

New Ideas and Applications of
 Scatter Search and Path Relinking

FRED GLOVER∗, MANUEL LAGUNA

Leeds School of Business, University of Colorado,
Boulder, CO 80309-0419, USA. Fred.Glover@Colorado.edu.

Manuel.Laguna@Colorado.edu

RAFAEL MARTÍ*

Departamento de Estadística e Investigación Operativa
Universitat de València, 46100 Burjassot, Spain. Rafael.Marti@uv.es

Latest version: December 4, 2002

Abstract — Practical elements of Scatter Search and Path Relinking are illustrated by
seven recent applications. The computational outcomes, based on comparative tests
involving real world and experimental benchmark problems, demonstrate that these
methods provide useful alternatives to more established search procedures. The
designs in these applications are straightforward, and can be readily adapted to other
optimization problems of varied structures.

∗ Research partially supported by the Office of Naval Research Contract N00014-01-1-0917 in
connection with the Hearin Center of Enterprise Science at the University of Mississippi.

* Partially supported by the Ministerio de Ciencia y Tecnología of Spain (Ref.TIC2000-1750-C06-01)

1. Introduction

Scatter Search (SS) and Path Relinking (PR) have recently been investigated in a
number of studies. In this chapter we disclose some of the practical performance
aspects of these methods by examining the following seven recent applications:

a. Neural Network Training
b. Multi-Objective Routing Problem
c. OptQuest: A Commercial Implementation
d. A Context-Independent Method for Permutation Problems
e. Classical Vehicle Routing
f. Matrix Bandwidth Minimization
g. Arc Crossing Minimization

The designs in these applications are straightforward, and can be readily adapted to
other optimization problems of similarly diverse structures.

SS and PR may be viewed as evolutionary algorithms that construct solutions by
combining others, and derive their foundations from strategies originally proposed for
combining decision rules and constraints (Glover, 1963, 1965). Chapter 1 describes
the fundamental principles and processes underlying these methodologies. We limit
our attention here to sketching specific applications that demonstrate the scope and
impact of these procedures.

2. Scatter Search Applications

The descriptions that follow are edited versions of reports by researchers and
practitioners who are responsible for the applications of SS cited in this section.
Definitions of terms and basic procedural components employed are taken from
Chapter 1.

2.1 Neural Network Training

A highly effective adaptation of Scatter Search to the neural network training problem
has been developed by Laguna and Martí (2000). The improvement procedure
embedded in the SS method consists in this case of the well known Nelder and Mead
(1965) Simplex method for unconstrained nonlinear optimization. Given a set of
weights w, the Simplex method starts by perturbing each weight to create an initial
simplex from which to begin the local search. The algorithm uses the implementation
of the Nelder-Mead method described in Press, et al. (1992).

The SS procedure itself begins by generating the appropriate data normalizations, and
then creates an initial reference set (RefSet) of b solutions. A set P of PSize solutions
(bounded between wlow and whigh) is built with the diversification method, based on
a controlled randomization scheme, given in Glover, Laguna and Martí (1999). RefSet
is filled with the best b/2 solutions in P that result by applying the improvement
method.Then b/2 additional solutions are generated as perturbations of the first b/2
and are added to RefSet. The perturbation consists of multiplying each weight by 1 +
U[-0.05,0.05], where U is the uniform distribution.

In step 2, the solutions in RefSet are ordered according to quality, where the best
solution is the first one in the list. Then, the NewPairs set is constructed consisting of
all the new pairs of solutions that can be obtained from RefSet, where a “new pair”
contains at least one new solution. The pairs in NewPairs are selected one at a time to
create linear combinations. The improvement method is applied to the best b
solutions created as linear combinations. Each improved solution is then tested for
admission into RefSet. If a newly created solution improves upon the worst solution
currently in RefSet, the new solution replaces the worst and RefSet is reordered.

In step 3 the procedure intensifies the search around the best-known solution. At
each intensification iteration, the best-known solution is perturbed (multiplied by 1 +
U[-0.05,0.05]) and the improvement method is applied. The best solution is updated
if the perturbation plus the improvement generates a better solution. After IntLimit
intensification iterations without improving the best solution, the procedure abandons
the intensification phase and returns to step 2. Previously, the improvement method
is applied to the best b/2 solutions in RefSet and the worst b/2 solutions are replaced
with perturbations of the best b/2 (now, each improved solution is multiplied by 1+U[-
0.01,0.01]). The training procedure stops when the number of objective function
evaluations reaches the total allowed. Preliminary experimentation determined that
reasonable values for the parameters wlow, whigh, b and IntLimit are –2, 2, 10 and 20
respectively.

