Scatter Search: Foundations and Implementations

1

Manuel Laguna', Sergio Cavero®, Rafael Marti*"

Leeds School of Business, University of Colorado Boulder, USA.

2Departamento de Estadistica e Investigacién Operativa,
Universitat de Valencia, Spain.

3Departamento de Informética y Estadistica, Universidad Rey Juan Carlos, Spain.

*Corresponding author(s). E-mail(s): rafael.marti@uv.es;

Contributing authors: laguna@colorado.edu; sergio.cavero@urjc.es;

Abstract

Scatter search (SS) is a population-based metaheuristic designed to solve complex optimization prob-
lems through structured solution combination and adaptive memory. Unlike traditional evolutionary
algorithms, SS emphasizes deterministic strategies to balance intensification and diversification. We
present a comprehensive review of SS and its connection to Path Relinking (PR), covering their
historical development, core methodology, and applications. Key components of SS include diversifi-
cation generation, improvement, reference set updating, subset generation, and solution combination.
Advanced strategies such as dynamic reference set updating, tiered memory structures, construc-
tive and destructive neighborhoods, and vocabulary building enhance its performance and scalability.
SS has been successfully applied in scheduling, routing, bioinformatics, and software engineering.
Hybridizations with other metaheuristics and integration with machine learning further expand its
applicability. The review concludes with a tutorial on a scatter search Python implementation for 0-1
knapsack problems that includes a Jupyter Notebook with code, execution traces, visualizations, and
didactic analyses.

Keywords: Scatter Search, Path Relinking, Metaheuristics, Optimization

1 Introduction

Scatter search (SS) and path relinking (PR) are population-based metaheuristics that differ from tra-
ditional evolutionary algorithms by emphasizing strategic choices and the systematic use of adaptive
memory. Unlike genetic algorithms, SS and PR give preference to strategy and context-information over

randomization, offering a robust framework for tackling a wide range of optimization problems that
emerge in practice.

The name scatter search may seem to indicate a lack of focus and absence of mechanisms to zeroing in on
promising areas of the solution space. In contrast to genetic algorithms (GAs), whose original design did
not include explicit forms of search intensification, the SS methodology recognizes the need for localized
searches. Therefore, the word “scatter” in the name of the methodology refers to the goal of identifying
structurally different points in the solution space from which to initiate a localized exploration, also
known as exploitation. Exploitation is achieved within the SS framework via the so-called intensification
method. This involves making small changes, based on local knowledge, to refine a solution. The goal
of small improvements is to obtain the best outcome from a specific region of the solution space. True
exploration, on the other hand, is the strategy of “discovering” new information and trying out new,
potentially better, but unknown options to build a solution. Exploration means leaving the current area
to search a new, possibly disconnected part of the solution space.

Striking a balance between exploration and exploitation is at the core of most metaheuristics for optimiza-
tion. SS addresses this balance in a very direct way by including a diversification method for exploration
and an intensification method for exploitation. The combination method in SS is another form of exploita-
tion because it creates solutions based on elements present in the so-called reference solutions. Advanced
versions of scatter search include path relinking as a combination method.

Path relinking generates new solutions by tracing paths between selected reference solutions. PR focuses
on exploring the “trajectories” or paths that connect reference solutions in the neighborhood space.
Essentially, path relinking extends the solution-combining principles of scatter search by actively exploring
the paths between them to find better solutions. This involves moving from an initial solution to a
guiding solution by making a series of moves to find potentially better solutions within that path. Its
core function is to intensify the search around promising areas. When combined with the exploration
mechanisms of scatter search the result is a balance between PR’s focus on exploitation with a broader,
scattered exploration of the solution space.

2 Historical Background

Scatter search was first introduced by Glover in 1977 as a heuristic to solve integer programming prob-
lems, particularly through the use of surrogate constraint relaxation [25]. The method was conceived as
an extension of mathematical relaxation techniques, aiming to generate new information by combining
existing constraints and solutions in a structured manner. This foundational idea, strategic combination
of elements to uncover latent information, remains central to SS today.

Although SS was proposed in the 1970s, it did not gain significant traction until the early 1990s, when it
was revisited at the EPFL Seminar on Operations Research and Artificial Intelligence Search Methods.
The renewed interest led to a formal publication in 1994, expanding the scope of SS to include nonlinear,
binary, and permutation-based optimization problems [26].

The algorithmic structure of SS was later formalized in a scatter search template [27], which provided
a simplified, yet powerful, framework for its implementation. This template became the reference point
for most subsequent SS applications and inspired the research community to solve a wide variety of
challenging optimization problems.

In parallel, path relinking emerged as a generalization of a neighborhood search within the Tabu Search
framework. Initially proposed by Glover and Laguna in the early 1990s [27], PR introduced the concept

of generating trajectories in the neighborhood space between elite solutions [28]. This approach enhances
intensification and diversification strategies and was later integrated into SS as a combination method.

Two major milestones further consolidated the role of SS in the metaheuristic landscape. First, the
publication of the book Scatter Search: Methodology and Implementations in C' by Laguna and Mart{ [43]
provided practical tools and implementation details for researchers and practitioners. Second, a special
issue of the Furopean Journal of Operational Research in 2006 showed successful applications of SS across
various domains [54].

In the 2010s, SS was recognized as a robust and flexible metaheuristic, particularly well-suited for solving
NP-hard combinatorial optimization problems, both single-objective and multiobjective. Its relevance
was acknowledged in chapters of well-known reference works such as the Handbook of Heuristics [56, 57]
and the Handbook of Metaheuristics [29, 69].

Over the last decade, SS research has focused on methodological enhancements and the development of
new variants. These efforts include specialized strategies aimed at improving individual phases of the
method, as well as broader advances such as parallelization frameworks. Notable contributions include
the introduction of a parallel SS framework optimized for modern computing architectures [9] and a com-
prehensive survey dedicated exclusively to SS, which synthesizes its evolution, theoretical underpinnings,
and diverse applications [37].

Given its maturity and well-established performance, it is now possible to define a chronological axis of
SS development, highlighting the most relevant milestones. This timeline, illustrated in Fig. 1, can be
structured into three periods: Foundation (1977-2003), Development (2003-2015), and Recent Advances
(2015-2025).

Glover (1994) Kalra et al. (2021)

Formal reintroduction at EPFL ~ Glover & Laguna (2000) Marti & Laguna (2006) First Comprehen-

and nonlinear extensions [26] Path Relinking [28] EJOR Special Issue on SS [54] sive Review [37]

Development Recent Advances

1977 1994 1997 2000 2003 2006 2010 2015 2020 2025
Glover (1977) Glover (1997) Laguna & Marti (2003) Marti et al. (2018) Casado et al. (2025)
Origin: Heuristics for Integer Scatter Search Template [27] Book: Methodology and First appearance in Parallel Framework for SS [9]
Programming Using Surrogate Implementations in C [29] Handbook of Heuristics [56]

Constraints [25]

Fig. 1: SS timeline in three periods: Foundation, Development, and Recent Advances.

Before delving into specific methodological aspects, we first examine the overall publication trends on SS
since its inception. To this end, we retrieved bibliographic data from the Web of Science Core Collection'.
The search strategy was designed to identify contributions that explicitly mention “Scatter Search” or
its variations (such as “Scatter Search Algorithm” or “Scatter Search Method”) within the topic or all
fields, ensuring the inclusion of works where this methodology plays a significant role.

Yhttps:/ /www.webofscience.com/wos/woscc/summary /098cc43f-b76d-46be-9040-cac95bascd6b-01888557¢0/ relevance /1

https://www.webofscience.com/wos/woscc/summary/098cc43f-b76d-46be-9040-cac95ba5cd6b-01888557c0/relevance/1

The results reveal that the SS methodology has maintained a sustained presence in the optimization
literature, not necessarily through direct application, but as a conceptual reference or methodological
influence. Its appearance in related publications, whether cited for foundational principles, comparative
analysis, or theoretical basis, indicates continued relevance and intellectual impact. This trend is illus-
trated in Figure 2, which shows a robust stream of articles that reference SS, underscoring its role as a
recognized component in the broader metaheuristic landscape.

Publications on scatter search by Year
| | |

60 - = 5

Record Count
]

T T T T T T
o) \} O Q » Q
&) Q Q \S \S 3

0 nm.—..—.l‘l.—.nHHH %‘
q/
q)Q

Final Publication Year
Fig. 2: Annual publication counts for scatter search-related works, based on Web of Science data.

From a venue perspective, the distribution of publications across journals and conference proceedings is
highly concentrated within high-impact, application-oriented outlets. Figure 3 shows that the European
Journal of Operational Research and Computers & Operations Research lead the list, jointly account-
ing for over 10% of the total output. Notably, the prominence of venues such as Expert Systems with
Applications, Applied Soft Computing, and various manufacturing and engineering journals underscores
the heavily applied nature of scatter search. Rather than remaining a purely theoretical construct, SS
is evidently favored as a practical solver for complex real-world problems in industrial engineering and
management science.

