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Abstract — Practical elements of Scatter Search and Path Relinking are illustrated by 
seven recent applications.  The computational outcomes, based on comparative tests 
involving real world and experimental benchmark problems, demonstrate that these 
methods provide useful alternatives to more established search procedures. The 
designs in these applications are straightforward, and can be readily adapted to other 
optimization problems of varied structures. 
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1. Introduction 

Scatter Search (SS) and Path Relinking (PR) have recently been investigated in a 
number of studies.  In this chapter we disclose some of the practical performance 
aspects of these methods by examining the following seven recent applications: 
 

a. Neural Network Training 
b. Multi-Objective Routing Problem 
c. OptQuest: A Commercial Implementation 
d. A Context-Independent Method for Permutation Problems 
e. Classical Vehicle Routing 
f. Matrix Bandwidth Minimization 
g. Arc Crossing Minimization 

 
The designs in these applications are straightforward, and can be readily adapted to 
other optimization problems of similarly diverse structures. 
 
SS and PR may be viewed as evolutionary algorithms that construct solutions by 
combining others, and derive their foundations from strategies originally proposed for 
combining decision rules and constraints (Glover, 1963, 1965).  Chapter 1 describes 
the fundamental principles and processes underlying these methodologies. We limit 
our attention here to sketching specific applications that demonstrate the scope and 
impact of these procedures. 

2. Scatter Search Applications 

The descriptions that follow are edited versions of reports by researchers and 
practitioners who are responsible for the applications of SS cited in this section. 
Definitions of terms and basic procedural components employed are taken from 
Chapter 1. 

2.1 Neural Network Training 

A highly effective adaptation of Scatter Search to the neural network training problem 
has been developed by Laguna and Martí (2000). The improvement procedure 
embedded in the SS method consists in this case of the well known Nelder and Mead 
(1965) Simplex method for unconstrained nonlinear optimization. Given a set of 
weights w, the Simplex method starts by perturbing each weight to create an initial 
simplex from which to begin the local search.  The algorithm uses the implementation 
of the Nelder-Mead method described in Press, et al. (1992). 
 
The SS procedure itself begins by generating the appropriate data normalizations, and 
then creates an initial reference set (RefSet) of b solutions.  A set P of PSize solutions 
(bounded between wlow and whigh) is built with the diversification method, based on 
a controlled randomization scheme, given in Glover, Laguna and Martí (1999).  RefSet 
is filled with the best b/2 solutions in P that result by applying the improvement 
method.Then b/2 additional solutions are generated as perturbations of the first b/2 
and are added to RefSet.  The perturbation consists of multiplying each weight by 1 + 
U[-0.05,0.05], where U is the uniform distribution. 
 
In step 2, the solutions in RefSet are ordered according to quality, where the best 
solution is the first one in the list.  Then, the NewPairs set is constructed consisting of 
all the new pairs of solutions that can be obtained from RefSet, where a “new pair” 
contains at least one new solution.  The pairs in NewPairs are selected one at a time to 
create linear combinations.  The improvement method is applied to the best b 
solutions created as linear combinations.  Each improved solution is then tested for 
admission into RefSet.  If a newly created solution improves upon the worst solution 
currently in RefSet, the new solution replaces the worst and RefSet is reordered. 
 



In step 3 the procedure intensifies the search around the best-known solution.  At 
each intensification iteration, the best-known solution is perturbed (multiplied by 1 + 
U[-0.05,0.05] ) and the improvement method is applied.  The best solution is updated 
if the perturbation plus the improvement generates a better solution.  After IntLimit 
intensification iterations without improving the best solution, the procedure abandons 
the intensification phase and returns to step 2.  Previously, the improvement method 
is applied to the best b/2 solutions in RefSet and the worst b/2 solutions are replaced 
with perturbations of the best b/2 (now, each improved solution is multiplied by 1+U[-
0.01,0.01]).  The training procedure stops when the number of objective function 
evaluations reaches the total allowed.   Preliminary experimentation determined that 
reasonable values for the parameters wlow, whigh, b and IntLimit are  –2, 2, 10 and 20 
respectively.   
 
