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In an earlier article we characterized, from the viewpoint of set theory, those closure operators for which the
classical result of Birkhoff and Frink, stating the equivalence between algebraic closure spaces, subalgebra
lattices and algebraic lattices, holds in a many-sorted setting. In the present article we investigate, from the
standpoint of category theory, the form these equivalences take when the adequate morphisms of the several
different species of structures implicated in them are also taken into account. Specifically, our main aim is to
provide a functorial rendering of the Birkhoff-Frink representation theorems for both single-sorted algebras and
many-sorted algebras, by defining the appropriate categories and functors, covariant and contravariant, involved
in the process.

Copyright line will be provided by the publisher

1 Introduction.

As it is well-known Birkhoff and Frink, in [5], proved, among other interesting results, the following representa-
tion theorems:

1. Let (A, J) be an algebraic closure space, i.e., a set A together with an algebraic closure operator J on A.
Then there exists a single-sorted signature Σ(A,J) and a Σ(A,J)-algebra structure F (A,J) on A such that
(A, J) is identical with (A, Sg(A,F (A,J))), where Sg(A,F (A,J)) is the subalgebra generating operator on A

induced by the Σ(A,J)-algebra (A,F (A,J)) (see [5], p. 300). In other words, the algebraic (alias inductive)
closure spaces, or, what is equivalent, the algebraic (alias inductive) closure systems, are precisely the
subalgebra systems of finitary algebras.

2. Let L = (L,≤) be a lattice. Then L is algebraic if and only if there exists a single-sorted signature Σ and a
Σ-algebra A = (A,F ) such that L is isomorphic to the algebraic lattice Fix(SgA) determined by the fixed
points of the algebraic closure operator SgA (see [5], p. 302). In other words, the algebraic (i.e., compactly
generated complete) lattices are, up to isomorphism, the algebraic closure spaces.

The first representation theorem can be interpreted as meaning that there is a system Alg(1), of single-sorted
algebras, i.e., pairs (Σ,A), where Σ is a single-sorted signature and A a Σ-algebra, and a construction Sg from
Alg(1) to the system AClSp, of algebraic closure spaces, which sends a single-sorted algebra (Σ,A) to the
algebraic closure space Sg(Σ,A) = (A, SgA), where SgA is the subalgebra generating operator on A induced
by the Σ-algebra A, and this in such a way that it is surjective.

Before explaining the meaning of the second representation theorem we let Fix stand for the construction
from AClSp to the system ALat, of algebraic lattices, which sends an algebraic closure space (A, J) to the
algebraic lattice Fix(J) determined by the fixed points of the algebraic closure operator J .

The second representation theorem can then be partially interpreted as saying that there is another construction
Fix ◦ Sg from Alg(1) to ALat which sends a single-sorted algebra (Σ,A) to the algebraic lattice Fix(SgA),
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2 Climent and Soliveres: Birkhoff-Frink representations as functors

but, in contrast to the previous representation theorem, only in an essentially surjective way. We notice that the
expression “essentially surjective”, as applied to a construction and after having transformed it into a suitable
functor, should be understood as meaning that it is “surjective up to isomorphism”.

We can summarize the just stated interpretations of the Birkhoff-Frink representation theorems for single-
sorted algebras by stating that in the following diagram

Alg(1)
Sg // AClSp Fix // ALat,

the construction Sg is surjective and the construction Fix is essentially surjective (from which it follows that the
composition of both constructions is another essentially surjective construction).

With regard to the many-sorted case, Matthiessen, in [24], proved that there are sets of sorts S, with at least two
elements, and algebraic S-closure spaces (the definition of the concept of algebraic S-closure space is analogous
to that of algebraic closure space and is given in the third section) which cannot be concretely represented as
the set of all subalgebras of some many-sorted algebra. In other words, it is not generally true that, for every
set of sorts S, each algebraic S-closure space (A, J) in the system AClSp(S), of algebraic S-closure spaces,
has the form (A,SgA), for some S-sorted algebra (Σ,A) in the system Alg(S) (the definition of Alg(S) is
analogous to that of Alg(1) and is given in the second section), of S-sorted algebras. Or, what is equivalent, that
the construction

Alg(S)
SgS

// AClSp(S),

which sends an S-sorted algebra (Σ,A) to the algebraic S-closure space (A, SgS
A), where SgS

A is the subalgebra
generating operator on the S-sorted set A induced by the Σ = (S, Σ)-algebra A, is not surjective. However, the
construction

AClSp(S) FixS
// ALat,

which sends an algebraic S-closure space (A, J) to the algebraic lattice FixS(J) determined by the fixed points
of the algebraic S-closure operator J is, as for the single-sorted case (and as we will prove later on), also essen-
tially surjective.

Related to the work by Matthiessen mentioned above, we proved, in [8], that, for an algebraic S-closure
operator J on an S-sorted set A, it happens that J = SgA, for some many-sorted signature Σ = (S, Σ) and some
Σ-algebra A, if and only if J is uniform (i.e., such that, for every sub-S-sorted sets X = (Xs)s∈S , Y = (Ys)s∈S

of A, if {s ∈ S | Xs 6= ∅} = {s ∈ S | Ys 6= ∅}, then {s ∈ S | J(X)s 6= ∅} = {s ∈ S | J(X)s 6= ∅}, where,
for a sub-S-sorted set Z = (Zs)s∈S of A, J(Z) = (J(Z)s)s∈S). Therefore, by co-restricting the construction
SgS to the subsystem UAClSp(S) (defined in the third section), of uniform algebraic S-closure spaces, of the
system AClSp(S), we restored the surjective character of the construction

Alg(S)
SgS

// UAClSp(S).

Our main aim in this article is to complete from the standpoint of category theory the Birkhoff-Frink represen-
tation theorems and their corresponding generalizations to the many-sorted case by giving a functorial version
of them. Hence in making so we stay one step ahead of the foregoing purely set-theoretical treatment of such
representation theorems, providing in this way a new perspective on the classical representation theorems. In this
respect we think that the functorial rendering of the many-sorted case of the Birkhoff-Frink representation the-
orems, in particular, is fundamental and interesting since many-sorted algebras have a significant role in recent
universal algebra, because they generalize single-sorted algebras to new and useful situations. For example, a
typical higher order programming language has several data types, so a program written in the program language
can be modeled as a many-sorted algebra. In fact, very general first order structures can be completely described
as many-sorted algebras. Connected with the aforementioned generalization we claim that it is impossible to
regard the many-sorted categories as being essentially subcategories of the classical ones. Indeed, this follows,
ultimately, from the fact that, for a set of sorts S with two or more elements, in SetS , the topos of all S-tuples
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of sets, there are objects A = (As)s∈S that are different from the initial object, (∅)s∈S , but such that they are
globally empty, i.e., such that Hom((1)s∈S , A) = ∅.

