
Principles of Scatter Search

RAFAEL MARTÍ
Dpto. de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad
de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) Spain. Rafael.Marti@uv.es

MANUEL LAGUNA, FRED GLOVER
Leeds School of Business, University of Colorado, Campus Box 419, Boulder, CO
80309 Laguna@colorado.edu , Fred.Glover@colorado.edu

First version: March 24, 2003
Latest version: June 2, 2003

Abstract
Scatter search is an evolutionary method that has been successfully applied to hard optimization
problems. The fundamental concepts and principles of the method were first proposed in the 1970s,
based on formulations dating back to the 1960s for combining decision rules and problem constraints. In
contrast to other evolutionary methods like genetic algorithms, scatter search is founded on the premise
that systematic designs and methods for creating new solutions afford significant benefits beyond those
derived from recourse to randomization. It uses strategies for search diversification and intensification
that have proved effective in a variety of optimization problems.

This paper provides the main principles and ideas of scatter search and its generalized form path
relinking. We first describe a basic design to give the reader the tools to create relatively simple
implementations. More advanced designs derive from the fact that scatter search and path relinking are
also intimately related to the tabu search (TS) metaheuristic, and gain additional advantage by making use
of TS adaptive memory and associated memory-exploiting mechanisms capable of being tailored to
particular contexts. These and other advanced processes described in the paper facilitate the creation of
sophisticated implementations for hard problems that often arise in practical settings. Due to their
flexibility and proven effectiveness, scatter search and path relinking can be successfully adapted to
tackle optimization problems spanning a wide range of applications and a diverse collection of structures,
as shown in the papers of this volume.

KeyWords
Metaheuristics, Evolutionary Methods, Combination, Path Relinking

Principles of Scatter Search / 2

1. Introduction
Scatter search (SS) was first introduced in Glover (1977) as a heuristic for integer programming. In the
original proposal, solutions are purposely (i.e., non-randomly) generated to take account of characteristics
in various parts of the solution space. Scatter search orients its explorations systematically relative to a
set of reference points that typically consist of good solutions obtained by prior problem solving efforts,
where the criteria for “good” are not restricted to objective function values, and may apply to sub-
collections of solutions rather than to a single solution, as in the case of solutions that differ from each
other according to certain specifications.

Weighted linear combinations provide the main mechanism to generate new trial points within the space
containing the reference points, accompanied by a generalized (successively iterated) rounding
mechanism to assure these trial points satisfy integer feasibility conditions in the case where some
variables are required to receive integer values. These mechanisms are oriented toward the goal of
creating weighted centers of selected sub-regions, including regions external to the convex hull of the
reference points.

The scatter search template (Glover 1998) has served as the main reference for most of the scatter search
implementations to date. The dispersion patterns created by these designs have been found useful in
several application areas. Section 2 gives a comprehensive description of the elements and methods of
this template based on the formulation given in Laguna and Martí (2003). Following this, section 3
examines different advanced scatter search designs, including some recent features as the 3-Tier reference
set update and associated uses of memory. Section 4 is devoted to the path relinking methodology that
extends scatter search to the setting of neighborhood spaces, including both basic and advanced
implementations, and the paper ends with concluding observations.

2. Basic Scatter Search Design

The scatter search methodology is very flexible, since each of its elements can be implemented in a
variety of ways and degrees of sophistication. In this section we give a basic design to implement scatter
search based on the well-known “five methods”, while the advanced designs are cover in the next section.
The advanced features of scatter search are related to the way these five methods are implemented. That
is, the sophistication comes from the implementation of the SS methods instead of the decision to include
or exclude some elements (like in the case of tabu search, as mentioned above).

The fact that the mechanisms within scatter search are not restricted to a single uniform design allows the
exploration of strategic possibilities that may prove effective in a particular implementation. These
observations and principles lead to the following template for implementing scatter search that consists of
five methods.

1. A Diversification Generation Method to generate a collection of diverse trial solutions, using an
arbitrary trial solution (or seed solution) as an input.

2. An Improvement Method to transform a trial solution into one or more enhanced trial solutions.
(Neither the input nor the output solutions are required to be feasible, though the output solutions will
more usually be expected to be so. If no improvement of the input trial solution results, the
“enhanced” solution is considered to be the same as the input solution.)

3. A Reference Set Update Method to build and maintain a reference set consisting of the b “best”
solutions found (where the value of b is typically small, e.g., no more than 20), organized to provide
efficient accessing by other parts of the method. Solutions gain membership to the reference set
according to their quality or their diversity.

4. A Subset Generation Method to operate on the reference set, to produce a subset of its solutions as a
basis for creating combined solutions.

5. A Solution Combination Method to transform a given subset of solutions produced by the Subset
Generation Method into one or more combined solution vectors.

Figure 1 shows the interaction among these five methods and puts in evidence the central role of the
reference set. This basic design starts with the creation of an initial set of solutions P, and then extracts
from it the reference set (RefSet) of solutions.

