
Scatter Search 

Fred Glover1, Manuel Laguna1 and Rafael Martí2 

1 Leeds School of Business, University of Colorado, Boulder, CO 80309-0419, 
USA, 

 {Fred.Glover}{Manuel.Laguna}@Colorado.edu 
2 Departamento de Estadística e Investigación Operativa, Facultad de 

Matemáticas, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot 
(Valencia) Spain, Rafael.Marti@uv.es 

 
Abstract:  The evolutionary approach called scatter search originated from 
strategies for creating composite decision rules and surrogate constraints.  Recent 
studies demonstrate the practical advantages of this approach for solving a diverse 
array of optimisation problems from both classical and real world settings.  Scatter 
search cont rasts with other evolutionary procedures, such as genetic algorithms, 
by providing unifying principles for joining solutions based on generalised path 
constructions in Euclidean space and by utilising strategic designs where other 
approaches resort to randomisation.  Additional advantages are provided by 
intensification and diversification mechanisms that exploit adaptive memory, 
drawing on foundations that link scatter search to tabu search.  The main goal of 
this chapter is to demonstrate the development of a scatter search procedure by 
demonstrating how it may be applied to a class of non-linear optimisation 
problems on bounded variables.  We conclude the chapter highlighting key ideas 
and research issues that offer promise of yielding future advances. 

1. Introduction 

Scatter search derives its foundations from earlier strategies for combining 
decision rules and constraints, with the goal of enabling a solution procedure 
based on the combined elements to yield better solutions than one based only on 
the original elements.  An examination of these origins sheds light on the character 
of these methods. 

Historically, the antecedent strategies for combining decision rules were 
introduced in the context of scheduling methods to obtain improved local decision 
rules for job shop scheduling problems [1].  New rules were generated by creating 
numerically weighted combinations of existing rules, suitably restructured so that 
their evaluations embodied a common metric. 



The approach was motivated by the supposition that  information about the 
relative desirability of alternative choices is captured in different forms by 
different rules, and that this information can be exploited more effectively when 
integrated by means of a combination mechanism than when treated by the 
standard strategy of selecting different rules one at a time, in isolation from each 
other.  In addition, the method departed from the customary approach of stopping 
upon reaching a local optimum, and instead continued to vary the parameters that 
determined the combined rules, as a basis for producing additional trial solutions.  
(This latter strategy also became a fundamental component of tabu search.  See, 
e.g., [2].) 

The decision rules created from such combination strategies produced better 
empirical outcomes than standard applications of local decision rules, and also 
proved superior to a “probabilistic learning approach” that selected different rules 
probabilistically at different junctures, but without the integration effect provided 
by generating com bined rules [3]. 

The associated procedures for combining constraints likewise employed a 
mechanism of generating weighted combinations, in this case applied in the 
setting of integer and nonlinear programming, by introducing nonnegative weights 
to create new constraint inequalities, called surrogate constraints [4].  The 
approach isolated subsets of constraints that were gauged to be most critical, 
relative to trial solutions based on the surrogate constraints, and produced new 
weights that reflected the degree to which the component constraints were 
satisfied or violated. 

A principal function of surrogate constraints, in common with the approaches 
for combining decision rules, was to provide ways to evaluate choices that could 
be used to generate and modify trial solutions.  From this foundation, a variety of 
heuristic processes evolved that made use of surrogate constraints and their 
evaluations.  Accordingly, these processes led to the complementary strategy of 
combining solutions, as a primal counterpart to the dual strategy of combining 
constraints, which became manifest in scatter search and its path relinking 
generalisation.  The primal/dual distinction stems from the fact that surrogate 
constraint methods give rise to a mathematical duality theory associated with their 
role as relaxation methods for optimisation.  E.g., see [4] - [11]. 

Scatter search operates on a set of solutions, the reference set, by combining 
these solutions to create new ones.  When the main mechanism for combining 
solutions is such that a new solution is created from the linear combination of two 
other solutions, the reference set may evolve as illustrated in Figure 1.  This figure 
assumes that the original reference set of solutions consists of the circles labelled 
A, B and C.  After a non-convex combination of reference solutions A and B, 
solution 1 is created.  In fact , a number of solutions in the line segment defined by 
A and B are created; however, only solution 1 is introduced in the reference set.  
(The criteria used to select solutions for membership in the reference set are 
discussed later.)  In a similar way, convex and non-convex combinations of 
original and newly created reference solutions create points 2, 3 and 4.  The 
resulting complete reference set shown in Figure 1 consists of 7 solutions (or 
elements). 



1

3

2

4

A

B

C

 
Fig. 1.  Two-dimensional reference set. 

More precisely, Figure 1 shows a precursor form of the resulting reference set.  
Scatter search does not leave solutions in a raw form produced by its combination 
mechanism, but subjects candidates for entry into the reference set to heuristic 
improvement, as we elaborate subsequently. 