We emphasize that the categorical treatment of some questions belonging to the fields of lattice theory and
universal algebra is not entirely new as shown by the following examples. In lattice theory the categorical equiva-
lence between algebraic lattices and algebraic closure spaces falls under this treatment and is only one instance
of a whole spectrum of Stone type dualities, all of which follow the same pattern (see e.g. [12], [13], and [14]). In
universal algebra Birkhoff’s variety theorem and Birkhoff’s completeness of many-sorted equational logic have
been investigated by many authors also in a categorical setting (e.g., the first one in [1], [23], and [26], and the
second one in [9]). However, in contrast to Birkhoff’s variety theorem and Birkhoff’s completeness of many-
sorted equational logic, the Birkhoff-Frink representation theorems did not seem to have attracted to the same
extent the attention of “categorically minded people”. This article intends to fill this gap.

To attain the aforesaid aim we define for the objects belonging to each one of the different species of structures
mentioned above the adequate morphisms between them. In this way each one of the systems of objects is
transformed into the set of objects of a convenient category (written as their corresponding underlying system
of objects, but in bold print). Moreover, we extend the definitions of the constructions Sg and SgS , which
were, originally, restricted to the objects in Alg(1) and Alg(S), respectively, to the morphisms in the associated
categories Alg(1) and Alg(S) to get covariant functors from them into AClSp and UAClSp(S), respectively.
Additionally, we extend the definition of the construction FixS , which was, at the beginning, restricted to the
objects in UAClSp(S), to the morphisms in the associated category UAClSp(S) to get a contravariant functor
from it into the category ALat. It is worth noting that the functor Fix : AClSp // ALat is well-known, cf.,
[12] and [14] (however, since AClSp = UAClSp(1), see Remark 3.14, we have that Fix = Fix1).

In this article we make use of the concept of fibration and of the Ehresmann-Grothendieck construction (we
write it EG-construction for short). With regard to the EG-construction there are, essentially, two reasons for
using it. On the one hand, since it allows us to obtain, from a contravariant functor F from a category C to Cat
(the definition of Cat is given below), a category

∫ C
F over C, by “pasting” together the family of “summand”

categories (F (c))c∈C by means of the family of “translators” F (f) : F (c′) // F (c), parameterized by the
morphisms f : c // c′ in C. On the other hand, because a great deal of the properties of

∫ C
F can be obtained

from the corresponding ones of the categories F (c), taking into account the properties of the functors of the
family of “translators”. For the convenience of the reader we recall next the definitions of the aforementioned
notions, thus making our exposition self-contained. Let F : C // B be a functor. A morphism f : x // y in
C is cartesian over u : a // b in B if F (f) = u and for every v : c // a in B, and for every h : z // y in
C such that F (h) = u ◦ v, there exists a unique g : z // x in C such that F (g) = v and f ◦ g = h. The
functor F : C // B is a fibration if for every y ∈ C and every u : a // F (y) in B, there exists a cartesian
morphism f : x // y in C above u. A fibration F : C // B is split if, for every morphism u : a // b in B
and every object x in the fiber Cb over (b, idb), which is the inverse image under F of (b, idb), it is possible
to choose a distinguished cartesian morphism ux : xu

// x over u in such a way that all these morphisms ux

constitute a subcategory of C. For an exhaustive treatment of fibrations see [17]. The EG-construction establishes
a passage from a contravariant functor F : C // Cat to a pair (

∫ C
F, πF ), where

∫ C
F is the category with

objects pairs (c, x), where c is an object of C and x an object of F (c), and morphisms from (c, x) to (c′, x′) pairs
(f, λ) consisting of a morphism f : c // c′ in C and a morphism λ : x // F (f)(x′) in F (c), with the obvious
composition, and πF :

∫ C
F // C, the projection functor, a fibration. The earliest published papers we know

of which deal with the EG-construction are [11], pp. 89–91 and [18], pp. (sub.) 175–177.

Next we proceed to, briefly, describe the contents of the subsequent sections of this article.

In the second section we define, by applying the EG-construction to convenient contravariant functors, the
categories MSet, of many-sorted sets, Sig, of many-sorted signatures, and Alg, of many-sorted algebras. More-
over, we state that there are two split bi-fibrations, one from MSet to Set and another from Sig to Set, and a
fibration from Alg to Sig. Then, by composing this fibration and the second of the split bi-fibrations, we obtain
a fibration from Alg to Set that, for every set of sorts S, allows us to get, by taking the inverse image of it at
(S, idS), the fiber Alg(S), which we call the category of S-algebras, and which has as underlying set of objects
the system Alg(S).
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In the third section we begin by associating with every set of sorts S the category ClSp(S), of S-closure
spaces. After having done that we define, for every set of sorts S, two full subcategories of ClSp(S), the cate-
gory AClSp(S), of algebraic S-closure spaces, and the category UAClSp(S), of uniform algebraic S-closure
spaces, and state the existence of some adjoint situations between them. Moreover, we prove that every mapping
ϕ : S // T determines an adjunction

∐cl
ϕ a∆cl

ϕ from ClSp(S) to ClSp(T ). Then, since all these functors ∆cl
ϕ

are the components of the morphism mapping of a contravariant functor ∆cl from Set to Cat, by applying the
EG-construction to ∆cl, we get the category MClSp, of many-sorted closure spaces and continuous mappings,
and a split fibration from MClSp to Set.

In the fourth section, with the suitable categories at hand, we view the first classical Birkhoff-Frink represen-
tation as a functor Sg from Alg(1) to AClSp which is surjective on the objects (but, we remark, only surjective
with regard to the injective continuous mappings between algebraic closure spaces), while we view the second
one as a contravariant functor Fix ◦ Sg from Alg(1) to ALat which is essentially surjective. Then we extend
both theorems to the many-sorted case and prove that they have similar features to the classical version, but
with respect to the categories UAClSp(S) and the contravariant functors FixS from UAClSp(S) to ALat.
Actually, the Birkhoff-Frink representation theorems, as applied to the many-sorted case say, respectively, that,
for a nonempty set of sorts S, there exists a functor SgS from Alg(S) to UAClSp(S) which is surjective on
the objects, and that there exists a contravariant functor FixS ◦ SgS from Alg(S) to ALat which is essentially
surjective.