Principles of Scatter Search / 3

The Diversification Generation Method is used to build a large set P of diverse solutions. The size of P
(PSize) is typically at least 10 times the size of RefSet. The initial reference set is built according to the
Reference Set Update Method. For example, the Reference Set Update Method could consist of selecting
b distinct and maximally diverse solutions from P. A simple mechanism to construct the RefSet is given
in the next paragraphs and the next section explores several alternatives for implementing the Reference
Set Update Method. Regardless of the rules used to select the reference solutions, the solutions in RefSet
are ordered according to quality, where the best solution is the first one in the list. The search is then
initiated by assigning the value of TRUE to the Boolean variable NewSolutions. In step 3, NewSubsets is
constructed and NewSolutions is switched to FALSE. The simplest form of the Subset Generation
Method consists of generating all pairs of reference solutions. That is, the method would focus on subsets
of size 2 resulting in (b2-b)/2 NewSubsets. The pairs in NewSubsets are selected one at a time in
lexicographical order and the Solution Combination Method is applied to generate one or more trial
solutions in step 5. These trial solutions are subjected to the Improvement Method, if one is available.
The Reference Set Update Method is applied once again in step 6. The simplest form of the application
of the Reference Update Method in this step is to build the new RefSet with the best solutions, according
to the objective function value, from the current RefSet and the set of trail solutions. If RefSet changes
after the application of the reference set update method the NewSolutions flag is switched to TRUE in
step 7, indicating that at least one new solution has been inserted in the reference set. The subset s that
was just subjected to the Combination Method is deleted from NewSubsets in step 8.

The basic procedure terminates after all subsets in NewSubsets are subjected to the combination method
and none of the improved trial solutions are admitted to RefSet under the rules of the Reference Set
Update Method.

1. Start with P = Ø. Use the diversification generation method to construct a solution and apply the improvement

method. Let x be the resulting solution. If Px ∉ then add x to P (i.e., xPP ∪=), otherwise, discard x.
Repeat this step until |P| = PSize.

2. Use the reference set update method to build RefSet = { x1, …, xb } with the “best” b solutions in P. Order the
solutions in RefSet according to their objective function value such that x1 is the best solution and xb the worst.
Make NewSolutions = TRUE.

while (NewSolutions) do
 3. Generate NewSubsets with the subset generation method. Make NewSolutions = FALSE.
 while (NewSubsets ≠ ∅) do
 4. Select the next subset s in NewSubsets.
 5. Apply the solution combination method to s to obtain one or more new trial solutions x. Apply the

improvement method to the trial solutions.
 6. Apply the reference set update method.
 if (RefSet has changed) then
 7. Make NewSolutions = TRUE.
 end if
 8. Delete s from NewSubsets.
 end while
end while

Figure 1. Basic scatter search procedure

The reference set, RefSet, is a collection of both high quality solutions and diverse solutions that are used
to generate new solutions by way of applying the Combination Method. In this basic design we can use a
simple mechanism to construct an initial reference set and then update it during the search. The size of
the reference set is denoted by b = b1 + b2 = |RefSet|. The construction of the initial reference set starts
with the selection of the best b1 solutions from P. These solutions are added to RefSet and deleted from
P. For each solution in P-RefSet, the minimum of the distances to the solutions in RefSet is computed.
Then, the solution with the maximum of these minimum distances is selected. This solution is added to
RefSet and deleted from P and the minimum distances are updated. (In applying this max-min criterion, or
any criterion based on distances, it can be important to scale the problem variables, to avoid a situation
where a particular variable or subset of variables dominates the distance measure and distorts the
appropriate contribution of the vector components.) The process is repeated b2 times, where b2 = b – b1.
The resulting reference set has b1 high quality solutions and b2 diverse solutions.

Principles of Scatter Search / 4

After the initial reference set is constructed, the Combination Method is applied to the subsets generated
as outlined in step 5 of Figure 1. In the basic design we use the so-called static update of the reference set
after the application of the Combination Method. Trial solutions that are constructed as combination of
reference solutions are placed in a solution pool, denoted by Pool. After the application of both the
Combination Method and the Improvement Method, the Pool is full and the reference set is updated. The
new reference set consists of the best b solutions from the solutions in the current reference set and the
solutions in the pool, i.e., the update reference set contains the best b solutions in RefSet ∪ Pool.

Of the five methods in the scatter search methodology, only four are strictly required. The Improvement
Method is usually needed if high quality outcomes are desired, but a scatter search procedure can be
implemented without it. On the other hand, a short term tabu search procedure can be implemented as the
improvement method as will be shown in the next section.

3. Advanced Scatter Search Designs

When considering advanced strategies in a metaheuristic framework, the goal of improving performance
often conflicts with the goal of designing a procedure that is easy to implement and fine tune. Advanced
designs generally, but not always, translate into higher complexity and additional search parameters. As
far as we know, there is no simple recipe that can be used to follow a predetermined order in which
advanced strategies should be added to progressively improve the performance of a scatter search
implementation. Therefore, the order in which these strategies are described in this section does not
reflect their importance or ranking. An exhaustive description of advanced designs can be found in
Laguna and Martí (2003).

3.1 Dynamic RefSet Updating

The reference set is the heart of a scatter search procedure. If at any given time during the search all the
reference solutions are alike, as measured by an appropriate metric, the scatter search procedure will most
likely be incapable of improving upon the best solution found even when employing a sophisticated
procedure to perform combinations or improve new trial solutions. The Combination Method is limited
by the reference solutions that it uses as input. Hence, having the most advanced Combination Method is
of little advantage if the reference set is not carefully built and maintain during the search.

In the basic design, the new solutions that become members of RefSet are not combined until all pairs in
NewSubsets are subjected to the Combination Method. The new reference set is built with the best
solutions in the union of Pool and the solutions currently in RefSet. This strategy is called the Static
Update of the reference set. The alternative to the static update is the Dynamic Update strategy, which
applies the Combination Method to new solutions in a manner that combines new solutions faster than in
the basic design. That is, if a new solution is admitted to the reference set, the goal is to allow this new
solution to be subjected to the Combination Method as quickly as possible. In other words, instead of
waiting until all the combinations have been performed to update the reference set, if a new trial solution
warrants admission in the reference set, the set is immediately updated before the next combination is
performed. Therefore, there is no need for an intermediate pool in this design, since solutions are either
discarded or become part of the RefSet as soon as they are generated.

