
Introduction to CMOS design 5. Arithmetic gates

5-1 21/03/01

5
Arithmetics

This chapter introduces basic concepts concerning the design of arithmetic gates. The adder circuit is

presented, with its corresponding layout created manually and automatically. Then the comparator,

multiplier and the arithmetic and logic unit are also discussed. This chapter also includes details on a

student project concerning the design of binary-to-decimal addition and display.

Half-Adder Gate

The Half-Adder gate truth-table and schematic diagram are shown in Figure 5-1. The SUM function is

made with an XOR gate, the Carry function is a simple AND gate.

HALF ADDER

A B SUM CARRY

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Fig. 5-1. Truth table and schematic diagram of the half-adder gate (HADD.MSK).

FULL CUSTOM

LAYOUT

You may create the layout of the half-adder fully by hand in order to create a

compact design. Use the polysilicon and metal1 layers for short connections only,

because of the high resistance of these materials. Use Poly/Metal, Diff/Metal

contact macros situated in the upper part of the Palette menu to link the layers

together.

LAYOUT

LIBRARY

Load the layout design of the Half-Adder through the File -> Open and

HADD.MSK sequence.

VERILOG

COMPILING

1. Use DSCH2 to create the schematic diagram of the half-adder. Verify the

circuit with buttons and lamps. Save the design under the name ‘hadd.sch’

Introduction to CMOS design 5. Arithmetic gates

5-2 21/03/01

using the command File -> Save As.

2. Generate the Verilog text by using the command File -> Make Verilog File.

3. In Microwind2, click on the command Compile -> Compile Verilog File

4. Select the text file ‘hadd.txt’.

module Hadd(B,A,sum,carry);
 input B,A;
 output sum,carry;
 xor xor1(sum,B,A);
 and and1(carry,A,B);
endmodule

5. Click on Compile. When the compiling is complete, the resulting layout

appears shown below. The XOR gate is routed on the left and the AND gate

is routed on the right

6. Click on Simulate ->Start Simulation . The timing diagrams of figure xxx

appear and you should verify the truth table of the half-adder. Click on Close

to return to the editor.

.

Fig. 5-2. Compiling and simulation of the half-adder gate (Hadd.MSK)

Full-Adder Gate

The truth table and schematic diagram for the full-adder are shown in Figure 5-3. The SUM is made with

two XOR gates and the CARRY is a combination of NAND gates, as shown below. The most

straightforward implementation of the CARRY cell is AB+BC+AC. The weakness of such a circuit is the

use of positive logic gates, leading to multiple stages. A more efficient circuit consists in the same

function but with inverting gates.

Introduction to CMOS design 5. Arithmetic gates

5-3 21/03/01

FULL ADDER
A B C SUM CARRY
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Fig. 5-3. The truth table and schematic diagram of a full-adder(FADD.SCH)

Full-Adder Symbol

Fig. 5-4. Create a symbol from the schematic diagram

In order to build hierarchical designs using the adder, we detail the procedure to generate the symbol of

the full-adder from its schematic diagram. In DSCH2, click the above icon, the screen of the right hand

side appears. Simply click ‘OK. The symbol of the full-adder is created, with the name ‘Fadd.sym’ in the

current directory. Use the command “Insert -> Symbol” to include this symbol into a new circuit. For

example, the circuit ‘FaddTest’ includes the hierarchical symbol and verifies its behavior.

Fig. 5-5. Testing the new ADDER symbol(FaddTest.SCH)

Introduction to CMOS design 5. Arithmetic gates

5-4 21/03/01

Full-custom design of the adder

Fig. 5-6. The full-custom implementation of the full-adder and its simulation (FullADD.MSK).

FULL CUSTOM

LAYOUT

You may create the layout of the full-adder by hand in order to create a compact

design. Notice that the AND/OR combination of cells may be replaced by a

complex gate. An example of full-custom layout of the full-adder is proposed in

Figure 5-6. Notice that the carry propagates vertically within the cell to ease

multiple addition. The typical delay is less than 100ps in 0.25µm technology.