Finally, regarding the subject categorization presented in Figure 4, the Web of Science classification
reveals the methodology’s strong dual nature. The field is dominated by two primary pillars: Operations
Research & Management Science (31.28%) and Computer Science: Artificial Intelligence (29.74%), which
appear in nearly equal measure. Beyond this core intersection, the significant presence of interdisciplinary
applications and various engineering subfields (electrical, industrial, and manufacturing) reinforces the

Top Publication Journals

T T T T T T
European Journal of Operational Research - 1 6.06% |

Computers & Operations Research 14.91% I
Lecture Notes in Computer Science 1 4.81% I
Expert Systems with Applications | 1 2.41% -

Journal of Heuristics | 1 2.31% n

Computers & Industrial Engineering T 1 1.93% B
Applied Soft Computing {1 1.83% B
Annals of Operations Research 1 1,64% B
Int. Journal of Advanced Manufacturing Technology [1 1.64% I
Int. Journal of Production Research [l 1.44% B
Soft Computing 1 1.25% B
IEEE Congress on Evolutionary Computation 1 1.06% B
Informs Journal on Computing 7 1.06% B
Journal of the Operational Research Society 71 1.06% n
Studies in Computational Intelligence [T 1.06% [
|

0 10 20 30 40 50 60 70
Record Count

Fig. 3: Distribution of scatter search publications across the top 15 publication journals.

broad applicability of SS. The taxonomy illustrates SS as a transversal optimization tool, bridging the
gap between theoretical computer science and practical engineering solutions.

3 Methodology

Scatter search and path relinking are population-based metaheuristics that differ fundamentally from
other evolutionary methods driven primarily by random variation. Their design is rooted in the systematic
combination and improvement of solutions, guided by strategic memory structures. Rather than relying
on stochastic operators to maintain diversity, these approaches employ deterministic mechanisms and
controlled probabilistic choices to generate and select candidate solutions, aiming to strike a deliberate
balance between intensification (searching around high-quality solutions) and diversification (exploring
new regions of the solution space).

Figure 5 illustrates a general framework of scatter search. The process starts with a Diversification
Generation Method to create an initial population, P. An Improvement Method is then applied to enhance
these initial solutions. The core of the algorithm is the Reference Set Update Method, which constructs
and maintains the RefSet by selecting a small set of elite solutions. As depicted in the figure, this
selection process is driven by two distinct criteria: solution quality, represented by color intensity (where
darker shades indicate higher quality), and diversity, represented by different geometric shapes (squares,
triangles, rhombuses, etc.). The algorithm then enters an iterative cycle where a Subset Generation
Method selects solutions from the RefSet to be combined by a Solution Combination Method, creating

Top Web of Science Categories

Operations Research Management Science

T
1-31.28%

Computer Science Artificial Intelligence |

Computer Science Theory Methods

Computer Science Interdisciplinary Applications

Engineering Electrical Electronic |

Engineering Industrial -

Computer Science Information Systems [) 7.51%
Automation Control Systems [71 7.41%
Mathematics Applied [T 5.68%

Engineering Manufacturing {1 5.20%

Engineering Multidisciplinary 1 4.72%
Computer Science Software Engineering -[T1 2.89%
Computer Science Cybernetics T3 2.12%

Computer Science Hardware Architecture I3 2.12%
|

1-29.74%

17.42%

1-17.13%

1-13.57%
111.17%
Management] 8.86%

| | | | | |
50 100 150 200 250 300 350

0

Record Count

Fig. 4: Distribution of scatter search publications across the top 15 Web of Science Categories.

new candidates. These new solutions are improved and may be used to update the RefSet, repeating the

cycle until a stopping condition is met.

Algorithm 1 shows the process represented in Figure 5 in a sequential way, following the basic template
of SS. The process begins in Step 1 with the generation of an initial population using the Diversification
Generation Method, followed in Step 2 by the application of the Improvement Method to refine each
solution. The initial Reference Set is constructed in Step 3 by selecting solutions that are both diverse and
with high quality. The main iterative cycle, spanning Steps 5 to 9, combines solutions from the Reference
Set, improves the resulting candidates, and updates the set when better or more diverse solutions are
found. The search continues until the stopping condition in Step 11 is satisfied, after which the best
solution(s) are returned in Step 12. This structure serves as the foundation for the detailed mechanisms

described in the following subsections.

?

Diversification

Improvement

A

Generation ———— —_— -
Method o Method [| ()
A o A O
| HE ;
N Improvement o SR; ars‘;';ti
A RIS A Method
A O A O9
. A . I :10?533::; Quality Solutions
Solution Subset O 0 O
Combination . . ‘ A Generation ! :
Method .A A Method Yes Diverse Solutions
. . No . A
@ RefSet

Lower Quality

Better Quality

Fig. 5: SS illustration with the iterative RefSet update based on quality (color) and diversity (shape).

Algorithm 1 Scatter search Framework

Generate initial population P using the Diversification Generation Method
Apply the Improvement Method to each solution in P
Build initial RefSet from P (quality and diversity)
repeat
Generate subsets from RefSet using the Subset Generation Method
for all subsets S do
Create new solutions by applying the Solution Combination Method
Apply the Improvement Method to each new solution
Evaluate new solutions and update RefSet if they qualify
end for
until no new solutions are added to RefSet
: return Best solution(s) from RefSet

© @ 3> e N

= = e
o2

3.1 The Scatter Search Methods

SS is organized around five fundamental components that work together to build, improve, and combine
high-quality solutions in search of an optimal solution. We now describe each method in detail.

Diversification Generation Method (DGM)

The Diversification Generation Method produces the initial set of solutions, denoted as P. Its goal is to
generate many different solutions in an attempt to achieve a certain degree of diversity that results in
an extensive exploration of the solution space, thus avoiding a premature convergence of the algorithm.
The size of P (PSize) is typically at least 10 times the size of RefSet. DGM often applies deterministic or
semi-random constructive heuristics, instead of the pure random generators applied by many evolutionary
methods. A typical design implemented in many recent SS algorithms is based on greedy randomized
constructions popularized by GRASP, striking a balance between diversity and initial solution quality.
In short, the DGM is the mechanism to create the initial set P that is referred to as a first generation in
evolutionary terminology.

Improvement Method (IM)

The IM transforms a given solution of the problem, s, into an enhanced solution sy. Usually, both solutions
are expected to be feasible, but this is not a requirement of the methodology. The IM generally relies
on local search (LS) procedures (also known as iterative improvement procedures). As is well known,
the local search tries to improve solution s by making ‘small changes’ in its structure. This may involve
operations such as swaps, insertions, or reassignments, applied iteratively until no further improvement
is possible or a stopping condition is reached. If an improvement is achieved in this way, then a new
solution sg is obtained. If no improvement of s was found, then s would be the output of the method.

Reference Set Update Method (RSUM)

The Reference Set, denoted as RefSet, contains a small number of high-quality and diverse solutions.
One of the main differences between scatter search and other evolutionary methods is that SS operates
on this small set of solutions, instead of over the entire population P, as the other methods typically do.
The first time that RSUM is run, it acts as a RefSet building procedure. RSUM selects a solution from
P to enter into the RefSet according to its quality, diversity, or both. Many SS implementations indicate
that a good trade-off between quality and diversity is achieved by considering building the RefSet with
a 50% based on a quality criterion, and the remaining 50% with a diversity criterion; however, but these
proportions can be modified depending on the problem being solved.

In a standard initial run of RSUM, the construction starts with the selection of the best b/2 solutions
from P. For each solution in P\ RefSet, the minimum distance to the solutions in RefSet is computed.
Then, the solution that maximizes the minimal distances is selected. This solution is added to RefSet
and deleted from P, and the minimal distances are updated. This process is repeated b/2 times. The
resulting reference set has b/2 high-quality solutions and b/2 diverse solutions.

RSUM evolves the RefSet during the search by replacing inferior solutions in terms of quality with newly
generated ones. The update operation consists of maintaining a record of the b best solutions found,
where the value of b is treated as a constant search parameter

Subset Generation Method (SGM)

The Subset Generation Method creates subsets of solutions from RefSet for combinations. These subsets
are generally small, containing between two and four elements, and are generated in a systematic way to
avoid redundant evaluations. Strategies such as clustering or anti-clustering can be applied to promote
intensification or diversification, respectively, depending on the current search needs.

Note that the general SS framework considers the generation of subsets with two, three, and four solutions,
but only generates a given subset if its solutions are used to create this subset for the first time. This
situation differs from those considered in the context of genetic algorithms, where the combinations are
typically determined by the spin of a roulette wheel and are usually restricted to the combination of only
two solutions.

Solution Combination Method (SCM)

The Solution Combination Method produces new solutions by combining elements of the subsets gener-
ated by the SGM. Instead of generic crossover operators, SS uses problem-specific combination methods
designed to preserve and exploit useful features of the parent solutions. These may include convex or
non-convex combinations, path relinking, or rule-based synthesis. The resulting solutions are improved,
evaluated, and considered for inclusion in RefSet, completing the iterative cycle of the method.

It should be mentioned that the convergence of the method is based on the ability to obtain better
solutions than those generated in the original RefSet. To this end, a customized combination method
based on the problem characteristics is more likely to generate quality solutions than a random-based
mechanism that only provides diversification and would require extra effort from the local search (with
the associated computing time) to improve the combined solutions. Scatter search usually exhibits shorter
running times than other evolutionary methods due to its effective design, which is highly oriented to
achieve a good balance between search intensification and diversification.

4 Advanced Search Strategies

Beyond its basic design, scatter search can incorporate a variety of advanced strategies to improve
performance and adaptability. In this section, we describe the most effective ones.

Dynamic Reference Set Updating

Instead of updating RefSet in fixed intervals or using static replacement rules, dynamic strategies evaluate
replacement opportunities continuously. Traditional SS implementations often regenerate a full population
of new solutions before considering any updates to the RefSet. In contrast, a dynamic approach assesses
each new solution generated by the Combination Method and improved by the Improvement Method
for its potential inclusion in the RefSet immediately. This allows the algorithm to adapt more quickly
to promising search trajectories and prevents stagnation [43, 57]. The decision to include a new solution
often triggers a comparison against the worst solution in the set but can also involve more complex rules,
such as replacing the most similar solution to encourage diversity. This “steady-state” update mechanism
ensures that high-quality information is incorporated into the reference set without delay, making the
search process more responsive and often more efficient [8].