The advantage of the dynamic update is that if the reference set contains solutions of inferior quality,
these solutions are quickly replaced and future combinations are made with improved solutions. The
disadvantage is that some potentially promising combinations are eliminated before they can be
considered. The implementation of dynamic updating is more complex than its static counterpart. Also,
in the static update the order in which the combinations are performed is not important because the RefSet
is not updated until all combinations have been performed. In the dynamic updating, the order is quite
important because it determines the elimination of some potential combinations. Hence, when
implementing a dynamic update of the reference set, it may be necessary to experiment with different
combination orders as part of the fine tuning of the procedure.

3.2 RefSet Rebuilding
We introduce now an updating procedure that is triggered when no new trial solutions are admitted to the
reference set. This update adds a mechanism to partially rebuild the reference set when the Combination

Principles of Scatter Search / 5

and Improvement Methods do not provide solutions of sufficient quality to displace current reference
solutions.

The RefSet is partially rebuilt with a diversification update that works as follows and assumes that the size
of the reference set is b = b1 + b2. Solutions bb xx ,,11 K+ are deleted from RefSet. The Diversification
Generation Method is reinitialized considering that the goal is to generate solutions that are diverse with
respect to the reference solutions 1,,1 bxx K . Then, the Diversification Generation Method is used to

construct a set P of new solutions. The b2 solutions bb xx ,,11 K+ in RefSet are sequentially selected from
P with the criterion of maximizing the diversity. It is usually implemented with a distance measure
defined in the context of the problem being solved. Then, maximize the diversity is achieved by
maximizing the minimum distance. The max-min criterion, which is part of the Reference Set Update
Method, is applied with respect to solutions 1,,1 bxx K when selecting solution 11+bx , then it is applied

with respect to solutions 11 1,, +bxx K when selecting solution 21 +bx , and so on.

3.3 RefSet Tiers
In lower level scatter search implementations, the reference set is updated by replacing the reference
solution having the worst objective function value with a new trial solution having a better objective
function value. Since we consider that RefSet is always ordered, the best solution is x1 and the worst
solution is xb. So, when a new trial solution x is generated as a result of the application of the
Combination and Improvement Methods, the objective function value of the new trial solution is used to
determine whether RefSet needs to be updated. This step occurs by setting when x is better than xb by
dropping xb and inserting x in a position that maintains the indicated ordering of the set. We now explore
mechanisms that differentiate solutions using additional measures of merit that are not based on the
objective function value.

Instead of waiting until the reference set has converged, that is, until it has reached a state in which no
new solutions are admitted, an updating procedure that proactively injects diversification into the search
can be used. The updating procedure employs a 2-tier design, where the first tier RefSet1 consists of b1
high quality solutions and RefSet2 consists of b2 diverse solutions. The update has the goal of
dynamically preserving diversity in the reference set, instead of allowing it to become homogenous by
only admitting high quality solutions that in some applications tend to be very similar to each other.
Hence, in addition to updating the reference set when new trial solutions of high quality are found with
the Combination and Improvement Methods, the reference set is also updated with highly diverse
solutions.

Specifically, the update consists of partitioning the reference into two subsets:

{ }1,,1
1

bxxSetRef K= and { }bb xxSetRef ,,1
2

1 K+=

The first subset is referred to as the “high quality” subset and the second is referred to as the “diverse”
subset. The solutions in RefSet1 are ordered according to their objective function value and the set is
updated with the goal of increasing quality, using the criterion of the basic scatter search design. That is,
a new solution x replaces reference solution 1bx if () ()1bxfxf < in a minimization problem. The solutions
in RefSet2 are ordered according to their diversity value and the update has the goal of increasing
diversity. Therefore, a new solution x replaces reference solution xb if () ()bxdxd minmin > .

The 2-tier update can be used in combination with the rebuilding mechanism. The implementation is
straightforward by keeping RefSet1 and reinitializing the Diversification Generation Method in order to
rebuild RefSet2 with solutions that are diverse among them and with respect to RefSet1.

Laguna and Martí (2000) propose an extension of this design that maintains a list of the “best generators”.
A “good generator” is a reference solution that generates high quality trial solutions when used as input to
the Combination Method. The 3-tier update uses a reference set of size b = b1 + b2 + b3, which is divided
into the following three subsets:

Principles of Scatter Search / 6

{ }1,,1
1

bxxSetRef K= , { }211 ,,1
2

bbb xxSetRef ++= K and { }bbb xxSetRef ,,1
3

21 K++=

RefSet1 and RefSet2 are updated using the same rules as in the 2-tier update. In order to update RefSet3,
we keep track of g(x), the objective function value of the best solution ever created from a combination of

1RefSetx ∈ and any other reference solution. RefSet3 is ordered according to g(x) in such a way that

() () ()bbbbb xgxgxg <<< ++++ L21 2121 for a minimization problem. When 1bx in RefSet1 is replaced with a

newly created solution of higher quality, we compare ()1bxg with ()bxg and update RefSet3 if
appropriate.

This design can be particularly helpful in settings where solutions of relatively low quality are capable of
producing high quality solutions, by allowing such “good generators” to participate in additional
combinations once they have been replaced from RefSet1. The initialization of RefSet1 and RefSet2 is the
same as in the 2-tier design. RefSet3 is initialized with the best solutions in P that were not included in
RefSet1.

