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spaces by evolving a set of reference points, operating anadl set of solutions
while making only limited use of randomization. We give a goehensive descrip-
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1 Introduction

Scatter search (SS) is a metaheuristic that explores gnlapaces by evolving a
set of reference points. It can be viewed as an evolutionathod that operates
on a small set of solutions and makes only limited use of ramidation as a proxy

for diversification when searching for a globally optimalgimn. The scatter search
framework is flexible, allowing the development of alteimaimplementations with

varying degrees of sophistication.

The fundamental concepts and principles of the method westepfioposed in
the 1970s [5], based on formulations dating back to the 1880s0mbining deci-
sion rules and problem constraints. In contrast to othelugiemary methods like
genetic algorithms, scatter search is founded on the pectimig systematic designs
and methods for creating new solutions afford significamigies beyond those de-
rived from recourse to randomization. It uses strategieséarch diversification
and intensification that have proved effective in a varidtyettings.

Scatter search orients its explorations systematicatyive to a set of reference
points that typically consist of good solutions obtainedpior problem solving
efforts. The criteria for “good” are not restricted to olijee function values, and
may apply to sub-collections of solutions rather than tonglsi solution, as in the
case of solutions that differ from each other according ttage specifications.

The scatter search template [7] has served as the main meéefer most of
the scatter search implementations to date. The dispepsitberns created by these
designs have been found useful in several application aBeasion 2 gives a com-
prehensive description of the elements and methods ofdhiplate, based on the
formulation given in Laguna and Marti [13]. It includes thmst recent elements
incorporated in successful applications in both global emaibinatorial optimiza-
tion.

Path-relinking is an intensification strategy to explor@ectories connecting
elite solutions obtained by heuristic methods [6]. Patmkéng can be consid-
ered an extension of theombination methodf scatter search. Instead of directly
producing a new solution when combining two or more origisalutions, path-
relinking generates paths between and beyond the seledii¢itbas in the neigh-
borhood space. It should be noted that the combination rdethscatter search is
a problem-dependent element, which is customized depegdirthe problem and
the solution representation. In particular, in global oyitiation, where solutions are
represented as real vectors, most scatter search apptisgterform linear combi-
nations between pairs of solutions. Alternatively, in pgesls where solutions are
represented as permutations, such as ordering probleiirsy voethods have been
widely applied. In problems where solutions are repregkaseinary vectors, such
as knapsack problems, probabilistic scores have providegl good results [13].
This way, one can also view path-relinking as a unified comiom method for
all types of problems and in this way it also generalizes tiralmination methods.
In Section 3, we focus on path-relinking, including its maagits, implementation
issues, randomization, the use of pools of high-qualitytsahs to hybridize path-
relinking with other heuristic methods, and evolutionaaytprelinking.
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Concluding remarks are made in Section 4, where some sticcapplications
of scatter search and of path-relinking are listed.

2 Scatter search

From an algorithmic point of view we can consider that scagtarch basically
performs iterations over a set of good solutions called teiefRnce SetRefSet It
must be noted that the meaning of good is not restricted loetteet quality of the
solutions, but also considers the diversity that they adHitoset of solutions.

Once the initiaRefSeis created, a global iteration of the method consists o&thre
steps: combine, improve, and update the solutions irRéSet We first describe
the five elements in the template. Next, we explain how thesract.

1. A Diversification Generation Methotb generate a collection of diverse trial
solutions, using one or more arbitrary trial solutions (eed solutions) as an
input.

2. Anlmprovement Methotb transform a trial solution into one or more enhanced
trial solutions: neither the input nor the output solutiane required to be feasi-
ble, though the output solutions are typically feasiblegh# input trial solution
is not improved as a result of the application of this methbd, “enhanced”
solution is considered to be the same as the input solution.

3. A Reference Set Update Methtadbuild and maintain a reference set consisting
of the b “best” solutions found (where the value bfis typically small, e.g.,
no more than 20), organized to provide efficient access bgrgtlarts of the
solution procedure. Several alternative criteria may lexlue add solutions to
the reference set and delete solutions from the refereice se

4. A Subset Generation Methad operate on the reference set, to produce a subset
of its solutions as a basis for creating combined solutidii® most common
subset generation method is to generate all pairs of refersolutions (i.e., all
subsets of size 2).