RefSet Rebuild Mechanism

When the RefSet becomes stagnant, evidenced by multiple iterations without improvement or the addition
of new solutions, a rebuild mechanism can reactivate the search process. This strategy addresses the
common problem where the RefSet converges to a local region, making it difficult for new solutions to
enter due to high-quality barriers. The rebuild process generates a completely new diverse population
while preserving the current best solution, then reconstructs the RefSet using the standard quality-
diversity criteria. This mechanism balances intensification around known good solutions with systematic
diversification to explore unexplored regions. The rebuild threshold is typically set as a function of total
iterations (e.g., 5-10% of maximum iterations) or based on convergence indicators. This approach ensures
continued exploration when traditional combination methods fail to produce improvements, effectively
implementing an adaptive restart strategy within the SS framework.

Tiered Reference Sets

A tiered RefSet structure divides the set into two or more levels (e.g., 2-tier or 3-tier) according to solution
quality or diversity. This advanced mechanism, often called a 2-tier SS, partitions the reference set into
a high-quality tier, R;, and a high-diversity tier, Re. The upper tier, R;, contains the best solutions
found so far and is used primarily for intensification, generating new solutions by combining elite parents.
The lower tier, Ry, maintains a pool of diverse solutions that may not be of the highest quality but are
structurally different from those in R;. Movement between tiers is governed by performance rules: a high-
quality solution generated from combinations in R; or Ry can be promoted to Rj, while a solution in
Ry might be relegated to Ry if it becomes non-competitive or too similar to other elite solutions. This
structure creates a formal balance between intensification in the upper tier and diversification in the lower
tier [55].

Memory Structures

SS naturally lends itself to the use of memory structures, which can be explicit (i.e., storing complete
solutions) or attributive (i.e., tracking the frequency of individual components or features). The RefSet is
itself a form of explicit long-term memory. However, more sophisticated strategies incorporate attributive
memory, a concept borrowed from Tabu Search [26]. Attributive memory tracks characteristics of elite
solutions, such as the number of times a specific variable has been assigned a certain value or an edge
has been included in a tour. This information can be used to guide the search process. For example,
the Diversification Generation Method can be biased to generate solutions containing attributes that
have been infrequent in the RefSet, thus exploring novel regions of the search space. Conversely, the
Combination Method can be guided to prioritize combining attributes that have historically appeared
in high-quality solutions. This memory-driven approach allows the search to learn from its history and
make more strategic decisions.

Constructive and Destructive Neighborhoods

While the Improvement Method in SS typically employs a local search based on simple neighborhood
operators (e.g., swaps), more advanced implementations utilize constructive and destructive approaches,
such as those in the Iterated Greedy methodology [73]. A constructive method begins with an incomplete
solution, often a high-quality partial configuration derived from elite parents, and intelligently adds
elements until a complete, feasible solution is formed. Conversely, a destructive method starts with a

10

complete solution, removes a subset of its components, and then reconstructs it. By alternating between
these approaches, the algorithm can explore the search space more thoroughly. Destructive methods,
in particular, allow the search space to move away from local optima, while constructive methods can
effectively build high-quality solutions based on promising greedy criteria [56].

Vocabulary Building

Vocabulary building is a sophisticated strategy that refers to the systematic identification, storage, and
reuse of high-quality partial solution components, often called “building blocks” [27]. Instead of just
combining complete solutions, this approach analyzes the members of the RefSet to extract critical sub-
structures that are associated with high solution quality. For instance, in a scheduling problem, a building
block could be a specific sequence of three jobs; in a graph problem, it could be a well-formed subgraph.
These building blocks are stored in a special memory structure (the “vocabulary”). New solutions can then
be constructed by assembling these proven components in novel ways, much like forming new sentences
from a dictionary of “powerful” words. This method improves the search with a deeper level of learning,
allowing it to exploit the underlying problem structure far more effectively than by operating on complete
solutions alone.

Parallelization

The modular nature of SS makes it well-suited for parallel computing environments. For example, subsets
can be generated and combined independently, and improvement procedures can be applied concurrently
to different candidate solutions. This parallelism can significantly reduce computation times for large-scale
problems.

The parallelization of scatter search has evolved significantly over the past three decades, reflecting both
theoretical advancements and practical demands for scalable metaheuristics. Early foundational works,
such as those by Fleurent et al. [20] and Glover [27] laid the groundwork for parallel implementations by
proposing modular and adaptable frameworks, even though parallelism was not their primary focus. The
inherent structure of SS, based on combining subsets of elite solutions, naturally lends itself to parallel
execution, particularly in the evaluation and improvement phases.

From the early 2000s onward, researchers began to explore explicit parallelization strategies. Garcia-Lépez
et al. [23] applied parallel SS to the p-median problem, demonstrating its effectiveness in large-scale com-
binatorial optimization. Adenso-Diaz et al. [1] conducted an empirical investigation into parallelization
strategies, highlighting trade-offs between synchronous and asynchronous models. Further contributions
by Garcia Lépez et al. [22] extended these ideas to feature subset selection, showcasing the adaptability
of parallel SS to machine learning contexts.

In computational biology, Penas et al. [61] introduced an asynchronous cooperative enhanced SS tailored
for systems biology applications. This work emphasized the benefits of parallel metaheuristics in domains
requiring extensive simulation and data integration.

More recently, the field has seen renewed interest in parallel frameworks. Casado et al. [9] proposed a novel
parallel architecture and studied it on problems such as MaxCut and capacitated dispersion. Additionally,
Zhao et al. [83] and Zuo et al. [84] developed knowledge-based cooperative SS algorithms for distributed
flow shop scheduling, integrating reinforcement learning to guide parallel search processes.

11

5 Hybridization with Other Methodologies

Scatter search, despite its origins in the 1970s, remains a relevant and powerful metaheuristic. Its maturity
has enabled researchers to explore numerous hybridizations and combinations with other optimization
strategies. As discussed in previous sections, Path Relinking is one of the most natural extensions of SS,
enhancing intensification through trajectory-based exploration between elite solutions [28]. Additionally,
advanced strategies have incorporated memory structures from Tabu Search to guide diversification and
avoid cycling [26].

5.1 Path Relinking

Path Relinking is a trajectory-based intensification strategy, originally introduced within the scatter
search and tabu search methodologies [26, 27]. Its primary purpose is to explore intermediate solutions
that lie along a path between two or more high-quality (elite) solutions. Given an initiating solution and
a guiding solution, PR progressively incorporates attributes from the guiding solution into the initiating
one, generating a sequence of intermediate solutions. Each of these intermediate solutions is evaluated,
and the best one encountered may be considered for inclusion in the high-quality (elite) solutions (that
is, in SS, the Reference Set).

In tabu search, any two solutions are linked by a series of moves executed during the search. The path
between solutions is determined by the “normal” operational rules of the search procedure. The moves
chosen during the relinking process are different from the moves during the “normal” search because the
relinking moves do not use the change of the objective function as the guiding principle; they are chosen
to get “closer” to the guiding solution.

PR has been extensively applied as the Combination Method in scatter search, usually replacing tra-
ditional combination rules. It provides a structured and systematic approach to investigating solution
space regions that are often neglected by purely combinatorial combination methods. Instead of directly
producing a new solution when combining two or more original solutions, PR generates paths between
and beyond the selected solutions in the neighborhood space. This hybridization may be viewed as a
highly focused strategy to incorporate attributes of good solutions by creating inducements to favor these
attributes in the selected moves, thus creating a path of solutions instead of a single combined solution, as
combination methods typically do. This integration often leads to a better balance between intensification
and diversification.

We refer the reader to the recent review by Laguna et al. [44] on the hybridization of Path Relinking
with GRASP. Some of the most important variants proposed over the last 20 years are:

e Forward PR begins with the initiating solution and moves toward the guiding solution.

® Backward PR: reverses the process, starting from the guiding solution and moving toward the initiating
one.

® Mized PR: explores both forward and backward directions, potentially identifying better intermediate
points.

e FExtrapolated PR: extends the path beyond the guiding solution in search of novel high-quality solutions.

® Multiparent PR: generalizes the concept to more than two elite solutions, enabling richer diversification
and exploration of multidirectional paths.

12

In Figure 6, we show an illustration of the Forward path relinking, with the initiating (or initial) solution S
and the guiding solution T'. More generally, we can say that given two solutions S and T to relink, forward
path relinking uses the better solution, say for example T', as the guiding solution and the other (5) as the
initiating solution. A typical implementation is referred to as greedy since upon incorporation in S of the
attributes of T not present in S, the updated initiating solution is selected as the one resulting from the
introduction of the attribute leading to the solution with best cost. This figure illustrates the path from
S to T with its intermediate solutions, depicted in black, and several solutions in their neighborhoods,
depicted in gray.

Fig. 6: Forward path relinking from an initial solution S to a guiding solution 7.

The PR method can be easily incorporated into SS by replacing the standard combination step in the
Solution Combination Method with the procedure illustrated in Figure 6, or by hybridizing them to alter-
nate between purely combinatorial combinations and PR-driven trajectories. In practice, PR often leads
to significant performance gains, particularly in structured combinatorial problems such as scheduling,
routing, or assignment [29].

5.2 Evolutionary Methods

SS is a member of the broader family of population-based metaheuristics, which also includes evolutionary
algorithms. We now examine the conceptual and methodological connections between SS and Genetic
Algorithms (GAs), the latter being perhaps the most widely recognized approach within the domain of
evolutionary algorithms.