3.4 Diversity Control
Scatter search does not allow duplications in the reference set, and its combination methods are designed
to take advantage of this lack of duplication. Hashing is often used to reduce the computational effort of
checking for duplicated solutions. The following hash function, for instance, is an efficient way of
comparing solutions and avoiding duplications when dealing with problems whose solutions can be
represented with a permutations p of size m:

() 2

1

)(ipiphash
m

i
∑

=

=

Campos et al. (2001) report the benefits of this form of hashing in the context of the linear ordering
problem.

While the simpler scatter search implementations are designed to check that the reference set does not
contain duplications, they generally do not monitor the diversity of the b1 high quality solutions when
creating the initial RefSet. On the other hand, recall that the b2 diverse solutions are subjected to a strict
diversity check with the max-min criterion. A minimum diversity test can be applied to the b1 high
quality solutions chosen as members of the initial RefSet as follows. After the P set has been created, the
best solution according to the objective function value is selected to become x1 in the reference set. Then,
x1 is deleted from P and the next best solution x in P is chosen and added to RefSet only if

dmin(x) ≥ th_dist.

In other words, at each step we add the next best solution in P only if the minimum distance between the
chosen solution x and the solutions currently in RefSet is at least as large as the threshold value th_dist.

3.5 Subset Generation Method
Solution Combination Methods in scatter search typically are not limited to combining just two solutions
and therefore the Subset Generation Method in its more general form consists of creating subsets of
different sizes. The scatter search methodology assures that the set of combined solutions may be
produced in its entirety at the point where the subsets of reference solutions are created. Therefore, once
a given subset is created, there is no merit in creating it again. This creates a situation that differs
noticeably from those considered in the context of genetic algorithms, where the combinations are
typically determined by the spin of a roulette wheel.

The procedure for generating subsets of reference solutions uses a strategy to expand pairs into subsets of
larger size while controlling the total number of subsets to be generated. In other words, the mechanism
avoids the extreme type of process that creates all the subsets of size 2, then all the subsets of size 3, and
so on until reaching the subsets of size b-1 and finally the entire RefSet. This approach would clearly not
be practical, considering that there are 1013 subsets in a reference set of a typical size b = 10. Even for a
smaller reference set, combining all possible subsets is not effective because many subsets will be almost
identical. The following approach selects representative subsets of different sizes by creating subset
types:

Principles of Scatter Search / 7

� Subset Type 1: all 2-element subsets.
� Subset Type 2: 3-element subsets derived from the 2-element subsets by augmenting each 2-

element subset to include the best solution not in this subset.
� Subset Type 3: 4-element subsets derived from the 3-element subsets by augmenting each 3-

element subset to include the best solutions not in this subset.
� Subset Type 4: the subsets consisting of the best i elements, for i = 5 to b.

3.6 Use of Memory
Scatter search incorporates an implicit form of memory as a result of the interactions among the
Reference Set Update, the Solution Combination Method and the Subset Generation Method. The
Reference Set Update, in its most basic form, is designed to “remember” the best solutions encountered
during the search. Selected features of these solutions provide the basis for creating new trial solutions
with the Combination Method. Hence, the overall process is instrumental in the transmission of
information embedded in the reference solutions.

This implicit type of memory is rather primitive, and may be classified as an inheritance memory. All
evolutionary methods incorporate an inheritance memory of one sort or another, yet even at this
rudimentary level the memory mechanisms of scatter search are somewhat more elaborate than those of
other evolutionary approaches. This is due to the Subset Generation Method, which keeps track of the
subsets of reference solutions that have been subjected to the combination mechanism from one iteration
to the next. When new solutions are admitted to the reference set, the method generates only those
subsets that are admissible for combination in the current iteration. The Subset Generation Method
performs this operation by a memory structure that identifies the subsets containing new reference
solutions. By contrast, traditional evolutionary approaches such as genetic algorithms employ no
equivalent use of memory, but select solutions for combination purposes by using some variant of a
random sampling scheme. (Quite recently, a few “non-standard” evolutionary approaches have begun to
appear that select parent solutions by strategies more nearly resembling those of scatter search. However,
they continue to rely predominantly on randomization, and have not yet progressed to incorporate the
form of memory-based strategies embodied in the Subset Generation Method.)

In any case, inheritance memory – including the type embodied in scatter search – is not sufficiently
focused or purposeful to provide the analytical power necessary to solve complex problems in a
consistently effective manner. (If naïve inheritance memory had such properties, human brains would be
superfluous.) This is the fundamental reason why scatter search draws upon adaptive memory principles
of tabu search, and is often implemented in conjunction with tabu search. The fact that several of the key
ideas of the two approaches spring from a common source (Glover, 1977) further strengthens the bonds
between them.

As part of its design for introducing strategic adaptive memory into the metaheuristic literature, tabu
search makes use of memory that is both explicit and attributive. Explicit memory records complete
solutions, typically consisting of elite solutions visited during the search. Attributive memory records
information about solution attributes that change in moving from one solution to another. (See, for
example, Glover and Laguna (1997) for a fuller description.)