Computational experiments on the neural network training problem, applied to
benchmark problems previously reported in the literature, show that the scatter
search implementation compares very favorably with the best known methods for
these problems (which include simulated annealing, tabu search, and genetic
algorithms). SS reaches a prediction accuracy that that makes it possible to filter out
potentially bad solutions generated during the optimization of a simulation, and does
so within a computational time that is practical for on-line training.

2.2 Multi-Objective Routing Problem

Corberán et al. (2001) address the problem of routing school buses in a rural area.
The authors approach this problem with a node routing model with multiple objectives
that arise from conflicting viewpoints. From the point of view of cost, it is desirable to
minimize the number of buses (m) used to transport students from their homes to
school and back. And from the point of view of service, it is desirable to minimize the
time that a given student spends in route. The current literature deals primarily with
single-objective problems and the models with multiple objectives typically employ a
weighted function to combine the objectives into a single one.

The solution procedure considers each objective separately and search for a set of
efficient solutions instead of a single optimum. The SS approach for constructing,
improving and then combining solutions consists of the following elements:

H1 and H2: Two constructive heuristics to generate routes
SWAP: An exchange procedure to find a local optimal value for

the length of each route
INSERT: An exchange procedure to improve upon the value of

tmax, which identifies the maximum time in the bus.
COMBINE: A mechanism to combine solutions in a reference set of

solutions in order to generate new ones.

The overall procedure operates as follows. (See the outline in Figure 1.) The
constructive heuristics H1 and H2 are applied with several values for tmax and the
resulting solutions are stored in separate pools, one for each value of m. The larger
the value of tmax the larger the frequency in which the heuristics construct solutions
with a small number of routes. Conversely, solutions with a large number of routes
are obtained when the value of tmax is decreased. The procedure then attempts to
improve upon the solutions constructed by H1 and H2. The improvement consists of
first applying SWAP to each route and then applying INSERT to the entire solution. If
any route is changed during the application of INSERT then we apply SWAP one more
time to all the changed routes. The procedure now iterates within a main loop, in
which a search is launched for solutions with a common number of routes. The main
loop terminates when all the m-values have been explored.

From all the solutions with m routes, the best b are chosen to initialize the reference
set (RefSet). The criterion for ranking the solutions at this step is tmax, since all
solutions have the same number of routes. The procedure performs iterations in an

inner-loop that consists of searching for a solution with m routes with an improved
tmax value. The combination procedure COMBINE is applied to all pairs of solutions in
the current reference set RefSet. The combined solutions are improved in the same
way as described above, that is, by applying SWAP then INSERT and finally SWAP to
the routes that changed during the application of INSERT. We refer to the resulting
set of distinct solutions as ImpSet. The reference set is then updated by selecting the
best b solutions from the union of RefSet and ImpSet. Steps 5, 6 and 7 in the outline
of Figure 1 are performed as long as at least one new solution is admitted in the
reference set.

1. Construct solutions — Apply constructions heuristics
H1 and H2 with several values of TMAX.

2. Improve solutions — Apply SWAP to each route in a
solution and INSERT to the entire solution. Finally,
apply SWAP o any route changed during the
application of INSERT.

3. Build solution pools — Put all solutions with the same
number of routes in the same pool.

for (each solution pool) do

 4. Build the reference set — Choose the best b
solutions in the pool to build the initial RefSet.

 while (new solutions in RefSet) do

 5. Combine solutions — Generate all the
combined solutions from pairs of reference
solutions where at least one solution in the
pair is new.

 6. Improve solutions — Apply SWAP to each
route in a solution and INSERT to the entire
solution. Finally, apply SWAP o any route
changed during the application of INSERT.

 7. Update reference set — Choose the best b
solutions from the union of the current
reference set and the combined-improved
solutions to update the RefSet.

 end while

end for

Figure 1. SS for Multi-Objective Vehicle Routing

After the reference set is updated, the combination procedure may be applied to the
same solution pairs more than once. Since the combination procedure includes some
randomized elements, the combination of two solutions may result in a different
outcome every time COMBINE is applied. Also, the size of the reference set is
increased if the updating procedure fails to add at least one new solution. The
additional solutions come from the original pool of solutions generated with the
construction heuristics. The reference set size is increased up to 2*b, where b is the
initial size.