The application of the biological principle of natural evolution to artificial systems, first introduced over
three decades ago, has experienced remarkable development in recent years. Collectively referred to as
evolutionary algorithms or evolutionary computation, this field encompasses several related paradigms,
including genetic algorithms, evolution strategies, evolutionary programming, and genetic programming.
Evolutionary algorithms have demonstrated considerable success across a wide range of domains, such
as optimization, automated programming, machine learning, economics, ecology, population genetics,
evolutionary studies, and social system modeling.

13

Both scatter search and Genetic Algorithms were introduced in the 1970s. Holland [33] proposed Genetic
Algorithms in 1975, inspired by natural evolution and the principle of “survival of the fittest,” while
Glover [25] introduced SS in 1977 as a heuristic for integer programming that extended the concept of
surrogate constraints. Although both methodologies maintain and evolve a population (or set) of solutions
throughout the search process, they differ in several fundamental ways. Notably, Genetic Algorithms were
originally conceived as a framework for hyperplane sampling rather than for optimization. Over time,
however, GAs evolved into a methodology primarily focused on solving optimization problems.

Although GAs and SS have contrasting views about searching a solution space, it is possible to create a
hybrid approach without entirely compromising the SS framework. Specifically, if we view the crossover
and mutation operators as instances of a Combination Method, it is straightforward to design a SS pro-
cedure that employs genetic operators for combination purposes. GA operators have been used to replace
the combination and improvement phases of SS, yielding robust performance in knapsack and scheduling
problems [18]. Similarly, Differential Evolution has been embedded to enhance mutation diversity and
avoid premature convergence [46].

Marti et al. [58] compare the performance of SS and GA, employing four classes of problems whose
solutions can be represented as permutations. The SS and GA implementations are based on a model
that treats the objective function evaluation as a black box, making the search procedures context-
independent. This means that neither implementation takes advantage of the structural details of the
tests problems. The comparisons are based on experimental testing with four well-known problems: the
linear ordering, the traveling salesperson, matrix bandwidth reduction, and a job-sequencing problem.

The authors compare the SS design with two GAs: one without local search and another with the same
local search as SS. The experiments show that the SS procedure is able to obtain high quality solutions
from the very beginning of the search. Specifically, after 100,000 objective function evaluations, the percent
deviation from the best-known solutions for the SS method is 0.7, while after 1 million evaluations, the
GA and GALS methods are still at 4.8 and 0.8, respectively. The strategic choices of SS in this case
make a performance difference when compared to the two GA variants. As a conclusion, the authors
mentioned that mixing combination strategies with random elements and those based on systematic
mechanisms seems to benefit both procedure-based GAs and SS methodologies. Thus, it is confirmed
what is well-known nowadays: that hybrid designs may obtain superior outcomes across different types
of problems.

5.3 Trajectory-based Methods

Tabu Search remains a natural partner for SS due to their shared emphasis on memory structures and
strategic exploration. T'S has been used to enhance the improvement phase or to guide the selection
of promising regions in multiobjective optimization [3]. Similarly, Variable Neighborhood Search (VNS)
has also been incorporated as an advanced improvement method to dynamically adjust neighborhood
structures during the search [19].

Swarm-based algorithms, such as Particle Swarm Optimization (PSO) and Ant Colony Optimization
(ACO), have also been combined with SS. PSO has been used to guide the search in flow shop schedul-
ing, while ACO has been integrated to improve solution quality in multicast routing problems [11].
These hybrids leverage the collective intelligence of swarms with the structured memory and combination
mechanisms of SS.

14

Recent innovations include the use of chaotic maps to generate pseudorandom numbers for SS initializa-
tion, combination, and improving exploration in complex landscapes [15]. Binary adaptations of SS have
also been proposed for discrete problems, with tailored diversification and combination operators [31].

Multiobjective variants of SS, such as AbYSS and MOSS, incorporate Pareto dominance, external
archives, and density estimation to handle trade-offs between conflicting objectives [3, 59]. These
frameworks have demonstrated competitive performance in engineering design, scheduling, and network
optimization.

More recent developments include the integration of reinforcement learning and knowledge-based mecha-
nisms into SS. These hybrids adaptively guide the search based on learned patterns, as seen in distributed
flow shop scheduling problems [83, 84].

6 Applications

Scatter search has proven to be a highly adaptable and effective metaheuristic, successfully addressing
a wide range of optimization problems, from classical combinatorial formulations to complex, large-
scale real-world challenges involving uncertainty, nonlinearity, and simulation. Its structured approach
to combining elite solutions, leveraging adaptive memory, and promoting controlled diversification has
made it a valuable tool in diverse domains such as logistics, manufacturing, finance, healthcare, and
bioinformatics.

Table 1 presents an overview of representative SS applications between 2000 and 2025, organized by
thematic area.

Application Area References
Scheduling & Timetabling [51, 52, 62, 66, 76, 77, 80, 83, 84]
Transportation & Routing [4, 10, 38, 63, 70, 74, 82]
Data Mining & Feature Selection [16, 24, 21, 60, 78, 79]
Healthcare [7, 50]
Medical Imaging & Forensics [12, 13, 35, 72, 75]
Bioinformatics & Computational Biology [6, 17, 53, 67]
Electrical & Electronic Engineering [34, 81]
Facility Location, Layout & Network Design [14, 32, 38, 39, 40]
Manufacturing & Disassembly/Assembly Planning [30, 36, 64, 65]
Civil/Water Resources (2, 47
Software Engineering & Testing [5, 48, 68, 71]
Table 1: Representative applications of scatter search (2000-2025) across multiple
domains.

One of the most impactful industrial implementations of SS is the OptQuest optimization engine [42].
OptQuest integrates scatter search with simulation models to tackle problems too complex for conven-
tional mathematical programming. It functions as a black-box optimizer, meaning it can guide the search
process even when the objective function is implicit, noisy, or computationally expensive, relying solely on
input—output evaluations. This capability allows it to optimize production scheduling, inventory planning,
network design, and workforce allocation under uncertainty.

15

Beyond OptQuest, several works have proposed specialized black-box implementations of SS tailored
to specific problem classes [31, 41, 45], expanding its applicability to domains where direct analytical
formulations are not feasible.

7 Tutorial: 0-1 Knapsack Problems

We now show a practical implementation of scatter search. In particular, we present a comprehensive
tutorial to solve the well-known 0-1 knapsack problem. This classic combinatorial optimization problem
serves as an excellent testbed for demonstrating the key components of the SS methodology, while its
binary nature makes it particularly suitable for educational purposes.

In addition to the explanations provided in this section, we have developed a comprehensive Jupyter
Notebook that includes detailed information, execution traces, visualizations, and additional analysis.
The notebook, which we recommend for a deeper understanding, can be accessed via the following link:
https://github.com/scaverod/Scatter-Search-Tutorial-0-1-Knapsack-Problems. We have also created a
concise and self-contained Python implementation. The code presented below corresponds to this simpli-
fied version. For clarity and brevity, we have omitted error checking, input validation, default parameter
values, and exception handling from the code listings.

7.1 Problem Formulation

The 0-1 Knapsack Problem is formally defined as:

maximize Z = Z VT4 (1)
i=1
subject to szﬂfz <W (2)
i=1
z; €{0,1}, i=1,...,n (3)

where v; denotes the profit of item ¢, w; its weight, W the knapsack capacity, and z; a binary decision
variable. The objective is to maximize total profit without exceeding the available capacity.

In the examples and experiments presented throughout this section, we use a specific instance of the 0-
1 Knapsack Problem to illustrate the performance of the scatter search algorithm. The problem can be
formulated as:

maximize Z = 24x1 + 1829 + 1523 4+ 40x4 + 2225 + 33x¢ + 1727 + 2823
+ 1929 + 3119 + 25211 + 14219 + 37213 + 21214
+ 16215 + 29216 + 23217 + 35218 + 20219 + 27290 (4)
subject to 12x7 + 2529 + 18x3 + 324 + 205 + 27x6 + 1527 + 2225
4+ 1929 4 24210 + 17211 + 13212 + 30213 + 21214
4+ 16215 + 26216 + 14217 + 28x18 + 23219 + 20299 < 150 (5)
z;€{0,1}, i=1,...,20 (6)

16

https://github.com/scaverod/Scatter-Search-Tutorial-0-1-Knapsack-Problems

7.2 Data Structures and Problem Representation

The implementation begins with a clear data structure for representing knapsack instances. Specifically,
it is necessary to store the profit and weight associated with each item, as these are the fundamental
parameters that define the problem. Additional properties and methods can be defined to facilitate
efficient algorithmic operations, such as computing the number of items or the efficiency ratio of each
item.

Code 1 shows a frozen dataclass in Python that ensures immutability and provides computed properties
for algorithmic efficiency.

Code 1: Problem representation with efficiency ratios

| @dataclass(frozen=True)
2 class KnapsackProblem:
3 profits: Listl[int]
4 weights: List[int]
5 capacity: int
Qproperty

8 def n(self): # number of items
9 return len(self.profits)

11 Qproperty

12 def efficiency_ratios(self): # v_i/w_1

13 return np.array(self.profits) / np.array(self.weights)
14

15 Qproperty

16 def total_weight(self):

17 return sum(self.weights)

7.3 Core Problem Operations

Next, we define in Code 2 three fundamental operations that will be used throughout the optimization
process and are generic to any knapsack instance: objective evaluation, weight calculation, and feasibility
checking. Additionally, we include the function ratio_order, which returns the indices of items sorted
by their efficiency ratio (profit-to-weight). These operations are not specific of SS and can be reused in
other metaheuristic approaches.