VERILOG

COMPILING

1. Use DSCH2 to create the schematic diagram of the full-adder. Verify the

circuit with buttons and lamps. Save the deign under the name ‘fadd.sch’

using the command File -> Save As.

2. Generate the Verilog text by using the command File -> Make Verilog File.

3. In Microwind2, click on the command Compile -> Compile Verilog File

4. Select the text file ‘fadd.txt’.

Introduction to CMOS design 5. Arithmetic gates

5-5 21/03/01

module fulladd(sum,carry,a,b,c);
 input a,b,c;
 output sum,carry;
 wire sum1;

 xor xor1(sum1,a,b);
 xor xor2(sum,sum1,c);
 and and1(c1,a,b);
 and and2(c2,b,c);
 and and3(c3,a,c);
 or or1(carry,c1,c2,c3);
endmodule

5. Click on Compile. When the compiling is complete, the resulting layout

appears shown below. The XOR gate is routed on the left and the AND gate

is routed on the right

6. Click on Simulate ->Start Simulation . The timing diagrams of figure xxx

appear and you should verify the truth table of the half-adder. Click on Close

to return to the editor.

The simulation of the full-Adder is conducted in figure 5-7, and exhibits propagation delays twice higher

than the full-custom design. Consequently, the Verilog translation is appropriate for

Fig. 5-7. Comparison between full-custom and compiled layout of the full-adder

Introduction to CMOS design 5. Arithmetic gates

5-6 21/03/01

Fig. 5-8. Simulation of a full-adder (File FADD.MSK).

Four-Bit Adder

This circuit include full-adders in serial, so that the result of each stage propagates to the next one, from

the top to the bottom. The circuit allows a four-bit addition between two numbers A3,A2,A1,A0 and

B3,B2,B1,B0. Insert the user-defined ‘Fadd.sym’ symbol using the command Insert -> User Symbol . In

DSCH2, the A and B numbers are generated by keyboard symbols, as reported below. Also notice the

hexadecimal display with a ground connected to the K input to activate the display.

Fig. 5-9. Schematic diagram of the four-bit adder (ADD4.SCH).

Figure xxx details the four-bit adder layout based on the full-custom cell design, with the corresponding

simulation. In Microwind2, the command Edit -> Duplicate X,Y has been used to duplicate the full-

adder layout vertically.

Introduction to CMOS design 5. Arithmetic gates

5-7 21/03/01

Fig. 5-10. Design and simulation of the four-bit adder (ADD4.MSK).

Introduction to CMOS design 5. Arithmetic gates

5-8 21/03/01

Comparator

The truth table and the schematic diagram of the comparator are given below. The A=B equality

represents an XNOR gate, and A>B, A<B are operators obtained by using inverters and AND gates.

Comparator
A B A>B A<B A=B
0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 0 0 1

Fig. 5-11. The truth table and schematic diagram of the comparator (COMP.SCH).

Using DSCH2, the logic circuit of the comparator is designed and verified at logic level. Then the

conversion into Verilog is invoked (File -> Make verilog File). Microwind2 compiles the verilog text

into layout. The layout and simulation of the comparator is given in Figure xxx. The XNOR gate is

located at the left side of the design. The inverter and NOR gates are at the right side. After the

initialization, A=B rises to 1. The clocks A and B produce the combinations 00,01,10 and 11. Notice the

small glitch on A>B at t=xxx ns. This glitch is not a design error. On the contrary, it shows that during the

transition of A and B the situation A>B occurs and that the cell is fast enough to react.

Introduction to CMOS design 5. Arithmetic gates

5-9 21/03/01

Fig. 5-12. Simulation of a comparator (COMP.MSK file).

n-bit Comparator

The technique for n-bit comparison is based on the use of adder circuits. In the schematic diagram of

figure xxx, the adder system is modified into a comparison system, by computing the Boolean function

close from A-B. The ‘equal’ operator is built using simple and functions. Consequently, the one-bit

comparator includes the full-adder layout, one inverter and one NAND gate.