The computational testing on a real-world problem with 42 primary (elementary)
schools and 16 (middle) secondary schools in the Province of Burgos (Spain), reveals
the procedure is capable of generating a highly effective approximation of the efficient
frontier for each routing problem. Decision makers may use efficient solutions to
estimate the best service level (given by the maximum route length) that can be

obtained with each level of investment (given by the number of buses used). The
results show that several of the solutions implemented in practice are not efficient and
can be improved by the SS methodology of the study.

2.3 OptQuest: A Commercial Implementation

OptQuest, a registered trademark of OptTek Systems Inc., is commercial software
designed for optimizing complex systems, such as those formulated as simulation
models. Many real world optimization problems in business, engineering and science
are too complex to be given tractable mathematical formulations. Multiple non-
linearities, combinatorial relationships and uncertainties often render challenging
practical problems inaccessible to modeling except by resorting to more
comprehensive tools (like computer simulation). Classical optimization methods
encounter grave difficulties when dealing with the optimization problems that arise in
the context of complex systems. In some instances, recourse has been made to
itemizing a series of scenarios in the hope that at least one will give an acceptable
solution. Due to the limitations of this approach, a long-standing research goal has
been to create a way to guide a series of complex evaluations to produce high quality
solutions, in the absence of tractable mathematical structures. (In the context of
optimizing simulations, a “complex evaluation” refers to the execution of a simulation
model.)

The OptQuest Callable Library (OCL) is designed to search for optimal solutions to the
following class of optimization problems:

Max or Min F(x,y)

Subject to Ax < b (Constraints)
 gl < G(x,y) < gu (Requirements)
 l < x < u (Bounds)
 y = alldifferent

where x can be continuous or discrete with an arbitrary step size and y represents a
permutation.

In a general-purpose optimizer such as OCL, it is desirable to separate the solution
procedure from the complex system to be optimized. The disadvantage of this “black
box” approach is that the optimization procedure is generic and has no knowledge of
the process employed to perform evaluations inside of the box and therefore does not
use any problem-specific information. The main advantage, on the other hand, is that
the same optimizer can be applied to complex systems in many different settings. The
optimization procedure uses the outputs from the system evaluator, which measures
the merit of the inputs that were fed into the model. On the basis of both current and
past evaluations, the optimization procedure decides upon a new set of input values
(see Figure 2). The optimization procedure is designed to carry out a special “strategic
search,” where the successively generated inputs produce varying evaluations, not all
of them improving, but which over time provide a highly efficient trajectory to the best
solutions. The process continues until an appropriate termination criterion is
satisfied (usually based on the user’s preference for the amount of time to be devoted
to the search).

Optimization
Procedure

Input

Output

System
Evaluator

Figure 2. Coordination between optimization and system evaluation

It is assumed that the user has a system evaluator that, given a set of input values, it
returns a set of output values that can used to guide a search. For example, the
evaluator may have the form of a computer simulation that, given the values of a set of
decision variables, it returns the value of one or more performance measures (that
define the objective function and possibly a set of requirements). The user-written
application uses OCL functions to define an optimization problem and launch a search
for the optimal values of the decision variables.

The scatter search method implemented in OCL begins by generating a starting set of
diverse points. This is accomplished by dividing the range of each variable into 4 sub-
ranges of equal size. Then, a solution is constructed in two steps. First, a sub-range
is randomly selected. The probability of selecting a sub-range is inversely proportional
to its frequency count (which keeps track of the number of times the sub-range has
been selected). Second, a value is randomly chosen from the selected sub-range.

A subset of diverse points is chosen as members of the reference set. A set of points is
considered diverse if its elements are “significantly” different from one another. OCL
uses a Euclidean distance measure to determine how “close” a potential new point is
from the points already in the reference set, in order to decide whether the point is
included or discarded.

When the optimization model includes discrete variables, a rounding procedure is
used to map fractional values to discrete values. When the model includes linear
constraints newly created points are subjected to a feasibility test before they are sent
to the evaluator (i.e., before the objective function value F(x) and the requirements G(x)
are evaluated). If the solution is infeasible with respect to one or more constraints,
OCL formulates and solves a linear programming (LP) problem. The LP (or mixed-
integer program, when x contains discrete variables) has the goal of finding a feasible
solution x* that minimizes a deviation between x and x*.

