
Introduction to CMOS design 6. Latches and Memories

6-1 21/03/01

6
Latches and

Memories

This chapter details the structure and behavior of latches and memory circuits. The RS Latch, the D Latch and the
edge-sensitive register are presenter. Then , the concepts of ROM, static RAM and dynamic RAM memories are
introduced, together with simulations.

RS Latch

The RS Latch, also called Set-Reset Flip Flop (SR FF), transforms a pulse into a continuous state. The RS latch can be

made up of two interconnected NAND gates. In that case, the Reset and Set inputs are active low. The memory state

corresponds to Reset=Set=1. The combination Reset=Set=0 should not be used, as Q=nQ=1. Furthermore, the

simultaneous change from Reset=Set=0 to Reset=Set=1 provokes what is called the metastable state, that corresponds

to a parasitic ring effect that may jeopardize the behavior of the whole circuit.

An alternative implementation of the RS latch is made from NOR gates. In that case, the Reset and Set inputs are active

high. The cell transforms positive pulse into continuous states.

RS LATCH (NAND)

R S Q nQ
0 0 1 1
0 1 0 1
1 0 1 0
1 1 Q nQ

RS LATCH (NOR)

R S Q nQ
0 0 Q nQ
0 1 1 0
1 0 0 1
1 1 0 0

Fig. 6.1. The truth table and schematic diagram of a RS latch made (RSNor.SCH, RSNand.SCH)

Introduction to CMOS design 6. Latches and Memories

6-2 21/03/01

FULL CUSTOM

LAYOUT

You may create the layout of RS latch manually. The two NAND

gates may share the VDD and VSS supply achieving continuous

diffusions. The internal routing may also save routing area, leading

to the layout shown in Figure 6.2.

LAYOUT LIBRARY Load the layout design of the RS Latch through the File -> Open

and RS.MSK sequence.

VERILOG COMPILING 1. Use DSCH2 to create the schematic diagram of the RS latch.

Verify the circuit with buttons and lamps. Save the design

under the name ‘RS.sch’ using the command File -> Save As.

2. Generate the Verilog text by using the command File -> Make

Verilog File.

3. In Microwind2, click on the command Compile -> Compile

Verilog File

4. Select the text file ‘RS.txt’.

module RSNor(Reset,Set,Q,nQ);
 input Reset,Set;
 output Q,nQ;
 nor nor1(Q,nQ,Reset);
 nor nor2(nQ,Set,Q);
endmodule

5. Click on Compile. When the compiling is complete, the

resulting layout appears as shown below. The NOR

implementation of the RS gate is completed.

Add a Pulse Property

With the Reset and Set signals behaving like clocks, the memory effect is not easy to illustrate. A much better

approach consists in declaring pulse signals with an active pulse on RESET followed by an active pulse on SET.

Consequently, you must change the “CLOCK” property into a “PULSE” property. For NOR implementation,

the pulse is positive.

Pulse property

6. Select the “PULSE” icon. Click on the “RESET” node.

7. Click the brush to clear the existing pulse properties of

the pulse.

8. Enter the desired sequence, for example 01000. An

click “INSERT”. A piece-wise-linear sequence is

generated in the table, describing the 01000 waveform

in an analog way.

Introduction to CMOS design 6. Latches and Memories

6-3 21/03/01

9. Repeat the same procedure to change the clock into a

pulse for node “SET”. This time the sequence must be

000100 to delay the pulse.

10. Click on Simulate ->Start Simulation . The timing

diagrams of figure 6.3 appear. Click on Close to return

to the editor.

Fig. 6.2. Manual (Left) and compiled (Right) layout of the RS latch made (RSNor.MSK)

In the simulation of Figure 6.3, a positive pulse on “SET” turns Q to a stable high state. Notice that when SET goes to

0, Q remains at 1, which is called the ‘memory’ state. When a positive pulse occurs on “RESET”, Q goes low, nQ goes

high. In this type of simulation, the combination Reset=Set=1 is not present.

