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Abstract 

Tabu Search is a meta-heuristic that guides a local heuristic search procedure to explore the solution 
space beyond local optimality.  One of the main components of Tabu Search is its use of adaptive 
memory, which creates a more flexible search behavior.  Memory-based strategies are therefore the 
hallmark of tabu search approaches, founded on   a quest for “integrating principles,” by which alternative 
forms of memory are appropriately combined with effective strategies for exploiting them.  A novel 
finding is that such principles are sometimes sufficiently potent to yield effective problem solving 
behavior in their own right, with negligible reliance on memory.  Over a wide range of problem settings, 
however, strategic use of memory can make dramatic differences in the ability to solve problems.  Pure 
and hybrid Tabu Search approaches have set new records in finding better solutions to problems in 
production planning and scheduling, resource allocation, network design,  routing, financial analysis, 
telecommunications, portfolio planning, supply chain management, agent-based modeling, business 
process design, forecasting, machine learning, data mining, biocomputation, molecular design, forest 
management and resource planning, among many other areas. 
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1. Introduction 
The term tabu search was coined in the same paper that introduced the term meta-heuristic (Glover, 
1986).  Tabu search (TS) is based on the premise that problem solving, in order to qualify as intelligent, 
must incorporate adaptive memory and responsive exploration.  The adaptive memory feature of TS 
allows the implementation of procedures that are capable of searching the solution space economically 
and effectively.  Since local choices are guided by information collected during the search, TS contrasts 
with memoryless designs that heavily rely on semi-random processes that implement a form of sampling.  
The emphasis on responsive exploration (and hence purpose) in tabu search, whether in a deterministic or 
probabilistic implementation, derives from the supposition that a bad strategic choice can often yield 
more information than a good random choice. 
 
TS can be directly applied to virtually any kind of optimization problem.  We can state most of these 
problems in the following form, where “optimize” means to minimize or maximize:: 
 
 
     Optimize  f(x)  
                     subject to   
                      x ∈ X  
 
The function  f(x) may be linear, nonlinear or even stochastic, and the set X summarizes constraints on the 
vector of decision variables x.  The constraints may similarly include linear, nonlinear or stochastic 
inequalities, and may compel all or some components of x to receive discrete values.   
 
While this representation is useful for discussing a number of problem solving considerations, we 
emphasize that in many applications of combinatorial optimization, the problem of interest may not be 
easily formulated as an objective function subject to a set of constraints.  The requirement x ∈X , for 
example, may specify logical conditions or interconnections that would be cumbersome to formulate 
mathematically, but may be better be left as verbal stipulations that can be then coded as rules. 
 
The TS technique is rapidly becoming the method of choice for designing solution procedures for hard 
combinatorial optimization problems.  A comprehensive examination of this methodology can be found 
in the book by Glover and Laguna (1997). Widespread successes in practical applications of 
optimization have spurred a rapid growth of the method as a means of identifying extremely high 
quality solutions efficiently.  TS methods have also been used to create hybrid procedures with other 
heuristic and algorithmic methods, to provide improved solutions to problems in scheduling, 
sequencing, resource allocation, investment planning, telecommunications and many other areas.  Some 
of the diversity of tabu search applications is shown in Table 1.   
 



 
 

TABLE 1. ILLUSTRATIVE TABU SEARCH APPLICATIONS 
Scheduling 
 Flow-Time Cell Manufacturing 
 Heterogeneous Processor Scheduling 
 Workforce Planning 
 Rostering 
 Machine Scheduling 
 Flow Shop Scheduling 
 Job Shop Scheduling 
 Sequencing and Batching 
 

Telecommunications 
 Call Routing 
 Bandwidth Packing 
 Hub Facility Location 
 Path Assignment 
 Network Design for Services 
 Customer Discount Planning 
 Failure Immune Architecture 
 Synchronous Optical Networks 

Design 
 Computer-Aided Design 
 Fault Tolerant Networks 
 Transport Network Design 
 Architectural Space Planning 
 Diagram Coherency 
 Fixed Charge Network Design 
 Irregular Cutting Problems 
 Lay-Out Planning 
 