Computational experiments on the neural network training problem, applied to  
benchmark problems previously reported in the literature, show that the scatter 
search implementation compares very favorably with the best known methods for 
these problems (which include simulated annealing, tabu search, and genetic 
algorithms). SS reaches a prediction accuracy that that makes it possible to filter out 
potentially bad solutions generated during the optimization of a simulation, and does 
so within a computational time that is practical for on-line training. 

2.2 Multi-Objective Routing Problem 

Corberán et al. (2001) address the problem of routing school buses in a rural area.  
The authors approach this problem with a node routing model with multiple objectives 
that arise from conflicting viewpoints.  From the point of view of cost, it is desirable to 
minimize the number of buses (m) used to transport students from their homes to 
school and back.  And from the point of view of service, it is desirable to minimize the 
time that a given student spends in route.  The current literature deals primarily with 
single-objective problems and the models with multiple objectives typically employ a 
weighted function to combine the objectives into a single one. 
 
The solution procedure considers each objective separately and search for a set of 
efficient solutions instead of a single optimum.  The SS approach for constructing, 
improving and then combining solutions consists of the following elements: 
 

H1 and H2: Two constructive heuristics to generate routes 
SWAP: An exchange procedure to find a local optimal value for 

the length of each route 
INSERT: An exchange procedure to improve upon the value of   

tmax, which identifies the maximum time in the bus. 
COMBINE:  A mechanism to combine solutions in a reference set of 

solutions in order to generate new ones. 
 

The overall procedure operates as follows. (See the outline in Figure 1.) The 
constructive heuristics H1 and H2 are applied with several values for tmax and the 
resulting solutions are stored in separate pools, one for each value of m.  The larger 
the value of tmax the larger the frequency in which the heuristics construct solutions 
with a small number of routes.  Conversely, solutions with a large number of routes 
are obtained when the value of tmax is decreased.  The procedure then attempts to 
improve upon the solutions constructed by H1 and H2.  The improvement consists of 
first applying SWAP to each route and then applying INSERT to the entire solution.  If 
any route is changed during the application of INSERT then we apply SWAP one more 
time to all the changed routes.  The procedure now iterates within a main loop, in 
which a search is launched for solutions with a common number of routes.  The main 
loop terminates when all the m-values have been explored. 
 
From all the solutions with m routes, the best b are chosen to initialize the reference 
set (RefSet).  The criterion for ranking the solutions at this step is tmax, since all 
solutions have the same number of routes.  The procedure performs iterations in an 



inner-loop that consists of searching for a solution with m routes with an improved 
tmax value.  The combination procedure COMBINE is applied to all pairs of solutions in 
the current reference set RefSet.  The combined solutions are improved in the same 
way as described above, that is, by applying SWAP then INSERT and finally SWAP to 
the routes that changed during the application of INSERT.  We refer to the resulting 
set of distinct solutions as ImpSet.  The reference set is then updated by selecting the 
best b solutions from the union of RefSet and ImpSet.  Steps 5, 6 and 7 in the outline 
of Figure 1 are performed as long as at least one new solution is admitted in the 
reference set. 
 
 

1. Construct solutions — Apply constructions heuristics 
H1 and H2 with several values of TMAX. 

2. Improve solutions — Apply SWAP to each route in a 
solution and INSERT to the entire solution.  Finally, 
apply SWAP o any route changed during the 
application of INSERT. 

3. Build solution pools — Put all solutions with the same 
number of routes in the same pool. 

for ( each solution pool ) do 

 4. Build the reference set — Choose the best b 
solutions in the pool to build the initial RefSet. 

 while ( new solutions in RefSet ) do 

 5. Combine solutions — Generate all the 
combined solutions from pairs of reference 
solutions where at least one solution in the 
pair is new. 

 6. Improve solutions — Apply SWAP to each 
route in a solution and INSERT to the entire 
solution.  Finally, apply SWAP o any route 
changed during the application of INSERT. 

 7. Update reference set — Choose the best b 
solutions from the union of the current 
reference set and the combined-improved 
solutions to update the RefSet. 

 end while 

end for 

Figure 1.  SS for Multi-Objective Vehicle Routing 
 
After the reference set is updated, the combination procedure may be applied to the 
same solution pairs more than once.  Since the combination procedure includes some 
randomized elements, the combination of two solutions may result in a different 
outcome every time COMBINE is applied. Also, the size of the reference set is 
increased if the updating procedure fails to add at least one new solution.  The 
additional solutions come from the original pool of solutions generated with the 
construction heuristics.  The reference set size is increased up to 2*b, where b is the 
initial size. 
 