In applications of scatter search, one of the main uses of explicit memory is in the context of optimizing
simulations, as detailed in Laguna and Martí (2002). In this setting, decision variables x in the
optimization model are the input factors of the simulation model. The simulation model generates an
output f(x) for every set of input values. On the basis of this evaluation, and on the basis of the past
evaluations which are integrated and analyzed with the present simulation outputs, a scatter search
generates a new set of input values. Because the evaluation of a set of input values by means of the
execution of a simulation model may require a large computational effort, recording every solution
generated and evaluated during the search is an effective approach in this setting. When a new trial
solution is generated with the Solution Combination Method and before it is sent to the simulation model
for evaluation, the explicit memory is consulted to make sure that the trial solution is indeed new. Since
typical optimization runs in this context make at most ten thousand calls to the Simulation Model, the
explicit memory structure does not grow to an unmanageable size. Nonetheless, hashing may be used to
limit the memory requirements and the effort associated with checking whether a trial solution is already
stored in the explicit memory structure.

Principles of Scatter Search / 8

Instead of recording full solutions, attributive memory structures are based on recording attributes.
Attributive memory is used for implementing both diversification and intensification strategies in TS.
The most common attributive memory approaches are recency-based memory and frequency-based
memory. Recency-based memory is the most common (though not always the most important) memory
structure used in TS implementations. As its name suggests, this memory structure keeps track of
solution attributes that have changed during the recent past. Frequency-based memory provides a type of
information that complements the information provided by recency-based memory, broadening the
foundation for selecting preferred moves.

Laguna and Martí (2003) propose a diversification generator method for nonlinear function optimization
in a continuous solution space. This frequency-based memory method falls within the category of a
residence measure by viewing the construction of P as an iterative process that “visits” one solution per
iteration for PSize iterations. Campos et al. (2001) introduce a Diversification Generation Method, in the
context of the linear ordering problem, based on the notion of constructing solutions employing modified
frequencies. The generator exploits the permutation structure of the problem. The residence measure
employed in this procedure is such that a frequency counter is maintained to record the number of times a
sector appears in a specific position. The frequency counters are used to penalize the “attractiveness” of a
sector with respect to a given position.

Search intensification is typically achieved in scatter search with the execution of the Improvement
Method. When memory structures are added to the Improvement Method, the method is conceptually and
practically transformed from a pure local search heuristic into a metaheuristic given that by definition a
metaheuristic refers to a master strategy that guides and modifies other heuristics to produce solutions
beyond those that are normally generated in a quest for local optimality. Employing a metaheuristic as an
Improvement Method results in a hybrid method that combines two metaheuristics, i.e., scatter search and
the one used to improve solutions. An important issue in such a design is how to allocate the total
computational effort. In other words, should the search spend most of the time improving solutions or
generating new trial solutions with the Diversification Generation and Combination Methods? The
balance in the computational effort must be controlled by not only selecting the solutions to be subjected
to the Improvement Method but also by choosing a rule to stop the improvement process.

4. Path Relinking

Path relinking (PR) was originally suggested as an approach to integrate intensification and
diversification strategies in the context of tabu search (Glover and Laguna, 1993, 1997). This approach
generates new solutions by exploring trajectories that connect high-quality solutions, by starting from one
of these solutions, called an initiating solution, and generating a path in the neighbourhood space that
leads toward the other solutions, called guiding solutions. This is accomplished by selecting moves that
introduce attributes contained in the guiding solutions.

Path relinking can be considered an extension of the Combination Method of scatter search. Instead of
directly producing a new solution when combining two or more original solutions, PR generates paths
between and beyond the selected solutions in the neighborhood space. The character of such paths is
easily specified by reference to solution attributes that are added, dropped or otherwise modified by the
moves executed. Examples of such attributes include edges and nodes of a graph, sequence positions in a
schedule, vectors contained in linear programming basic solutions, and values of variables and functions
of variables.

The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to
incorporate attributes of high quality solutions, by creating inducements to favor these attributes in the
moves selected. However, instead of using an inducement that merely encourages the inclusion of such
attributes, the path relinking approach subordinates other considerations to the goal of choosing moves
that introduce the attributes of the guiding solutions, in order to create a “good attribute composition” in
the current solution. The composition at each step is determined by choosing the best move, using
customary choice criteria, from a restricted set — the set of those moves currently available that
incorporate a maximum number (or a maximum weighted value) of the attributes of the guiding solutions.
(Exceptions are provided by aspiration criteria, as subsequently noted.) The approach is called path
relinking either by virtue of generating a new path between solutions previously linked by a series of
moves executed during a search, or by generating a path between solutions previously linked to other
solutions but not to each other.

Principles of Scatter Search / 9

To generate the desired paths, it is only necessary to select moves that perform the following role: upon
starting from an initiating solution, the moves must progressively introduce attributes contributed by a
guiding solution (or reduce the distance between attributes of the initiating and guiding solutions). The
roles of the initiating and guiding solutions are interchangeable; each solution can also be induced to
move simultaneously toward the other as a way of generating combinations. First consider the creation of
paths that join two selected solutions x′ and x″, restricting attention to the part of the path that lies
‘between’ the solutions, producing a solution sequence x′ = x(l), x(2), …, x(r) = x″. To reduce the number
of options to be considered, the solution x(i + 1) may be created from x(i) at each step by choosing a
move that minimizes the number of moves remaining to reach x″. The relinked path may encounter
solutions that may not be better than the initiating or guiding solution, but that provide fertile “points of
access” for reaching other, somewhat better, solutions. For this reason it is valuable to examine
neighboring solutions along a relinked path, and keep track of those of high quality which may provide a
starting point for launching additional searches.

