is reset.  If IntLimit 
intensification iterations are performed without improving the best solution, 
the procedure abandons the intensification phase. 
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Finally, steps 9 and 10 operate on the entire RefSet.  Step 9 applies the 
improvement method to the best b/2 solutions in RefSet and step 9 replaces 
the worst b/2 solutions with perturbations of the best b/2.  The training 
procedure stops when the number of objective function evaluations 
(NumEval) reaches the total allowed (TotalEval).  Note that the evaluation of 
the objective function g(w) consists of the calculation of the mean squared 
error. 

The SS procedure employs the well known Nelder and Mead (1965) 
optimizer as an improvement method.  Given a set of weights w, the Nelder 
and Mead method starts by perturbing each weight to create an initial 
simplex from which to begin the local search.  We use the implementation of 
the Nelder-Mead method in Press, et al. (1992) with the default parameters 
for 500 iterations.  Note that this improvement method is used in three 
different situations during the search: (1) to improve upon the best b/2 
solution in the initial RefSet, (2) to improve upon the b best solution that 
result from the linear combinations, (3) to improve upon the perturbed 
solutions generated during the intensification, and (3) to improve upon the 
b/2 best solutions when rebuilding RefSet in steps 9 and 10. 

4. COMPUTATIONAL EXPERIMENTS 

For our computational testing, we implemented, in C, the classical Back-
Propagation method (BP), the extended tabu search method, ETS, of Sexton 
et al. (1998) and the SS method described in the previous section (SS).  We 
run these three methods to approximate the 15 test functions introduced in 
El-Fallahi and Martí (2003).  This test set includes well known multimodal 
functions such as the Six-Hump-Camelback, the Goldstein or the Schwefel 
instances.  After preliminary experimentation we set the number of hidden 
neurons equal to 9 (and we keep this parameter fixed for all the functions). 

The main goal in the design of an ANN is to obtain a model which makes 
good predictions for new inputs (i.e. to provide a good generalization).  The 
standard way to measure how well this goal is accomplished consists of 
introducing an additional set of points in the domain of f called the validation 
set V.  We assume that no point in V belongs to E (the training set) and f(x) is 
known for all x ∈ V.  Once the optimization has been performed and the 
weights w* that minimize E have been set, the validation set V is presented to 
the resulting network and the corresponding errors are computed 
(error(T,w*)).  The network must exhibit a good fit between the target f-
values and the output (prediction) in the training set and also in the 
validation set.  In our experiments, the training set consists of 200 
observations with data randomly drawn from [-100, 100] for x1 and [-10,10] 
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for x2.  The validation set consists of 100 additional observations drawn from 
the same uniform distributions. 

Tables 1 and 2 report, respectively, the training and validation errors 
obtained with the three methods when applied to the 15 problems 
considered.  In order to obtain statistically valid results, we ran 20 times each 
method on each function and report the average and standard deviation of 
the 20 runs (each run is limited to ten minutes).  In all the cases, we have 
considered the same training and validation sets. 

Table 8-1. Training errors for three different training methods 
Problem BP ETS SS 

1 1.60 ± 0.26 0.04 ± 0.02 0.00 ± 0.00 
2 8.32 ± 4.30 1.79 ± 0.78 0.05 ± 0.03 
3 1.63 ± 0.21 0.34 ±0.03 0.4 ± 0.19 
4 45.52 ± 7.82 17.66 ±6 0.2 ± 0.08 
5 12.62 ± 3.87 18.98 ±5.26 0.27 ± 0.26 
6 13.98 ± 1.58 53.28 ±3.94 1.98 ± 0.29 
7 16.09 ± 5.80 63.26 ±1.18 0.55 ± 0.01 
8 0.20 ± 0.06 0.01 ±0.00 0.07 ± 0.03 
9 7.35E+09±1.07E+09 3.30E+09±8.44E+07 4.95E+04±5.01E+03 

10 21.40 ± 1.49 22.22± 4.12 4.6 ± 0.22 
11 5.28E+06±1.34E+06 4.17E+06±1.28E+05 1.03E+03±1.07E+02 
12 107.95 ± 3.01 156.12±5.57 0.1 ± 0.05 
13 3.93 ± 1.97 10.13 ± 3.25 0.02 ± 0.1 
14 5.58E+0 ± 6.76E+03 4.44E+04±2.48E+03 3.95E+04±2.01E+03 
15 2.88 ± 0.5 527.14±3.07 0.39± 0.02 

Table 8-2. Validation errors for three different training methods 
Problem BP ETS SS 

1 1.77 ± 1.6 0.05 ± 0.02 0.00 ± 0.14 
2 8.59 ± 3.94 2.13 ± 0.95 0.00 ± 0.12 
3 1.68 ± 0.22 0.48 ± 0.05 0.44 ± 0.43 
4 43.89 ± 9.86 21.71 ± 7.49 8.76 ± 26.13 
5 14.30 ± 5.50 19.85 ± 6.19 1.06 ± 2.42 
6 15.32 ± 0.87 51.54 ± 6.07 106.11 ± 221.11 
7 21.56 ± 11.97 60.62 ± 5.31 52.04 ± 137.21 
8 0.19 ± 0.06 0.04 ± 0.0 0.01 ± 0.02 
9 1.22E+10±1.24E+04 7.03E+09±5.38E+08 3.3049E+10±5.04E+10 

10 13.67 ± 0.02 16.59 ± 0.57 107.24 ± 192.39 
11 4.13E+06±4.02E+03 6.51E+06±6.02E+05 5.70E+07±1.33E+08 
12 111.17 ± 6.93 149.31 ± 7.22 0.03 ± 0.04 
13 5.25 ± 2.56 10.32 ± 0.60 0.10 ± 0.70 
14 5.64E+04±2.62E+03 4.33E+04±1.94E+03 1.30E+07± 1.30E+07 
15 2.93 ± 0.53 554.68 ± 22.76 275.41±173.12 
 
This experiment shows that none of the methods can effectively handle 

problems 9, 11 and 14 within the run time considered.  (We also ran the 
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training methods in these three instances for about half an hour of CPU time 
with no significant improvement).  Therefore, we can say that in practice the 
neural network configuration that we tested is not able to approximate these 
functions. 

Considering the average values over the 20 runs, Table 1 shows that the 
SS method is able to obtain the best solutions with respect to the training 
error in 13 instances, while the ETS method obtains 2 best solutions.  Table 
2 shows similar results, with SS obtaining 10 best solutions with respect to 
the testing error and ETS obtaining 5 (including instances 9, 11 and 14).  
The results of the BP method are quite acceptable considering its simplicity. 

5. CONCLUSIONS 

In this chapter we have described the implementation of scatter search for 
training a single-layer feed-forward neural network.  The focus of scatter 
search leads to a number of implications associated with the design of 
improved optimization procedures.  These research opportunities carry with 
them an emphasis on producing systematic and strategically designed rules, 
rather than following the policy of relegating decisions to random choices, as 
often is fashionable in evolutionary methods.  Our goal was to develop a 
training procedure to obtain neural networks capable of providing high-
quality predictions. Our experiments show that the scatter search 
implementation reaches a prediction accuracy that in most cases is 
acceptable.  The experimentation also shows that the SS implementation 
improves upon the results found with a recently developed tabu search 
method. 
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