The computational testing on a real-world problem with 42 primary (elementary) 
schools and 16 (middle) secondary schools in the Province of Burgos (Spain), reveals 
the procedure is capable of generating a highly effective approximation of the efficient 
frontier for each routing problem.  Decision makers may use efficient solutions to 
estimate the best service level (given by the maximum route length) that can be 



obtained with each level of investment (given by the number of buses used).  The 
results show that several of the solutions implemented in practice are not efficient and 
can be improved by the SS methodology of the study.  

2.3 OptQuest: A Commercial Implementation 

OptQuest, a registered trademark of OptTek Systems Inc., is commercial software 
designed for optimizing complex systems, such as those formulated as simulation 
models.  Many real world optimization problems in business, engineering and science 
are too complex to be given tractable mathematical formulations.  Multiple non-
linearities, combinatorial relationships and uncertainties often render challenging 
practical problems inaccessible to modeling except by resorting to more 
comprehensive tools (like computer simulation).  Classical optimization methods 
encounter grave difficulties when dealing with the optimization problems that arise in 
the context of complex systems.  In some instances, recourse has been made to 
itemizing a series of scenarios in the hope that at least one will give an acceptable 
solution.  Due to the limitations of this approach, a long-standing research goal has 
been to create a way to guide a series of complex evaluations to produce high quality 
solutions, in the absence of tractable mathematical structures.  (In the context of 
optimizing simulations, a “complex evaluation” refers to the execution of a simulation 
model.) 
 
The OptQuest Callable Library (OCL) is designed to search for optimal solutions to the 
following class of optimization problems: 
 

Max or Min F(x,y)  
 
Subject to Ax < b (Constraints) 
 gl < G(x,y) < gu (Requirements) 
 l < x < u (Bounds) 
 y = alldifferent  
 

where x can be continuous or discrete with an arbitrary step size and y represents a 
permutation. 
 
In a general-purpose optimizer such as OCL, it is desirable to separate the solution 
procedure from the complex system to be optimized.  The disadvantage of this “black 
box” approach is that the optimization procedure is generic and has no knowledge of 
the process employed to perform evaluations inside of the box and therefore does not 
use any problem-specific information.  The main advantage, on the other hand, is that 
the same optimizer can be applied to complex systems in many different settings.  The 
optimization procedure uses the outputs from the system evaluator, which measures 
the merit of the inputs that were fed into the model.  On the basis of both current and 
past evaluations, the optimization procedure decides upon a new set of input values 
(see Figure 2).  The optimization procedure is designed to carry out a special “strategic 
search,” where the successively generated inputs produce varying evaluations, not all 
of them improving, but which over time provide a highly efficient trajectory to the best 
solutions.  The process continues until an appropriate termination criterion is 
satisfied (usually based on the user’s preference for the amount of time to be devoted 
to the search). 
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Figure 2. Coordination between optimization and system evaluation 

It is assumed that the user has a system evaluator that, given a set of input values, it 
returns a set of output values that can used to guide a search.  For example, the 
evaluator may have the form of a computer simulation that, given the values of a set of 
decision variables, it returns the value of one or more performance measures (that 
define the objective function and possibly a set of requirements).  The user-written 
application uses OCL functions to define an optimization problem and launch a search 
for the optimal values of the decision variables. 
 
The scatter search method implemented in OCL begins by generating a starting set of 
diverse points.  This is accomplished by dividing the range of each variable into 4 sub-
ranges of equal size.  Then, a solution is constructed in two steps.  First, a sub-range 
is randomly selected.  The probability of selecting a sub-range is inversely proportional 
to its frequency count (which keeps track of the number of times the sub-range has 
been selected).  Second, a value is randomly chosen from the selected sub-range.  

 
A subset of diverse points is chosen as members of the reference set.  A set of points is 
considered diverse if its elements are “significantly” different from one another.  OCL 
uses a Euclidean distance measure to determine how “close” a potential new point is 
from the points already in the reference set, in order to decide whether the point is 
included or discarded. 
 