In this way the functorial version of the Birkhoff-Frink representation theorems, both for single-sorted and for
many-sorted algebras, has been reached.

In this article the foundational system underlying category theory is ZFC+∃GU(U), i.e., Zermelo-Fraenkel
set theory with the Axiom of Choice plus the existence of a Grothendieck universe U fixed once and for all (for
an explanation of the concept of Grothendieck universe see, e.g., [22], p. 22). Therefore every set we consider in
this article will be either a U -small set, i.e., an element of U , or a U -large set, i.e., a subset of U , or a set which
is neither U -small nor U -large. Besides, we let Set stand for the category with objects the U -small sets and
morphisms the mappings between U -small sets, and Cat for the category of the U -categories (i.e., categories C
such that the set of objects of C is a subset of U , and the hom-sets of C elements of U ) and functors between
U -categories.

In all that follows we use standard concepts and constructions from category theory, see e.g., [1], [17], [18],
[19], and [22]; classical universal algebra, see e.g., [6], [10], [16], [21], and [25]; many-sorted algebra, see e.g.,
[2], [4], [20], [24], and [28]; and lattice theory, see e.g., [3], [6], and [25]. However, following the French
mathematical tradition, we agree to call a functor F : C // D essentially surjective (instead of representative
or isomorphism-dense) if for every object d in D there exists an object c in C such that F (c) is isomorphic to d.

2 Many-sorted sets, signatures, and algebras.

In this section we provide accurate definitions of the concepts of: many-sorted set, many-sorted signature, and
many-sorted algebra. More specifically, we define the category MSet, of many-sorted sets, by applying the EG-
construction to an appropriate contravariant functor MSet from Set to Cat, and state that the projection functor
πMSet from MSet to Set is a split bi-fibration. Following this we define the category Sig, of many-sorted
signatures, by applying, again, the EG-construction to a suitable contravariant functor Sig from Set to Cat, and
state that the projection functor πSig from Sig to Set is also a split bi-fibration. Next we define the category
Alg, of many-sorted algebras (in which many-sorted algebras of different many-sorted signature are compared
via suitable homomorphisms), by applying, once again, the EG-construction to an adequate contravariant functor
Alg from Sig to Cat, and state that the projection functor πAlg from Alg to Sig is a fibration. Then, by
composing the fibration πAlg and the split bi-fibration πSig, we obtain the fibration πSig,Alg that allows us to get,
for every set of sorts S, in a regular way, the corresponding fiber Alg(S), constituted by the S-sorted algebras.

Before stating the first proposition of this section, we agree upon calling, henceforth, for a set of sorts S
in U , the objects of the category SetS (i.e., the functions A = (As)s∈S from S to U ) S-sorted sets, and the
morphisms of the category SetS from an S-sorted set A to another B (i.e., the ordered triples (A, f, B), written
as f : A // B, where f = (fs)s∈S ∈

∏
s∈S Hom(As, Bs)) S-sorted mappings from A to B.
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In the following proposition, which is basic for a great deal of what follows, for a mapping ϕ : S // T , we
prove that there is an adjunction

∐
ϕ a ∆ϕ from SetS to SetT , and state that there is a contravariant functor

MSet from Set to Cat.
Proposition 2.1 Let ϕ : S // T be a mapping. Then there are functors ∆ϕ from SetT to SetS and

∐
ϕ from

SetS to SetT such that
∐

ϕa∆ϕ. We let θϕ stand for the natural isomorphism of the adjunction. Moreover, there
exists a contravariant functor MSet from Set to Cat which sends a set S to the category MSet(S) = SetS , and
a mapping ϕ from S to T to the functor ∆ϕ from SetT to SetS .

P r o o f. Let ∆ϕ be the functor from SetT to SetS defined as follows: its object mapping sends each T -
sorted set A to the S-sorted set Aϕ = (Aϕ(s))s∈S , i.e., the composite mapping A ◦ ϕ; its arrow mapping sends
each T -sorted mapping f : A // B to the S-sorted mapping fϕ = (fϕ(s))s∈S : Aϕ

// Bϕ. Let
∐

ϕ be the
functor from SetS to SetT defined as follows: its object mapping sends each S-sorted set A to the T -sorted
set

∐
ϕ A = (

∐
s∈ϕ−1[t] As)t∈T ; its arrow mapping sends each S-sorted mapping f : A // B to the T -sorted

mapping
∐

ϕ f = (
∐

s∈ϕ−1[t] fs)t∈T :
∐

ϕ A // ∐
ϕ B. Then the functor

∐
ϕ is a left adjoint for ∆ϕ. This is

proved by stating that, for every S-sorted set A, the pair (ηϕ
A,

∐
ϕ A), where ηϕ

A is the S-sorted mapping from A to
∆ϕ(

∐
ϕ A) = (

∐
x∈ϕ−1[ϕ(s)] Ax)s∈S whose s-th coordinate, for every s ∈ S, is the canonical embedding of As

into
∐

x∈ϕ−1[ϕ(s)] Ax, is a universal morphism from A to ∆ϕ. Let B be a T -sorted set and let f : A // Bϕ be
an S-sorted mapping. In the sequel, for every t ∈ T and every s ∈ ϕ−1[t], ins denotes the canonical embedding
of As into

∐
s∈ϕ−1[t] As, and, for every t ∈ T , f§t denotes the unique mapping [fs]s∈ϕ−1[t] from

∐
s∈ϕ−1[t] As to

Bt = Bϕ(s) such that, for every s ∈ ϕ−1[t], [fs]s∈ϕ−1[t] ◦ ins = fs. Then f§ = (f§t )t∈T is the unique T -sorted
mapping from

∐
ϕ A to B such that f = ∆ϕ(f§) ◦ ηϕ

A.

By applying the EG-construction to MSet we get the category of many-sorted sets as stated in the following
Definition 2.2 The category MSet, of many-sorted sets and many-sorted mappings, is given by MSet =∫ Set MSet. Therefore MSet has as objects the pairs (S, A), where S is a set and A an S-sorted set, and as

morphisms from (S,A) to (T, B) the pairs (ϕ, f), where ϕ : S // T and f : A // Bϕ.
From the definition of MSet it follows that the projection functor πMSet from MSet to Set is a split bi-

fibration, i.e., a split fibration and a split op-fibration. Furthermore, for every set S, the fiber of πMSet at (S, idS)
is, essentially, the category SetS of S-sorted sets and S-sorted mappings.