Once the reference set has been created, a combination method is applied to initiate
the search for optimal solutions. The method consists of finding linear combinations
of reference solutions. The number of solutions created from the linear combination of
two reference solutions depends on the quality of the solutions being combined.

In the process of searching for a global optimum, the combination method may not be
able to generate solutions of enough quality to become members of the reference set.
If the reference set does not change and all the combinations of solutions have been
explored, a diversification step is triggered. This step consists of rebuilding the
reference set to create a balance between solution quality and diversity. To preserve
quality, a small set of the best (elite) solutions in the current reference set is used to
seed the new reference set. The remaining solutions are eliminated from the reference
set. Then, the diversification generation method is used to repopulate the reference
set with solutions that are diverse with respect to the elite set. This reference set is
used as the starting point for a new round of combinations.

In Laguna and Martí (2002), the functionality of the library is illustrated with an
example in the context of nonlinear optimization. The authors tested OCL by

comparing its performance with Genocop III, a third-generation genetic algorithm.
Experiments with 30 nonlinear optimization problems show that OCL is a search
method that is both aggressive and robust, finding high-quality solutions early in the
search and continuing to improve upon the best solution when allowed to search
longer. The quality of solutions obtained by OCL uniformly dominated that of
solutions obtained by Genocop III, with marked superiority on the more difficult
problems. In addition, OCL obtained these improved solutions with speeds ranging
from one to three orders of magnitude faster than the genetic algorithm approach.
These characteristics make OCL especially useful for applications in which the
evaluation of the objective function requires a non-trivial computational effort. OCL
has now been used to solve complex optimization problems in more than 20,000 real
world applications. More details can be found on the website www.opttek.com .

2.4 A Context-Independent Method for Permutation Problems

Campos, Laguna and Martí (2001) develop a context-independent method for solving
problems whose solutions can be represented with a permutation. As in the case of
OCL, described in the previous section, this general-purpose heuristic is based on a
model that treats the objective function evaluation as a black box, making the search
algorithm context-independent. The procedure is a scatter search/tabu search
hybrid. The scatter search framework provides a means for diversifying the search
throughout the exploration of the permutation solution space. Two improvement
methods are used to intensify the search in promising regions of the solution space: a
simple local search based on exchange moves and a short-term memory tabu search.
Improved solutions are then used for combination purposes within the scatter search
design.

The solver is designed in such a way that the user must specify whether the objective
function evaluation is more sensitive to the “absolute” positioning of the elements in
the permutation or to their “relative” positioning. Hence, we differentiate between two
classes of problems:

A-permutation problems ⎯ for which absolute positioning of the elements
is more important

R-permutation problems ⎯ for which relative positioning of the elements is
more important

The distance between two permutations p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn)
depends on the type of problem being solved. For A-permutation problems, the
distance is given by:

 ∑
=

−=
n

i
ii qpqpd

1

),(.

The distance for R-permutation problems is defined as: d(p,q) = number of times pi+1
does not immediately follow pi in q, for i = 1, …, n-1.

In order to design a context-independent combination methodology that performs well
across a wide collection of different problems, the authors propose a set of 10
combination methods from which one is probabilistically selected according to its
performance in previous iterations. Solutions in the RefSet are ordered according to
their objective function value. So, the best solution is in the first one in RefSet and
the worst is the last one. When a solution obtained with combination method i
(referred to as cmi) qualifies to be the jth member of the current RefSet, we add b-j+1 to
score(cmi). Therefore, combination methods that generate good solutions accumulate
higher scores and increase proportionally their probability of being selected. Other SS
elements in the method follow the standard description given in Chapter 1. Two
different solvers are proposed, the first one implements a local search phase as the

improvement method, the second one uses a short term memory tabu search as the
improvement method.

The performance of the procedure has been assessed using 157 instances of four
different permutations problems. Solutions to these problems are naturally
represented as permutations: the bandwidth reduction problem (BRP), the linear
ordering problem (LOP), the traveling salesman problem (TSP), and a single machine
sequencing problem (SMS). Solutions obtained with the scatter search/tabu search
method have been compared with the best-known solutions to each problem. The
procedure has been shown competitive with methods specifically designed for the LOP
and SMS problems. The method also provides reasonable results for TSP problems,
although not competitive with those obtained by methods that are customized to
exploit the special structure of the TSP. The method also is not highly appropriate for
the BRP due to the min-max nature of the objective function calculation associated
with this class of problems.