Production, Inventory and Investment 
Supply Chain Management 
Flexible Manufacturing  
 Just-in-Time Production 
 Capacitated MRP 
 Part Selection 
 Multi-item Inventory Planning 
 Volume Discount Acquisition 
 Project Portfolio Optimization 

Logic and Artificial Intelligence 
 Maximum Satisfiability 
 Probabilistic Logic 
 Pattern Recognition/Classification 
 Data Mining 
 Clustering 
Statistical Discrimination 
 Neural Network Training 
 Neural Network Design 
 

Routing 
 Vehicle Routing 
 Capacitated Routing 
 Time Window Routing 
 Multi-Mode Routing 
 Mixed Fleet Routing 
 Traveling Salesman 
 Traveling Purchaser 
 Convoy Scheduling 

Location and Allocation 
 Multicommodity Location/Allocation 
 Quadratic Assignment 
 Quadratic Semi-Assignment 
 Multilevel Generalized Assignment 
Large-Scale GAP Problems 

Graph Optimization 
 Graph Partitioning 
 Graph Coloring 
 Clique Partitioning 
 Maximum Clique Problems 
 Maximum Planner Graphs 
 

Technology 
 Seismic Inversion 
 Electrical Power Distribution 
 Engineering Structural Design 
 Minimum Volume Ellipsoids 
 Space Station Construction 
 Circuit Cell Placement 
 Off-Shore Oil Exploration 

General Combinational Optimization 
 Zero-One Programming 
 Fixed Charge Optimization 
 Nonconvex Nonlinear Programming 
 All-or-None Networks 
 Bilevel Programming 
Multi-Objective Discrete Optimization 
 General Mixed Integer Optimization 

 



 
The tabu search emphasis on adaptive memory makes it possible to exploit the types of strategies that 
underlie the best of human problem-solving, instead of being confined to mimicking the processes 
found in lower orders of natural phenomena and behavior.  The basic elements of tabu search have 
several important features, summarized in Table 2.  Tabu search is concerned with finding new and 
more effective ways of taking advantage of the concepts embodied in Table 2, and with identifying 
associated principles that can expand the foundations of intelligent search 
 

 
TABLE 2. PRINCIPAL TABU SEARCH FEATURES 
Adaptive Memory 
 
 Selectivity (including strategic forgetting) 
 
 Abstraction and decomposition (through explicit and attributive memory) 
 
 Timing: 
  recency of events 
  frequency of events 
  differentiation between short term and long term 
 
 Quality and impact: 
  relative attractiveness of alternative choices 
  magnitude of changes in structure or constraining 
       relationships 
 
 Context: 
  regional interdependence 
  structural interdependence 
  sequential interdependence 
 
Responsive Exploration 
 
 Strategically imposed restraints and inducements  
  (tabu conditions and aspiration levels) 
 Concentrated focus on good regions and good solution features  
  (intensification processes) 
 Characterizing and exploring promising new regions 
  (diversification processes) 
 Non-montonic search patterns  
  (strategic oscillation) 
 Integrating and extending solutions  
  (path relinking) 

 
 
 
 In this chapter we will describe some key aspects of this methodology, as the use of memory structures 
and search strategies, and illustrate them in an implementation to solve the linear ordering problem. 
 
 
2. Memory Structures 
Tabu search begins in the same way as ordinary local or neighborhood search, proceeding iteratively from 
one point (solution) to another until a chosen termination criterion is satisfied.  Each solution x has an 
associated neighborhood , and each solution ( ) XxN ⊂ ( )xNx ∈′  is reached from x by an operation 
called a move. 
 
We may contrast TS with a simple descent method where the goal is to minimize f(x).  Such a method 
only permits moves to neighbor solutions that improve the current objective function value and ends 
when no improving solutions can be found.  The final x obtained by a descent method is called a local 



optimum, since it is at least as good as or better than all solutions in its neighborhood.  The evident 
shortcoming of a descent method is that such a local optimum in most cases will not be a global optimum, 
i.e., it usually will not minimize f(x) over all x ∈X . 
 