Remark 2.3 The category MSet is complete and co-complete.
Remark 2.4 The EG-construction applied to the contravariant functor MSet generates, explicitly, the category

MSet and, implicitly, a logic: the internal logic of MSet (which is the trivalent logic of Heyting) obtained by
combining, by means of the logical morphisms between the fibers of πMSet, the Boolean internal logics of the just
named fibers. Loosely speaking, we can say that globally the category MSet has a nonclassical logic, but that
locally (i.e., in its fibers) it is Boolean, although not well-pointed (in the same way as a manifold is a space which
locally looks like Rn (or Cn) but which globally is not necessarily like any of those local spaces). Thus, in this
case, we see that the system of laws governing the world obtained by synthesizing a family of given interwoven
worlds, each of them governed by its proper system of laws, is not necessarily identical to any of the local systems
of laws.

Our next goal is to define the category Sig. But before doing that we agree that, for a set of sorts S in
U , Sig(S) denotes the category of S-sorted signatures and S-sorted signature morphisms, i.e., the category
SetS?×S , where S? is the underlying set of the free monoid on S. Therefore an S-sorted signature is a function
Σ from S? × S to U which sends a pair (w, s) ∈ S? × S to the set Σw,s of the formal operations of arity w, sort
(or coarity) s, and rank (or biarity) (w, s); and an S-sorted signature morphism from Σ to Σ′ is an ordered triple
(Σ, d, Σ′), written as d : Σ // Σ′, where d = (dw,s)(w,s)∈S?×S ∈

∏
(w,s)∈S?×S Hom(Σw,s,Σ′w,s). Thus, for

every (w, s) ∈ S? × S, dw,s is a mapping from Σw,s to Σ′w,s which sends a formal operation σ in Σw,s to the
formal operation dw,s(σ) (d(σ) for short) in Σ′w,s.

Proposition 2.5 There exists a contravariant functor Sig from Set to Cat defined as follows:

1. Sig sends a set of sorts S to Sig(S) = Sig(S).
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2. Sig sends a mapping ϕ from S to T to the functor Sig(ϕ) = ∆ϕ?×ϕ from Sig(T ) to Sig(S) which relabels
T -sorted signatures into S-sorted signatures, i.e., Sig(ϕ) assigns to a T -sorted signature Λ the S-sorted
signature Sig(ϕ)(Λ) = Λϕ?×ϕ, and assigns to a morphism of T -sorted signatures d from Λ to Λ′ the
morphism of S-sorted signatures Sig(ϕ)(d) = dϕ?×ϕ from Λϕ?×ϕ to Λ′ϕ?×ϕ.

By applying the EG-construction to Sig we get the category of many-sorted sets as stated in the following
Definition 2.6 The category Sig, of many-sorted signatures and many-sorted signature morphisms, is given

by Sig =
∫ Set Sig. Therefore the category Sig has as objects the pairs (S, Σ), where S is a set of sorts

and Σ an S-sorted signature, and as many-sorted signature morphisms from (S, Σ) to (T, Λ) the pairs (ϕ, d),
where ϕ : S // T is a morphism in Set while d : Σ // Λϕ?×ϕ is a morphism in Sig(S). The composition
of (ϕ, d) : (S, Σ) // (T, Λ) and (ψ, e) : (T, Λ) // (U,Ω), denoted by (ψ, e) ◦ (ϕ, d), is (ψ ◦ ϕ, eϕ?×ϕ ◦ d),
where

eϕ?×ϕ : Λϕ?×ϕ
// (Ωψ?×ψ)ϕ?×ϕ(= Ω(ψ◦ϕ)?×(ψ◦ϕ)).

Henceforth, unless otherwise stated, we will write Σ and Λ instead of (S, Σ) and (T, Λ), respectively, and d
instead of (ϕ, d). Furthermore, to shorten terminology, we will say signature and signature morphism instead of
many-sorted signature and many-sorted signature morphism, respectively.

The above definition, obviously, does not exclude that there may be other interesting types of signatures and
signature morphisms, but rather, it delimits the ones we use in this article. Examples of signatures and of signature
morphisms which fall under Definition 2.6 can be found, e.g., in [15].

From the definition of Sig it follows that the projection functor πSig from Sig to Set is a split bi-fibration.
Remark 2.7 The category Sig is complete and co-complete.
Since it will be used afterwards we introduce, for a signature Σ, an S-sorted set A, an S-sorted mapping

f from A to B, and a word w on S, i.e., an element w of S?, the following notation and terminology. We
write |w| for the length of the word w, Aw for

∏
i∈|w|Awi , and fw for the mapping

∏
i∈|w| fwi from Aw to Bw

which sends (ai)i∈|w| in Aw to (fwi(ai))i∈|w| in Bw. Moreover, we let OS(A) stand for the S? × S-sorted set
(Hom(Aw, As))(w,s)∈S?×S and we call it the S? × S-sorted set of the finitary operations on A.

We proceed next to define the category Alg of many-sorted algebras. But before doing that we agree that, for
an arbitrary but fixed signature Σ, Alg(Σ) denotes the category of Σ-algebras (and Σ-homomorphisms). By a
Σ-algebra is meant a pair A = (A, F ), where A is an S-sorted set and F a Σ-algebra structure on A, i.e., a
morphism F = (Fw,s)(w,s)∈S?×S in Sig(S) from Σ to OS(A) (for a pair (w, s) ∈ S? × S and a σ ∈ Σw,s, to
simplify notation we let Fσ stand for Fw,s(σ)). A Σ-homomorphism from a Σ-algebra A to another B = (B,G),
is a triple (A, f,B), written as f : A // B, where f is an S-sorted mapping from A to B that preserves the
structure in the sense that, for every (w, s) in S?×S, every σ in Σw,s, and every (ai)i∈|w| in Aw, it happens that
fs(Fσ((ai)i∈|w|)) = Gσ(fw((ai)i∈|w|)).