Unlike a “population” in genetic algorithms, the reference set of solutions in 
scatter search is relatively small.  In genetic algorithms, two solutions are chosen 
from the population by a process that relies heavily on randomization and a 
“crossover” mechanism , likewise involving recourse to randomization, is applied 
to generate one or more offspring.  A typical population size in a genetic 
algorithm consists of 100 elements. In contrast, scatter search chooses two or more 
elements of the reference set in a systematic way with the purpose of creating new 
solutions strategically. (Randomization can be invoked, but in a way  that is 
subordinate to this strategic emphasis.) Since the number of two-element to five-
element subsets of a reference set, for example, can be quite large, even a highly 
selective process for isolating preferred instances of these subsets as a basis for  
generating combined solutions can produce a significant number of combinations, 
and so there is a practical need for keeping the cardinality of the set small.  
Typically, the reference set in scatter search has 20 solutions or less.  In one 
standard design, if the reference set consists of b solutions, the procedure 
examines approximately (3b-7)b/2 combinations of four different types [12].  The 
basic type consists of combining two solutions; the next type combines three 
solutions, and so on. 

Limiting the scope of the search to a selective group of combination types can 
be used as a mechanism for controlling the number of possible combinations in a 
given reference set.  An effective means for doing this is to subdivide the 
reference set into “tiers” and to require that combined solutions must be based on 
including at least one (or a specified number) of the elements form selected tiers.  



A two-tier example, which subdivides the reference set into two components, is 
illustrated in section 3.3 

2. Scatter Search Template 

The scatter search process, building on the principles that underlie the surrogate 
constraint design, is organised to (1) capture information not contained separately 
in the original vectors, (2) take advantage of auxiliary heuristic solution methods 
to evaluate the combinations produced and to generate new vectors [12].  
Specifically, the scatter search approach may be sketched as follows: 
 
1. Generate a starting set of solution vectors to guarantee a critical level of 

diversity and apply heuristic processes designed for the problem as an attempt 
for improving these solutions.  Designate a subset of the best vectors to be 
reference solutions.  (Subsequent iterations of this step, transferring from Step 4 
below, incorporate advanced starting solutions and best solutions from previous 
history as candidates for the reference solutions.)  The notion of “best” in this 
step is not limited to a measure given exclusively by the evaluation of the 
objective function.  In particular, a solution may be added to the reference set if 
the diversity of the set improves even when the objective value of the solution 
is inferior to other solutions competing for admission into the reference set. 

2. Create new solutions consisting of structured combinations of subsets of the 
current reference solutions.  The structured combinations are: 
a) chosen to produce points both inside and outside the convex regions spanned by the 

reference solutions. 
b)  modified to yield acceptable solutions.  (For example, if a solution is obtained by a 

linear combination of two or more solutions, a generalised rounding process that 
yields integer values for integer-constrained vector components may be applied.  
An acceptable solution may or may not be feasible with respect to other constraints 
in the problem.) 

3. Apply the heuristic processes used in Step 1 to improve the solutions created in 
Step 2. These heuristic processes must be able to operate on infeasible solutions 
and may or may not yield feasible solutions. 

4. Extract a collection of the “best” im proved solutions from Step 3 and add them 
to the reference set.  The notion of “best” is once again broad; making the 
objective value one among several criteria for evaluating the merit of newly 
created points.  Repeat Steps 2, 3 and 4 until the reference set does not change.  
Diversify the reference set, by re-starting from Step 1.  Stop when reaching a 
specified iteration limit. 

 
The first notable feature in scatter search is that its structured combinations are 

designed with the goal of creating weighted centres of selected subregions.  This 
adds non-convex combinations that project new centres into regions that are 
external to the original reference solutions (see, e.g., solution 3 in Figure 1).  The 



dispersion patterns created by such centres and their external projections have 
been found useful in several application areas. 

Another important feature relates to the strategies for selecting particular 
subsets of solutions to combine in Step 2.  These strategies are typically designed 
to make use of a type of clustering to allow new solutions to be constructed 
“within clusters” and “across clusters”.  Finally, the method is organised to use 
ancillary improving mechanisms that are able to operate on infeasible solutions, 
removing the restriction that solutions must be feasible in order to be included in 
the reference set. 

The following principles summarise the foundations of the scatter search 
methodology: 
 
− Useful information about the form (or location) of optimal solutions is typically 

contained in a suitably diverse collection of elite solutions. 
− When solutions are combined as a strategy for exploiting such information, it is 

important to provide mechanisms capable of constructing combinations that 
extrapolate beyond the regions spanned by the solutions considered.  Similarly, 
it is also important to incorporate heuristic processes to map combined 
solutions into new solutions.  The purpose of these combination mechanisms is 
to incorporate both diversity and quality. 

− Taking account of multiple solutions simultaneously, as a foundation for 
creating combinations, enhances the opportunity to exploit information 
contained in the union of elite solutions. 

 
The fact that the mechanisms within scatter search are not restricted to a single 

uniform design allows the exploration of strategic possibilities that may prove 
effective in a particular implementation.  These observations and principles lead to 
the following template for implementing scatter search. 
 
1. A Diversification Generation Method  to generate a collection of diverse trial 

solutions, using an arbitrary trial solution (or seed solution) as an input. 
2. An Improvement Method to transform a trial solution into one or more 

enhanced trial solutions.  (Neither the input nor the output solutions are 
required to be feas ible, though the output solutions will more usually be 
expected to be so.  If no improvement of the input trial solution results, the 
“enhanced” solution is considered to be the same as the input solution.) 