For the permutation problems considered, the method was shown superior to
comparable procedures that are commercially available. (In all cases, the method
produces substantial improvements). The experimentation shows that context-
independent methods can be useful in the context of permutation problems, when the
associated objective function is capable of discriminating among solutions in a given
neighborhood

2.5 Classical Vehicle Routing

Rego and Leão (2002) identify a general design for solving vehicle routing problems
using scatter search that has proved exceptionally effective. The vehicle routing
problem (VRP) is a classic application in Combinatorial Optimization that can be
defined as follows. Let)A,V(G = be a graph where { }nv,,v,vV K10= is a vertex set,

and { }jiV,,vv|),v(vA jiji ≠∈= is an arc set. Vertex 0v denotes a depot, where a fleet

of m identical vehicles of capacity Q are based, and the remaining vertices { }0v\V'V =

represent n cities (or client locations). A nonnegative cost or distance matrix)c(C ij=

that satisfies the triangle inequality (kjikij ccc +≤) is defined on A. It is assumed that

[]m,mm ∈ with 1=m and 1−= nm . The value of m can be a decision variable or can
be fixed depending on the application.

Vehicles make pickups or deliveries but not both. With each vertex iv is associated a

quantity iq 0(0)q = of some goods to be delivered by a vehicle and a service time

iδ 0(0)δ = required by a vehicle to unload the quantity iq at iv . The VRP consists of
determining a set of m vehicle routes of minimal total cost, starting and ending at a
depot 0v , such that every vertex in ∈iv 'V is visited exactly once by one vehicle, the
total quantity assigned to each route does not exceed the capacity Q and the total
duration of any vehicle route does not surpass a given bound D.

The algorithm implementation is structured into five basic components, following the
characteristic scatter search design:

Diversification Generation Method:-- To start with an initial set of trial solutions that
differ significantly from each other, the generator of combinatorial objects described in
Glover (1997) is used to generate permutations in n-vectors where components are all
vertices iv ∈ { }0v\V . For a given permutation P(h), each cluster of vertices in a route

is obtained by successively assigning a vertex))h(Pi(vi ∈ to a route
khR (initially k=1)

until any of the cumulative values for kQ = ∑ ∈
khi Rv iq or kD =

(,)
()

i j hk
ij iv v R

c δ
∈

+∑ does not

exceed Q or D, respectively, with the insertion of a new vertex
jkv . As soon as such a

cutoff limit is attained a new assignment is created by incrementing k by one unit, and
the process goes on until all vertices have been assigned.

The result obtained can be viewed as a generalized assignment process that does not
rely on the order in which clients are visited, though it ensures that all the initial
solutions that can be created are feasible and different (since they derive from distinct
permutations). Vehicle routes are then determined by using the stem-and-cycle
ejection chain algorithm for the traveling salesman problem described in Rego (1998a).

Improvement Method:-- The improvement method is based on the Flower
Ejection Chain (FEC) algorithm described in Rego (1998b). For the purpose of the
proposed scatter search algorithm, the original FEC procedure has been modified as in
the scatter search phase this improvement method is required to deal with infeasible
solutions. The method works in two stages. The first stage is concerned with making
the solution feasible while choosing the most favorable move and the second stage is
the improvement process that operates only on feasible solutions. The method
considers varying penalty factors associated with the problem constraints to drive the
search toward the feasible region.

Reference Set Update Method:-- A set of reference solutions is created and
maintained as follows. Intensification is achieved by the selection of high-quality
solutions (in terms of the objective function value) and diversification is induced by
including diverse solutions from the current candidate set CS. Thus the reference set
RS is defined by two distinct subsets B and D, representing respectively the subsets of
high-quality and diverse solutions, hence DBRS ∪= . A diversity measure,

)SS(\)SS(d jijiij ∩∪= is used to express the distance between solutions Si and Sj,

identifying the number of edges by which the two solutions differ from each other.
Candidate solutions are included in RS according to the Maxmin criterion that
maximizes the minimum distance of each candidate solution to all the solutions
currently in the reference set.

Subset Generation Method:-- Subsets of reference solutions are generated to create
structured combinations in the next step. The method is typically designed to organize
subsets of solutions to cover different promising regions of the solution space. In a
spatial representation, the convex-hull of each subset delimits the solution space in
subregions containing all possible convex combinations of solutions in the subset. In
order to achieve a suitable intensification and diversification of the solution space,
three types of subsets are required to be organized:

1) subsets containing only solutions in B,
2) subsets with only solutions in D, and
3) subsets mixing in solutions in B and D in different proportions.