Proposition 2.8 There exists a contravariant functor Alg from Sig to Cat which sends a signature Σ to
Alg(Σ) = Alg(Σ), the category of Σ-algebras, and a signature morphism d from Σ to Λ to the functor
Alg(d) = d∗ : Alg(Λ) // Alg(Σ) defined as follows:

1. d∗ assigns to a Λ-algebra B = (B, G) the Σ-algebra d∗(B) = (Bϕ, Gd), where Gd is the composition of
the S? × S-sorted mappings d : Σ // Λϕ?×ϕ and Gϕ?×ϕ : Λϕ?×ϕ

//OT (B)ϕ?×ϕ. We agree that, for
σ ∈ Σw,s, Gd(σ) : Bϕ?(w)

// Bϕ(s) denotes the value of Gd at σ.

2. d∗ assigns to a Λ-homomorphism f from B to B′ the Σ-homomorphism d∗(f) = fϕ from d∗(B) to
d∗(B′).

P r o o f. For every Λ-algebra B = (B, G) it is the case that G is a morphism from Λ to OT (B). Then, by
composing d : Σ // Λϕ?×ϕ and Gϕ?×ϕ : Λϕ?×ϕ

//OT (B)ϕ?×ϕ, and taking into account that OT (B)ϕ?×ϕ

is identical with OS(Bϕ), we infer that Gd = Gϕ?×ϕ ◦ d is a Σ-algebra structure on the S-sorted set Bϕ.
On the other hand, for every (w, s) ∈ S? × S and every σ ∈ Σw,s, it happens that d(σ) ∈ Λϕ?(w),ϕ(s). Thus,

f being a Λ-homomorphism from (B,G) to (B′, G′), we infer that fϕ(s) ◦Gd(σ) = G′d(σ) ◦fϕ?(w). Hence, since

Gd
σ = Gd(σ) and G′σ

d = G′d(σ), we can assert that (fϕ)s◦Gd
σ = G′σ

d◦(fϕ)w. Therefore fϕ is a Σ-homomorphism

from (Bϕ, Gd) to (B′
ϕ, G′d).
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Since the identities and the composites are, obviously, preserved by d∗, it follows that d∗ is a functor from
Alg(Λ) to Alg(Σ).

By applying the EG-construction to Alg we get the category of many-sorted sets as stated in the following

Definition 2.9 The category Alg, of many-sorted algebras and many-sorted algebra homomorphisms, is
given by Alg =

∫ Sig Alg. Therefore the category Alg has as objects the pairs (Σ,A), where Σ is a signature
and A a Σ-algebra, and as morphisms from (Σ,A) to (Λ,B), the pairs (d, f), with d a signature morphism
from Σ to Λ and f a Σ-homomorphism from A to d∗(B). Henceforth, to shorten terminology, we will say
algebra and algebra homomorphism, or, simply, homomorphism, instead of many-sorted algebra and many-
sorted algebra homomorphism, respectively.

From the definition of Alg it follows that the projection functor πAlg from Alg to Sig is a fibration. Moreover,
for every set of sorts S, the fiber of πSig,Alg = πSig ◦ πAlg at (S, idS) is, essentially, the category Alg(S) with
objects the pairs (Σ,A), where Σ is an S-sorted signature and A = (A,F ) a Σ-algebra, and morphisms from
(Σ,A) to (Λ,B), where B = (B, G), the pairs (d, f), where d is an S-sorted signature morphism from Σ to Λ
and f a Σ-homomorphism from A to Bd = (B, G ◦ d).

Remark 2.10 The category Alg is concrete and univocally transportable relative to a “forgetful” G from Alg
to the fibered product MSet×SetSig. In addition, the functor G has a left adjoint T : MSet×SetSig // Alg,
obtained from the family (TΣ)Σ∈Sig, where, for a signature Σ in Sig, the functor TΣ from SetS to Alg(Σ)
is the left adjoint to the forgetful functor GΣ from Alg(Σ) to SetS . It is worth pointing out that the functor
T transforms objects of MSet×Set Sig into labeled term algebras in Alg and morphisms of MSet×Set Sig
into translators between the associated labeled term algebras in Alg. Moreover, Alg is complete and, since, for
every signature morphism d : Σ // Λ, the functor d∗, defined in Proposition 2.8, has a left adjoint d∗, it is
also co-complete. On the other hand, for every set of sorts S, the category Alg(S) is concrete and univocally
transportable relative to the functor GS from Alg(S) to Sig(S) × SetS , obtained, by the universal property of
the product, from the forgetful functors GSig(S) and GSetS from the category Alg(S) to the categories Sig(S)
and SetS , respectively. Besides, the functor GS has a left adjoint.

3 Many-sorted closure spaces.

In this section we begin by associating with every set of sorts S the categories ClSySp(S), of S-closure system
spaces, and ClOpSp(S), of S-closure operator spaces, and proving that both these categories are concretely
isomorphic. This is why we will refer to them, simply, as the category ClSp(S), of S-closure spaces. Following
this we define, for every set of sorts S, two full subcategories of ClSp(S), the category AClSp(S), of alge-
braic S-closure spaces, and the category UAClSp(S), of uniform algebraic S-closure spaces, which will be
fundamental to state, in the fourth section, the Birkhoff-Frink representation theorems. Moreover, we state that
AClSp(S) is a co-reflective subcategory of ClSp(S) and that UAClSp(S) is a co-reflective subcategory of
AClSp(S). Afterwards, we prove that every mapping ϕ : S // T determines an adjunction

∐cl
ϕ a∆cl

ϕ from
ClSp(S) to ClSp(T ) and that it can be restricted both to one from AClSp(S) to AClSp(T ) and to one from
UAClSp(S) to UAClSp(T ). Then, since the functors ∆cl

ϕ from ClSp(T ) to ClSp(S), parameterized by the
mappings ϕ in Set, are the components of the morphism mapping of a contravariant functor ∆cl from Set to
Cat, by applying the EG-construction to the contravariant functor ∆cl, we get the category MClSp, of many-
sorted closure spaces and continuous mappings. Finally, from the definition of the category MClSp we state
that the projection functor πMClSp for MClSp is a split fibration and that, for every set S, the fiber of πMClSp at
(S, idS) is, essentially, the category ClSp(S) of S-closure spaces and S-continuous mappings.

Definition 3.1 Let A be an S-sorted set and let Sub(A) = {X ∈ US | X ⊆ A } be the set of all sub-S-sorted
sets of A, where X ⊆ A means, in this context, that, for all s ∈ S, Xs ⊆ As.