One bit structure

Fig. 5-13. Schematic diagram of a 4-bit comparator (COMP4.SCH).

,

Introduction to CMOS design 5. Arithmetic gates

5-10 21/03/01

Multiplier

The multiplication of integer numbers A and B can be implemented in a parallel way using elementary

binary multiplication. The corresponding cell should verify the truth table given below. The cell can be

made up of a full-adder cell and an AND gate, as shown in the schematic diagram below (MUL1.SCH).

MULTIPLIER
A B CIN MUL COUT

0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

A 4x4 bit multiplication is proposed in Figure 5-14. The circuit multiplies input A (Upper keyboard) with

input B (Lower keyboard) which produces a result P, as detailed in Figure 5-14.

A0xB0A0xB1A0xB2A0xB3

A1xB0A1xB1A1xB2A1xB3

A2xB0A2xB1A2xB2A2xB3

A3xB0A3xB1A3xB2A3xB3

Fig. 5-14. Schematic diagram of the 4x4 bit multiplier (MUL4x4.SCH).

Introduction to CMOS design 5. Arithmetic gates

5-11 21/03/01

The cell is built for an iterative implementation. The inputs and outputs are organized in such a way that

the multiplication array is regular. Let us illustrate the multiplication process through a small example (6

x 7=42). The basic mechanism is the addition, which involves a carry and the product Ai.Bj. The sum

propagates down to the result. The key idea is to connect the carry to the cell situated at the left side. In

the example below, when a 1 is added vertically to an other 1, the sum goes one row below, while the

carry is sent on the left cell.

A 0110 (6)

B 0111 (7)

0110

 0110

 0110

 0000 .

 00101010 (42)

Adder

Carry in

?

Bi

Ai

And P

Bi

?

<Layout>

Fig. 5-15. Design of the 4x4 bit multiplier (MUL4x4.MSK).

Fig. 5-16. Simulation of the 4x4 bit multiplier (MUL4x4.MSK).

Introduction to CMOS design 5. Arithmetic gates

5-12 21/03/01

Arithmetic and logic Units (ALU)

The digital function that implements the micro-operations on the information stored in registers is

commonly called an arithmetic logic unit (ALU). The ALU receives the information from the registers

and performs a given operation as specified by the control.

A very simple ALU design is proposed to illustrate its principle. The control unit is made up of a 4-1

multiplexor. The operation part consists of four kinds of operations listed as follows: and, or, addition and

subtraction. The ‘and’ and ‘or’ operation are realized by using the basic logic gates. The addition and

subtraction are realized using the ADDER user symbols.

A digital multiplexer made from MOS devices selects one of the 4 operations results and directs it to a

single output line « Result » .

S1 S0 Operation
0 0 or
0 1 and
1 0 full substraction
1 1 full addition

 Fig. 5-17. The 1-bit ALU operates the and, or, addition and substraction (ALU1bit.SCH)

Introduction to CMOS design 5. Arithmetic gates

5-13 21/03/01

PROJECT: A 4-BIT BCD ADDER

The objective of this project is to perform the addition of two BDC (Binary Decimal Code) numbers X

and Y ranging from 0 to 9, and visualize the results on hexadecimal displays provided by DSCH2. The

specification of this project is described in the schematic diagram of figure 5-18.

Adding module

Decoding module

X Y Carry

Carry

MSB LSB

X+Y 4

44

4 4

X=1001 (9) Y=0011 (3) Carry=0

X+Y=1100 (12)

Example

MSB= « 1 » LSB= « 2 »

Fig.. 5-18 Flow chart of the BCD adder project

4-BIT ADDER

Four one-bit adders linked in cascade construct the 4-bit adder. You may use the adder symbol created

previously, using the command “Insert -> User symbol” within DSCH2. Add two keyboard symbols and

watch the result on a keyboard and a led to verify the function.