Subsets defined by solutions of type 1 are conceived to intensify the search in regions
of high-quality solutions while subsets of type 2 are created to diversify the search to
unexplored regions. Finally, subsets of type 3 integrate both high-quality and diverse
solutions with the aim of exploiting solutions across these two types of subregions.

Solution Combination Method:-- The solution combination method is designed to
explore subregions within the convex-hull of the reference set. Solutions consist of
vectors of variables ijx representing edges)v,v(ji . New solutions are generated by

weighted linear combinations that are structured by the subsets defined in the last
step. In order to restrict the number of solutions only one solution is generated in
each subset by a convex linear combination. Nevertheless, the set of the generated
edges does not necessarily (and usually does not) represent a feasible graph structure
for a VRP solution insofar as it may produce a subgraph containing vertices with a

degree different from two. Such subgraphs can be viewed as fragments of solutions (or
partial routes). Structural feasibility is restored by either linking vertices of degree 1
directly to the depot or dropping edges with the smallest scores, from among those
incident at vertices of degree greater than 2, until the degree of each vertex becomes
equal to two. While the resulting subgraphs are feasible for the VRP routing structure,
they may not yield a feasible solution in relation to the capacity or route length
constraints. This latter form of infeasibility is handled by the improvement method as
previously indicated.

Computational testing was performed on a set of 26 standard benchmark instances
taken from Christofides, Mingozzi and Toth (1972) and Rochat and Taillard (1995).
Comparisons with previous VRP algorithms in the literature show the scatter search
algorithm not only is competitive with the best of them across a broad spectrum of
problems but is highly robust. For example, in 7 out of the 14 instances from the
Christofides, Mingozzi and Toth’s testbed, the SS approach obtains a solution that
succeeds in matching the best solution previously found by any method. For Rochat
and Taillard’s instances, the SS algorithm dominates all other methods in all
instances. Moreover, the approach offers an additional important advantage. Because
the problem constraints are handled separately from the solution generation
procedures, and are therefore independent of the problem context, this scatter search
design can be directly used to solve other classes of vehicle routing problems by
applying any domain-specific (local search) heuristic that is able to start from
infeasible solutions.

3. Path Relinking Applications

3.1 Matrix Bandwidth Minimization

The matrix bandwidth minimization problem (MBMP) has been the subject of study for
at least 32 years, beginning with the Cuthill - McKee algorithm in 1969. The problem
consists of finding a permutation of the rows and the columns of a matrix that keeps
all the non-zero elements in a band that is as close as possible to the main diagonal.
This problem has generated considerable interest over the years because of its
practical relevance for a significant range of global optimization applications. They
include preprocessing the coefficient matrix for solving the system of equations, finite
element methods for approximating solutions of partial differential equations or large-
scale power transmission systems.

Given a matrix A={aij}nxn the problem can be stated in terms of graphs considering a
vertex for each row (column) and an edge in E as long as either aij ≠0 or aji ≠0. The
problem consists of finding a labeling f of the vertices that minimizes the maximum
difference between labels of adjacent vertices. In mathematical terms, given a graph
G=(V,E) with vertex set V (|V|=n) and edge set E, we seek to minimize:

() (){ }VvvBGB ff ∈= :max where () () () (){ }vNuufvfvB f ∈−= :max .

In this expression, N(v) is the set of vertices adjacent to v, f(v) is the label of vertex v
and Bf(v) is the bandwidth of vertex v. A labeling f of G assigns the integers {1, 2, …, n}
to the vertices of G; thus, it is simply a renumbering of these vertices. Then, the
bandwidth of a graph is B(G), the minimum Bf(G) value over all possible labelings f.
The MBMP consists of finding a labeling f that minimizes Bf(G).

Piñana et al. (2001) propose a PR implementation for this problem consisting of two
phases. The first phase uses a GRASP method to generate an initial set of elite (high
quality) solutions. Instead of retaining only the best solution overall when running
GRASP, this phase stores the 10 best solutions obtained with the method. In the
second phase a relinking process is applied to each pair of solutions in the elite set.
Given the pair (A,B), two paths are considered: from A to B (where A is the initiating
solution and B the guiding one), and from B to A (where they interchange their roles).