Code 2: Essential knapsack operations

1 def objective(pb, x):
2 return int(sum(p * s for p, s in zip(pb.profits, x)))
4

def total_weight(pb, x):
return int(sum(w * s for w, s in zip(pb.weights, x)))

7 def is_feasible(pb, x):
8 return total_weight(pb, x) <= pb.capacity

10 def ratio_order(pb, ascending=False):

11 indices = list(range(pb.n))

12 ratios = pb.efficiency_ratios

13 indices.sort(key=lambda i: ratios[i], reverse=not ascending)
14 return indices

17

7.4 Systematic Diversification

The Diversification Generation Method constructs an initial pool of structurally diverse binary solu-
tions using two complementary strategies: systematic toggling patterns based on (h, ¢) parameters, and
capacity-aware random selection. This dual approach ensures broad coverage of the solution space while
adapting to the specific constraints of the knapsack problem.

The first strategy relies on deterministic toggling patterns. For each combination of step size h and phase
offset ¢, the algorithm toggles the positions g —1,g — 14+ h,q — 1+ 2h, ... in a binary seed vector. This
produces a new solution and its binary complement. The resulting structural diversity contributes to a
systematic exploration of the search space. This mechanism aligns with the SS principle of generating
solutions that are scattered across the solution space [27, 55].

Although this method can generate solutions that span the entire space, many of them may be infeasible,
particularly when the number of active items (ones) is high. To mitigate this, the second strategy estimates
the number of items that can reasonably fit into the knapsack by dividing the total capacity by the average
item weight. A small random deviation is then applied to this estimate, and the algorithm randomly
selects the corresponding number of positions to activate. More formally,

w
target_items = max (1, min (n, {J + a)) (7)
w

where W is the knapsack capacity, w is the average item weight, n is the number of items, and « is a
small random integer deviation. This formulation guides the generation of solutions that are close to the
feasible region, increasing the likelihood of producing valid candidates.

Unlike population-based metaheuristics such as genetic algorithms, which depend heavily on stochastic
operators like crossover and mutation, SS may exploit problem-specific knowledge to guide the generation
of new solutions. By embedding structural information—such as efficiency ratios in knapsack problems or
precedence relations in scheduling tasks—the method achieves a more directed exploration of the search
space and reduces reliance on random variation, thus promoting faster convergence toward high-quality
solutions.

Now, we illustrate the construction process. Consider an initial seed vector of length n = 20 corresponding
to the instance described in Section 7. For step size h = 2 and phase ¢ = 1, the algorithm toggles the posi-
tions [1,3,5,7,9,11,13,15,17,19], resulting in the solution [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0].
Its binary complement is [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1].

Next, the capacity-aware randomization step is applied to both solutions. Based on the equation above,
the estimated number of items that can fit is target_items = 5. Five positions are randomly selected
to remain active, while the rest are set to zero. For instance, the randomized version of the original
solution might be [0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0], while the randomized complement could
be [0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0, 1]. These two solutions are then used as seeds for subsequent
(h,q) combinations, and the process continues iteratively.

Code 3 shows the implementation of the complete diversification generation method. Functions
create_systematic_solution(seed, h, q) and fit_to_target_items(solutions, target_items)
have been omitted for the sake of brevity. The first one, create_systematic_solution(seed, h, q),
generates a solution by toggling the elements of the seed vector at positions determined by the step size
h and the phase offset q. The second one, fit_to_target_items(solutions, target_items), applies
the capacity-aware randomization step. This function modifies the input solutions by randomly selecting

18

target_items positions to remain active (set to 1) and deactivating all others (set to 0), thus ensuring
the solution’s density is close to the estimated feasible capacity.

Code 3: Complete diversification generation method

1 def generate_diverse_solutions(pb, target):
2 n = pb.n

3 hmax = min(max(2, n - 1), 10)

4 max_items_estimate = estimate_capacity_items(pb)
5 max_deviation = max(l, max_items_estimate // 3)
6 pool = []

7 seed = [0] * n

9 while len(pool) >= target:

10 for h in range(2, min(hmax + 1, 5)):

11 for q in range(1, h + 1):

12 # We generate a solution and its complementary

13 systematic_solution = create_systematic_solution(seed, h, q)

14 complementary_solution = [1 - x for x in systematic_solution]
15 seed = systematic_solution # Update the seed for next tteration

17 # Fit to target items

18 alpha = random.randint(-max_deviation, max_deviation)

19 target_items = max(1l, min(n, max_items_estimate + alpha))

0 fit_to_target_items(solutions, target_items) # Capacity-aware randomization step

for solution in [systematic_solution, complementary_solution]:
3 if tuple(solution) not in pool:
1

pool.append(solution)

6 return pool[:target] # return the first "target" solutions of the pool

To assess the effectiveness of the diversification method, we generated 100 solutions for the knapsack
instance. Figure 7 shows a scatter plot in which each point (i.e., a solution) is plotted according to
total weight (x-axis) and total value (y-axis). The gray dashed vertical line marks the knapsack capacity
(W = 150); solutions to the right, colored red, are infeasible and require repair.

Among the 100 generated solutions, 62% are feasible. The value ranges from 103 to 238 (mean: 164.5),
and the weights range from 89 to 200 (mean: 140.6). All solutions are unique, although profit or weight
may be identical.

7.5 Two-Phase Improvement Method

The improvement method ensures that all solutions are both feasible and locally optimal through a
systematic two-phase approach: the repair phase and the quality enhancement phase.

The repair phase receives a potentially infeasible solution and systematically removes items to achieve
feasibility. Code 4 shows how items are removed in order of worst efficiency until the solution becomes
feasible.

19

240 4 i
i o®
1
1
I ~ []
2201 i o ©
i)
1
i @
200 — e 5
L %®e o °
& 1801 : ?
=
& °o0® a8 °°
)
E [oX0) @ .: @]
€ 160 - ©_© o |
: |‘€=.I'. .‘:
P '
@ i
140 o ..- @ !
(0] 1
% !
@00 © ° :
1207 ... (0] i @ Feasible
| @ Infeasible
! . i
100 A * ! Capacity
100 120 140 160 180 200
Total weight

Fig. 7: Scatter plot of 100 diversified solutions. Dashed vertical line indicates knapsack capacity (W =
150).

Code 4: Feasibility repair using efficiency ordering

1 def remove_worst_items(pb, x):

2 repaired_solution = x[:] # clone the given solution

3 current_value = objective(pb, repaired_solution)

4 efficiency_order_asc = ratio_order(pb, ascending=True)

6 for item_idx in efficiency_order_asc:
7 if is_feasible(pb, repaired_solution):

8 break

9 if repaired_solution[item_idx] == 1: # if item is selected

10 repaired_solution[item_idx] = 0 # remove the item
current_value -= pb.profits[item_idx] # remove its profit

return repaired_solution, current_value

The enhancement phase receives a feasible solution and attempts to improve its quality by adding items.
Code 5 shows how items are added in order of best efficiency while maintaining feasibility.

20

Code 5: Greedy enhancement using efficiency ordering

def add_best_items(pb, x, current_value):

1

2 improved_solution = x[:]

3 efficiency_order_desc = ratio_order(pb, ascending=False)

4

5 for item_idx in efficiency_order_desc:

6 if improved_solution[item_idx] == 0: # it item is not selected

7 new_weight = total_weight(pb, improved_solution) + pb.weights[item_idx]
8 if new_weight <= pb.capacity: # check if it would fit

9 improved_solution[item_idx] = 1 # if so, we add it
10 current_value += pb.profits[item_idx] # and update the total profit

12 return improved_solution, current_value

Finally, the complete improvement method coordinates both phases. Figure 8 shows the trajectory of a
solution through both phases. Red points indicate infeasible states, blue points are feasible, and arrows
trace the improvement path. In particular, point 0 is the initial infeasible solution with weight 218 and
value 249. During the repair phase, items are removed sequentially (solutions 1, 2, 3) based on ascending
efficiency until feasibility is reached at solution 4 (weight 133, value 167). In the enhancement phase, the
most efficient item is added without violating the capacity constraint, resulting in solution 5 (weight 145,
value 191).

1
--- Capacity = 150 ! e’
i
]
240 1 i
]
]
1
i @
1
1
1
1
220 :
£ !
&
2
£ | o
= i
(=]
F 2001 i
] 3
! o
5]
o |
1
]
1
1
180 | !
1
1
1
1
P i
1
1
T 1 T T T T
140 160 180 200 220
Total Weight

Fig. 8: Improvement trajectory in weight-value space.

21

7.6 Reference Set Management

The Reference Set (RefSet) is constructed using a two-phase strategy that balances solution quality and
structural diversity. In the first phase, the top b; solutions are selected based on objective value, ensuring
intensification around promising regions. In the second phase, diversity is introduced by selecting by
solutions that maximize the minimum Hamming distance to the current RefSet. The Hamming distance
between two binary vectors x and y is defined as:

du(z,y) =Z|$i—yi| (8)

Code 6 shows the implementation of this process. The function hamming distance computes the number
of differing bits between two solutions, and create_refset builds the RefSet by first selecting the best
solutions, then adding the most structurally diverse ones.