3. A Reference Set Update Method  to build and maintain a reference set  
consisting of the b “best” solutions found (where the value of b is typically 
small, e.g., no more than 20), organised to provide efficient accessing by other 
parts of the method.  Solutions gain membership to the reference set according 
to their quality or their diversity. 

4. A Subset Generation Method to operate on the reference set, to produce a 
subset of its solutions as a basis for creating combined solutions. 

5. A Solution Combination Method to transform a given subset of solutions 
produced by the Subset Generation Method into one or more combined solution 
vectors. 



 
In the next section, we employ this template to illustrate the design of a scatter 

search procedure for unconstrained non-linear optimisation problems.  The 
success of scatter search and related strategies is evident in a variety of application 
areas such as vehicle routing, arc routing, quadratic assignment, financial product 
design, neural network training, job shop scheduling, flow shop scheduling, crew 
scheduling, graph draw ing, linear ordering, unconstrained optimisation, bit 
representation, multi-objective assignment, optimising simulation, tree problems, 
mixed integer programming, as reported in [12]. 

3. Scatter Search Tutorial 

In this tutorial section we develop a scatter search procedure for the following 
class of optimisation problems: 

 
Min f(x) 
Subject to l ≤ x ≤  u 

 
where f(x) is a non-linear function of x.  For the purpose of illustrating the solution 
procedure, we will apply our design to the following problem instance: 

 

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

4,,1for 1010toSubject

118.19111.10

1901100Minimize

42
2

4
2

2

2
3

22
34

2
1

22
12

K=≤≤−

−−+−+−

+−+−+−+−

ix

xxxx

xxxxxx

i

 

 
This problem is “Test Case #6” in [13].  The best solution found in [13] has an 

objective function value of 0.001333, reportedly found after 500 000 runs of a 
genetic algorithm (GA)1. 

3.1 Diversification Generation Method 

Our illustrative diversification method employs controlled randomisation  (the 
emphasis on “controlled” is important) drawing upon frequency memory to 
generate a set of diverse solutions.  We accomplish this by dividing the range of 
each variable u i - li into 4 sub -ranges of equal size.  Then, a solution is constructed 
in two steps.  First a sub-range is randomly selected.  The probability of selecting 
a sub-range is inversely proportional to its frequency count.  Then a value is 

                                                                 
1
 A single run of the GA in [13] consists of 1000 iterations.  An iteration requires 70 evaluations of the 

objective function, where 70 is the size of the population.  Therefore, GA required 35 billion 
objective function evaluations to find this solution. 



randomly generated within the selected sub-range.  The number of times sub-
range j has been chosen to generate a value for variable i is accumulated in freq(i, 
j). 

The diversification generator is used at the beginning of the search to generate a 
set of P solutions with PSize, the cardinality of the set, generally set at max(100, 
5*b) diverse solutions, where b is the size of the reference set.  Although the 
actual scatter search implementation would generate 100 solutions for this 
example, we have limited P in our tutorial to the ten solutions shown in Table 1. 
 

Table 1. Diverse solutions 

Solution x1 x2 x3 x2 f(x) 
1 1.1082 0.8513 9.4849 -6.3510 835534.3 
2 -9.5759 -6.5706 -8.8128 -2.2674 1542087.0 
3 -8.3565 0.7865 7.8762 -2.6978 854129.3 
4 8.8337 -8.4503 4.5242 3.1800 775473.7 
5 -6.2316 7.4765 5.9955 7.8018 171451.1 
6 0.1975 -3.6392 -5.2999 -7.0332 114021.1 
7 -3.0909 6.6189 -2.3250 -3.1240 7468.8 
8 -6.0775 0.6699 -6.4774 1.4775 279100.3 
9 -1.9659 8.1258 -5.6343 8.0178 54538.5 

10 3.1131 -1.9358 5.8964 6.8859 83607.1 

 
The 100 solutions generated by the actual procedure are diverse with respect to 

the values that each variable takes in each of the sub -ranges.  Note, however, that 
the generation is done without considering the objective function.  In other words, 
the Diversification Generation Method focuses on diversification and not on the 
quality of the resulting solutions, as evident from the objective function values in 
Table 1.  In fact, the objective function values for the entire set of 100 solutions 
range from 1689.7 to 1 542 087 with an average of 392 032.8.  These objective 
function values are very large considering that the optimal solution to this problem 
has an objective function value of zero.  To verify that the Generation method is 
operating as expected, we show in Table 2 the frequency values corresponding to 
the complete set of 100 solutions. 

 
Table 2. Frequency counts. 

Range x1 x2 x3 x4 
-10 to 5  19 25 26 29 
-5 to 0 25 18 22 21 
0 to 5 26 27 29 25 
5 to 10 30 30 23 25 

 



Note that the frequency counts in Table 2 are very similar for each range and 
variable, with a minimum value of 18 and a maximum value of 30.  The target 
frequency value for each range is 25 for a set of 100 solutions.  This value is 
observed four times in Table 2. 

3.2 Improvement Method 

Since we are developing a solution procedure for a class of unconstrained 
optimisation problems, the solutions constructed with the Diversification 
Generation Method are guaranteed to be feasible.  Improvement Methods, 
however, must be able to handle starting solutions that are either feasible or 
infeasible. 