When the optimization model includes discrete variables, a rounding procedure is 
used to map fractional values to discrete values.  When the model includes linear 
constraints newly created points are subjected to a feasibility test before they are sent 
to the evaluator (i.e., before the objective function value F(x) and the requirements G(x) 
are evaluated).  If the solution is infeasible with respect to one or more constraints, 
OCL formulates and solves a linear programming (LP) problem.  The LP (or mixed-
integer program, when x contains discrete variables) has the goal of finding a feasible 
solution x* that minimizes a deviation between x and x*. 
 
Once the reference set has been created, a combination method is applied to initiate 
the search for optimal solutions.  The method consists of finding linear combinations 
of reference solutions.  The number of solutions created from the linear combination of 
two reference solutions depends on the quality of the solutions being combined. 
 
In the process of searching for a global optimum, the combination method may not be 
able to generate solutions of enough quality to become members of the reference set.  
If the reference set does not change and all the combinations of solutions have been 
explored, a diversification step is triggered.  This step consists of rebuilding the 
reference set to create a balance between solution quality and diversity.  To preserve 
quality, a small set of the best (elite) solutions in the current reference set is used to 
seed the new reference set.  The remaining solutions are eliminated from the reference 
set.  Then, the diversification generation method is used to repopulate the reference 
set with solutions that are diverse with respect to the elite set.  This reference set is 
used as the starting point for a new round of combinations. 
 
In Laguna and Martí (2002), the functionality of the library is illustrated with an 
example in the context of nonlinear optimization.  The authors tested OCL by 



comparing its performance with Genocop III, a third-generation genetic algorithm.  
Experiments with 30 nonlinear optimization problems show that OCL is a search 
method that is both aggressive and robust, finding high-quality solutions early in the 
search and continuing to improve upon the best solution when allowed to search 
longer.  The quality of solutions obtained by OCL uniformly dominated that of 
solutions obtained by Genocop III, with marked superiority on the more difficult 
problems. In addition, OCL obtained these improved solutions with speeds ranging 
from one to three orders of magnitude faster than the genetic algorithm approach. 
These characteristics make OCL especially useful for applications in which the 
evaluation of the objective function requires a non-trivial computational effort. OCL 
has now been used to solve complex optimization problems in more than 20,000 real 
world applications. More details can be found on the website www.opttek.com . 
 

2.4 A Context-Independent Method for Permutation Problems 

Campos, Laguna and Martí (2001) develop a context-independent method for solving 
problems whose solutions can be represented with a permutation.  As in the case of 
OCL, described in the previous section, this general-purpose heuristic is based on a 
model that treats the objective function evaluation as a black box, making the search 
algorithm context-independent.  The procedure is a scatter search/tabu search 
hybrid.  The scatter search framework provides a means for diversifying the search 
throughout the exploration of the permutation solution space.  Two improvement 
methods are used to intensify the search in promising regions of the solution space: a 
simple local search based on exchange moves and a short-term memory tabu search.  
Improved solutions are then used for combination purposes within the scatter search 
design. 
 
The solver is designed in such a way that the user must specify whether the objective 
function evaluation is more sensitive to the “absolute” positioning of the elements in 
the permutation or to their “relative” positioning.  Hence, we differentiate between two 
classes of problems: 

A-permutation problems ⎯ for which absolute positioning of the elements 
is more important 

R-permutation problems ⎯ for which relative positioning of the elements is 
more important 

 
The distance between two permutations p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) 
depends on the type of problem being solved.  For A-permutation problems, the 
distance is given by: 

 ∑
=

−=
n

i
ii qpqpd

1

),( . 

The distance for R-permutation problems is defined as: d(p,q) = number of times pi+1 
does not immediately follow pi in q, for i = 1, …, n-1.  
 