Tabu search permits moves that deteriorate the current objective function value but the moves are chosen 
from a modified neighborhood N*(x).  Short and long term memory structures are responsible for the 
specific composition of N*(x).  In other words, the modified neighborhood is the result of maintaining a 
selective history of the states encountered during the search.  In the TS strategies based on short term 
considerations, N*(x) characteristically is a subset of N(x), and the tabu classification serves to identify 
elements of N(x) excluded from N*(x).  In TS strategies that include longer term considerations, N*(x) 
may also be expanded to include solutions not ordinarily found in N(x), such as solutions found and 
evaluated in past search, or identified as high quality neighbors of these past solutions.  Characterized in 
this way, TS may be viewed as a dynamic neighborhood method.  This means that the neighborhood of x 
is not a static set, but rather a set that can change according to the history of the search. 
 
The structure of a neighborhood in tabu search differs from that used in local search in an additional 
manner, by embracing the types of moves used in constructive and destructive processes (where the 
foundations for such moves are accordingly called constructive neighborhoods and destructive 
neighborhoods).  Such expanded uses of the neighborhood concept reinforce a fundamental perspective 
of TS, which is to define neighborhoods in dynamic ways that can include serial or simultaneous 
consideration of multiple types of moves.   
 
TS uses attributive memory for guiding purposes (i.e., to compute N*(x)).  Instead of recording full 
solutions, attributive memory structures are based on recording attributes.  This type of memory records 
information about solution properties (attributes) that change in moving from one solution to another.  
The most common attributive memory approaches are recency-based memory and frequency-based 
memory.  Recency, as its name suggests, keeps track of solutions attributes that have changed during the 
recent past.  Frequency typically consists of ratios about the number of iterations a certain attribute has 
changed or not (depending whether it is a transition or a residence frequency).  Some examples of recency 
and frequency based memory are shown in Tables 3 and 4 respectively. 
 
 Context Attributes To record the last time … 
 Binary problems Variable index (i) variable i changed its value from 0 to 1 or 1 to 

0 (depending on its current value). 
 Job sequencing Job index (j) job j changed positions. 
  Job index (j) and position (p) job j occupied position p. 
  Pair of job indexes (i, j) job i exchange positions with job j. 
 Graphs Arc index (i) arc i was added to the current solution. 
   arc i was dropped from the current solution. 

Table 3. Examples of recency-based memory 
 
 
 Context Residence measure Transition measure 
 Binary problems Number of times variable i has been 

assigned the value of 1. 
Number of times variable i has changed 
values. 

 Job sequencing Number of times job j has occupied 
position p. 

Number of times job i has exchanged 
positions with job j. 

  Average objective function value 
when job j occupies position p. 

Number of times job j has been moved to 
an earlier position in the sequence. 

 Graphs Number of times arc i has been part 
of the current solution. 

Number of times arc i has been deleted 
from the current solution when arc j has 
been added. 

  Average objective function value 
when arc i is part of the solution. 

Number of times arc i has been added 
during improving moves. 

Table 4. Examples of frequency-based memory 
 
 
Characteristically, a TS process based strictly on short term strategies may allow a solution x to be visited 
more than once, but it is likely that the corresponding reduced neighborhood N*(x) will be different each 
time.  With the inclusion of longer term considerations, the likelihood of duplicating a previous 



neighborhood upon revisiting a solution, and more generally of making choices that repeatedly visit only 
a limited subset of X, is all but nonexistent.   
 
Recency-based memory is the most common memory structure used in TS implementations.  As its name 
suggests, this memory structure keeps track of solutions attributes that have changed during the recent 
past.  To exploit this memory, selected attributes that occur in solutions recently visited are labeled tabu-
active, and solutions that contain tabu-active elements, or particular combinations of these attributes, are 
those that become tabu.  This prevents certain solutions from the recent past from belonging to N*(x) and 
hence from being revisited.  Other solutions that share such tabu-active attributes are also similarly 
prevented from being visited.  Note that while the tabu classification strictly refers to solutions that are 
forbidden to be visited, by virtue of containing tabu-active attributes (or more generally by violating 
certain restriction based on these attributes), moves that lead to such solutions are also often referred to as 
being tabu. 
 