The Improvement Method we use in this tutorial consists of a classical local 
optimiser for unconstrained non-linear optimisation problems.  In particular, we 
apply Nelder and Mead’s simplex method [14] to each solution in Table 1.  After 
the application of this local optimiser, the solutions in Table 3 are transformed to 
the solutions in Table 2. 
 

Table 3. Improved solutions. 

Solution x1 x2 x3 x2 f(x) 
1 -0.8833 0.7514 1.1488 1.3231 3.7411 
2 1.3952 1.9411 0.3424 0.0977 0.9809 
3 0.0921 0.0668 -1.3826 1.8998 7.2004 
4 0.6172 0.3937 -1.3036 1.641 5.9422 
5 -1.1008 1.2423 0.9054 0.7429 5.0741 
6 2.3414 5.9238 0.5721 -0.5716 210.8007 
7 -1.2979 1.6781 -0.6035 0.2775 8.7473 
8 -2.2507 4.8302 -1.8987 3.2877 408.1172 
9 -2.2492 4.1608 -2.9055 8.0508 1164.5050 

10 0.8406 0.6755 -1.0425 1.0697 4.9854 
 

The objective function values now range between 0.9809 and 1164.5050 for the 
improved solutions in Table 3.  It is interesting to point out that when the 100 
solutions are subject ed to the Improvement Method, 5 solutions converge to the 
same local minimum, thus effectively reducing the cardinality of P.  As shown in 
Section 4 we could apply the Diversification Method again until PSize different 
solutions are found after executing the Improvement Method.  Incidentally, the 
convergence point for those 5 solutions turns out to be the global optimum that 
sets x = (1, 1, 1, 1) for an objective function value of zero.  Hence for this small 
example, a single application of the Diversification and Improvement Methods is 
sufficient to find the optimal solution. 



3.3 Reference Set Update Method 

The reference set, RefSet , is a collection of both high quality solutions and 
diverse solutions that are used to generate new solutions by way of applying the 
Solution Combination Method.  Specifically, the reference set consists of the 
union of two subsets, RefSet1 and RefSet2, of size b1 and b2, respectively.  That is, 
|RefSet| = b = b1 + b2.  The construction of the initial reference set starts with the 
selection of the best b1 solutions from P.  These solutions are added to RefSet and 
deleted from P. 

For each improved solution in P-RefSet, the minimum of the Euclidean 
distances to the solutions in RefSet is computed.  Then, the solution with the 
maximum of these minimum distances is selected.  This solution is added to 
RefSet and deleted from P and the minimum distances are updated.  This process 
is repeated b2 times.  The resulting reference set has b1 high-quality solutions and 
b2 diverse solutions. 

Let us apply this initialisation procedure to our example, using the following 
parameter values: b = 5, b1 = 3 and b2 = 2, and considering that P is limited to the 
set of improved solutions in Table 3.  The best 3 solutions in Table 3 are shown in 
Table 4. 

 
Table 4. High-quality subset of RefSet. 

Solution x1 x2 x3 x4 f(x) 
2 1.3952 1.9411 0.3424 0.0977 0.9809 
1 -0.8833 0.7514 1.1488 1.3231 3.7411 
10 0.8406 0.6755 -1.0425 1.0697 4.9854 

 
We then calculate the minimum distance dmin(x) between each solution x in 

P-RefSet and the solutions y currently in RefSet .  That is, 
 

( ) ( ){ }yxdMinxd
RefSety

,min ∈
= , 

 
where ( )yxd ,  is the Euclidean distance between x and y.  For example, the 
minimum distance between solution 3 in Table 3 (x3) and the RefSet solutions in 
Table 4 (x2, x1, and x10) is calculated as follows: 

 
( ) ( ) ( ) ( ){ }
( ) { } 32.132.1,86.2,38.3

,,,,,
3

min

10313233
min

==

=

Minxd

xxdxxdxxdMinxd
 

 
The maximum dmin value for the solutions in P-RefSet corresponds to solution 9 

in Table 3 (dmin(x9) = 8.6).  We add this solution to RefSet , delete it from P and 
update the dmin values.  The new maximum dmin value of 4.91 corresponds to 
solution 8 in Table 3, so the diverse subset of RefSet is as shown in Table 5. 

 
Table 5. Diverse subset of RefSet . 



Solution x1 x2 x3 x4 f(x) 
9 -2.2492 4.1608 -2.9055 8.0508 1164.5 
8 -2.2507 4.8302 -1.8987 3.2877 408.2 

 
After the initial reference set is constructed, the Solution Combination Method 

is applied to the subsets generated as outlined in the following section. The 
reference set is dynamically updated during the application of the Solution 
Combination Method.  A newly generated solution may become a member of the 
reference set if either one of the following conditions is satisfied: 

 
− The new solution has a better objective function value than the solution with 

the worst objective value in RefSet1. 
− The new solution has a better dmin value than the solution with the worst dmin  

value in RefSet2. 
 

In both cases, the new solution replaces the worst and the ranking is updated to 
identify the new worst solution in terms of either quality or diversity. The 
reference set is also regenerated when the Combination Method is incapable of 
creating solutions that can be admitted to RefSet according to the rules outlined 
above.  The regeneration consists of keeping RefSet1 intact and using the 
Diversification Generation Method to construct a new diverse subset RefSet2. 