In order to design a context-independent combination methodology that performs well 
across a wide collection of different problems, the authors propose a set of 10 
combination methods from which one is probabilistically selected according to its 
performance in previous iterations.  Solutions in the RefSet are ordered according to 
their objective function value.  So, the best solution is in the first one in RefSet and 
the worst is the last one.  When a solution obtained with combination method i 
(referred to as cmi) qualifies to be the jth member of the current RefSet, we add b-j+1 to 
score(cmi).  Therefore, combination methods that generate good solutions accumulate 
higher scores and increase proportionally their probability of being selected.  Other SS 
elements in the method follow the standard description given in Chapter 1.  Two 
different solvers are proposed, the first one implements a local search phase as the 



improvement method, the second one uses a short term memory tabu search as the 
improvement method. 

The performance of the procedure has been assessed using 157 instances of four 
different permutations problems.  Solutions to these problems are naturally 
represented as permutations: the bandwidth reduction problem (BRP), the linear 
ordering problem (LOP), the traveling salesman problem (TSP), and a single machine 
sequencing problem (SMS).  Solutions obtained with the scatter search/tabu search 
method have been compared with the best-known solutions to each problem.  The 
procedure has been shown competitive with methods specifically designed for the LOP 
and SMS problems.  The method also provides reasonable results for TSP problems, 
although not competitive with those obtained by methods that are customized to 
exploit the special structure of the TSP.  The method also is not highly appropriate for 
the BRP due to the min-max nature of the objective function calculation associated 
with this class of problems. 

For the permutation problems considered, the method was shown superior to 
comparable procedures that are commercially available. (In all cases, the method 
produces substantial improvements).  The experimentation shows that context-
independent methods can be useful in the context of permutation problems, when the 
associated objective function is capable of discriminating among solutions in a given 
neighborhood 

2.5 Classical Vehicle Routing 

 
Rego and Leão (2002) identify a general design for solving vehicle routing problems 
using scatter search that has proved exceptionally effective. The vehicle routing 
problem (VRP) is a classic application in Combinatorial Optimization that can be 
defined as follows. Let )A,V(G =  be a graph where { }nv,,v,vV K10=  is a vertex set, 

and { }jiV,,vv|),v(vA jiji ≠∈=  is an arc set. Vertex 0v  denotes a depot, where a fleet 

of m identical vehicles of capacity Q are based, and the remaining vertices { }0v\V'V =  

represent n cities (or client locations). A nonnegative cost or distance matrix )c(C ij=  

that satisfies the triangle inequality ( kjikij ccc +≤ ) is defined on A. It is assumed that 

[ ]m,mm ∈  with 1=m  and 1−= nm . The value of m can be a decision variable or can 
be fixed depending on the application.  
 
Vehicles make pickups or deliveries but not both. With each vertex iv is associated a 

quantity iq  0( 0)q = of some goods to be delivered by a vehicle and a service time 

iδ 0( 0)δ =   required by a vehicle to unload the quantity iq  at iv . The VRP consists of 
determining a set of m vehicle routes of minimal total cost, starting and ending at a 
depot 0v , such that every vertex in ∈iv 'V  is visited exactly once by one vehicle, the 
total quantity assigned to each route does not exceed the capacity Q and the total 
duration of any vehicle route does not surpass a given bound D.   
 
The algorithm implementation is structured into five basic components, following the 
characteristic scatter search design: 
 
 
Diversification Generation Method:-- To start with an initial set of trial solutions that 
differ significantly from each other, the generator of combinatorial objects described in 
Glover (1997) is used to generate permutations in n-vectors where components are all 
vertices iv ∈ { }0v\V . For a given permutation P(h),  each cluster of vertices in a route 

is obtained by successively assigning a vertex ))h(Pi(vi ∈  to a route 
khR (initially k=1) 

until any of the cumulative values for kQ = ∑ ∈
khi Rv iq  or kD =

( , )
( )

i j hk
ij iv v R

c δ
∈

+∑ does not 



exceed Q or D, respectively, with the insertion of a new vertex 
jkv .  As soon as such a 

cutoff limit is attained a new assignment is created by incrementing k by one unit, and 
the process goes on until all vertices have been assigned.  
 
The result obtained can be viewed as a generalized assignment process that does not 
rely on the order in which clients are visited, though it ensures that all the initial 
solutions that can be created are feasible and different (since they derive from distinct 
permutations). Vehicle routes are then determined by using the stem-and-cycle 
ejection chain algorithm for the traveling salesman problem described in Rego (1998a). 
 