Introduction to CMOS design 6. Latches and Memories

6-4 21/03/01

Fig. 6.3. Simulation of the RSNOR latch (RSNor.MSK)

Minimum Pulse Width

One technique to characterize the RSNor cell performances is to extract the minimum pulse width that provokes the

“SET” or “RESET” effect. For this study, the latch outputs should be connected to a load, to conduct the simulations in

a realistic environment. A simple charge consists in an inverter input, connected to Q. In figure 6.4, the pulse width

reduction lead to a wrong behavior when the pulse width is below 100ps. This parameter is always given in the data

sheet of the RS latch, and more generally in all latches information.

100 ps pulse width: still working 80 ps pulse width: not working

Fig. 6.4. Finding the minimum pulse width of the RSNOR latch (RSNor.MSK)

Introduction to CMOS design 6. Latches and Memories

6-5 21/03/01

D Latch

The truth table and schematic diagram of the static D latch, also called Static D-Flip-Flop, are shown in Figure 47. The

data input D is transferred to the output if the clock input is at level 1. When the clock returns to level 0, the latch keeps

its last value. When performing the logic simulation, instability appears in outputs Q and nQ (Figure 6.6). This very

high frequency oscillation is issued from the simultaneous change of Q and nQ at initialization phase. In analog

simulation the parasitic oscillation almost disappear, although a fluctuation may be observed, called metastability

D LATCH (NOR)

D CLOCK Q NQ
0 0 Q nQ
0 1 0 1
1 0 Q nQ
1 1 1 0

Fig. 6.5. The truth table and schematic diagram of a D Latch (File DLATCH.SCH).

Fig. 6.6 Logic simulation of the D Latch (File DLATCH.SCH)

MANUAL DESIGN. Note that the NOR2-AND combination can be implemented in a complex-gate style. You may

find useful to invoke the one line compiler to create successively one inverter nd=/d, and two complex gates which

include the AND/NOR cells using the syntax Q=/(nQ+(nd.h)) and nQ=/(Q+(d.h). Build the interconnections

and run the Design Rule Checker. Assign a clock to CLK and a clock to DATA. An example of such an

implementation can be found in the file “DLatchLevel.MSK”. Its layout an corresponding simulation are illustrated in

figure 6.7.

Introduction to CMOS design 6. Latches and Memories

6-6 21/03/01

Fig. 6.7 Implementation and simulation of the D Latch (File DLatchLevel.MSK)

VERILOG COMPILING. Edit the file “DLATCH.SCH” using DSCH2. Generate the Verilog text by using the

command File -> Make Verilog File. In Microwind2, click on the command Compile -> Compile Verilog File. Select

the text file ‘DLATCH.txt’. Click on Compile. When the compiling is complete, the resulting layout appears as shown

in Figure 6.8.

Fig. 6.7 Compiling of the DLatch (File DLatch.MSK)

Introduction to CMOS design 6. Latches and Memories

6-7 21/03/01

The manual layout of figure 6.7 occupies a much smaller area than the automatic layout of figure 6.7, due to the use of

complex-gate approach for the implementation of the AND/NOR combination, which saves space and makes the cell

run faster.

Edge Trigged Latch

The most common example of an edge-trigged flip flop is the JK latch. Anyhow, the JK is rarely used, a more simple

version that features the same function with one single input D is preferred. This simple type of edge-trigged latch is

one of the most widely used cells in microelectronics circuit design. The cell structure comprises two master-slave

basic memory stages.

The most compact implementation of the edge-trigged latch is reported below. The schematic diagram is based on

inverters and pass-transistors. On the left side, the two chained inverter are in memory state when the pMOS pass

transistor P1 is on, that is when CLK=0. The two-chained inverters on the right side act in an opposite way. The reset

function is obtained by a direct ground connection of the master and slave memories, using nMOS devices.

The logic siganl flows
from source to drain

c
Figure 6.8 : The edge-trigged latch and its logic simulation (Dreg.MSK)

Notice that the logic model of the MOS device is not working the same way as for the real MOS switch. In the case of

the logic implementation, the logic signal flows only from the source to the drain. This is not the case of the real switch

where the signal can flow both ways.