The reference set (RefSet) can be constructed as previously indicated for scatter search. However, path
relinking usually starts from a given set of elite solutions obtained during a search process. To simplify
the terminology, we will also let RefSet refer to this set of b solutions that have been selected during the
application of the embedded search method. This method can be Tabu Search, as in Laguna, Martí and
Campos (1999), GRASP, as in Laguna and Martí (1999), or simply a Diversification Generation Method
coupled with an Improvement Method as proposed in scatter search. From this point of view, SS and PR
can be considered population-based methods that operate on a set of reference solutions and basically
differ in the way in which the reference set is constructed, maintained, updated and improved.

In basic (simple) scatter search designs, all pairs of solutions in the RefSet are subjected to the
Combination Method. Similarly, in a basic version of PR all pairs in the RefSet are considered to perform
a relinking phase. For each pair (x′, x″) two paths can be initiated; one from x′ to x″ and the other from x″
to x′. Several studies have experimentally found that it is convenient to add a local search exploration
from some of the generated solutions within the relinking path, as proposed in Glover (1994), in order to
produce improved outcomes. Laguna and Martí (1999) and Piñana et al. (2001) provide some examples.
Two consecutive solutions obtained by a relinking step are often very similar since they differ only in the
attributes that change by a single move. Therefore, it is generally not efficient to apply an Improvement
Method at every step of the relinking process. We introduce a parameter NumImp and apply the
Improvement Method every NumImp steps of the relinking process. An alternative suggested in Glover
(1994) is to keep track of a few “best solutions” generated during the path trace, or of a few best
neighbors of the solutions generated, and then return to these preferred candidate solutions to initiate the
improvement process.

Figure 2 shows a simple PR procedure for a minimization problem. It starts with the creation of an initial
set of b elite solutions (RefSet). As in scatter search, the solutions in RefSet are ordered according to
quality, and the search is initiated by assigning the value of TRUE to NewSolutions. In step 3,
NewSubsets is constructed with all the pairs of solutions in RefSet, and NewSolutions is switched to
FALSE. Also in this step, Pool is initialized to empty. The pairs in NewSubsets are selected one at a time
in lexicographical order and the Relinking Method is applied to generate two paths of solutions in steps 5
and 7. The solutions generated in these steps are added to Pool. The Improvement Method is applied
every NumImp steps of the relinking process in each path (steps 6 and 8). Solutions found during the
application of the Improvement Method are also added to Pool. Each solution in Pool is examined to see
whether it improves upon the worst solution currently in RefSet. If so, the new solution replaces the worst
and RefSet is reordered in step 9. The NewSolutions flag is switched to TRUE in step 10 and the pair (x′,
x″) that was just combined is deleted from NewSubsets in step 11.

As in the basic scatter search designs, the updating of the reference set in Figure 2 is based on improving
the quality of the worst solution and the search terminates when no new solutions are admitted to RefSet.
Similarly, the Subset Generation Method is also very simple and consists of generating all pairs of
solutions in RefSet that contain at least one new solution. We examine strategies to overcome the
limitations of this basic design.

Principles of Scatter Search / 10

1. Obtain a RefSet of b elite solutions.
2. Evaluate the solutions in RefSet and order them according to their objective function value such

that x1 is the best solution and xb the worst. Make NewSolutions = TRUE.
while (NewSolutions) do

3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include at least one
new solution. Make NewSolutions = FALSE and Pool = ∅.

while (NewSubsets ≠ ∅) do
4. Select a next pair (x′, x″) in NewSubSets.
5. Apply the Relinking Method to produce the sequence x′ = x′(l), x′(2), …, x′(r)= x″ and

add solutions to Pool.
for i = 1 to i < r/NumImp do

6. Apply the Improvement Method to x′(i*NumImp) and add solutions to Pool.
end for
7. Apply the Relinking Method to produce the sequence x″ = x″(l), x″(2), …, x″(s)= x′ and

add solutions to Pool.
for i = 1 to i < s/NumImp do

8. Apply the Improvement Method to x″(i*NumImp) and add solutions to Pool.
end for
for (each solution x ∈ Pool)

if (x ∉ RefSet and f(x) < f(xb)) then
9. Make xb = x and reorder RefSet
10. Make NewSolutions = TRUE

end if
end for
11. Delete (x′, x″) from NewSubsets

end while
end while

Figure 2. Basic path relinking procedure

To choose among the different paths that may be possible in going from x′ to x″, let f(x) denote an
objective function which is to be minimized. Selecting unattractive moves relative to f(x), from the
moves that are candidates to generate the path at each step, will tend to produce a final series of strongly
improving moves to complete the path. Correspondingly, selecting attractive moves at each step will tend
to produce lower quality moves at the end. (The last move, however, will be improving, or leave f(x)
unchanged, if x″ is selected to be a local optimum.) Thus, choosing best, worst or average moves,
provides options that produce contrasting effects in generating the indicated sequence. An aspiration
criterion may be used as in tabu search to override choices in the last two cases if a sufficiently attractive
solution is available. (In general, it appears reasonable to select best moves at each step, and then to
allow the option of reinitiating the process in the opposite direction by interchanging x′ and x″.) Beyond
this, if a sufficiently attractive neighbor is found at any point of the process, an aspiration criterion can
allow the relinking to depart from its customary path by moving to such a neighbor.

The choice of one or more solutions x(i) to become reference points for launching a new search phase will
preferably be made to depend not only on f(x(i)) but also on the f(x) values of those solutions x that can be
reached by a move from x(i). The process can be varied to allow solutions to be evaluated other than
those that yield x(i + 1) closer to x″. Aspiration criteria again are relevant for deciding whether such
solutions qualify as candidates for selection.