5. A Solution Combination Methotb transform a given subset of solutions pro-
duced by the Subset Generation Method into one or more cadlsiolutions.

Figure 1 shows the interaction among these five methods ghdidtits the cen-
tral role of the reference set. This basic design starts thighcreation of an initial
set of solutiond?, and then extracts from it the reference $efSet of solutions.
The darker circles representimproved solutions resuftmg the application of the
Improvement Method.

The Diversification Generation Method is used to build agasgtP of diverse
solutions. The size o (PSiz@ is typically at least ten times the size BefSet
The initial reference set is built according to the Refeee8et Update Method. For
example, the Reference Set Update Method could consisteafteg b distinct and
maximally diverse solutions frorR.
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Fig. 1 Scatter search diagram.

A typical construction of the initial reference set starifwthe selection of the
bestb/2 solutions fronP. These solutions are addedRefSeand deleted fron®.
For each solution ifP-RefSetthe minimum of the distances to the solution&ief-
Setis computed. Then, the solution with the maximum of thesemiim distances
is selected. This solution is addedRefSetaaind deleted fron® and the minimum
distances are updated. (In applying this max-min criter@nany criterion based
on distances, it can be important to scale the problem Vasato avoid a situation
where a particular variable or subset of variables domintite distance measure
and distorts the appropriate contribution of the vector ponents.) The process is
repeated/2 times. The resulting reference set gl@ high quality solutions and
b/2 highly-diverse solutions. Note that with this criteriore\are considering as
equally important quality and diversity in the origindefSetAlternative designs
may include a different composition of tiesolutions in this set. For example, we
could consider just a single solution selected becauses afutlity (say the best
one inP) and the remainindgy — 1 solutions in theRefsetcould be selected from
P because of their diversity. Since the reference set is the loé a scatter search
procedure, its initial composition may result in signifitahanges during the search
process.

The solutions irRefSetre ordered according to quality, where the best solution
is the first one in the list. The search is then initiated aijmgiyhe Subset Genera-
tion Method. In its simplest (and typical) form it consisfsgenerating all pairs of
reference solutions. That is, the method would focus onetslixf size 2 resulting
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in (b? —b)/2 new subsets. The pairs are selected one at a time in legicbigal
order and the Solution Combination Method is applied to getieeone or more trial
solutions. These trial solutions are subjected to the Ingr@nt Method, if one is
available. The Reference Set Update Method is applied ayeia &0 build the new
RefSewith the best solutions, according to the objective functialue, from the
currentRefSetnd the set of trial solutions. A global iteration finisheshathe up-
date of theRefSetNote that in subsequent iterations we only combine thespir
solutions not combined in previous iterations. The basicedure terminates after
all the generated subsets are subjected to the Combinatdtimod and none of the
improved trial solutions are admitted RefSetunder the rules of the Reference Set
Update Method. However, in advanced scatter search desigpRRefSetebuilding
is applied at this point and the bést2 solutions are kept in thRefSetind the other
b/2 are selected fromR, replacing the word/2 solutions.

It is interesting to observe similarities and contrastsveein scatter search and
the original Genetic Algorithm (GA) proposals. Both aretarees of what are
sometimes called population-based or evolutionary ambres Both incorporate
the idea that a key aspect of producing new elements is torgiengome form of
combination of existing elements. However, original GA eggzhes were predi-
cated on the idea of choosing parents randomly to produsgririy, and further
on introducing randomization to determine which composehthe parents should
be combined. By contrast, scatter search is based on datstimdesigns in which
we implement strategic rules to generate new solutionss@ hgles do not resort to
randomization, as usually happens in GAs. They are basetiesttucture and
properties of the problem being solved, as well as on theckeaistory. More-
over, GAs usually apply general purpose combination methsdch as the well-
known crossover operator, while scatter search custorttizasombination method
for each particular problem. It should be noted, howevet GAs have been pro-
gressively incorporating more advanced design elements fnore powerful meta-
heuristics and solution strategies.