REGISTER COMPILING

Use the Verilog compiler to generate the edge-trigged latch, using the following text (dreg.txt), or by creating a

schematic diagram including the “D” register symbol, in the symbol palette of DSCH2. As can be seen, the register is

built up from one single call to the primitive “dreg”.

Introduction to CMOS design 6. Latches and Memories

6-8 21/03/01

// Compile an edge-trigged register
// 28 Apr 99

module mydreg(rst,d,h,q,nq);
 input d,rst,h;
 output q,nq;

 dreg reg1(d,rst,h,q,nq); // primitive call
endmodule

SIMULATION PATTERNS

§ RESET is active on a level 1. RESET is activated twice, at the beginning and later, using a piece-wise linear

description included in the pulse property.

§ CLK is a clock with 10ns at 0 and 10ns at 1.

§ D is the data chosen here not synchronized with CLK, in order to observe various behaviors of the register.

// rst pwl 0 0 10 1 20 0 60 1 85 0

// h clk 10 10

// d clk 25 25

To compile the DREG file, use the command “Compile”è “Compile Verilog Text”. The corresponding layout is

reported below. The piece-wise-linear data is transferred to the text “rst” automatically.

Fig. 6.9: Compiled version of the Edge-trigged D Flip Flop

The simulation of the edge-trigged latch is reported in figure 6.10. The signals Q and nQ always act in opposite.

When RESET is asserted, the output Q is 0, nQ is 1. When RESET is not active, Q takes the value of D at a fall

edge of the clock. For all other cases, Q and nQ remain in memory state. The latch is thus sensitive to the fall

edge of the clock.

Introduction to CMOS design 6. Latches and Memories

6-9 21/03/01

Fig. 6.10: Simulation of the DREG cell (DREG.MSK)

Counter

The one-bit counter is able to produce a signal featuring half the frequency of a clock. The most simple implementation

consists of a D flip-flop where the output nQ is connected to D, as shown in figure 6-11. In the logic simulation shown

in figure 6-12, the clock ”Clock1” changes the state of “Clock_Div_2” at each fall edge. The “RESET” is active high,

and stuck the output to 0.

Fig. 6-11. Schematic diagram of the 2-bit counter (DivFreq.MSK).

Introduction to CMOS design 6. Latches and Memories

6-10 21/03/01

Fig. 6-12. Logic simulation of the divider-by-two (ClockDiv2.SCH)

MAXIMUM OPERATING FREQUENCY

The most important parameter to be characterized in the clock divider is the maximum frequency fmax up to

which the cell divides properly. Let us extract this frequency fmax using the compiled version of the clock divider.

Fig. 6-13. Analog simulation of the divider-by-two and maximum operating frequency (ClockDiv2.MSK)

Introduction to CMOS design 6. Latches and Memories

6-11 21/03/01

For that purpose, the schematic diagram of figure 6-11 is compiled and gives the layout reported in figure 6-13. Two

simulations are performed. One operates at an input frequency around 1.4GHz, where the divider circuit works

correctly. The frequency of “Clock1” is increased slightly until the division is becoming erratic, around 2GHz. A much

better performance can be obtained when conducting the manual design of the clock divider.

RAM Memory

The schematic diagram of the static memory cell used in High Capacity Static RAMs is given in Figure 6-14. The

circuit consists of 2 cross-coupled inverters and two nMOS pass transistors. The cell has been designed to be duplicated

in X and Y in order to create a large array of cells. Usual sizes for Megabit SRAM memories are 256 x 256 cells or

higher. An arrangement of 4x4 RAM cells is also shown in figure 6-14. The selection line Sel concerns all the cells of

one row. The lines Data and nData concern all the cells of one column.

Fig. 6-14. The schematic diagram of the static RAM cell (RAM1.SCH).

The RAM layout is given in Figure 6-15. Click on File àà Open àà RAM.MSK to read it. The Data and nData signals

are made with metal2 and cross the cell from top to bottom. The supply lines are horizontal, made with metal3. This

allows easy matrix-style duplication of the RAM cell. The cross-section shows the nMOS devices and the connection to

VSS using metal3, situated on the middle of the cell. The Data and nData lines, in metal2 are on both sides.