Code 6: Reference Set creation balancing quality and diversity

def hamming_distance(x, y):
return sum(abs(xi - yi) for xi, yi in zip(x, y))

1

2

3

4 def min_hamming_dist_to_refset(s, rs_solutions):

5 return min(hamming_distance(s, r) for r in rs_solutions)

7 def create_refset(solutions_with_values, b, bl):

8 P_sorted = sorted(solutions_with_values, key=lambda t: t[1], reverse=True)
9 rs_solutions = [P_sorted[i][0][:] for i in range(min(bl, len(P_sorted)))]
10 rs_values = [P_sorted[i][1] for i in range(min(bl, len(P_sorted)))]

12 candidates = [t for t in P_sorted if tuple(t[0]) not in {tuple(r) for r in rs_solutions}]
13 while len(rs_solutions) < b and candidates:
14 best = max(candidates, key=lambda t: min_hamming_dist_to_refset(t[0], rs_solutions))

15 rs_solutions.append(best[0][:])
16 rs_values.append(best[1])
17 candidates = [t for t in candidates if tuple(t[0]) != tuple(best[0])]

19 return rs_solutions, rs_values

For this tutorial, we consider a pool of 30 solutions, a RefSet of size b = 8, composed of b; = 4 high-quality
solutions and by = 4 diverse solutions. Figure 9 visualizes the selection process. Red points represent
the top 4 solutions selected for quality (b1), located highest on the vertical axis (value). Blue points
correspond to the 4 most diverse solutions (bs), positioned farthest to the right on the horizontal axis
(minimum Hamming distance to RefSet). Gray points are non-selected candidates.

22

1]
200 A
1]
190 A ' L]
o
Q (0] Q
O
— [)
% 180 1 ' e
[=%
= 0}
B 8
°
170 1 o]
Q
[]
160 -
@ Quality (RefSet)
@ Diversity (RefSet) L] °
@ OtherP @
3 a 5 6 7 8

Min Hamming Distance to RefSet (excluding self)

Fig. 9: Reference Set selection from pool P. Red: high-quality (b1), Blue: diverse (b2), Gray: non-selected.
X-axis: minimum Hamming distance to RefSet, Y-axis: objective value.

7.7 Solution Combination Method

The combination method generates new trial solutions by combining multiple RefSet members using a
quality-weighted scoring approach. Unlike traditional pairwise crossover, this method supports variable-
sized subsets and produces multiple candidate solutions per combination.

For each variable position (item) 4, a score is computed based on the weighted average of the values across
the selected parent solutions:

ZjESubset xEJ) : Oijal(]) (9)
ZjEsubset ObJV&l(])

Trial solutions are generated by applying different thresholds to these scores. If score(i) > r, then z; = 1;

otherwise, x; = 0. Multiple thresholds are used to produce diverse candidates.

Code 7 shows the implementation of this method. The function computes weighted scores and generates
several trial solutions using fixed and random thresholds. Edge cases are handled to avoid empty solutions.

score(i) =

23

Code 7: Multi-solution combination using weighted scoring

1 def combine_multiple(pb, solutions, values):

2 total_value = sum(max(0, v) for v in values)

3 weights = [1.0 / len(values)] * len(values) if total_value == 0

4 else [max(0, v) / total_value for v in values]

6 scores = []

7 for i in range(pb.n):

8 weighted_sum = sum(solutions[j][i] * weights[j] for j in range(len(solutions)))
9 score = max(0.0, min(1.0, weighted_sum))

10 scores.append (score)

12 trials = []

13 thresholds = [0.2, 0.4, 0.5, 0.6, 0.8]

14 for threshold in thresholds:

15 trial = [1 if scores[i] >= threshold else O for i in range(pb.n)]
16 if sum(trial) == O:

17 high_indices = [i for i, s in enumerate(scores) if s > 0.1]
18 if high_indices:

19 trial[random.choice(high_indices)] = 1

20 trials.append(trial)

2
22 return trials

To illustrate the process, consider the following subset of three parent solutions selected from the RefSet:
e Parent 1: [1,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,
e Parent 2:[1,0,1,0,0,1,1,0,0,1,1,0,0,0,0,0,
e Parent 3:[1,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0

,1,0,0], with an objective value of 202.
,0,0,1], with an objective value of 195.
,1,0,0], with an objective value of 181.

O ==

9)))) 9

For each variable position, we compute a quality-weighted score. First, the total objective value is

calculated: 202 4+ 195 + 181 = 578. This sum serves as the denominator for the weighted average.

The score for each position ¢ is then computed using the formula. For example, the scores for the first
. i, 1-202)+(1-195)4(1-181 0-202)4(1-195)+(0-181

and third positions are: Score(1) = (1-202)+(=g)18 — 9 000, and Score(3) = (0-202)+(oo)+(0181)

0.337.

The Table 2 details the scores for all variable positions and the resulting binary values for two trial

solutions generated with thresholds r = 0.3 and r = 0.6. A variable is set to 1 if its score is greater than

or equal to the threshold.

7.8 Algorithm Orchestration

The scatter search procedure is structured around a modular and iterative process that coordinates
all components: diversification, improvement, reference set management, subset generation, solution
combination, and convergence control. Code 8 presents the complete orchestration.

The algorithm begins by generating a diverse pool of candidate solutions using the Diversification Gener-
ation Method. These solutions are then improved through a two-phase procedure that ensures feasibility
and local optimality. The improved solutions are used to construct the initial Reference Set (RefSet),
which balances quality and diversity.

The main loop iteratively generates subsets from the RefSet, combines their members using the weighted
scoring method, and applies the improvement procedure to the resulting trials. If a trial solution is both

24

Table 2: Calculation of scores and generation of trial solutions

Var. Index (:) | P1 | P2 | P3 | Score(i) | Trial (r > 0.3) | Trial (r > 0.6)
1 1 1 1 1.000 1 1
2 0 0 0 0.000 0 0
3 0 1 0 0.337 1 0
4 1 0 0 0.349 1 0
5 1 0 0 0.349 1 0
6 1 1 0 0.687 1 1
7 0 1 1 0.651 1 1
8 0 0 0 0.000 0 0
9 0 0 1 0.313 1 0
10 0 1 1 0.651 1 1
11 1 1 1 1.000 1 1
12 0 0 1 0.313 1 0
13 0 0 0 0.000 0 0
14 0 0 0 0.000 0 0
15 0 0 1 0.313 1 0
16 0 0 0 0.000 0 0
17 1 1 0 0.687 1 1
18 1 0 1 0.663 1 1
19 0 0 0 0.000 0 0
20 0 1 0 0.337 1 0

new and better than the worst in the RefSet, it replaces it. This dynamic update mechanism ensures that
the RefSet evolves with the search, maintaining a balance between intensification and diversification.

The algorithm tracks the best solution found so far and uses a patience-based stopping criterion: if no
improvement is observed over a fixed number of iterations, the search terminates. This is a practical
alternative to the classical convergence condition used in scatter search, which stops when no new solutions
are added to the RefSet. Both approaches aim to prevent unnecessary computation once the search
stagnates.

Variants of scatter search may include elite solution preservation, tiered reference sets, or adaptive memory
structures. These extensions enhance robustness and adaptability, especially in dynamic or multiobjective
contexts.

25

Code 8: Complete scatter search algorithm

1 def run_scatter_search(pb, max_iter, refset_size, max_iter_no_impr):
2 # 1. Diversification Generation

3 initial_pool = generate_diverse_solutions(pb, target=30)

4

5 # 2. Improvement

6 improved_pool = []

7 for sol in initial_pool:

8 improved_sol, value = improve_solution(pb, sol)

9 improved_pool.append((improved_sol, value))

11 # 3. Create initial RefSet
12 rs_solutions, rs_values = create_refset(improved_pool, b=refset_size, bl=refset_size//2)

14 best_value = max(rs_values)
15 best_solution = rs_solutions[rs_values.index(best_value)]
16 no_improvement = 0O

18 # 4. Main iterative loop
19 for iteration in range(max_iter):
0 added_new = False

5. Generate subsets and combine solutions
for i in range(len(rs_solutions)):
for j in range(i+1, len(rs_solutions)):
subset_sols = [rs_solutions[i], rs_solutions[j]]
subset_vals = [rs_values[i], rs_values[j]]

ol W N R

NN NN

7
28 # 6. Combination and improvement
29 trials = combine_multiple(pb, subset_sols, subset_vals)
30
31 for trial in trials:
32 improved_trial, trial_value = improve_solution(pb, trial)
34 # 7. RefSet update
35 trial_tuple = tuple(improved_trial)
36 already_exists = any(tuple(sol) == trial_tuple for sol in rs_solutions)
38 if not already_exists and trial_value > min(rs_values):
39 worst_idx = rs_values.index(min(rs_values))
10 rs_solutions[worst_idx] = improved_trial
11 rs_values[worst_idx] = trial_value
42 added_new = True
43
14 # Update best solution
A5 current_best = max(rs_values)
46 if current_best > best_value:
a7 best_value = current_best
18 best_solution = rs_solutions[rs_values.index(best_value)]
19 no_improvement = 0
50 else:
51 no_improvement += 1
52
53 # Patience-based termination
4 if no_improvement >= max_iter_no_impr:
5 break

7 return best_solution, best_value

To finalize the tutorial, we execute the complete scatter search algorithm on the test instance. Figure 10
shows the evolution of the best solution value across iterations. The initial population yields a best value
of 201. After two RefSet update cycles, the value improves to 204 and then to 207, demonstrating effective
intensification. The curve reflects a typical behavior: rapid early improvement followed by stabilization,

26

indicating convergence. Note that, the performance profile shown here is reasonable for this instance, but
it may vary significantly across different problems or datasets.

207

206

205

204 4

Best profit

203

202

201

0 2 4 6 8 10 12
Iteration

Fig. 10: Best solution value over iterations.

Finally, it is worth mentioning that the orchestration of SS involves several parameters whose config-
uration critically affects algorithmic performance. Key parameters include the size of the initial pool,
the Reference Set size and its quality/diversity ratio, the number of subsets generated per iteration, the
thresholds used in the combination method and stopping criteria such as maximum iterations. While
manual tuning based on domain expertise remains common, automated configuration tools such as irace
[49] have proven effective for systematically exploring parameter spaces and identifying robust settings.
These tools employ racing strategies to compare candidate configurations under limited computational
budgets, thereby reducing the risk of overfitting and improving reproducibility in experimental studies.