2.1 New strategiesin global optimization

Egeacetal. [2] proposed an evolutionary method for globtihuipation of complex-
process models, which employs some elements of scattehsaad path-relinking.
Regarding scatter search, the method uses a relatively pomallation size, par-
tially chosen by a quality criterion from an initial set ofvdrse solutions. It also
performs systematic combinations among the populationimeesn Regarding path
relinking, the new solutions are generated within the adedimed by every pair of
solutions in the population, introducing a bias to geneamnate solutions which share
more properties with the best population members than Wwihest. We mentioned
this method here because it introduces new strategies addi@sosome standard
scatter search designs. Specifically, it employs:
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e a small population without memory structures, in which epd sampling is
allowed,;

e anew combination method based on wide hyper-rectangles;

e an aggressive population update for a quick convergende; an

e anew search intensification strategy calleel go-beyond

Considering its potential applicability to other domaimg describe theo-
beyondstrategy, which consists in exploiting promising diren8pextending the
combination method.

Figure 2 depicts the level curve (contour plots) of the 2-B@sional uncon-
strained functionf (x1,X2) in the rangex; € [—6,6] ,x2 € [—2,7], which presents
several minima:

f(x1,%2) = 24 0.01(% — 33) + (1 — X1)2 + 2(2 — x2) + 7 sin(0.5x1) sin(0. 7x1 %2

We illustrate in this diagram how thgo-beyondstrategy works. From a pair of
RefSesolutionsx andy (labeled agpopulation memberm the figure and depicted
with black points) a new solution is generated in the comesing hyper-rectangle,
z, and depicted in the figure (labeledr@sw solutiorand represented with a black
square). Ifzis better tharx andy (f(z) < f(x) andf(z) < f(y)), then we consider
that this is a promising direction and apply the-beyondstrategy,extendingthe
combination method. In the present problem, this meanswikatonsider a new
hyper-rectangle (solid line) defined by the distance betwemndy (its closest ref-
erence set solution). A new solution (depicted with a triehgs created in this
hyper-rectangle and the process is repeated as long as glmidrss are obtained.
Figure 2 shows a new solution (starred) created in an argacl@se to the global
minimum.

2.2 New strategiesin combinatorial optimization

Marti et al. [16] proposed a scatter search algorithm ferwkell known Max-Cut
problem based on the standard design described in thi®sedtheir method ex-
tends the basic scatter search implementation in threeréiff ways. First, it uses
a new selection procedure for constructing a referencereat & population of
solutions. Traditionally, scatter search implementatibave used the criterion of
maximizing the minimum distance between the solution urcdersideration and
the solutions already in the reference set. In such a prpdassse solutions are
selected one by one from the populati®and the distances are updated after each
selection. In contrast, Marti et al. [16] propose a methad selects all the diverse
solutions at once by solving theaximum diversity probleffMDP). Given a set of
elements¥ and the corresponding distances between the elements séththe
MDP consists in finding the most diverse subset6fof a specified size. The di-
versity of the chosen subset is given by the sum of the distabhetween each pair
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of its elements. The distance between two Max-Cut solutisrtefined to be the
number of different edges in the cut.

The use of the MDP within scatter search is based on recogytizat the original
set of elements is given by \ {theb/2 best solutions The MDP scheme is also
used to complete the curreRefSetwhich is already partially populated with the
b/2 best solutions frorP.

The second extension consists of a dynamic adjustment afehth parameter
k associated with the ejection chain mechanism, which iseattie of the search-
based improvement method. This local search has an assbpetameter that mea-
sures the depth of the search in the ejection chain prochsssdlution representa-
tion incorporates the information related to the particklaalue used to generate
it. In this way, the depth of the ejection chain produced dejgeon the parameter
values associated with the solutions being combined.

The third extension implements a probabilistic selectiérthe combination
methods. The probability of selecting one of three methodpgsed in [16] for the
Max-Cut problem is proportional to the number of high quadiblutions generated
by the method in previous iterations. A probability-basesthanism is introduced
to select a combination method each time the solutions anbirred. The probabil-
ity of selecting one of the three methods is set to 1/3 at tigennéng of the search.
The probability values are then updated at the end of eacte&Sgion in order to
favor the combination methods that produce solutions dicseifitly high quality to
be included in the reference set.

3 Path-relinking

Path-relinking was originally proposed by Glover [6] as atensification strategy
to explore trajectories connecting elite solutions olgdiby tabu search or scat-
ter search [8, 9, 10]. In the remainder of this chapter, weidoan path-relinking,
including its mechanics, implementation issues, randatign, the use of pools
of high-quality solutions to hybridize path-relinking Wibther heuristic methods,
and evolutionary path-relinking. We conclude the chapién some computational
results illustrating the effect of using path-relinkinghvother heuristics. For com-
pleteness, we have included in this section some mateasaliBo appears in the
chapter of the handbook on GRASP.