Frequency-based memory provides a type of information that complements the information provided by 
recency-based memory, broadening the foundation for selecting preferred moves.  Like recency, 
frequency often is weighted or decomposed into subclasses.  Also, frequency can be integrated with 
recency to provide a composite structure for creating penalties and inducements that modify move 
evaluations. 
 
Frequencies typically consist of ratios, whose numerators represent counts expressed in two different 
measures: a transition measure — the number of iterations where an attribute changes (enters or leaves) 
the solutions visited on a particular trajectory, and a residence measure — the number of iterations where 
an attribute belongs to solutions visited on a particular trajectory, or the number of instances where an 
attribute belongs to solutions from a particular subset.  The denominators generally represent one of three 
types of quantities: (1) the total number of occurrences of all events represented by the numerators (such 
as the total number of associated iterations), (2) the sum (or average) of the numerators, and (3) the 
maximum numerator value.  In cases where the numerators represent weighted counts, some of which 
may be negative, denominator (3) is expressed as an absolute value and denominator (2) is expressed as a 
sum of absolute values (possibly shifted by a small constant to avoid a zero denominator).  The ratios 
produce transition frequencies that keep track of how often attributes change, and residence frequencies 
that keep track of how often attributes are members of solutions generated.  In addition to referring to 
such frequencies, thresholds based on the numerators alone can be useful for indicating when phases of 
greater diversification are appropriate. 
 
 
3. Search Strategies 
The use of recency and frequency memory in tabu search generally fulfills the function of preventing 
searching processes from cycling, i.e., from endlessly executing the same sequence of moves (or more 
generally, from endlessly and exclusively revisiting the same set of solutions).  More broadly, however, 
the various manifestations of these types of memory are designed to impart additional robustness or vigor 
to the search.  
 
A key element of the adaptive memory framework of tabu search is to create a balance between search 
intensification and diversification.  Intensification strategies are based on modifying choice rules to 
encourage move combinations and solution features historically found good.  They may also initiate a 
return to attractive regions to search them more thoroughly.  Diversification strategies, on the other hand, 
seek to incorporate new attributes and attribute combinations that were not included within solutions 
previously generated. In one form, these strategies undertake to drive the search into regions dissimilar to 
those already examined. It is important to keep in mind that intensification and diversification are not 
mutally opposing, but are rather mutually reinforcing.   
Most types of intensification strategies require a means for identifying a set of elite solutions as basis for 
incorporating good attributes into newly created solutions.  Membership in the elite set is often 
determined by setting a threshold that is connected to the objective function value of the best solution 
found during the search.  A simple instance of the intensification strategy is shown in Figure 1.  Two 
simple variants for elite solution selection have proved quite successful.  One introduces a diversification 
measure to assure the solutions recorded differ from each other by a desired degree, and then erases all 
short term memory before resuming from the best of the recorded solutions.  The other keeps a bounded 
length sequential list that adds a new solution at the end only if it is better than any previously seen, and 
the short term memory that accompanied this solution is also saved. 



 
 

Figure 1.  Simple TS intensification approach. 
 
 
Diversification is automatically created in TS (to some extent) by short term memory functions, but is 
particularly reinforced by certain forms of longer term memory.  TS diversification strategies are often 
based on modifying choice rules to bring attributes into the solution that are infrequently used.  
Alternatively, they may introduce such attributes by periodically applying methods that assemble subsets 
of these attributes into candidate solutions for continuing the search, or by partially or fully restarting the 
solution process.  Diversification strategies are particularly helpful when better solutions can be reached 
only by crossing barriers or “humps” in the solution space topology. 
 
The incorporation of modified choice rules can be moderated by using the following penalty function: 
 

MoveValue′ = MoveValue + d * Penalty. 
 
This type of penalty approach is commonly used in TS, where the Penalty value is often a function of 
frequency measures such as those indicated in Table 2, and d is an adjustable diversification parameter.  
Larger d values correspond to a desire for more diversification. 
 