3.4 Subset Generation Method 

This method consists of generating the subsets that will be used for creating new 
solutions with the Solution Combination Method.  The Subset Generation Method 
is typically designed to generate the following types of subsets: 
 
1. All 2-element subsets. 
2. 3-element subsets derived from the 2-element subsets by augmenting each 2-

element subset to include the best solution (as measured by the objective value) 
not in this subset. 

3. 4-element subsets derived from the 3-element subsets by augmenting each 3-
element subset to include the best solution (as measured by the objective value) 
not in this subset. 

4. The subsets consisting of the best i elements (as measured by the obj ective 
value), for i = 5 to b.  

 
Note that due to the rules for generating subsets of type 2, 3 and 4, the same 

subset may be generated more than once.  Simple and efficient procedures 
outlined in [12] can be used to generate all the unique subsets of each type. 

For the purpose of our tutorial, we limit our scope to type-1 subsets consisting 
of all pairwise combinations of the solutions in RefSet.  There are (b2-b)/2 type-1 
subsets, which in the case of our example amounts to a total of (52-5)/2 = 10. 



3.5 Solution Combination Method 

This method uses the subsets generated with the Subset Generation Method to 
combine the elements in each subset with the purpose of creating new trial 
solutions. Generally, the Solution Combination Method is a problem-specific 
mechanism, since it is directly related to the solution representation. Depending on 
the specific form of the Solution Combination Method, each subset can create one 
or more new solutions.  Let us consider the following Combination Method for 
solutions that can be represented by bounded continuous variables. 

The method consists of finding linear combinations of reference solutions.  The 
number of solutions created from the linear combination of two reference 
solutions depends on the membership of the solutions being combined.  These 
combinations in our illustration are based on the following three types, assuming 
that the reference solutions are x′  and x ′′ : 

 
C1: dxx −′=  
C2: dxx +′=  
C3: dxx +′′=  
 

where 2/)( xxrd ′−′′=  and r is a random number in the range (0, 1). The 
following rules are used to generate solutions with these three types of linear 
combinations: 
 
− If both x′  and x ′′  are elements of RefSet1, then generate 4 solutions by 

applying C1 and C3 once and C2 twice. 
− If only one of x′  and x ′′  is a member of RefSet1, then generate 3 solutions by 

applying C1, C2 and C3 once. 
− If neither x′  nor x′′  is a member of RefSet1, then generate 2 solutions by 

applying C2 once and randomly choosing between applying C1 or C3. 
 

To illustrate the combination mechanism, consider the combination of the first 
two sol utions in RefSet1 (i.e., solutions 2 and 1 in Table 4).  Table 6 shows the 
solutions generated from combining these two high quality reference points. 
 

Table 6. New solutions from combining x1 and x2. 

Type    r      x1 x2 x3 x4 f(x) 
C1 0.1330 1.5468 2.0202 0.2888 0.0162 15.480 

C2(a) 0.3822 0.9598 1.7138 0.4965 0.3319 63.937 
C2(b) 0.6862 0.6134 1.5329 0.6191 0.5181 135.83 

C3 0.3551 -1.2879 0.5401 1.2920 1.5407 132.09 
 

Solutions generated with the Solution Combination Method are subjected to the 
Improvement Method before they are considered for membership in the reference set.  
After applying the Improvement Method to the solutions in Table 6, the solutions are 
transformed to those shown in Table 7. 



 
 
 
 
 

Table 7. Improved new solutions. 

Type x1 x2 x3 x4 f(x) 
C1 1.2565 1.5732 0.6746 0.4464 0.3125 

C2(a) -0.4779 0.2308 -1.2065 1.4939 8.1029 
C2(b) 1.0354 1.0746 0.9625 0.9266 0.0055 
C3 0.8506 0.7171 1.1408 1.3101 0.0956 

 
The best solution in Table 7 is C2(b) with an objective function value of 

0.0055.  According to our updating rules for the reference set, this solution should 
replace solution 10 in Table 4, because solution 10 is the worst in the RefSet1 
subset. 

The search continues in a loop that consists of applying the Solution 
Combination Method followed by the Improvement Method and the Reference 
Update Method.  This loop terminates when the reference set does not change and 
all the subsets have already been subjected to the Solution Combination Method.  
At this point, the Diversification Generation Method is used to construct a new 
RefSet2 and the search continues

2
. 

4. An Outline of the Procedure  

In the previous section, we illustrated the operations that take place within each of 
the methods in the scatter search framework.  We now finish our introduction to 
scatter search with an overall view of the procedure.  This outline (or pseudo-
code) uses the following parameters: 
 

PSize = the size of the set of diverse solutions generated by the  
Diversification Generation Method 

b = the size of the reference set. 
b1 =  the size of the high-quality subset. 
b2 =  the size of the diverse subset. 
MaxIter =  maximum number of iterations. 

 
The procedure consists of the steps in the outline of Figure 2, where P denotes 

the set of solutions generated with the Diversification Generation Method and 
RefSet is the set of solution in the reference set.  The procedure starts with the 
generation of PSize distinct solutions.  These solutions are originally generated to 

                                                                 
2
 A copy of an experimental C code of the procedure described in this tutorial section can be obtained 

from the authors. 



be diverse and subsequently improved by the application of the Improvement 
Method (step 1).  The set P of PSize solutions is ordered in step 2, in order to 
facilitate the task of creating the reference set in step 3.  The reference set (RefSet) 
is constructed with the first b1 solutions in P and b2 solutions that  are diverse with 
respect to the members in RefSet . 