3.1 Mechanics of path-relinking

We consider an undirected gragh= (S, M) associated with the solution space,
where the nodes iBcorrespond to feasible solutions and the edgds oorrespond
to moves in the neighborhood structure, {iej) e Mifand only ifi€ S j € S

j € N(i), andi € N(j), whereN(s) denotes the neighborhood of a solutisr
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S. Path-relinking is usually carried out between two solsioone is called the
initial solution, while the other is thguiding solution One or more paths in the
solution space graph connecting these solutions are edginthe search for better
solutions. Local search is applied to the best solution ohesd these paths, since
there is no guarantee that this solution is locally optimal.

Letse Sbe a node on the path between an initial solution and a gugtihgion
g € S Not all solutions in the neighborhods) are allowed to follows on the path
from sto g. We restrict the choice to those solutiondN(s) that are more similar to
gthansis. This is accomplished by selecting moves frethat introduce attributes
contained in the guiding solutiom Therefore, path-relinking may be viewed as a
strategy that seeks to incorporate attributes of high tusdilutions (i.e. the guiding
solutions), by favoring these attributes in the selectedanoAfter an analysis of
each potential move, the most common strategy is to seleota that results in the
best-quality restricted neighbor ef The restricted neighbors sfare all solutions
in the neighborhood of that incorporate an attribute of the guiding solution not
present irs.

Several alternatives for path-relinking have been comsitland combined in re-
cent implementations. These include forward, backwarck{zend-forward, mixed,
truncated, greedy randomized adaptive, and evolutionatty-elinking. All these
alternatives involve trade-offs between computation t&md solution quality.

Suppose that path-relinking is be applied to a minimizapooblem between
solutionsx; andx, such thatz(x;) < z(x2), wherez(-) denotes the objective func-
tion. In forward path-relinking, the initial and guiding solutions are segt= x;
ands = xp. Conversely, irbackwardpath-relinking, we sefj = x, ands = Xxz. In
back-and-forwardgath-relinking, backward path-relinking is applied fifstjowed
by forward path-relinking. Path-relinking explores thegtdorhood of the initial
solution more thoroughly than the neighborhood of the gugdiolution because,
as it moves along the path, the size of the restricted neifioloal decreases. Con-
sequently, backward path-relinking tends to do better tbamard path-relinking.
Back-and-forward path-relinking does at least as well teeebackward or forward
path-relinking but takes about twice as long to compute.

In applyingmixed path-relinking11, 21] between feasible solutiossandt in
S, two paths are started simultaneously, ongatd the other &t These two paths
meet at some solutione S, thus connecting andt with a single path. Algorithm
1 describes a mixed path-relinking procedure for a 0-1 miation problem, such
as the set covering problem, whereandx' are binary vectors representing the
solutions to be linked.

ThesetdA = {j=1,....,n: # x‘j} of positions in whichx® andx differ is
computed in line 2. The cardinality of this set is called Hemming distancée-
tweenx® andx'. The best solutions*, amongx andx® and its costz* = z(x*), are
determined in lines 3 and 4, respectively. The current palinking solution X, is
initialized tox® is line 5. The loop in lines 6 to 16 progressively determiresrext
solution in the path connecting andx, until the entire path is traversed. For every
position/ € A, we definex® ¢ to be the solution obtained frorby complementing
the current value o%,. Line 7 determines the componefitof A for which x& ¢
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1 MixedPathRelinking

2 A —{j=1...,n: X #X};
3 X'« argmin{z(x®),z(x!)};

4 7 —min{z(x®),z(xX)};

5 X+ X5

6 while|A| > 1do

7
8
9

0 —argmin{z(xa L) 1 e},
A—A \ {f*};
X — 1 —Xg;
10 if z(x) < z* then
11 X —X;
12 zZ' — z(x);
13 end
14 XS — Xt
15 X x;
16 end
17 X« LocalSearch(X);
18 return x;

Algorithm 1: Mixed path-relinking procedure for problems where solu-
tions are represented by binary vectors.

results in the least-cost solution. This component is resddvomA in line 8 and

the current solution is updated in line 9 by complementirgwhlue of its/-th po-
sition. If the test in line 10 detects that the new currentigoh x improves the best
solutionx* in the path, therx* and its cost are updated in lines 11 and 12, respec-
tively. The roles of the starting and target solutions aremyed in lines 14 and 15

to implement the mixed path-relinking strategy|4f| = 0, then the local search is
applied to the best solution in the path in line 16 and thellpogtimal solution is
returned by the procedure.