8 Conclusions

Scatter search and path relinking have evolved into robust and versatile metaheuristics, distinguished by
their strategic design and memory-based learning mechanisms. Unlike traditional evolutionary algorithms
that rely heavily on stochastic variation, structured combination, and adaptive memory, SS emphasizes
a deliberate balance between intensification and diversification.

This review has traced the historical development of SS, from its foundational principles to its integration
with PR and its expansion into advanced strategies such as dynamic reference set updating, tiered memory
structures, and vocabulary building. These enhancements have significantly improved the algorithm’s
responsiveness, scalability, and ability to escape local optima.

The adaptability of SS has been demonstrated across a wide range of applications, including schedul-
ing, routing, bioinformatics, medical imaging, and software engineering. Its modular architecture has
facilitated parallelization and hybridization with other metaheuristics, such as Genetic Algorithms, Dif-
ferential Evolution, Particle Swarm Optimization, and Tabu Search. These combinations have yielded
high-performance algorithms capable of tackling large-scale and multiobjective problems.

27

Future research may focus on automated configuration of SS components, deeper integration with
simulation-based optimization, and the incorporation of learning mechanisms such as reinforcement learn-
ing. The continued exploration of SS in emerging domains, including dynamic and uncertain environments,
will further solidify its role as a foundational tool in the metaheuristic landscape.

Acknowledgements. This research has been partially supported with grants PID2021-1257090B-C21
and PID2024-1602260B-C21 funded by the Spanish Government (MCIN/AEI/10.13039/501100011033)
and by ERDF-A way of making Europe. It has also been supported by the Generalitat Valenciana
(CIAICO/2021/224).

References

[1] B. Adenso-Diaz, S. Garcfa-Carbajal, and S. Lozano. An empirical investigation on parallelization
strategies for Scatter Search. European Journal of Operational Research, 169(2):490-507, Mar. 2006.

[2] R. Bartos, C. Gil, J. Reca, and J. Martinez. Implementation of scatter search for multi-objective
optimization: a comparative study. Computational Optimization and Applications, 42(3):421-441,
2009.

[3] R. Beausoleil. Moss multiobjective scatter search applied to non-linear multiple criteria optimization.
European Journal of Operational Research, 169(2):426-449, 2005.

[4] P. C. Belfiore and H. T. Y. Yoshizaki. Scatter search for a real-life heterogeneous fleet vehicle routing
problem with time windows and split deliveries in brazil. European Journal of Operational Research,
199(3):750-758, 2009.

[5] R. Blanco, J. Tuya, and B. Adenso-Diaz. Automated test data generation using a scatter search
approach. Information and Software Technology, 51(4):708-720, 2009.

[6] N. Boumedine and S. Bouroubi. Protein structure prediction in the hp model using scatter search
algorithm. Bulletin du Laboratoire, 4:73—-85, 2021.

[7] E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A scatter search methodology for the nurse
rostering problem. Journal of the Operational Research Society, 61(11):1667-1679, 2010.

[8] V. Campos, M. Laguna, and R. Marti{. Scatter search for the linear ordering problem. New ideas in
optimization, 331:339, 1999.

[9] A. Casado, S. Pérez-Peld, J. Sdnchez-Oro, A. Duarte, and M. Laguna. A novel parallel framework
for scatter search. Knowledge-Based Systems, 314:113248, Apr. 2025.

[10] F. Chu, N. Labadi, and C. Prins. A scatter search for the periodic capacitated arc routing problem.
European Journal of Operational Research, 169(2):586-605, 2006.

[11] S. Chunxin, Z. Xiaoxia, C. Hongyang, Y. Jiao, and W. Wangpeng. A hybrid scatter search algorithm
for qos multicast routing problem. In Chinese Control and Decision Conference (CCDC), pages
48754878, 2018.

[12] O. Cordén, S. Damas, and J. Santamaria. A fast and accurate approach for 3d image registration
using the scatter search evolutionary algorithm. Pattern Recognition Letters, 27(11):1191-1200, 2006.

[13] O. Cordén, S. Damas, J. Santamarfa, and R. Marti. Scatter search for the point-matching problem
in 3d image registration. INFORMS Journal on Computing, 20(1):55-68, 2008.

[14] T. G. Crainic and M. Gendreau. A scatter search heuristic for the fixed-charge capacitated net-
work design problem. In K. F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R. F. Hartl,
and M. Reimann, editors, Metaheuristics: Progress in Complex Systems Optimization, pages 25—40.
Springer US, Boston, MA, 2007.

28

[15]
[16]

[17]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]

D. Davendra, R. Senkerik, I. Zelinka, and M. Pluhacek. Scatter search algorithm with chaos based
stochasticity. In IEEE Congress on Evolutionary Computation, 2014.

E. Duman and M. H. Ozcelik. Detecting credit card fraud by genetic algorithm and scatter search.
Expert Systems with Applications, 38(10):13057-13063, 2011.

J. A. Egea, D. Henriques, T. Cokelaer, and et al. Meigo: an open-source software suite based on
metaheuristics for global optimization in systems biology and bioinformatics. BMC' Bioinformatics,
15(1):136, 2014.

S. El-Sayed, W. El-Wahed, and N. Ismail. A hybrid genetic scatter search algorithm for solving
optimization problems. Proceedings of the 6th International Conference on Informatics and Systems,
pages 12-17, 2008.

A. Fahim and A. Hedar. Hybrid scatter search for integer programming problems. In 9th
International Conference on Informatics and Systems, pages 61-69, 2014.

C. Fleurent, F. Glover, P. Michelon, and Z. Valli. A scatter search approach for unconstrained contin-
uous optimization. In Proceedings of IEEE International Conference on Fvolutionary Computation,
pages 643-648, May 1996.

F. C. Garcia Lépez, M. Garcia Torres, B. Melian Batista, and J. A. Moreno Pérez. Solving feature
subset selection problem by a parallel scatter search. FEuropean Journal of Operational Research,
169(2):477-489, 2006.

F. Garcia Lépez, M. Garcia Torres, B. Melian Batista, J. A. Moreno Pérez, and J. M. Moreno-
Vega. Solving feature subset selection problem by a Parallel Scatter Search. FEuropean Journal of
Operational Research, 169(2):477-489, Mar. 2006.

F. Garcia-Lépez, B. Melian-Batista, J. A. Moreno-Pérez, and J. Marcos Moreno-Vega. Parallelization
of the scatter search for the p-median problem. Parallel Computing, 29(5):575-589, May 2003.

F. S. Gharehchopogh and S. Amjad. A novel hybrid approach for email spam detection based on
scatter search algorithm and k-nearest neighbors. Journal of Advances in Computer Engineering
and Technology, 5(3):169-178, 2019.

F. Glover. Heuristics for integer programming using surrogate constraints. Decision sciences,
8(1):156-166, 1977.

F. Glover. Tabu search for nonlinear and parametric optimization (with links to genetic algorithms).
Discrete Applied Mathematics, 49(1-3):231-255, 1994.

F. Glover. A template for scatter search and path relinking. In European conference on artificial
evolution, pages 1-51. Springer, 1997.

F. Glover, M. Laguna, and R. Marti. Fundamentals of scatter search and path relinking. Control
and cybernetics, 29(3):653-684, 2000.

F. Glover, M. Laguna, and R. Marti. Scatter search and path relinking: Advances and applications.
Handbook of metaheuristics, pages 1-35, 2003.

B. Gonzélez and B. Adenso-Diaz. A scatter search approach to the optimum disassembly sequence
problem. Computers & Operations Research, 33:1776-1793, 2006.

F. Gortazar, A. Duarte, M. Laguna, and R. Marti. Black box scatter search for general classes of
binary optimization problems. Computers €& Operations Research, 37(11):1977-1986, 2010.

H. Hakli and Z. Ortacay. An improved scatter search algorithm for the uncapacitated facility location
problem. Computers & Industrial Engineering, 135:855-867, 2019.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, MI, 1975.

W. N. N. Hung, X. Song, E. M. Aboulhamid, and M. A. Driscoll. Bdd minimization by scatter search.

29

[51]
[52]

[53]

IEEFE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(8):974-979,
2002.

O. Ibanez, O. Cordén, S. Damas, and J. Santamaria. An advanced scatter search design for skull-face
overlay in craniofacial superimposition. Ezpert Systems with Applications, 39(1):1459-1473, 2012.
M. S. Jabal-Ameli and M. Moshref-Javadi. Concurrent cell formation and layout design using scatter
search. The International Journal of Advanced Manufacturing Technology, 71(1):1-22, 2014.

M. Kalra, S. Tyagi, V. Kumar, M. Kaur, W. K. Mashwani, H. Shah, and K. Shah. A Comprehensive
Review on Scatter Search: Techniques, Applications, and Challenges. Mathematical Problems in
Engineering, 2021(1):5588486, 2021.

B. B. Keskin and H. Uster. A scatter search-based heuristic to locate capacitated transshipment
points. Computers & Operations Research, 34(10):3112-3125, 2007.

Z. Khooban, R. Z. Farahani, E. Miandoabchi, and W. Y. Szeto. Mixed network design using hybrid
scatter search. Furopean Journal of Operational Research, 247(3):699-710, 2015.

R. Kothari and D. Ghosh. A scatter search algorithm for the single row facility layout problem.
Journal of Heuristics, 20(2):125-142, 2014.