The relinking process implemented in the search may be summarized as follows: Let C
be the candidate list of vertices to be examined. At each step, a vertex v is chosen
from C and labeled in the initiating solution with its label g(v) in the guiding solution.
To do this, we look in the initiating solution for the vertex u with label g(v) and perform
move(u,v), then vertex v is removed from C. The candidate set C is initialized with a
randomly selected vertex. In subsequent iterations, each time a vertex is selected and
removed from C, its adjacent vertices are included in C.

In a primitive version, the method employs no improvement procedure, but simply
operates on the initial elite set of solutions generated by GRASP method (first building
a large set of solutions from which the n_best are included in the elite set). The
relinking process is then applied to all pairs of solutions in the elite set. Each time the
relinking process produces a solution that is better than the worst in the elite set, the
worst solution is replaced by the new one. The procedure terminates when no new
solutions are admitted to the elite set.

It is shown that in most cases this primitive version (which lacks an improvement
method) does not produce better solutions than the initiating and guiding solutions.
Upon adding a local search exploration from some of the visited solutions in order to
produce improved outcomes, the results are in line with those reported in Laguna and
Martí (1999) for the arc crossing problem. Specifically, a local search method is
applied to some of the solutions generated in the path. Two consecutive solutions
after a relinking step differ only in the label of two vertices and hence it is not efficient
to apply the local search exploration at every step of the relinking process. The
parameter n_improves controls the application of the exchange mechanism. In
particular, the exchange mechanism is applied n_improves times in the relinking
process.

Overall experiments with 211 instances were performed to assess the merit of the
procedures. Three methods were considered: the acclaimed GPS approach, a tabu
search procedure (Martí et al., 2001) that has previously obtained the best known
results for this problem, and the proposed PR method. The experiments reveal that
the performance of the GPS approach was clearly inferior, with average deviations
several orders of magnitude larger than those obtained with the other methods. The
PR procedure outperforms the TS method in small instances. In large instances, the
TS method obtains better solutions than the PR, although it employs longer running
times. The PR procedure has been shown to be robust in terms of solution quality
within a reasonable computational effort.

3.2 Arc Crossing Minimization

Researches in the graph-drawing field have proposed several aesthetic criteria that
attempt to capture the meaning of a “good” map of a graph. Although readability may
depend on the context and the map’s user, most authors agree that crossing reduction
is a fundamental aesthetic criterion in graph drawing. In the context of a 2-layer
graph and straight edges, the bipartite drawing problem or BDP consists of ordering
the vertices in order to minimize the number of crossings.

A bipartite graph G=(V,E) is a simple directed graph where the set of vertices V is
partitioned into two subsets, V1 (the left layer) and V2 (the right layer) and where
E ⊆ V1×V2. The direction of the arcs has no effect on crossings so G is considered to be
an undirected graph, the arcs to be edges and denote G by the triple (V1, V2, E). Let n1
= |V1|, n2 = |V2|, m = |E|, and let N(v) = {w ∈ V | e = {v, w} ∈ E} denote the set of
neighbors of v ∈ V. A solution is completely specified by a permutation π1 of V1 and a
permutation π2 of V2, where π1(v) or π2(v) is the position of v in its corresponding layer.

Laguna and Martí (1999) propose a PR procedure for arc crossing minimization in the
context of GRASP. This is the first implementation of PR for the purpose of improving

the performance of GRASP (as opposed to accompanying it, as in the study previously
cited). In the proposed path relinking implementation, the procedure stores a small set
of high quality (elite) solutions to be used for guiding purposes. Specifically, after each
GRASP iteration, the resulting solution is compared to the best three solutions found
during the search. If the new solution is better than any one in the elite set, the set is
updated. Instead of using attributes of all the elite solutions for guiding purposes, one
of the elite solutions is randomly selected to serve as a guiding solution during the
relinking process. The relinking in this context consists of finding a path between a
solution found after an improvement phase and the chosen elite solution. Therefore,
the relinking concept has a different interpretation within GRASP, since the solutions
found from one GRASP iteration to the next are not linked by a sequence of moves (as
in the case of tabu search). The relinking process implemented in our search may be
summarized as follows:

The set of elite solutions is constructed during the first three GRASP iterations.
Starting with the fourth GRASP iteration, every solution after the improvement phase
(called the initiating solution) is subject to a relinking process by performing moves
that transform the initiating solution into the guiding solution (i.e., the elite solution
selected at random). The transformation is relatively simple, at each step, a vertex v is
chosen from the initiating solution and is placed in the position occupied by this
vertex in the guiding solution. So, if g

1π (v) is the position of vertex v in the guiding

solution, then the assignment i
1π (v) = g

1π (v) is made. We assume that an updating of
the positions of vertices in V1 of the initiating solution occurs. After this is done, an
expanded neighborhood from the current solution defined by i

1π (v) and i
2π (v) is

examined. The expanded neighborhood consists of a sequence of position exchanges
of vertices that are one position away from each other, which are performed until no
more improvement (with respect to crossing minimization) can be found. Once the
expanded neighborhood has been explored, the relinking continues from the solution
defined by i

1π (v) and i
2π (v) before the exchanges were made. The relinking finishes

when the initiating solution matches the guiding solution, which will occur after n1+ n2
relinking steps.