Improvement Method:-- The improvement method is based on the Flower 
Ejection Chain (FEC) algorithm described in Rego (1998b). For the purpose of the 
proposed scatter search algorithm, the original FEC procedure has been modified as in 
the scatter search phase this improvement method is required to deal with infeasible 
solutions. The method works in two stages. The first stage is concerned with making 
the solution feasible while choosing the most favorable move and the second stage is 
the improvement process that operates only on feasible solutions. The method 
considers varying penalty factors associated with the problem constraints to drive the 
search toward the feasible region. 
 

Reference Set Update Method:-- A set of reference solutions is created and 
maintained as follows. Intensification is achieved by the selection of high-quality 
solutions (in terms of the objective function value) and diversification is induced by 
including diverse solutions from the current candidate set CS. Thus the reference set 
RS is defined by two distinct subsets B and D, representing respectively the subsets of 
high-quality and diverse solutions, hence DBRS ∪= . A diversity measure, 

)SS(\)SS(d jijiij ∩∪=  is used to express the distance between solutions Si and Sj, 

identifying the number of edges by which the two solutions differ from each other. 
Candidate solutions are included in RS according to the Maxmin criterion that 
maximizes the minimum distance of each candidate solution to all the solutions 
currently in the reference set.  
 

Subset Generation Method:-- Subsets of reference solutions are generated to create 
structured combinations in the next step. The method is typically designed to organize 
subsets of solutions to cover different promising regions of the solution space. In a 
spatial representation, the convex-hull of each subset delimits the solution space in 
subregions containing all possible convex combinations of solutions in the subset. In 
order to achieve a suitable intensification and diversification of the solution space, 
three types of subsets are required to be organized:  
 

1) subsets containing only solutions in B,  
2) subsets with only solutions in D, and  
3) subsets mixing in solutions in B and D in different proportions.  
 

Subsets defined by solutions of type 1 are conceived to intensify the search in regions 
of high-quality solutions while subsets of type 2 are created to diversify the search to 
unexplored regions. Finally, subsets of type 3 integrate both high-quality and diverse 
solutions with the aim of exploiting solutions across these two types of subregions.  
 

Solution Combination Method:-- The solution combination method is designed to 
explore subregions within the convex-hull of the reference set. Solutions consist of 
vectors of variables ijx representing edges )v,v( ji . New solutions are generated by 

weighted linear combinations that are structured by the subsets defined in the last 
step. In order to restrict the number of solutions only one solution is generated in 
each subset by a convex linear combination. Nevertheless, the set of the generated 
edges does not necessarily (and usually does not) represent a feasible graph structure 
for a VRP solution insofar as it may produce a subgraph containing vertices with a 



degree different from two. Such subgraphs can be viewed as fragments of solutions (or 
partial routes). Structural feasibility is restored by either linking vertices of degree 1 
directly to the depot or dropping edges with the smallest scores, from among those 
incident at vertices of degree greater than 2, until the degree of each vertex becomes 
equal to two. While the resulting subgraphs are feasible for the VRP routing structure, 
they may not yield a feasible solution in relation to the capacity or route length 
constraints. This latter form of infeasibility is handled by the improvement method as 
previously indicated. 
 
Computational testing was performed on a set of 26 standard benchmark instances 
taken from Christofides, Mingozzi and Toth (1972) and Rochat and Taillard (1995). 
Comparisons with previous VRP algorithms in the literature show the scatter search 
algorithm not only is competitive with the best of them across a broad spectrum of 
problems but is highly robust. For example, in 7 out of the 14 instances from the 
Christofides, Mingozzi and Toth’s testbed, the SS approach obtains a solution that 
succeeds in matching the best solution previously found by any method.  For Rochat 
and Taillard’s instances, the SS algorithm dominates all other methods in all 
instances. Moreover, the approach offers an additional important advantage. Because 
the problem constraints are handled separately from the solution generation 
procedures, and are therefore independent of the problem context, this scatter search 
design can be directly used to solve other classes of vehicle routing problems by 
applying any domain-specific (local search) heuristic that is able to start from 
infeasible solutions. 