 
 
 
4. Advanced Designs: Strategic Oscillation and Path Relinking 
There are many forms in which a simple tabu search implementation can be improved by adding long 
term elements.  In this paper we restrict our attention to two of the most used methods, namely strategic 
oscillation and path relinking, which constitute the core of many adaptive memory programming 
algorithms. 
 
Strategic oscillation operates by orienting moves in relation to a critical level, as identified by a stage of 
construction or a chosen interval of functional values.  Such a critical level or oscillation boundary often 
represents a point where the method would normally stop.  Instead of stopping when this boundary is 
reached, however, the rules for selecting moves are modified, to permit the region defined by the critical 
level to be crossed.  The approach then proceeds for a specified depth beyond the oscillation boundary, 
and turns around.  The oscillation boundary again is approached and crossed, this time from the opposite 
direction, and the method proceeds to a new turning point (see Figure 2). 
 
 

Figure 2.  Strategic oscillation 
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The process of repeatedly approaching and crossing the critical level from different directions creates an 
oscillatory behavior, which gives the method its name.  Control over this behavior is established by 
generating modified evaluations and rules of movement, depending on the region navigated and the 
direction of search.  The possibility of retracing a prior trajectory is avoided by standard tabu search 
mechanisms, like those established by the recency-based and frequency-based memory functions. 
 
When the level or functional values in Figure 2 refer to degrees of feasibility and infeasibility, a vector-
valued function associated with a set of problem constraints can be used to control the oscillation.  In this 
case, controlling the search by bounding this function can be viewed as manipulating a parameterization 
of the selected constraint set.  A preferred alternative is often to make the function a Lagrangean or 
surrogate constraint penalty function, avoiding vector-valued functions and allowing tradeoffs between 
degrees of violation of different component constraints. 
 
Path Relinking, as a strategy of creating trajectories of moves passing through high quality solutions was 
first proposed in connection with tabu search in Glover (1989). The approach was then elaborated in 
greater detail as a means of integrating TS intensification and diversification strategies, and given the 
name path relinking (PR), in Glover and Laguna (1993).  PR generally operates by starting from an 
initiating solution, selected from a subset of high quality solutions, and generating a path in the 
neighbourhood space that leads toward the other solutions in the subset, which are called guiding 
solutions.  This is accomplished by selecting moves that introduce attributes contained in the guiding 
solutions. 
 
Path relinking can be considered an extension of the Combination Method of Scatter Search (Glover and 
Laguna, 1993; Laguna and Martí, 2003).  Instead of directly producing a new solution when combining 
two or more original solutions, PR generates paths between and beyond the selected solutions in the 
neighborhood space.  The character of such paths is easily specified by reference to solution attributes 
that are added, dropped or otherwise modified by the moves executed.  Examples of such attributes 
include edges and nodes of a graph, sequence positions in a schedule, vectors contained in linear 
programming basic solutions, and values of variables and functions of variables. 
 
The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to 
incorporate attributes of high quality solutions, by creating inducements to favor these attributes in the 
moves selected.  However, instead of using an inducement that merely encourages the inclusion of such 
attributes, the path relinking approach subordinates other considerations to the goal of choosing moves 
that introduce the attributes of the guiding solutions, in order to create a “good attribute composition” in 
the current solution.  The composition at each step is determined by choosing the best move, using 
customary choice criteria, from a restricted set — the set of those moves currently available that 
incorporate a maximum number (or a maximum weighted value) of the attributes of the guiding solutions.  
(Exceptions are provided by aspiration criteria, as subsequently noted.) The approach is called path 
relinking either by virtue of generating a new path between solutions previously linked by a series of 
moves executed during a search, or by generating a path between solutions previously linked to other 
solutions but not to each other. 
 