M. Laguna, F. Gortdzar, M. Gallego, A. Duarte, and R. Marti. A black-box scatter search for
optimization problems with integer variables. Journal of Global Optimization, 58(3):497-516, 2014.
M. Laguna and R. Marti. The optquest callable library. In Optimization software class libraries,
pages 193—-218. Springer, 2003.

M. Laguna and R. Marti. Scatter Search: Methodology and Implementations in C, volume 24 of
Operations Research/Computer Science Interfaces Series. Springer US, New York, NY, 2003.

M. Laguna, R. Marti, A. Martinez-Gavara, S. Pérez-Pel6, and M. G. Resende. Greedy randomized
adaptive search procedures with path relinking. an analytical review of designs and implementations.
European Journal of Operational Research, 327:717-734, 2025.

M. Laguna, J. Molina, F. Perez, R. Caballero, and A. G. Herndndez-Diaz. The challenge of optimizing
expensive black boxes: a scatter search/rough set theory approach. Journal of the Operational
Research Society, 61(1):53-67, 2010.

K. Li and H. Tian. A de-based scatter search for global optimization problems. Discrete Dynamics
in Nature and Society, 2015(1):303125, 2015.

S. Liberatore and G. M. Sechi. Location and calibration of valves in water distribution networks using
a scatter-search meta-heuristic approach. Water Resources Management, 23(8):1479-1495, 2009.

F. Liu, H. Huang, Z. Yang, Z. Hao, and J. Wang. Search-based algorithm with scatter search
strategy for automated test case generation of nlp toolkit. IEEE Transactions on Emerging Topics
in Computational Intelligence, 5(3):491-503, 2021.

M. Loépez-Ibanez, J. Dubois-Lacoste, L. P. Caceres, M. Birattari, and T. Stiitzle. The irace package:
Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3:43-58,
2016.

B. Maenhout and M. Vanhoucke. New computational results for the nurse scheduling problem: A
scatter search algorithm. In Evolutionary Computation in Combinatorial Optimization (EvoCOP),
volume 3906 of LNCS, pages 159-170. Springer, 2006.

A. Manikas and Y.-L. Chang. A scatter search approach to sequence-dependent setup times job shop
scheduling. International Journal of Production Research, 47(18):5217-5236, 2009.

N. Mansour, V. Isahakian, and I. Ghalayini. Scatter search technique for exam timetabling. Applied
Intelligence, 34(2):299-310, 2011.

N. Mansour, C. Kehyayan, and H. Khachfe. Scatter search algorithm for protein structure prediction.

30

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

International Journal of Bioinformatics Research and Applications, 5(5):501-515, 2009.

R. Marti. Scatter search—wellsprings and challenges. Furopean Journal of Operational Research,
169(2):351-358, 2006.

R. Marti, M. Laguna, and F. Glover. Principles of scatter search. Furopean Journal of Operational
Research, 169(2):359-372, 2006.

R. Marti, A. Corberdn, and J. Peird. Scatter Search. In Handbook of Heuristics, pages 7T17-740.
Springer, Cham, 2018.

R. Marti, J. Laguardia, and M. Teresa Leén. Fundamentals of Scatter Search. In Handbook of
Heuristics (2nd edition), pages 599— 626. Springer, Cham, 2025.

R. Marti, M. Laguna, and V. Campos. Scatter search vs. genetic algorithms: An experimental
evaluation with permutation problems. In Adaptive Memory and Evolution: Tabu Search and Scatter
Search. Kluwer Academic Publishers, 2002.

A. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. Durillo, and A. Beham. Abyss: adapting scatter search
to multiobjective optimization. IEEE Transactions on Evolutionary Computation, 12(4):439-457,
2008.

J. A. Pacheco. A scatter search approach for the minimum sum-of-squares clustering problem.
Computers & Operations Research, 32(5):1325-1335, 2005.

D. R. Penas, P. Gonzalez, J. A. Egea, J. R. Banga, and R. Doallo. Parallel Metaheuristics in
Computational Biology: An Asynchronous Cooperative Enhanced Scatter Search Method. Procedia
Computer Science, 51:630-639, Jan. 2015.

P. C. Pendharkar. Scatter search based interactive multi-criteria optimization of fuzzy objectives for
coal production planning. Engineering Applications of Artificial Intelligence, 26(5):1503-1511, 2013.
H. Pinol and J. E. Beasley. Scatter search and bionomic algorithms for the aircraft landing problem.
European Journal of Operational Research, 171(2):439-462, 2006.

G. Prabhaharan, R. Ramesh, and P. Asokan. Concurrent optimization of assembly tolerances for
quality with position control using scatter search approach. International Journal of Production
Research, 45(21):4959-4988, 2007.

A. R. Rahimi-Vahed, M. Rabbani, R. Tavakkoli-Moghaddam, S. A. Torabi, and F. Jolai. A multi-
objective scatter search for a mixed-model assembly line sequencing problem. Advanced Engineering
Informatics, 21(1):85-99, 2007.

M. Ranjbar, B. De Reyck, and F. Kianfar. A hybrid scatter search for the discrete time/resource
trade-off problem in project scheduling. FEuropean Journal of Operational Research, 193(1):35—48,
2009.

M. A. Remil, M. S. Mohamad, S. Deris, R. Sinnott, and S. Napis. An improved scatter search
algorithm for parameter estimation in large-scale kinetic models of biochemical systems. Current
Proteomics, 16(5):427-438, 2019.

J. Ren and W. Zhu. Backtracking search optimization algorithm with dual scatter search strategy
for automated test case generation. Journal of King Saud University — Computer and Information
Sciences, 35(7):101600, 2023.

M. G. Resende, C. C. Ribeiro, F. Glover, and R. Marti. Scatter search and path-relinking:
Fundamentals, advances, and applications. Handbook of metaheuristics, pages 87-107, 2010.

R. A. Russell and W.-C. Chiang. Scatter search for the vehicle routing problem with time windows.
European Journal of Operational Research, 169(2):606—-622, 2006.

R. Sagarna and J. A. Lozano. Scatter search in software testing, comparison and collaboration with
estimation of distribution algorithms. FEuropean Journal of Operational Research, 169(2):392-412,
2006.

31

[72]

[80]

[81]

[82]

J. Santamaria, O. Cordén, S. Damas, I. Alemdn, and M. Botella. A scatter search-based technique
for pair-wise 3d range image registration in forensic anthropology. Soft Computing, 11(9):819-828,
2007.

T. Stiitzle and R. Ruiz. Iterated greedy. Handbook of heuristics, pages 547-577, 2018.

J. Tang, J. Zhang, and Z. Pan. A scatter search algorithm for solving vehicle routing problem with
loading cost. Ezpert Systems with Applications, 37(6):4073-4083, 2010.

A. Valsecchi, S. Damas, J. Santamaria, and L. Marrakchi-Kacem. Intensity-based image registration
using scatter search. Artificial Intelligence in Medicine, 60(3):151-163, 2014.

L. Vandenheede, M. Vanhoucke, and B. Maenhout. A scatter search for the extended resource renting
problem. International Journal of Production Research, 54(16):4723-4743, 2016.

M. Vanhoucke. A scatter search heuristic for maximising the net present value of a resource-
constrained project with fixed activity cash flows. International Journal of Production Research,
48(7):1983-2001, 2010.

J. Wang, A.-R. Hedar, S. Wang, and J. Ma. Rough set and scatter search metaheuristic based feature
selection for credit scoring. Expert Systems with Applications, 39(6):6123-6128, 2012.

J. Wang, Q. Zhang, H. Abdel-Rahman, and M. I. Abdel-Monem. A rough set approach to fea-
ture selection based on scatter search metaheuristic. Journal of Systems Science and Complezity,
27(1):157-168, 2014.

D. S. Yamashita, V. A. Armentano, and M. Laguna. Scatter search for project scheduling with
resource availability cost. Furopean Journal of Operational Research, 169(2):623-637, 2006.

K. Yang, F. Zheng, Q. Ji, J. Lin, Y. Zhong, and Y. Lin. Heuristic-guided scatter search for x-
architecture steiner minimum tree problems in vlsi design. Swarm and Evolutionary Computation,
98:102088, 2025.

T. Zhang, W. A. Chaovalitwongse, and Y. Zhang. Scatter search for the stochastic travel-time vrp
with simultaneous pick-ups and deliveries. Computers € Operations Research, 39(10):2277-2290,
2012.

F. Zhao, G. Zhou, T. Xu, N. Zhu, and Jonrinaldi. A knowledge-driven cooperative scatter search
algorithm with reinforcement learning for the distributed blocking flow shop scheduling problem.
Expert Systems with Applications, 230:120571, 2023.

Y. Zuo, F. Zhao, and J. Zhang. A knowledge-driven scatter search algorithm for the distributed
hybrid flow shop scheduling problem. Engineering Applications of Artificial Intelligence, 142:109915,
2025.

32

	Introduction
	Historical Background
	Methodology
	The Scatter Search Methods
	Diversification Generation Method (DGM)
	Improvement Method (IM)
	Reference Set Update Method (RSUM)
	Subset Generation Method (SGM)
	Solution Combination Method (SCM)

	Advanced Search Strategies
	Dynamic Reference Set Updating
	RefSet Rebuild Mechanism
	Tiered Reference Sets
	Memory Structures
	Constructive and Destructive Neighborhoods
	Vocabulary Building
	Parallelization

	Hybridization with Other Methodologies
	Path Relinking
	Evolutionary Methods
	Trajectory-based Methods

	Applications
	Tutorial: 0-1 Knapsack Problems
	Problem Formulation
	Data Structures and Problem Representation
	Core Problem Operations
	Systematic Diversification
	Two-Phase Improvement Method
	Reference Set Management
	Solution Combination Method
	Algorithm Orchestration

	Conclusions
	Acknowledgements