The simultaneous relinking approach starts with both endpoints x′ and x″ simultaneously producing two
sequences x′ = x′(l), …, x′(r) and x″ = x″(l), …, x″(s). The choices in this case are designed to yield x′(r)
= x″(s), for final values of r and s. To progress toward the point where x′(r) = x″(s), the choice rules
should be such that the x′ path approaches the last solution in the current x″ path and the other way
around. The simultaneous relinking may be viewed as a process for which two guiding solutions are
dynamically changing until they converge to a single point.

Strategic oscillation is a mechanism used in tabu search to allow the process to visit solutions around a
“critical boundary”, by approaching such a boundary from both sides. The most common application of
strategic oscillation is in constrained problems, where the critical boundary is the feasibility boundary.
The search process crosses the boundary from the feasible side to the infeasible side and also from the
infeasible side to the feasible side. Path relinking also allows the search to cross the feasibility boundary

Principles of Scatter Search / 11

by way of a tunneling strategy. The strategy permits infeasible solutions to be visited while relinking x′
and x″. It also allows for either x′ or x″ to be infeasible but not both.

The tunneling strategy protects the search from becoming “lost” in the infeasible region, since feasibility
evidently must be recovered by the time x″ is reached. When x″ is allowed to be infeasible, the relinking
path may stop as soon as it leaves the feasible region or continue until reaching x″, since it is possible
(although unlikely in some settings) for the path to go back to the feasible region before reaching x″. The
tunneling effect therefore offers a chance to reach solutions that might otherwise be bypassed. If
tunneling is combined with the simultaneous relinking approach at least one of x′(r) and x″(s) may be kept
feasible. Nevertheless, it should be stressed that – just as in the case of scatter search – an intermediate
solution generated by path relinking need not be feasible in order to be relevant as a starting solution for
an improvement procedure, since the latter may be designed to restore feasibility.

The path relinking approach goes beyond consideration of points “between” x′ and x″ in the same way
that linear combinations extend beyond points that are expressed as convex combinations of two
endpoints, thus defining the extrapolated relinking. In seeking a path that continues beyond x″ (starting
from the point x′) we invoke a tabu search concept that forbids adding tabu-active attributes back to the
current solution. Let A(x) denote the set of solution attributes associated with (‘contained in’) x, and let
A_drop denote the set of solution attributes that are dropped by moves performed to reach the current
solution x′(i), starting from x′. (Such attributes may be components of the x vectors themselves, or may
be related to these components by appropriately defined mappings.)

Define a to-attribute of a move to be an attribute of the solution produced by the move, but not an
attribute of the solution that initiates the move. Similarly, define a from-attribute to be an attribute of the
initiating solution but not of the new solution produced. Then we seek a move at each step to maximize
the number of to-attributes that belong to A(x") - A(x(i)), and subject to this to minimize the number that
belong to A_drop - A(x"). Such a rule generally can be implemented very efficiently by appropriate data
structures. Once x(r) = x″ is reached, the process continues by modifying the choice rule as follows. The
criterion now selects a move to maximize the number of its to-attributes not in A_drop minus the number
of its to-attributes that are in A_drop, and subject to this to minimize the number of its from-attributes
that belong to A(x″). The combination of these criteria establishes an effect analogous to that achieved by
the standard algebraic formula for extending a line segment beyond an endpoint. The path then stops
whenever no choice remains that permits the maximization criterion to be positive. The maximization
goals of these two criteria are of course approximate, and can be relaxed.

New points can be generated from multiple guiding solutions as follows. Instead of moving from a
point x′ to (or through) a second point x″, we replace x″ by a collection of solutions X″. Upon generating
a point x(i), the options for determining a next point x(i + 1) are given by the union of the solutions in X″,
or more precisely, by the union A″ of the attribute sets A(x), for x ∈ X″. A″ takes the role of A(x) in the
attribute-based approach previously described, with the added stipulation that each attribute is counted
(weighted) in accordance with the number of times it appears in elements A(x) of the collection. Still
more generally, we may assign a weight to A(x), which thus translates into a sum of weights over A"
applicable to each attribute, creating an effect analogous to that of creating a weighted linear combination
in Euclidean space. Promising regions may be searched more thoroughly in path relinking by modifying
the weights attached to attributes of guiding solutions, and by altering the bias associated with solution
quality and selected solution features.

A natural variation of path relinking occurs by using constructive neighborhoods for creating new trial
solutions from a collection of initiating and guiding solutions. In this case the guiding solutions consist of
subsets of elite solutions, as before, but the initiating solution begins as a partial (incomplete) solution or
even as a null solution, where some of the components of the solutions, such as values for variables, are
not yet assigned. The use of a constructive neighborhood permits such an initiating solution to “move
toward” the guiding solutions, by a neighborhood path that progressively introduces elements contained
in the guiding solutions, or that are evaluated as attractive based on the composition of the guiding
solutions. The idea of using constructive (and destructive) neighborhood in the context of path relinking
was originally described in Glover (1994) with the introduction of the idea of creating structured
combinations. Such a process relies on three properties.