To generate the desired paths, it is only necessary to select moves that perform the following role: upon 
starting from an initiating solution, the moves must progressively introduce attributes contributed by a 
guiding solution (or reduce the distance between attributes of the initiating and guiding solutions).  The 
roles of the initiating and guiding solutions are interchangeable; each solution can also be induced to 
move simultaneously toward the other as a way of generating combinations.  First consider the creation of 
paths that join two selected solutions x′ and x″, restricting attention to the part of the path that lies 
‘between’ the solutions, producing a solution sequence x′ = x(l), x(2), …, x(r) = x″.  To reduce the number 
of options to be considered, the solution x(i + 1) may be created from x(i) at each step by choosing a 
move that minimizes the number of moves remaining to reach x″.  The relinked path may encounter 
solutions that may not be better than the initiating or guiding solution, but that provide fertile “points of 
access” for reaching other, somewhat better, solutions.  For this reason it is valuable to examine 
neighboring solutions along a relinked path, and keep track of those of high quality which may provide a 
starting point for launching additional searches.  
 
As described in Martí et al. (2004), we can apply different PR elements to perform more elaborated 
designs. Some examples are: simultaneous relinking, tunneling strategy, extrapolated relinking, multiple 
guiding solutions, constructive neighborhoods or vocabulary building. 



5. The Linear Ordering Problem 
Given a matrix of weights E = {eij}m×m, the linear ordering problem (LOP) consists of finding a 
permutation p of the columns (and rows) in order to maximize the sum of the weights in the upper 
triangle.  In mathematical terms, we seek to maximize: 
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where pi is the index of the column (and row) in position i in the permutation.  Note that in the LOP, the 
permutation p provides the ordering of both the columns and the rows.  Solution methods for this NP-hard 
problem have been proposed since 1958, when Chenery and Watanabe outlined some ideas on how to 
obtain solutions for this problem (Reinelt, 1985).  In this section we describe a tabu search 
implementation (Laguna et al. 1999) for the LOP. 
 
The LOP has a wide range of applications in several fields.  Perhaps, the best know application occurs in 
the filed of economics.  In this application, the economy (regional or national) is first subdivided into 
sectors.  Then, an input/output matrix is created, in which the entry (i,j) represents the flow of money 
from sector i to sector j.  Economists are often interested in ordering the sectors so that suppliers tend to 
come first followed by consumers.  This is achieved by permuting the rows and columns of the matrix so 
that the sum of entries above the diagonal is maximized, which is the objective of the LOP. 
 
Insertions are used as the primary mechanism to move from one solution to another in Laguna’s et al 
method for the LOP.  INSERT_MOVE(pj, i) consist of deleting pj from its current position j to be inserted 
in position i (i.e., between the current sectors pi-1 and pi).  This operation results in the ordering p′, as 
follows: 
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The neighborhood N consists of all permutations resulting from executing general insertion moves as: 
 

N = {p′ : INSERT_MOVE(pj, i), for j = 1, ..., m and i = 1, 2, ..., j-1, j+1, ..., m} ,  
 
and N is partitioned into m Nj neighborhoods associated with each sector pj, for j = 1, ..., m. 
 

Nj = {p′ : INSERT_MOVE(pj, i), i = 1, 2, ..., j-1, j+1, ..., m} 
 
Starting from a randomly generated permutation p, the basic TS procedure alternates between an 
intensification and a diversification phase.  An iteration of the Intensification Phase begins by randomly 
selecting a sector.  The probability of selecting sector j is proportional to its weight wj according to: 
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The move INSERT_MOVE(pj, i) ∈ Nj with the largest move value is selected.  (Note that this rule may 
result in the selection of a non-improving move.)  The move is executed even when the move value is not 
positive, resulting in a deterioration of the current objective function value.  The moved sector becomes 
tabu-active for TabuTenure iterations, and therefore it cannot be selected for insertions during this time. 
 
The number of times that sector j has been chosen to be moved is accumulated in the value freq(j).  This 
frequency information is used for diversification purposes.  The intensification phase terminates after 
MaxInt consecutive iterations without improvement.  Before abandoning this phase, a local search 
procedure based in the same neighborhood is applied to the best solution found (during the current 
intensification).  We denote this solution as p#, in contrast to p* (the best solution found over the entire 
search).  By applying this greedy procedure (without tabu restrictions), a local optimum is guaranteed as 
the output of the intensification phase. 
 