3. Path Relinking Applications 

3.1 Matrix Bandwidth Minimization 

The matrix bandwidth minimization problem (MBMP) has been the subject of study for 
at least 32 years, beginning with the Cuthill - McKee algorithm in 1969.  The problem 
consists of finding a permutation of the rows and the columns of a matrix that keeps 
all the non-zero elements in a band that is as close as possible to the main diagonal.  
This problem has generated considerable interest over the years because of its 
practical relevance for a significant range of global optimization applications.  They 
include preprocessing the coefficient matrix for solving the system of equations, finite 
element methods for approximating solutions of partial differential equations or large-
scale power transmission systems. 
 
Given a matrix A={aij}nxn the problem can be stated in terms of graphs considering a 
vertex for each row (column) and an edge in E as long as either aij ≠0 or aji ≠0.  The 
problem consists of finding a labeling f of the vertices that minimizes the maximum 
difference between labels of adjacent vertices.  In mathematical terms, given a graph 
G=(V,E) with vertex set V (|V|=n) and edge set E, we seek to minimize: 
 

( ) ( ){ }VvvBGB ff ∈= :max   where  ( ) ( ) ( ) ( ){ }vNuufvfvB f ∈−= :max . 

 
In this expression, N(v) is the set of vertices adjacent to v, f(v) is the label of vertex v 
and Bf(v) is the bandwidth of vertex v.  A labeling f of G assigns the integers {1, 2, …, n} 
to the vertices of G; thus, it is simply a renumbering of these vertices.  Then, the 
bandwidth of a graph is B(G), the minimum Bf(G) value over all possible labelings f.  
The MBMP consists of finding a labeling f that minimizes Bf(G). 
 
Piñana et al. (2001) propose a PR implementation for this problem consisting of two 
phases.  The first phase uses a GRASP method to generate an initial set of elite (high 
quality) solutions. Instead of retaining only the best solution overall when running 
GRASP, this phase stores the 10 best solutions obtained with the method.  In the 
second phase a relinking process is applied to each pair of solutions in the elite set.  
Given the pair (A,B), two paths are considered: from A to B (where A is the initiating 
solution and B the guiding one), and from B to A (where they interchange their roles). 



 
The relinking process implemented in the search may be summarized as follows: Let C 
be the candidate list of vertices to be examined.  At each step, a vertex v is chosen 
from C and labeled in the initiating solution with its label g(v) in the guiding solution.  
To do this, we look in the initiating solution for the vertex u with label g(v) and perform 
move(u,v), then vertex v is removed from C.  The candidate set C is initialized with a 
randomly selected vertex.  In subsequent iterations, each time a vertex is selected and 
removed from C, its adjacent vertices are included in C. 
 
In a primitive version, the method employs no improvement procedure, but simply 
operates on the initial elite set of solutions generated by GRASP method  (first building 
a large set of solutions from which the n_best are included in the elite set).  The 
relinking process is then applied to all pairs of solutions in the elite set.  Each time the 
relinking process produces a solution that is better than the worst in the elite set, the 
worst solution is replaced by the new one. The procedure terminates when no new 
solutions are admitted to the elite set. 
 
It is shown that in most cases this primitive version (which lacks an improvement 
method) does not produce better solutions than the initiating and guiding solutions.  
Upon adding a local search exploration from some of the visited solutions in order to 
produce improved outcomes,  the results are in line with those reported in Laguna and 
Martí (1999) for the arc crossing problem.  Specifically, a local search method is 
applied to some of the solutions generated in the path.  Two consecutive solutions 
after a relinking step differ only in the label of two vertices and hence it is not efficient 
to apply the local search exploration at every step of the relinking process.  The 
parameter n_improves controls the application of the exchange mechanism.  In 
particular, the exchange mechanism is applied n_improves times in the relinking 
process. 
 
Overall experiments with 211 instances were performed to assess the merit of the 
procedures.  Three methods were considered: the acclaimed GPS approach, a tabu 
search procedure (Martí et al., 2001) that has previously obtained the best known 
results for this problem, and the proposed PR method.  The experiments reveal that 
the performance of the GPS approach was clearly inferior, with average deviations 
several orders of magnitude larger than those obtained with the other methods.  The 
PR procedure outperforms the TS method in small instances.  In large instances, the 
TS method obtains better solutions than the PR, although it employs longer running 
times.  The PR procedure has been shown to be robust in terms of solution quality 
within a reasonable computational effort. 