Like back-and-forward path-relinking, the mixed variaxpkres both neighbor-
hoodsN(x®) andN(x'). Unlike back-and-forward path-relinking, it is usuallyste
than twice as long as the backward or forward variants.

In the case of the set covering problem, there always exis&tlaconnecting®
andx'. We just need to observe that setting to one all componeiswaiue 0 in
x® and value 1 ik results in a series of feasible covers leading fronto some
feasible solutiorx. Next, by setting to zero those components with valueXdand
value 0 inxX' results again in a series of feasible covers leading X. Figure 3
illustrates the application of mixed path-relinking towwimnsx® andx' for which
the Hamming distance is equal to five.

One can expect to see most solutions produced by path-irginé come from
subpaths close to either the initiating or guiding solusioResende et al. [18]
showed that this occurs in instances of the max-min diwepsibblem. In that ex-
periment, a back and forward path-relinking scheme wasde&igure 4 shows the
percentage of best solutions found by path-relinking tatesr several instances
and several applications of path-relinking. The 0-10% eaitgthe figure corre-
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Fig. 4 Percentage of best solutions found at different depthseop#th from the initial solution to
the guiding solution on instances of the max-min diversitybtem.

sponds to subpaths near the initial solutions for the fodvgeath-relinking phase as
well as the backward phase, while the 90-100% range are thspear the guiding

solutions. As the figure indicates, exploring the subpaties the extremities may
produce solutions about as good as those found by expldrangritire path. There
is a higher concentration of better solutions close to th@lsolutions explored by

path-relinking.
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As shown in Algorithm 2, it is simple to adapt path-relinkitogexplore only the
neighborhoods close to the extremes. hdte a real parameter such that(® <1
that defines the portion of the path to be explored. Insteadwfing out the main
loop while|A| > 1 as in the mixed path-relinking of Algorithm 1, the main ldsp
applied while|A| > p - &, whereg, is the cardinality of the initial seA.

TruncatedMixedPathRelinking
A—{j=1....n:x#X}
& — 4],
X* — argmin{z(x®),z(x!)};
Z — min{z(x®),z(x")};
X — X5
while|A| > p- & do
0 —argmin{z(x® /) 1 LeA};
A <—A\{f*};
X — 1—Xg;
if z(x) < z* then
X — X,
zZ* — 2(x);
end
X e x;
X —x

© 0N UA WN P

e N
o 0~ W N BEFE O

end
X < LocalSearch(X);
return x;

B e
© o N

Algorithm 2: Truncated mixed path-relinking procedure for problems
where solutions are represented by binary vectors.

3.2 Minimum distance required for path-relinking

We assume that we want to connect solutisremdt with path-relinking. If the
distance|A(s,t)| betweens andt, i.e. the number of components in whistand

t differs, is equal to one, then the path directly connectseesolutions and no
solution, other thas andt, is visited.

If we assume thad andt are both locally optimal, we know thats) < z(r) for
allr € N(s) andz(t) < z(r) for all r € N(t). If |A(s,t)| = 2, then any path is of the
types — r — t, wherer € N(s) N N(t), and consequentlly cannot be better than
eithersort. Likewise, if|[A(s,t)| = 3 then any path is of the tyme— rs — 1y — t,
wherers € N(s) andr; € N(t), and consequently neitheynorr; can be better than
boths andt.

Therefore, things only get interesting fd(s,t)| > 3. For those cases, any path
is of the types — rs — wy — --- — wp — 1y — t, wherews, ..., wp are candidates
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to be better than botk andt. Therefore, we do not consider relinking a pair of
solutionss,t unlessA(st)| > 4.