 Property 1 (Representation Property). Each vector represents a set of votes (evaluations that can
be non-linear and threshold-based) for particular decisions, such as the decision of assigning a specific

Principles of Scatter Search / 12

value to a particular variable, or of assigning a specific facility to a particular location, or of establishing a
precedence relationship between a particular pair of elements.
 Property 2 (Trial solution Property). The votes prescribed by a vector translates into a trial
slution to the problem of inerest by a well-defined process. A simple set of ‘yes-no’ votes for items to
include in a set, for example, can be translated into a trial solution according to a designated sequence for
processing the votes (such as determined by standard benefit-to-cost ratios) until either the set is full or all
votes are considered. More general votes for the same problem may also prescribe an evaluation sequence
to be employed. The vectors giving rise to the votes may not represent feasible solutions to the problems
considered, or even represent solutions in a customary sense at all.
 Property 3 (Update Property). If a decision is made according to the vots of a given vector, a
clearly defined rule updates all vectors for the residual problem so that Properties 1 and 2 continue to
hold. For example, upon assigning a specific value to a particular variable, the remaining updated votes of
each vector retain the ability to be translated into a trial solution for the residual problem in which the
assignment has been made.

The foregoing properties are generally easy to establish and thereby give rise to classes of path relinking
approaches that can serve as a foundation for multi-start processes. The strategy described next allows
further variation on this idea.

Vocabulary building creates structured combinations not only by using the primitive elements of
customary neighborhoods, but also building and joining more complex assemblies of such elements. The
process receives its name by analogy with the process of building words progressively into useful
phrases, sentences and paragraphs, where valuable constructions at each level can be visualized as
represented by “higher order words,” just as natural languages generate new words to take the place of
collections of words that embody useful concepts. The motive underlying vocabulary building is to take
advantage of those contexts where certain partial configurations of solutions often occur as components
of good complete solutions. A strategy of seeking “good partial configurations”—good vocabulary
elements—can help to circumvent the combinatorial explosion that potentially results by manipulating
only the most primitive elements by themselves. The process also avoids the need to reinvent (or
rediscover) the structure of a partial configuration as a basis for building a good complete solution. In
general, vocabulary building relies on destructive as well as constructive processes to generate desirable
partial solutions and solution fragments are merged using heuristic or exact procedures.

Clustering, proposed in Glover (1977) as a way to improve scatter search, is equally relevant to path
relinking. Intensification is encouraged by selecting the parent solutions from a common cluster, while
diversification is encouraged by selecting the parent solutions from different clusters. The more recently
developed nitching processes in genetic algorithms bear a partial resemblance to this approach, except
that nitches are produced simply by operating with different sub-populations, and use no strategic
criterion for determining membership in the sub-populations comparable to the type of sifting and cross-
comparing embodied within clustering processes. (For example, clustering can determine membership
independently from the source population that produced a particular vector, utilizing measures of
similarity and complementarity appropriate to the problem context.) Conditional relationships are
extremely important when clustering is used as an adjunct to combinatorial search, as illustrated in Glover
and Laguna (1997), and we conjecture that accounting for such relationships can enhance the
performance of current strategies. In general, clustering and vocabulary building, taken together, offer
strategic possibilities for scatter search and path relinking that deserve fuller attention in future
applications.

Conclusions
The focus and emphasis of scatter search and path relinking have a number of implications for the goal of
designing improved optimization procedures. These research opportunities carry with them an emphasis
on producing systematic and strategically designed rules, rather than following the policy of relegating
decisions to random choices, as often is fashionable in evolutionary methods. The strategic orientation
underlying scatter search and path relinking is motivated by connections with the tabu search setting
where the path relinking ideas were first proposed, and invites the use of adaptive memory structures in
determining the strategies produced.

Principles of Scatter Search / 13

Acknowledgments
This research is partially supported by the Office of Naval Research Contract N00014-01-1-0917 in
connection with the Hearin Center of Enterprise Science at the University of Mississippi, and by the
Spanish Government under code TIC2000-1750-C06-01.

References
Campos, V., F. Glover, M. Laguna and R. Martí (2001) “An Experimental Evaluation of a Scatter Search

for the Linear Ordering Problem,” Journal of Global Optimization, vol. 21, no. 4, pp. 397-414.
Glover, F. (1977) “Heuristics for Integer Programming Using Surrogate Constraints,” Decision Sciences,

vol. 8, pp. 156-166.
Glover, F. (1994) “Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic

Algorithms),” Discrete Applied Mathematics, vol. 49, pp. 231-255.
Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” in Artificial Evolution, Lecture

Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald , M. Schoenauer and D. Snyers
(Eds.), Springer, pp. 13-54.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, Boston.
Laguna, M. and R. Martí (1999) “GRASP and Path Relinking for 2-Layer Straight Line Crossing

Minimization,” INFORMS Journal on Computing, vol. 11, no. 1, pp. 44-52.
Laguna, M. and R. Martí (2000) “Experimental Testing of Advanced Scatter Search Designs for Global

Optimization of Multimodal Functions,” Technical Report, University of Colorado at Boulder,
http://leeds.colorado.edu/faculty/laguna/articles/advss.html.

Laguna, M. and R. Martí (2002) “The OptQuest Callable Library,” Optimization Software Class
Libraries, S. Voss and D. L. Woodruff (Eds.), Kluwer Academic Publishers, Boston, pp. 193-218.

Laguna, M. and R. Martí (2003) Scatter Search – Methodology and Implementations in C, Kluwer
Academic Publishers, Boston.

Laguna, M., R. Martí and V. Campos (1999) “Intensification and Diversification with Elite Tabu Search
Solutions for the Linear Ordering Problem,” Computers and Operations Research, vol. 26, pp. 1217-
1230.

Piñana, E., I. Plana, V. Campos and R. Martí (2001) “GRASP and Path Relinking for the Matrix
Bandwidth Minimization,” European Journal of Operational Research, forthcoming.