The Diversification Phase is performed for MaxDiv iterations.  In each iteration, a sector is randomly 
selected, where the probability of selecting sector j is inversely proportional to the frequency count 
freq(j).  The chosen sector is placed in the best position, as determined by the move values associated 
with the insert moves in Nj.  The procedure stops when MaxGlo global iterations are performed without 
improving CE(p*).  A global iteration is an application of the intensification phase followed by the 
application of the diversification phase. 
 
An additional intensification is introduced by implementing a long term path relinking phase.  
Specifically, the best solution found at the end of an intensification phase p# (which not necessarily 
represents p*, the best solution overall) is subjected to a relinking process.  The process consists of 
making moves starting from p# (the initiating solution) in the direction of a set of elite solutions (also 
referred to as guiding solutions).  The set of elite solutions consists of the EltSol best solutions found 
during the entire search.  The insertions used to move the initiating solution closer to the guiding 
solutions can be described as follows.  For each sector pj in the current solution: 
 

1) Find the position i for which the absolute value of (j-i) is minimized, 
where i is the position that pj occupies in at least one of the guiding 
solutions. 

 
2) Perform INSERT_MOVE(pj, i). 

 
A long term diversification phase is also implemented to complement the diversification phase in the 
basic procedure.  The long-term diversification is applied after MaxLong global iterations have elapsed 
without improving CE(p*).  For each sector pj, a rounded average position α(pj) is calculated using the 
positions occupied by this sector in the set of elite solutions and the solutions visited during the last 
intensification phase.  Then, m diversification steps are performed which insert each sector pj in its 
complementary position m-α(pj), i.e., INSERT_MOVE(pj, m-α(pj)) is executed for j = 1, ..., m. 
 
After preliminary experimentation, the search parameters are set to  MaxGlo = 100, MaxLong = 50, EltSol 
= 4, TabuTenure = 2 m , MaxInt = m, and MaxDiv = 0.5m and EltSol = 4.  In the 49 instances of the 
public domain LOLIB library, the method obtains the optimal solution within 1 second of computer time 
run on a Pentium IV at 3Ghz.  The method is also compared with a previous procedure due to Chanas and 
Kobylanski (1996) and a greedy procedure based on the N local search.  The methods were run in a way 
that the best solution found was reported every 0.5 seconds.  These data points were used to generate the 
performance graph in Figure 3.  The superior performance of TS_LOP is made evident by Figure 3. 
 

Fig. 3  Performance Graph.
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6. The Tabu Cycle and Conditional Probability Methods 
In this section, we describe the implementation and testing of the tabu cycle method and two variants of 
the conditional probability method (Laguna, 2005).  These methods were originally described in Glover 
(1990) and again in the book by Glover and Laguna (1997) but have been largely ignored in the tabu 
search literature.  The tabu cycle method is a short-term memory mechanism that is based on partitioning 
the elements (i.e., move attributes) of a tabu list.  The methodology is general and capable of 
accommodating multi-attribute tabu search memory, as described in Glover and Laguna (1997).  In its 
most basic form, the tabu cycle method divides the short-term memory list into TabuGroups groups, 
where group k consists of elements that were added to the list between a specified range of iterations ago.  
While in some variants of tabu search (e.g., probabilistic tabu search) it is common to progressively relax 
the tabu status of elements as they become older, the tabu cycle method, by contrast, allows the elements 
of some groups to fully escape their tabu status according to certain frequencies that increase with the age 
of the groups.  The method is based on the use of iteration intervals called tabu cycles, which are made 
smaller for older groups than for younger groups (with the exception of a small buffer group).  
Specifically, if group k has a tabu cycle of TC(k) iterations, then at each occurrence of this many 
iterations, on average, the elements of group k escape their tabu status and are free to be chosen.  In other 
words, on average, group k is designated as FREE every TC(k) iterations.  Mechanisms and data 
structures that are useful for achieving this are described in Laguna (2005). 
 