3.3 Randomization in path-relinking

Consider again a problem whose solution can be represesitadimary vector of
sizen, such as the set covering problem, the satisfiability probler the max-cut
problem. Let us denote the set of solutions spanned by thenconelements of
solutionss andt as

S(st)i={we {0,1}":wi =5 =t,i ¢ A(st)}\ {st}, Q)

with |.7(s,t)| = 214V — 2. The underlying assumption of path-relinking is that
there exist good-quality solutions.i# (s, t), since this space consists of all solutions
which contain the common elements of two good solutisasmdt. Taking into
consideration that the size of this space is exponentiaityd, we normally adopt a
greedy search where a path of solutions

S=Wp,W1,...,Wast)| =1,

is constructed, such th@d (wi,wi1)| =1, i =0,...,|A(s,t)| — 1, and the best so-
lution from this path is chosen. However, by adopting theedyestrategy, we limit
ourselves to exploring a single path from a set of exponkntiaany paths. By
adding randomization to path-relinkingreedy randomized adaptipath-relinking
(GRAPR) [3] is not constrained to explore a single path.

The pseudo-code for GRAPR for a minimization problem is ghamv Algo-
rithm 3. The main difference with respect to Algorithm 1 airees 6, and 8-11.
Instead of selecting the move that results in the best sol@s is the case in stan-
dard path-relinking, a restricted candidate IRCQ) is constructed with the moves
that result in solutions with costs in an interval that dejseon the value of the best
move, the value of the worst move, and a random paransetErom this set, one
move is selected at random to produce the next step in the path

GRAPR is useful when path-relinking is applied more thaneobetween the
same pair of solutions as it can occur in evolutionary patimking (discussed in
Subsection 3.5).

3.4 Hybridization with a pool of elite solutions

Path-relinking is a major enhancement to metaheuristaigthnerate a sequence of
locally optimal feasible solutions. These metaheuristickide, but are not limited
to, GRASP, variable neighborhood search, tabu searclessatrch, and simulated
annealing, To hybridize path-relinking with these metalstias, one usually makes
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1 GreedyRandomizedAdaptivePathRelinking
2 A —{j=1...,n: X #X};

3 X'« argmin{z(x®),z(x!)};

4 75— min{z(x®),z(x*)};

5 X+ X5

6 Selecta € [0,1] C R at random;
7 while|A| > 1do

8 z —min{z(x® () : LeA};
9 " —max{z(xel) 1 LA}
10 RCL—{leA : z(xdl) <z +a(z"—z)};
11 Select’* € RCLat random;
12 A —A\{l'};

13 Xp — 1—X;

14 if z(x) < z* then

15 X=X

16 zZ' — z(x);

17 end

18 xS — X

19 X=X

20 end

21 X+« LocalSearch(X);

22 returnx;

Algorithm 3: Greedy randomized adaptive path-relinking with a mixed
variant of path-relinking.

use of anelite set i.e. a diverse pool of high-quality solutions found durithe
search. The elite set starts empty and is limited in sizehEaxally optimal solution
produced by the metaheuristic is relinked with one or mohetems from the elite
set. Each solution produced by path-relinking is a candiftatinclusion in the elite
set where it can replace an elite solution of worse value.

The pool of elite solutions is initially empty. Each locatiptimal solution pro-
duced by the metaheuristic and each solution resulting fsath-relinking is con-
sidered as a candidate to be inserted into the pool. If théipawt yet full, the
candidate is simply added to the pool if it differs from allgpmembers. If the pool
is full and the candidate is better than the incumbent, theeplaces an element
of the pool. In case the candidate is better than the worstegie of the pool but
not better than the best element, then it replaces some etashéhe pool if it is
sufficiently different from every other solution currenitythe pool. To balance the
impact on pool quality and diversity, the element selectelle replaced is the one
that is most similar to the entering solution among thode sblutions of quality no
better than the entering solution [20].

Given a local optimuns; produced by the metaheuristic, we need to select at
random from the pool a solutio to be connected witls; via path-relinking. In
principle, any solution in the pool could be selected. Hosvewne should avoid
solutions that are too similar ®, because relinking two solutions that are similar
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limits the scope of the path-relinking search. If the salns are represented by
binary vectors, one should favor pairs of solutions for wihite Hamming distance
between them is high. A strategy introduced in [20] is to ctetepool element at
random with probability proportional to the Hamming distarbetween the pool
element and the local optimusy. Since the number of paths between two solutions
grows exponentially with their Hamming distance, thistetgg favors pool elements
that have a large number of paths connecting them to andgfom

HEUR+PR
Initialize elite set? — 0;
while stopping criterion not satisfiedo
X < HeuristicLocalOptimal();
if P=0then insertxinto P;
else
XS —X;
Choose, at random, a pool solutignc P;
X« PathRelinking(X%,x!);
10 Update the elite sdé® with x ;
11 end
12 end
13 return P;

© 0N U WN R

Algorithm 4: Hybridization of path-relinking with a heuristic that gen
erates local optima.