1. An S-closure system on A is a subset C of Sub(A) such that A ∈ C and, for any D ⊆ C, if D 6= ∅, then⋂D = (
⋂

D∈D Ds)s∈S ∈ C. We denote by ClSy(A) the set of all S-closure systems on A and by ClSy(A)
the same set but partially ordered by inclusion. We call the pairs of the form (A, C), with C ∈ ClSy(A),
S-closure system spaces.
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8 Climent and Soliveres: Birkhoff-Frink representations as functors

2. An S-closure operator on A is an operator J on Sub(A), i.e., a mapping J of Sub(A) into itself, which
sends X = (Xs)s∈S ⊆ A to J(X) = (J(X)s)s∈S ⊆ A, with the properties

(a) X ⊆ J(X), i.e., J is extensive,

(b) If X ⊆ Y , then J(X) ⊆ J(Y ), i.e., J is isotone,

(c) J(J(X)) = J(X), i.e., J is idempotent,

for all X, Y ⊆ A. We denote by ClOp(A) the set of all S-closure operators on A and by ClOp(A) the
same set but partially ordered by declaring J ≤ K to mean that, for every X ⊆ A, J(X) ⊆ K(X). We call
the pairs of the form (A, J), with J ∈ ClOp(A), S-closure operator spaces.

Example 3.2 For a Σ-algebra A, the set Sub(A), of all subalgebras of A, is an S-closure system on the
S-sorted set A, and the subalgebra generating operator SgS

A on A induced by A is an S-closure operator on A.
Example 3.3 For a Σ-algebra A, the set Cgr(A), of all congruences on A, is an S-closure system on the

S-sorted set A × A = (As × As)s∈S , and the congruence generating operator CgS
A on A × A induced by A is

an S-closure operator on A×A.
As in the single-sorted case, also in the many-sorted case, for a set of sorts S, every S-closure system C on

an S-sorted set A, when ordered by inclusion, determines a complete lattice C = (C,⊆). Moreover, the ordered
sets ClOp(A) and ClSy(A) are complete lattices and dually isomorphic under the correspondence FixS from
ClOp(A) to ClSy(A) which sends an S-closure operator J on A to FixS(J) = {X ⊆ A | J(X) = X}, the
S-closure system on A of all fixed points of J .

After having defined, for a set of sorts S, the S-closure system spaces and the S-closure operator spaces,
we proceed next to define the suitable morphisms both between S-closure system spaces and between S-closure
operator spaces.

Definition 3.4 Let S be a set of sorts, (A, C), (B,D) two S-closure system spaces, and (A, J), (B, K) two
S-closure operator spaces.

1. An S-continuous mapping from (A, C) to (B,D) is a triple ((A, C), f, (B,D)), which we shall write as
f : (A, C) // (B,D), where f is an S-sorted mapping from A to B such that f−1[D] ∈ C, for all D ∈ D.

2. An S-continuous mapping from (A, J) to (B,K) is a triple ((A, J), f, (B, K)), which we shall write as
f : (A, J) // (B, K), where f is an S-sorted mapping from A to B such that f [J(X)] ⊆ K(f [X]), for
all X ⊆ A.

Example 3.5 For a Σ-homomorphism f from A to B and a sub-S-sorted X of A, it happens that f [SgS
A(X)]

is identical with SgS
B(f [X]). Therefore the Σ-homomorphism f determines an S-continuous (and closed) map-

ping from (A, SgS
A) to (B, SgS

B).
Example 3.6 For a Σ-homomorphism f from A to B and a congruence Ψ on B, it happens that (f×f)−1[Ψ]

is a congruence on A. Therefore from the Σ-homomorphism f we get the S-continuous mapping f × f from
(A×A, Cgr(A)) to (B ×B, Cgr(B)).

Also as for the single-sorted case, for every set of sorts S, there exists, up to a concrete isomorphism, a category
of S-closure spaces, with objects given by an S-sorted set and, alternatively, but equivalently, an S-closure system
or an S-closure operator on it.

Proposition 3.7 Let S be a set of sorts. Then

1. The S-closure system spaces together with the S-continuous mappings between them, as defined in the
first part of Definition 3.4, constitute a category ClSySp(S). Furthermore, the forgetful functor from
ClSySp(S) to SetS which sends an S-continuous mapping f from (A, C) to (B,D) to the S-sorted map-
ping f from A to B is faithful. Therefore ClSySp(S) is a concrete category over SetS .

2. The S-closure operator spaces together with the S-continuous mappings between them, as defined in the
second part of Definition 3.4, constitute a category ClOpSp(S). Furthermore, the forgetful functor from
ClOpSp(S) to SetS which sends an S-continuous mapping f from (A, J) to (B,K) to the S-sorted
mapping f from A to B is faithful. Therefore ClOpSp(S) is a concrete category over SetS .
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3. The categories ClOpSp(S) and ClSySp(S) are concretely isomorphic. The functor that associates with
each S-continuous mapping f from (A, J) to (B,K) the S-continuous mapping f from (A,FixS(J)) to
(B, FixS(K)) is a concrete isomorphism.

Henceforth, in virtue of the third part of Proposition 3.7, for a set of sorts S, by the category of S-closure
spaces, denoted by ClSp(S), we will refer, indistinctly, to any of the categories ClSySp(S) or ClOpSp(S).
However, it is useful to keep in mind, for a set of sorts S, both categories, because some of the properties which
can be attributed to an S-closure space, like that of uniformity (which was defined in [8] and recalled immediately
below), are much more easily stated in terms of the objects of one of them than in terms of the objects of the
other.

Remark 3.8 As for the single-sorted case, for every set of sorts S, the forgetful functor from the category
ClSp(S) to the category SetS has both a left and a right adjoint and constructs limits and colimits (see [23], p.
149, for the definition of when a functor constructs limits and colimits).

Next we define, for a set of sorts S and an S-sorted set A, the concepts of: algebraic S-closure operator on A,
support of A, uniformity for an operator on A, uniform S-closure operator on A, and uniform algebraic S-closure
operator on A.

Definition 3.9 Let A be an S-sorted set. An S-closure operator J on A is said to be algebraic if, for every
X ⊆ A, J(X) =

⋃
Z∈Subf(X) J(Z), where Subf(X) is the set of all sub-S-sorted sets Z of X which are finite,

i.e., such that card(
∐

s∈S Zs) < ℵ0. We let AClSp(S) stand for the full subcategory of ClSp(S) determined
by the S-closure spaces (A, J) for which J is algebraic.