The search consists of three main loops: 1) a “for-loop” that controls the 
maximum number of iterations, 2) a “while-loop” that monitors the presence of 
new elements in the reference set, and 3) a “for -loop” that controls the 
examination of all the subsets with at least one new element.  In step 4, the 
number of subsets with at least one new element is counted and this value is 
assigned to MaxSubset.  Also, the Boolean variable NewElements  is made FALSE 
before the subsets are examined, since it is not known whether a new solution will 
enter the reference set in the current examination of the subsets.  The actual 
generation of the subsets occurs in step 5.  Note that only subsets with at least one 
new element are generated in this step.  A solution is generated in step 6 by 
applying the application of the Solution Combination Method.  Step 7 attempts to 
improve this solution with the application of the Improvement Method.  If the 
improved solution from step 7 is better (in terms of the objective function value) 
than the worst solution in RefSet1, then the improved solution becomes a new 
element of RefSet.  As previously indicated, RefSet1 is the subset of the reference 
set that contains the best solutions as measured by the objective function value.  
The solution is added in step 8 and the NewElements indicator is switched to 
TRUE in step 9. 

If a solution is not admitted to the RefSet  due to its quality, the solution is tested 
for its diversity merits.  If a solution adds diversity to RefSet2, then the solution is 
added to the reference set and the less diverse solution is deleted (as indicated in 
steps 10 and 11).  Finally, step 12 is performed if additional iterations are still 
available.  This step provides a seed for set P by adding the solutions in RefSet1 
before a new application of the Diversification Generation Method. 

The general procedure outlined in Figure 2 can be modified in a variety of 
ways.  One possibility is to eliminate the outer “for-loop” along with step 12.  In 
this case, set P is generated one time only and the process stops after no new 
elements are admitted into the reference set.  That is, the search is abandoned 
when the “while-loop” that contains steps 4 to 11 becomes false.  This variation is 
useful for problems in which the search has to be performed within a relatively 
small amount of computer time.  Also, there are some settings in which a large 
percentage of the best solutions are found during the first iteration (i.e., when Iter  
= 1).  In this case, bypassing additional iterations has a small effect on the average 
performance of the procedure (as measured by the quality of the best solution 
found). 

A second variation consists of eliminating steps 10 and 11 and the if-statement 
associated with these steps.  This variation considers that the reference set will be 
initially constructed with both high -quality solutions and diverse solutions.  
However after step 3, membership to the reference set is obtained only due to 
quality.  Therefore, in addition to eliminating steps 10 and 11, step 8 and its 
associated if-statement are modified as follows: 



 
 
 
 
 

If ( *
sx  is not in RefSet  and the objective function value of *

sx  is better 

than the objective function value of the worst element in RefSet ) then 
 8. Add *

sx  to RefSet  and delete the worst element currently in RefSet.  

(The worst element is the solution with worst objective value.) 
 

That is, all references to RefSet1 are substituted with references to RefSet .  In 
other words, after step 3, the elements of RefSet are always ordered according to 
the objective function value, making element 1 the best and element b the worst. 

Implementing both of these variations at the same time results in a very 
aggressive search method that attempts to find high quality solutions fast.  While 
this may be desirable in some settings, there are also settings in which a more 
extensive search can be afforded, making the full procedure outlined in Figure 2 
more attractive.  A reasonable approach could be to begin with the more 
aggressive variant and then to shift to the more through variant (or alternate 
between these variants). 

 
1. Start with P = Ø.  Use the Diversification Generation Method to construct a 

solution x.  Apply the Improvement Method to x to obtain the improved 
solution *x .  If Px ∉*  then, add *x  to P (i.e., *xPP ∪= ), otherwise, discard 

*x .  Repeat this step until |P| = PSize. 
2. Order the solutions in P according to their objective function value (where the 

best overall solution is first on the list). 
For (Iter = 1 to MaxIter ) 

 3. Build RefSet  = RefSet1 ∪ RefSet2 from P, with |RefSet|  = b,  |RefSet1 | = b1 
and |RefSet2| = b2.  Take the first b1 solutions in P and add them to RefSet1.  
For each solution x in P-RefSet and y in RefSet, calculate a measure of 
distance or dissimilarity d(x,y).  Select the solution x ′  that maximises 
dmin (x),  where { }),(min)(min yxdxd

y RefSet∈
= .  Add x′  to RefSet2, until 

|RefSet2 | = b2. Make NewElements  = TRUE. 
 While  (NewElements ) do 

 4. Calculate the number of subsets (MaxSubset) that include at least one 
new element.  Make NewElements  = FALSE. 

Fig. 2.   Scatter Search Outline 



 For (SubsetCounter  = 1, …, MaxSubset) do 
 5. Generate the next subset s  from RefSet with the Subset Generation 

Method.  This method generates one of four types of subsets with 
number of elements ranging from 2 to |RefSet|.  Let subset 
s = { s1, …, sk }, for 2 ≤  k ≤  |RefSet |.  (We consider that the Subset 
Generation Method skips subsets for which the elements considered 
have not changed from previous iterations.) 