Algorithm 4 illustrates the pseudo-code of a hybrid heigighat uses path-
relinking for minimization. In line 2, the pool of elite sdlansP is initially empty.
The loop in lines 3 to 12 makes up an iteration of the hybridatgm. In line 4 xis
a locally optimal solution generated by procedhearisticLocalOptimal(). If
the elite set is empty, thenis inserted into the pool in line 5. Otherwisehecomes
the initiating solution in lines 7 and a guiding solution eexted at random from
the pool in line 8. The initiating and guiding solutions aedinked in line 9 and
the resulting solution is tested for inclusion into theeeBet in line 10. The hybrid
procedure returns the set of elite solutions which inclutiesbest solution found
during the search.

3.5 Evolutionary path-relinking

Path-relinking can also be applied between elite set swigtio search for new high-
quality solutions and to improve the average quality of fite set. This can be done
in a post-optimization phase, after the main heuristicstopperiodically, when the
main heuristic is still being applied [1, 18, 20].
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We describe two schemes calledolutionary path-relinkindor this purpose.
Both schemes take as input the elite set and return eithesatine elite set or one
with an improved average cost.

The first scheme, described by Resende and Werneck [20]swdtk a popu-
lation that evolves over a number of generations. The Irpti@ulation is the input
elite set. In thek-th generation the procedure builds tkh population, which is
initially empty. Path-relinking is applied between all yg0f solutions in popula-
tion k — 1. Each solution output from the path-relinking operat®a icandidate for
inclusion in populatiork. The usual rules for inclusion into an elite set are adopted
in evolutionary path-relinking. If populatidnis not yet full, the solution is accepted
if it differs from all solutions in the population. After pagationk is full, the solu-
tion is accepted if either it is better than the best solutiothe population or it is
better than the worst and is sufficiently different from aligions in the population.
Once a solution is accepted for inclusion into populatipit replaces the solution
in populationk that does not have a better cost and that is most similar Thé.
procedure halts when the best solution in populakidones not have better cost than
the best solution in populatida— 1.

A variation of the above scheme is described by Resende §t8l. In that
scheme, while there exists a pair of solutions in the elitéosavhich path-relinking
has not yet been applied, the two solutions are combinedpaitin-relinking and the
resulting solution is tested for membership in the elite et is accepted, it then
replaces the elite solution most similar to it among all Sohs having worse cost.

Since some elite solutions may remain in the elite set owaraéapplications of
evolutionary path-relinking, greedy randomized adappath-relinking [3] can be
used in evolutionary path-relinking to avoid repeated esqtions of the same paths
in the solution space in different applications of the prhoe.

GRASP with evolutionary path-relinking and scatter seaaoh evolutionary
methods based on evolving a small set of selected solutelits 6et in the for-
mer and reference set in the latter). We can, therefore padseanilarities between
them. In some implementations of scatter search, GRASPed tesspopulate the
reference set. Note, however, that other constructive odstlcan be used as well.
Similarly, path-relinking can be used to combine solutionscatter search, but we
can use any other combination method. From an algorithmiig péview, we may
find two main differences between these methods. The firstiotieat in scatter
search we do not apply path-relinking to the solutions olg@iwith GRASP, but
rather, we only apply path-relinking as a combination mdthetween solutions al-
ready in the reference set. The second difference is thatittes search when none
of the new solutions obtained with combinations are adihittethe reference set
(elite set), it is rebuilt, removing some of its solutions,specified in the reference
set update method. In GRASP with evolutionary path-refigkive do not remove
solutions from the elite set, but rather, we reapply GRAS# @se the same rules
for inclusion in the elite set.
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3.6 Progressive crossover: Hybridization with genetic algorithms

Path-relinking was first applied in the context of a gendtiogathm by Ribeiro and
Vianna [22] in order to implement a progressive crossoverafor. In this innova-
tive application, the hybridization strategy was appliea {phylogeny problem.