The conditional probability method is a variant of the tabu cycle method that chooses elements by 
establishing the probability that a group will be FREE on a given iteration.  The probability assigned to 
group k may be viewed conceptually as the inverse of the tabu cycle value.  That is, P(k) = 1/TC(k).  
Analogous to the tabu cycle method, group k is FREE if all older groups likewise are FREE.  The method 
employs a conditional probability, CP(k), as a means of determining whether a particular group k can be 
designated as FREE.  The conditional probability values are fixed and that at each iteration the status of a 
group is determined by a probabilistic process that is not affected by previous choices.  Consequently, the 
approach ignores the possibility that actual tabu cycle values may be far from their targets for some 
groups.  This may happen, for example, when for a number of iterations no elements are chosen from a 
particular set of FREE groups.  The conditional probability method also makes use of a buffer group, for 
which no element is allowed to escape its tabu status.   
 
A variant of the conditional probability method uses substitute probability values to keep the expected 
number of elements per iteration chosen from groups no older than any given group k close to P(k).  The 
substitute probabilities replace the original P(k) values in the determination of the conditional 
probabilities.  These substitute probabilities make use of cycle counts, which are also used in connection 
with the tabu cycle method. 
 
Laguna (2005) uses a single machine scheduling problem to test the merit of implementations of the tabu 
cycle method and both variants of the conditional probability method.  The problem consists of 
minimizing the sum of the setup costs and linear delay penalties when n jobs, arriving at time zero, are to 
be scheduled for sequential processing on a continuously available machine.  Several variants of tabu 
search for this problem have been reported in the literature (Laguna, Barnes and Glover, 1991 and 1993; 
Glover and Laguna, 1991; Laguna and Glover, 1993).  Experiments with more than 300 problem 
instances with up to 200 jobs were performed to compare a simple static and dynamic short-term memory 
schemes with a tabu cycle implementation (Cycle), a conditional probability implementation (C-Prob) 
and an implementation of the conditional probability method with substitute probabilities (S-Prob).  The 
static short-term memory assigns a constant tabu tenure to all attributes during the search.  The dynamic 
short term memory randomly selects a tabu tenure from a specified range.  Therefore, the tabu tenure 
assigned to an attribute in a give iteration may not be the same as the tabu tenure assigned to another 
attribute in a different iteration.  Table 5 shows the number of best solutions found by each method in 
each set of 100 problems. 
 

Problem Set Static Dynamic Cycle C-Prob S-Prob 
n = 50 2 50 9 31 65 
n = 100 0 10 28 17 47 
n = 200 0 8 37 26 29 

Table 5. Number of best solutions (out of 100) found by each method 
 



The results in Table 5 show the merit of the tabu cycle and the conditional probability variants as the 
problem size increases.  In addition to these results, the S-Prob is able to find 17 new best solutions to 20 
problems used for experimentation in Glover and Laguna (1991).  For problems with up to 60 jobs, for 
which a lower bound can be computed, S-Prob produces a maximum gap of 3.56% in relation to this 
optimistic bound.. 
 
These results confirm that a tabu search procedure based solely on a static tabu list is not a robust method, 
because it is incapable of maintaining an acceptable level of diversity during the search.  The dynamic 
short-term memory continues to be an appealing alternative, because it is easy to implement and provides 
a good balance between diversification and intensification.  The results also show that improved 
outcomes are possible with the additional effort required to implement the tabu cycle or conditional 
probability methods. 
 
Additional strategies identified in Glover and Laguna (1997) can be valuable for exploiting other aspects 
of intensification and diversification, but this example demonstrates the importance of handling short-
term memory in a strategic way, especially when faced with larger and more difficult problems. 
 
Conclusions 
The focus and emphasis of tabu search have a number of implications for the goal of designing improved 
optimization procedures.  These research opportunities carry with them an emphasis on producing 
systematic and strategically designed rules, rather than following the policy of relegating decisions to 
random choices, as often is fashionable in evolutionary methods.  The highly attractive results provided 
by the adaptive memory structures underlying tabu search are producing an evident impact on the design 
of metaheuristic methods in general, and are motivating the emergence of new hybrids of TS with other 
procedures. 
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