Fig. 6-15. The layout of the static RAM cell (RAM1.MSK).

Introduction to CMOS design 6. Latches and Memories

6-12 21/03/01

WRITE CYCLE. Values 1 or 0 must be placed on Data, and the data inverted value on nData. Then the line Sel goes

to 1. The two-inverter latch takes the Data value. When the line Sel returns to 0, the RAM is in a memory state.

READ CYCLE. In order to read the cell, the line Sel must be asserted. The RAM value propagates to Data, and its

inverted value propagates to nData.

SIMULATION. The simulation parameters correspond to the write cycle in the RAM. The simulation steps describe

din figure 6-16 are as follows:

� Mem reaches 1, after an unstable period (unpredicatable value).

� Data gets to value 0 and nData to value 1.

� Sel is asserted. The memory cell Mem goes down to 0.

� Data gets to a value of 1 and nData gets to a value of 0.

� Sel is still asserted. The memory cell fights against Data=1 and surrenders (Mem=1).

� Sel is inactive. The RAM is in a memory state.

Fig. 6-16. Write cycle for the static RAM cell (RAM1.MSK).

Complete RAM 4x4 Bit

You can duplicate the RAM cell into a 4x4 bit array using the command Edit -> Duplicate XY. Select the whole RAM

cell and a new window appears. Enter the value « 4 » for X and « 4 » for Y into the menu. Click on « Generate ». The

result is shown below.

Introduction to CMOS design 6. Latches and Memories

6-13 21/03/01

 Fig. 6-17. Duplicating the RAM Cell in X and Y

The line decoder is based on the following schematic diagram. One line is asserted while all the other lines are at zero.

In this circuit one line was picked out from a choice of four lines. Using AND gates would be an easy solution, but in

order to save the inverter, we choose NOR gates with inverted inputs.

Fig. 6-18 A line selection circuit

Introduction to CMOS design 6. Latches and Memories

6-14 21/03/01

Fig. 6-19 . A line selection layout and its corresponding simulation (RamLineSelect.MSK)

The NOR gate height should be adjusted to that of the RAM cell height. When making the final assembly between

blocks, the command Edit -> Move Area is very important. This command helps to move a selected block with a

lambda step.

The row decoder is based on the same principles as those of the line decoder. The major modification is that the data

flows both ways, that is firstly from the cell to the read circuit (Read cycle) and secondly from the write circuit to the

cell (Write cycle). Fig. 55 proposes an architecture for this.

The n-channel MOS device is used as a switch controlled by the column selection. When the n-channel MOS is on and

Write is asserted, the data issued from DataIn is amplified by the buffer, flows from the bottom to the top and reaches

the memory. If Write is off, the 3-state inverter is in high impedance, which allows one to read the information.

Introduction to CMOS design 6. Latches and Memories

6-15 21/03/01

Fig. 6-20. Row selection and Read/Write circuit (RamColumn.SCH)

The final layout of the RAM 4x4 is proposed in Fig. 6-21. The simulation proposes the read and write cycles at a

specific RAM cell address.

Fig. 6-21. RAM layout (RAM44.MSK)

Introduction to CMOS design 6. Latches and Memories

6-16 21/03/01

Fig. 6-22. RAM 4x4 layout and simulation (Ram44.MSK)

The simulation of Fig. 6-22 can be described as follows. A [00] fixed line selection selects the upper line, that way

« sel0 » is asserted while all others are at 0. The memory cells mem00 and mem01 do not reach the same initial state :

mem00 gets to 0 and mem01 is at 1. When DataIn is at zero, writing a zero has no effect on Mem00. But when the

column selection changes, DataIn=0 is copied to Mem01.

When DataIn rises to 1 (t=10ns), and when write is 1, the memory cells change from 0 to 1. It is interesting to point out

that the memory cell fights against the logic value before surrending and changing its internal state.

Introduction to CMOS design 6. Latches and Memories

6-17 21/03/01