3.2 Arc Crossing Minimization 

Researches in the graph-drawing field have proposed several aesthetic criteria that 
attempt to capture the meaning of a “good” map of a graph.  Although readability may 
depend on the context and the map’s user, most authors agree that crossing reduction 
is a fundamental aesthetic criterion in graph drawing.  In the context of a 2-layer 
graph and straight edges, the bipartite drawing problem or BDP consists of ordering 
the vertices in order to minimize the number of crossings. 
 
A bipartite graph G=(V,E) is a simple directed graph where the set of vertices V is 
partitioned into two subsets, V1 (the left layer) and V2 (the right layer) and where 
E ⊆ V1×V2.  The direction of the arcs has no effect on crossings so G is considered to be 
an undirected graph, the arcs to be edges and denote G by the triple (V1, V2, E).  Let n1 
= |V1|, n2 = |V2|, m = |E|, and let N(v) = {w ∈ V | e = {v, w} ∈ E} denote the set of 
neighbors of v ∈ V.  A solution is completely specified by a permutation π1 of V1 and a 
permutation π2 of V2, where π1(v) or π2(v) is the position of v in its corresponding layer. 
 
Laguna and Martí (1999) propose a PR procedure for arc crossing minimization in the 
context of GRASP.  This is the first implementation of PR for the purpose of improving 



the performance of GRASP (as opposed to accompanying it, as in the study previously 
cited). In the proposed path relinking implementation, the procedure stores a small set 
of high quality (elite) solutions to be used for guiding purposes.  Specifically, after each 
GRASP iteration, the resulting solution is compared to the best three solutions found 
during the search.  If the new solution is better than any one in the elite set, the set is 
updated.  Instead of using attributes of all the elite solutions for guiding purposes, one 
of the elite solutions is randomly selected to serve as a guiding solution during the 
relinking process.  The relinking in this context consists of finding a path between a 
solution found after an improvement phase and the chosen elite solution.  Therefore, 
the relinking concept has a different interpretation within GRASP, since the solutions 
found from one GRASP iteration to the next are not linked by a sequence of moves (as 
in the case of tabu search).  The relinking process implemented in our search may be 
summarized as follows: 
 
The set of elite solutions is constructed during the first three GRASP iterations.  
Starting with the fourth GRASP iteration, every solution after the improvement phase 
(called the initiating solution) is subject to a relinking process by performing moves 
that transform the initiating solution into the guiding solution (i.e., the elite solution 
selected at random).  The transformation is relatively simple, at each step, a vertex v is 
chosen from the initiating solution and is placed in the position occupied by this 
vertex in the guiding solution.  So, if g

1π (v) is the position of vertex v in the guiding 

solution, then the assignment i
1π (v) = g

1π (v) is made.  We assume that an updating of 
the positions of vertices in V1 of the initiating solution occurs.  After this is done, an 
expanded neighborhood from the current solution defined by i

1π (v) and i
2π (v) is 

examined.  The expanded neighborhood consists of a sequence of position exchanges 
of vertices that are one position away from each other, which are performed until no 
more improvement (with respect to crossing minimization) can be found.  Once the 
expanded neighborhood has been explored, the relinking continues from the solution 
defined by i

1π (v) and i
2π (v) before the exchanges were made.  The relinking finishes 

when the initiating solution matches the guiding solution, which will occur after n1+ n2 
relinking steps. 

 
Two consecutive solutions after a relinking step differ only in the position of two 
vertices (after the assignment i

1π (v) = g
1π (v) is made).  Therefore, it is not efficient to 

apply the expanded neighborhood exploration (i.e., the exchange mechanism) at every 
step of the relinking process.  The parameter β is used to control the application of the 
exchange mechanism, by applying the mechanism every β steps of the relinking 
process. 
 
Overall, experiments with 3,200 graphs were performed to assess the merit of the 
procedure.  The proposed method is shown competitive in a set of problem instances 
for which the optimal solutions are known.  For a set of sparse instances, the method 
performed remarkably well (outperforming the best procedures reported in the 
literature). 
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