 6. Apply the Solution Combination Method to s to obtain one or more 
new solutions xs. 

 7. Apply the Improvement Method to xs, to obtain the improved 
solution *

sx . 

 If ( *
sx  is not in RefSet  and the objective function value of *

sx  is better 

than the objective function value of the worst element in RefSet1 ) then 
 8. Add *

sx  to RefSet1 and delete the worst element currently in 

RefSet1.  (The worst element is the solution with worst objective 
value.) 

 9. Make NewElements  = TRUE. 
                  Else 
 If ( *

sx  is not in RefSet2 and dmin(
*
sx ) is larger than dmin (x) for a 

solution x in RefSet2) then 
 10. Add *

sx  to RefSet2 and delete the worst element currently in 
RefSet2.  (The worst element is the solution x with the 
smallest dmin(x) value.) 

 11. Make NewElements  = TRUE. 
 End if  
                  End if 
 End for 
 End while 
 If (Iter < MaxIter) then  
 12. Build a new set P using the Diversification Generation Method.  

Initialise the generation process with the solutions currently in 
RefSet1.  That is, the first b1 solutions in the new P are the best b1 
solutions in the current RefSet. 

 End if 
End for 

Fig. 2. (Continued)  Scatter Search Outline 

5. Implications for Future Developments  

The focus and emphasis of the scatter search approach have a number of specific 
implications for the goal of designing improved optimisation procedures.  To 
understand these implications, it is useful to consider certain contrasts between the 



highly exploitable meaning of “solution combination” provided by scatter search 
and the rather amorphous concept of “crossover” used in genetic algorithms.  
Originally, GAs were founded on precise notions of crossover, using definitions 
based on binary stings and motivated by analogies with genetics.  Although there 
are still many GA researchers who favour the types of crossover models originally 
proposed with genetic algorithms – since these give rise to the theorems that have 
helped to popularise GAs – there are also many who have largely abandoned these 
ideas and who have sought, on a case-by-case basis, to replace them with 
something different.  The well-defined earlier notions of crossover have not been 
abandoned without a price.  The literature is rife with examples where a new 
problem (or a new variant of an old one) has compelled the search for an 
appropriate “crossover” to begin anew.

3
 

As a result of this lack of an organising principle, many less-than -suitable 
modes of combination have been produced, some eventually replacing others, 
without a clear basis for taking advantage of context – in contrast to the strong 
context -exploiting emphasis embodied in the concept of structured combinations.  
The difficulty of devising a unifying basis for understanding or exploiting context 
in GAs was inherited from its original theme, which had the goal of making GAs 
context free.  

Specific areas of research for developing improved solution strategies that 
emerge directly from the scatter search orientation are: 

 
− Strategies for clustering and anti-clustering, to generate candidate sets of 

solutions to be combined 
− Rules for multi-parent compositions 
− Isolating and assembling solution components by means of constructive linking 

and vocabulary building  
 

These research opportunities carry with them an emphasis on producing 
systematic and strategically designed rules, rather than following the policy of 
relegating decisions to random choices, as often is fashionable in evolutionary 
methods.  The strategic orientation underlying scatter search is motivated by 
connections with the tabu search setting and invites the use of adaptive memory 
structures in determining the strategies produced.  The learning approach called 
target analysis [2] gives a particularly useful basis for pursuing such res earch. 

                                                                 
3
 The disadvantage of lacking a clear and unified model for combining solutions has had its 

compensations for academic researchers, since each new application creates an opportunity to 
publish another form of crossover!  The resulting abundance of papers has done nothing to tarnish 
the image of a dynamic and prospering field.  



6. Randomisation and the Intensification/Diversification 
Dichotomy  

The emphasis on systematic strategies in achieving intensification and 
diversification does not preclude the use of randomised selection schemes, which 
are often motivated by the fact that they require little thought or sophistication to 
apply (as illustrated by the Solution Combination Method of Section 3.5).  By the 
same token, deterministic rules that are constructed with no more reflection than 
devoted to creating a simple randomised rule can be quite risky, because they can 
easily embody oversights that will cause them to perform poorly.  A randomised 
rule can then offer a safety net, by preventing a bad decision from being applied 
persistently and without exception. 

Yet a somewhat different perspective suggests that deterministic rules can offer 
important advantages in the longer run.  A “foolish mistake” incorporated into a 
deterministic rule becomes highly visible by its consequences, whereas such a 
mistake in a randomised rule may be buried from view — obscured by the 
patternless fluctuations that surround it.  Deterministic rules afford the opportunity 
to profit by mistakes and learn to do better.  The character of randomised rules, 
that provides the chance to escape from repet itive folly, also inhibits the chance to 
identify more effective decisions. 

The concepts of intensification and diversification are predicated on the view 
that intelligent variation and randomised variation are rarely the same.

4
  This 

clearly contrasts wit h the prevailing perspective in the literature of evolutionary 
methods although, perhaps surprisingly, the intensification and diversification 
terminology has been appearing with steadily increasing frequency in this 
literature. Nevertheless, a number of the fundamental strategies for achieving the 
goals of intensification and diversification in scatter search applications have still 
escaped the purview of other evolutionary methods. 