4-bit adder

1 bit adder

Symbol library

Fig. 5-19: 4-bit adder circuit (ADD4.SCH)

Introduction to CMOS design 5. Arithmetic gates

5-14 21/03/01

Use the following process to transfer the 4-bit adder schema into a user symbol. This symbol is tested

using keyboards and digits, as shown below.

Click the icon. The schematic diagram is analyzed and a symbol is

proposed in the window below. Click OK to validate the symbol. An user

symbol called ‘ADD4’ is stored in the current directory.

Select the command ‘File -> New’ to restart the software.

Invoke the command ‘Insert ->Symbol’ and choose the user symbol

‘ADD4.SYM’ in the list. Add Keyboards and displays to validate the

behavior of this symbol.

DECODER MODULE

The objective of the decoding module is to split the binary result of the addition into two BCD codes, one

representing the tenth bit ranging from 0 to 1, the other representing the unit bit ranging from 0 to 9.

The principle of the decoding circuit is shown in figure 5-20. Firstly, the X+Y result is passed through a

comparator. IF X+Y<10, the result is sent to the visualizing module. If not, the result is adjusted by

subtracting 10, while the bit 10 is set to 1.

Introduction to CMOS design 5. Arithmetic gates

5-15 21/03/01

Substract 10

X+Y

4

<10 ≥10

Display module

X+Y

Compare

AddCarry

Bit10=1Bit10=0

AddCarry X+Y >=10 Less10 Eq10
1 x x 1 0 0
0 0 0000 0 1 0
0 1 0001 0 1 0
0 2 0010 0 1 0
0 3 0011 0 1 0
0 4 0100 0 1 0
0 5 0101 0 1 0
0 6 0110 0 1 0
0 7 0111 0 1 0
0 8 1000 0 1 0
0 9 1001 0 1 0
0 A 1010 1 0 1
0 B 1011 1 0 0
0 C 1100 1 0 0
0 D 1101 1 0 0
0 E 1110 1 0 0
0 F 1111 1 0 0

Figure 5-21: Principles and truth table of the decider module

COMPARE TO 10

The Sup10 function may be written using the following Boolean equation. The corresponding

implementation is reported below. The positive logic was used for clarity, although negative logic is a

better choice from delay and power consumption points of view.

Sup10 = AddCarry + (X3.X2)+(X3.X1)

Fig. 5-22 Compare to 10 function

Introduction to CMOS design 5. Arithmetic gates

5-16 21/03/01

SUBSTRACT 10

The substraction module is enabled when the X+Y result is greater or equal to 10. In that case, a

substract-by-10 operation is performed. The substraction circuit is simply an adder with inverted input B,

and an input carry set to 1. Consequently, the 4-bit substractor can be derived from the 4-bit adder circuit,

as shown below.

Fig. 5-23 4-bit substractor (SUB4.SCH)

The multiplexor circuit decides whether the X+Y result or the X+Y-10 results are sent to the display. The

multiplexor is made from n-channel and p-channel MOS devices. The n-channel MOS devices multiplex

the substraction result when Sup10 is asserted. The p-channel MOS devices multiplex the original result

to the display, when Sup10 is 0. The final circuit is shown in figure 5-24.

Fig. 5-24: Final circuit of the BCD adder (AdderBDC.SCH)

Introduction to CMOS design 5. Arithmetic gates

5-17 21/03/01

Conclusion

In this chapter, the design of basic arithmetic gates has been presented. The half adder and full adder have

been presented. The full adder design has been conducted at layout level, with emphasis on advantages of

manual design against automatic design regarding the silicon area efficiency. The comparator and

multiplier circuits have also been described. A 1 bit ALU has been proposed, and a student project

concerning the addition in binary-to-decimal format has been described in details.