Two consecutive solutions after a relinking step differ only in the position of two
vertices (after the assignment i

1π (v) = g
1π (v) is made). Therefore, it is not efficient to

apply the expanded neighborhood exploration (i.e., the exchange mechanism) at every
step of the relinking process. The parameter β is used to control the application of the
exchange mechanism, by applying the mechanism every β steps of the relinking
process.

Overall, experiments with 3,200 graphs were performed to assess the merit of the
procedure. The proposed method is shown competitive in a set of problem instances
for which the optimal solutions are known. For a set of sparse instances, the method
performed remarkably well (outperforming the best procedures reported in the
literature).

References

Campos, V., M. Laguna and R. Martí (2001) “Context-Independent Scatter and Tabu
Search for permutation problems”, technical report TR03-2001, University of Valencia.
http://matheron.uv.es/investigar/tr03-01.ps.

Corberán, A., E. Fernández, M. Laguna and R. Martí (2001), “Heuristic Solutions to
the Problem of Routing School Buses with Multiple Objectives” Journal of the
Operational Research Society, 53 (4), 427-435.

Christofides, N., A. Mingozzi, P. Toth (1972) “The Vehicle Routing Problem,”
Combinatorial Optimization, Vol 11, pp 315-338.

Fleurent, C. and F. Glover (1997) “Improved Constructive Multistart Strategies for the
Quadratic Assignment Problem Using Adaptive Memory,” University of Colorado.

Glover, F. (1963), “Parametric combination of local job shop rules”, chapter IV, ONR
Research memorandum n. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA.

Glover, F. (1965), “A Multi-Phase Dual algorithm for the zero-one integer programming
problem”, Operations Research, 13, (6), 879.

Glover, F. (1997) “A Template for Scatter Search and Path Relinking,” in Lecture Notes
in Computer Science, 1363, J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, D. Snyers
(Eds.), pp 13-54.

Laguna, M. and Martí R. (2000) “Neural Network Prediction in a System for Optimizing
Simulations,” IIE Transaction on Operations Engineering, forthcoming.

Laguna, M. and Martí R. (2002) “The OptQuest Callable Library”, Optimization
Software Class Libraries, Stefan Voss and David L. Woodruff (Eds.) 193-218, Kluwer,
Boston.

Laguna, M. and Martí, R. (1999), GRASP and Path Relinking for 2-Layer straight line
crossing minimization”, INFORMS Journal on Computing, vol. 11 (1), pp. 44 – 52.

Martí, R., Laguna, M., Glover, F. and Campos, V. (2001) “Reducing the Bandwidth of a
Sparse Matrix with Tabu Search”, European Journal of Operational Research, 135(2),
pp. 211-220.

Nelder, J. A. and R. Mead (1965) “A Simplex Method for Function Minimization,”
Computer Journal, vol. 7., pp. 308-313.

Piñana, E., I. Plana, V. Campos and R. Martí (2001), “GRASP and Path Relinking for
the Matrix Bandwidth Minimization”, European Journal of Operational Research,
forthcoming..

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992) Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press (www.nr.com).
Rego, C., P. Leão (2002) “A Scatter Search for the Vehicle Routing Problem” Research
Report HCES-08-02, Hearin Center for Enterprise Science, School of Business
Administration, University of Mississippi.

Rego, C. (1998a) “Relaxed Tours and Path Ejections for the Traveling Salesman
Problem,” in Tabu Search Methods for Optimization, European Journal of Operational
Research, 106, pp 522-538.

Rego, C. (1998b) “A Subpath Ejection Method for the Vehicle Routing Problem,
Management Science,” Vol. 44, No 10, pp 1447-1459.

Rochat, Y, E. Taillard (1995) “Probabilistic Diversification and Intensification in Local
Search for Vehicle Routing,” Journal of Heuristics, Vol 1, pp 147-167.