Perhaps one of the factors that is slowing a more complete assimilation of  these 
ideas is a confusion between the terminology of intensification and diversification 
and the terminology of “exploitation versus exploration” popularised in 
association with genetic algorithms. The exploitation/exploration distinction 
comes from control theory, where exploitation refers to following a particular 
recipe (traditionally memoryless) until it fails to be effective, and exploration then 
refers to instituting a series of random changes — typically via multi-armed bandit 
schemes — before reverting to the tactical recipe. The issue of exploitation versus 
exploration concerns how often and under what circumstances the randomised 
departures are launched. 

                                                                 
4
 Intelligence can sometimes mean quickly doing something mildly clever, rather than slowly doing 

something profound. This can occur where the quality of a single move obtained by extended 
analysis is not enough to match the quality of multiple moves obtained by more superficial analysis. 
Randomized moves, which are quick, sometimes gain a reputation for effectiveness because of this  
phenomenon.  In such settings, a different perspective may result by investigating comparably fast 
mechanisms that replace randomization with intelligent variation.  



By contrast, intensification and diversification are mutually reinforcing (rather 
than being mutually opposed), and can be implemented in conjunction as well as 
in alternation.  In longer-term strategies, intensification and diversification are 
both activated when simpler tactics lose their effectiveness.  Characteristically, 
they are designed to profit from memory [2], rather than to rely solely on indirect 
“inheritance effects.” 

7. Conclusion 

It is not possible within the limited scope of this chapter to detail completely the 
aspects of scatter search that warrant further investigation.  Additional 
implementation considerations, including associated intensification and 
diversification processes, and the design of accompanying methods to improve 
solutions produced by combination strategies, may be found in the template for 
scatter search and path relinking in [12].  

However, a key observation deserves to be stressed.  The literature often 
contrasts evolutionary methods — especially those based on combining solutions 
— with local search methods, as though these two types of approaches are 
fundamentally different.  In addition, evolutionary procedures are conceived to be 
independent of any reliance on memory, except in the very limited sense where 
solutions forged from combinations of others carry the imprint of their parents.  
Yet as previously noted, the foundations of scatter search strongly overlap with 
those of tabu search.  By means of these connections, a wide range of strategic 
possibilities exist for implementing scatter search. 

Very little computational investigation of these methods has been done by 
comparison to other evolutionary methods, and a great deal remains to be learned 
about the most effective implementations for various classes of problems.  The 
highly promising outcomes of studies such as those cited in [15] suggest that these 
approaches may offer a useful potential for applications in areas beyond those 
investigated up to now.  

References 

1. Glover F. Parametric Combinations of Local Job Shop Rules. ONR Research 
Memorandum no. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA, 1963, 
Chapter IV. 

2. Glover F. and Laguna M. Tabu Search, Kluwer Academic Publishers, Boston, 1997. 
3. Crowston WB, Glover F, Thompson GL and Trawick JD.  Probabilistic and Parametric 

Learning Combinations of Local Job Shop Scheduling Rules. ONR Research 
Memorandum No. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA, 1963. 

4. Glover F. A Multiphase Dual Algorithm for the Zero-One Integer Programming 
Problem, Operations Research 1965; 13(6): 879.  

5. Greenberg HJ and Pierskalla WP. Surrogate Mathematical Programs. Operations 
Research 1970; 18: 924-939. 



6. Greenberg HJ and Pierskalla WP. Quasi-conjugate Functions and Surrogate Duality. 
Cahiers du Centre d’Etudes de Recherche Operationelle 1973; 15: 437-448. 

7. Glover F. Surrogate Constraint Duality in Mathematical Programming. Operations 
Research 1975; 23: 434-451. 

8. Karwan MH and Rardin RL. Surrogate Dual Multiplier Search Procedures in Integer 
Programming. School of Industrial Systems Engineering, Report Series No. J-77-13, 
Georgia Institute of Technology, 1976. 

9. Karwan MH and Rardin RL. Some Relationships Between Lagrangean and Surrogate 
Duality in Integer Programming. Mathematical Programming 1979; 17: 230-334. 

10. Freville A and Plateau G. Heuristics and Reduction Methods for Multiple Constraint 0-
1 Linear Programming Problems. European Journal of Operational Research 1986; 24: 
206-215. 

11. Freville A and Plateau G. An Exact Search for the Solution of the Surrogate Dual of the 
0-1 Bidimensional Knapsack Problem. European Journal of Operational Research 
1993; 68: 413-421. 

12. Glover F. A Template for Scatter Search and Path Relinking. In: Hao JK, Lutton E, 
Ronald E, Schoenauer M, and Snyers D (eds.) Lecture Notes in Computer Science 1997; 
1363: 1-53. 

13. Michlewicz Z and Logan TD. Evolutionary Operators for Continuous Convex 
Parameter Spaces. In: Sebald AV and Fogel LJ (eds.) Proceedings of the 3rd Annual 
Conference on Evolutionary Programming. World Scientific Publishing, River Edge, 
NJ, 1994, pp. 84-97. 

14. Nelder JA and Mead R. A Simplex Method for Function Minimisation. Computer 
Journal 1965; 7: 308. 

15. Glover F. Scatter Search and Path Relinking. In: D Corne, M Dorigo and F Glover 
(eds.) New Ideas in Optimisation, McGraw-Hill, 1999. 