Notice that, for an S-sorted set A, the following conditions are equivalent: (1) A is finite, (2) A is finitary,
and (3) A is strongly finitary (see [24], Lemma 3.5, p. 26, for a proof, and [19], Exercise 22E, p. 155, for the
definition of finitary and of strongly finitary).

The classical characterization of algebraic closure operators, due to Schmidt [27], is also valid for many-sorted
algebraic closure operators. That is, for an S-closure operator J on an S-sorted set A, the following conditions
are equivalent: (1) J is algebraic, (2) for every nonempty directed family (Xi)i∈I in Sub(A), it happens that
J
(⋃

i∈I Xi
)

=
⋃

i∈I J(Xi), where, for a family of S-sorted sets (Zi)i∈I ,
⋃

i∈I Zi = (
⋃

i∈I Zi
s)s∈S .

Example 3.10 The set Sub(A) is an algebraic S-closure system on the S-sorted set A, and SgS
A an algebraic

S-closure operator on A.

Example 3.11 The set Cgr(A) is an algebraic S-closure system on the S-sorted set A × A, and CgS
A an

algebraic S-closure operator on A×A.

Definition 3.12 Let A be an S-sorted set. The support of A, from now on denoted by supp(A), is the subset
of S defined as supp(A) = {s ∈ S | As 6= ∅}.

Definition 3.13 Let A be an S-sorted set. An operator J on Sub(A) is said to be uniform if, for all X , Y ⊆ A,
if supp(X) = supp(Y ), then supp(J(X)) = supp(J(Y )). We let UClSp(S) stand for the full subcategory of
ClSp(S) determined by the S-closure spaces (A, J) for which J is uniform. On the other hand, we say that J
is a uniform algebraic S-closure operator on A if J is an algebraic S-closure operator on A and J is uniform.
We let UAClSp(S) stand for the full subcategory of AClSp(S) determined by the algebraic S-closure spaces
(A, J) for which J is uniform.

Remark 3.14 Unlike what it happens in the many-sorted case, the concept of uniformity does not play any role
in the single-sorted one, since in it every operator on a set is always uniform, hence UAClSp(1) = AClSp(1).

Remark 3.15 For a Σ-algebra A, as we will show in the fourth section, it happens that SgS
A is a uniform

algebraic S-closure operator on A.

By taking the dual of Exercise 5 in [10], pp. 46–47, which Cohn attributes to G. Higman, given a set A and a
closure operator J on A, there exists a greatest algebraic closure operator Jf on A contained in J . We prove next
the many-sorted counterpart of this result and, in addition, that if J is uniform, then Jf is also uniform.

Proposition 3.16 Let A be an S-sorted set and J an S-closure operator on A. Then Jf , where, for every
X ⊆ A, Jf(X) =

⋃
Y ∈Subf(X) J(Y ), is the greatest algebraic S-closure operator on A such that Jf ≤ J .

Moreover, if J is uniform, then Jf is the greatest uniform algebraic S-closure operator on A such that Jf ≤ J .
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10 Climent and Soliveres: Birkhoff-Frink representations as functors

P r o o f. We restrict ourselves to prove that Jf is uniform since the proof of the first part of the proposition
is formally identical with that corresponding to the single-sorted case. Let X,Y ⊆ A be such that supp(X) =
supp(Y ) and s ∈ supp(Jf(X)). Then s belongs to the support of the union (and, therefore, to the union of the
supports) of the closures under J of the finite sub-S-sorted sets of X . Hence there exists a Z ∈ Subf(X) such
that s ∈ supp(J(Z)). But, because Z is finite, there exists a Z ′ ∈ Subf(Y ) such that supp(Z) = supp(Z ′) and,
since J is uniform, s ∈ supp(J(Z ′)), thus s ∈ supp(Jf(Y )).

Following this we prove, for a set of sorts S, that there are adjoint situations between the categories ClSp(S),
AClSp(S), and UAClSp(S).

Proposition 3.17 Let S be a set of sorts. Then AClSp(S) is a co-reflective subcategory of ClSp(S), i.e.,
there exists a functor from ClSp(S) to AClSp(S) right adjoint for the canonical embedding of AClSp(S) in
ClSp(S). Moreover, UAClSp(S) is a co-reflective subcategory of AClSp(S), and therefore also of ClSp(S).

P r o o f. We restrict ourselves to prove the first part of the proposition, since the second one follows immedi-
ately from it. Let (A, J) be an S-closure space. Then the algebraic S-closure space (A, Jf), together with the
morphism from (A, Jf) to (A, J) determined by idA, has the property that, for every algebraic S-closure space
(B, K) and every morphism f : (B, K) // (A, J), there exists a unique morphism f [ : (B, K) // (A, Jf)
such that idA ◦ f [ = f . In fact, if f : (B, K) // (A, J) is a morphism, then f [ = ((B,K), f, (A, Jf)) is a
morphism, since, for every X ⊆ B, every s ∈ S, and every a ∈ K(X)s, it happens that a ∈ K(F )s, for some
F ∈ Subf(X), because K is algebraic, from which we infer that fs(a) ∈ J(f [F ])s, thus fs(a) ∈ Jf(f [X])s.

Our next goal is to prove that every mapping ϕ : S // T determines an adjunction
∐cl

ϕ a∆cl
ϕ from ClSp(S)

to ClSp(T ). In order to get such a proof it is convenient to introduce the following notational conventions. For
a T -sorted set B and a subset D of Sub(B), let ∆ϕ[D] denote the subset {Dϕ | D ∈ D } of Sub(Bϕ), and, for
an S-sorted set A and a subset C of Sub(A), let

∐
ϕ[C] denote the subset {∐

ϕ C | C ∈ C } of Sub(
∐

ϕ A).

Proposition 3.18 Let ϕ : S // T be a mapping. Then from ClSp(T ) to ClSp(S) there exists a functor ∆cl
ϕ

defined as follows:

1. ∆cl
ϕ sends (B,D) in ClSp(T ) to (Bϕ, ∆ϕ[D]) in ClSp(S).

2. ∆cl
ϕ sends a T -continuous mapping f from (B,D) to (B′,D′) to the S-continuous mapping fϕ from

(Bϕ, ∆ϕ[D]) to (B′
ϕ, ∆ϕ[D′]).