The original proposal was extended and improved in [23]his tase, a bidi-
rectional (or back and forward) path-relinking strategysed: given two parent
solutionss; andsp, one path is computed leading franto s, and another leading
from s, to 5. The best solution along them is returned as the offsprisgltieg
from crossover. This mechanism is an extension of the toaudit crossover opera-
tor: instead of producing only one offspring, defined by ocingle combination of
two parents, it investigates many solutions that shareaciarnistics of the selected
parents. The solution found by path-relinking correspdndke best offspring that
could be obtained by applying the standard crossover toahenys.

The experiments reported in [23] make use of the resultsrddeon one ran-
domly generated instance (TST17) of the phylogeny probleassess the evolu-
tion of the solutions found by three different genetic aitjon in one hour (3,600
seconds) of computations: the random-keys genetic algoiiRKGA [22], the pro-
posed genetic algorith®A+PR using path-relinking to implement the progres-
sive crossover operator, and the simpler genetic algor®dni using uniform
crossover. Figure 5 presents the solution value at the esalabf generation for each
of the 100 individuals in the population. Since the origiremldom-keys genetic al-
gorithm RKGA made use of elitism, the solution values are restricted tmallsr
interval ranging between 2500 and 2620. The solution vabiégined by the two
other algorithms show more variability. The solutions fdy algorithmGA+PR
are better than those obtained RGA andGAUNi , illustrating the contribution of
the strategy based on path-relinking to implement the oraesoperator.

Path-relinking was also applied by Zhang and Lai [25] follogvthe strategy
proposed in [22] in the implementation of a genetic alganitfor the multiple-
level warehouse layout problem. Their approach also magestipath-relinking
when the genetic algorithm seems to be trapped in a locatiynapsolution. Once
again, path-relinking was used by Vallada and Ruiz [24] amognessive crossover
operator within a genetic algorithm for the minimum tardisgpermutation flow-
shop problem. It was also applied as an intensificationegiyaafter a number of
generations without improvement to the best solution. hecsed individuals are
marked in order to not be selected again during the appicadf path-relinking.
Path-relinking was also hybridized with a genetic algarntas a post-optimization
procedure [17]. In this work, the solutions in the final pagidn produced by the
genetic algorithm are progressively combined and refined.
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3.7 Hybridization of path-relinking with other heuristics

The basic implementation of GRASP is memoryless becauseei dot make use
of information collected in previous iterations. The usepath-relinking within a
GRASP procedure, as an intensification strategy appliecatt éocally optimal
solution, was first proposed by Laguna and Marti [12]. It iakwed by several
extensions, improvements, and successful applicatio®is Eiach local minimum
produced by the GRASP is combined with a randomly selecfiegl sglution. The
resulting solution is a candidate for inclusion into theeetet. Evolutionary path-
relinking can be applied periodically to improve the quadif the elite set.

Enhancing GRASP with path-relinking almost always impsotree performance
of the heuristic. As an illustration, Figure 6 shows timetdaget plots for GRASP
and GRASP with path-relinking implementations for fourfeliént applications.
These time-to-target plots show the empirical cumulatiedpbility distributions of
thetime-to-targetrandom variable when using pure GRASP and GRASP with path-
relinking, i.e., the time needed to find a solution at leasj@sd as a prespecified
target value. For all problems, the plots show that GRAS with-relinking is
able to find target solutions faster than GRASP.

4 Applications and concluding remarks

There are three main sources where successful applicaifos=atter search and
path-relinking can be found. First, Chapter 8 of the monplran scatter search
by Laguna and Marti [13], identifies 14 applications, irthg neural networks,
multi and mono-objective routing problems, graph drawsaheduling, and color-
ing problems. A second source of successful implementtibioth methodolo-
gies is a special issue of EJOR [14] in which they are claskifito the following
seven categories: Foundations, Nonlinear Optimizatigotjn@zation in Graphs,
Parallel Optimization, Prediction and Clustering, Rogtend Scheduling. There
is also a third source, which is frequently updated with entrrapplications: the
web sitehtt p: // www. uv. es/rmarti/ scattersearch on scatter search
and path-relinking publications, in which more than 100 lenpentations are col-
lected.
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Fig. 5 Solutions obtained by genetic algorithms for random instahST17 for 3,600 seconds of
computations.
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Fig. 6 Time to target plots comparing running times of pure GRASE &RASP with path-
relinking on four instances of distinct problem types: thiedex assignment [1], maximum satis-
fiability [4], bandwidth packing [4], and quadratic assigemh[15].