P r o o f. Let D be a T -closure system on B, then ∆ϕ[D] is an S-closure system on Bϕ, since, for every
nonempty family (Y i)i∈I of T -sorted sets, it happens that (

⋂
i∈I Y i)ϕ =

⋂
i∈I Y i

ϕ. Moreover, if f is a T -
continuous mapping from (B,D) to (B′,D′) and Y ′

ϕ ∈ ∆ϕ[D′], then Y ′ ∈ D′ and f−1[Y ′] ∈ D, thus
∆ϕ(f−1[Y ′]) ∈ ∆ϕ[D]. But ∆ϕ(f−1[Y ′]) is identical with (∆ϕ(f))−1[Y ′

ϕ], therefore fϕ is an S-continuous
mapping.

Proposition 3.19 Let ϕ : S // T be a mapping. Then from ClSp(S) to ClSp(T ) there exists a functor
∐cl

ϕ

defined as follows:

1.
∐cl

ϕ sends (A, C) in ClSp(S) to (
∐

ϕ A,
∐

ϕ[C]) in ClSp(T ).

2.
∐cl

ϕ sends an S-continuous mapping f from (A, C) to (A′, C′) to the T -continuous mapping
∐

ϕ f from
(
∐

ϕ A,
∐

ϕ[C]) to (
∐

ϕ A′,
∐

ϕ[C′]).
P r o o f. Let C be an S-closure system on A, then

∐
ϕ[C] is a T -closure system on

∐
ϕ A, since, for every

nonempty family (Xi)i∈I of S-sorted sets, it happens that
∐

ϕ

⋂
i∈I Xi =

⋂
i∈I

∐
ϕ Xi. Moreover, if f is an S-

continuous mapping from (A, C) to (A′, C′) and
∐

ϕ X ∈ ∐
ϕ[C′], then X ′ ∈ C′ and f−1[X ′] ∈ C, consequently∐

ϕ f−1[X ′] ∈ ∐
ϕ[C]. But

∐
ϕ f−1[X ′] is identical with (

∐
ϕ f)−1[

∐
ϕ X ′], therefore

∐
ϕ f is a T -continuous

mapping.

Proposition 3.20 Let ϕ : S // T be a mapping. Then the functor
∐cl

ϕ is a left adjoint for the functor ∆cl
ϕ .
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P r o o f. The natural isomorphism θϕ of the adjunction
∐

ϕ a∆ϕ, stated in Proposition 2.1, also happens to
be a natural isomorphism

Hom((A, C), (Bϕ, ∆ϕ[D])) ∼= Hom((
∐

ϕ A,
∐

ϕ[C]), (B,D)),

for every (A, C) in ClSp(S) and every (B,D) in ClSp(T ).
Let f be an S-continuous mapping from (A, C) to (Bϕ,∆ϕ[D]), and Y an element of D. Since Yϕ ∈ ∆ϕ[D]

and f is continuous, we infer that f−1[Yϕ] ∈ C and
∐

ϕ f−1[Yϕ] ∈ ∐
ϕ[C]. But

∐
ϕ f−1[Yϕ] is identical with

((θϕ)−1(f))−1[Y ], because

((θϕ)−1(f))−1[Y ] = ({(a, s) ∈ (
∐

ϕ A)t | a ∈ As, ϕ(s) = t, fs(a) ∈ Yt})t∈T

= ({(a, s) ∈ (
∐

ϕ A)t | a ∈ f−1[Yϕ]s, ϕ(s) = t})t∈T

= (
∐

s∈ϕ−1[t] f
−1[Yϕ]s)t∈T

=
∐

ϕ f−1[Yϕ],

where, we recall, for t ∈ T , (
∐

ϕ A)t =
∐

s∈ϕ−1[t] As. Therefore (θϕ)−1(f) is a T -continuous mapping.
Reciprocally, let us suppose that g is a T -continuous mapping from (

∐
ϕ A,

∐
ϕ[C]) to (B,D). Let Yϕ be an

element of ∆ϕ[D], then Y ∈ D and g−1[Y ] ∈ ∐
ϕ[C]. But it happens that

g−1[Y ] = ({(a, s) ∈ (
∐

ϕ A)t | gt(a, s) ∈ Yt})t∈T

= (
∐

s∈ϕ−1[t]{a ∈ As | gϕ(s)(a, s) ∈ Yϕ(s)})t∈T

=
∐

ϕ(({a ∈ As | gϕ(s)(a, s) ∈ Yϕ(s)})s∈S),

and, additionally, that

({a ∈ As | gϕ(s)(a, s) ∈ Yϕ(s)})s∈S = ({a ∈ As | θϕ(g)s(a) ∈ Yϕ(s)})s∈S

= (θϕ(g))−1[Yϕ],

thus g−1[Y ] =
∐

ϕ(θϕ(g))−1[Yϕ], therefore (θϕ(g))−1[Yϕ] ∈ C and θϕ(g) is an S-continuous mapping.

Now we prove that, for a mapping ϕ : S // T , the adjunction
∐cl

ϕ a∆cl
ϕ can be restricted both to one from

AClSp(S) to AClSp(T ) and to one from UAClSp(S) to UAClSp(T ).
Proposition 3.21 Let ϕ : S // T be a mapping. Then

1. If (B,D) is an algebraic T -closure space, then ∆cl
ϕ(B,D) is an algebraic S-closure space and if (A, C)

is an algebraic S-closure space, then
∐cl

ϕ(A, C) is an algebraic T -closure space. We agree to denote by∐acl
ϕ a∆acl

ϕ the corresponding adjunction from AClSp(S) to AClSp(T ).

2. If (B, K) is a uniform algebraic T -closure space, then ∆cl
ϕ(B, K) is a uniform algebraic S-closure space

and if (A, J) is a uniform algebraic S-closure space and ϕ is injective, then
∐cl

ϕ(A, J) is a uniform

algebraic T -closure space. We agree to denote by
∐uacl

ϕ a ∆uacl
ϕ the corresponding adjunction from

UAClSp(S) to UAClSp(T ).

P r o o f. Let (B,D) be an algebraic T -closure space. Then ∆cl
ϕ(B,D) is an algebraic S-closure space, since,

for every nonempty family (Di
ϕ)i∈I in ∆ϕ[D], directed or not, it happens that (

⋃
i∈I Di)ϕ =

⋃
i∈I Di

ϕ.
Let (A, C) be an algebraic S-closure space. Then

∐cl
ϕ(A, C) is an algebraic T -closure space, since, for every

nonempty family (Ci
ϕ)i∈I in

∐
ϕ[C], directed or not, it happens that

⋃
i∈I(

∐
ϕ(Di)) =

∐
ϕ(

⋃
i∈I Di).

Let (B,K) be a uniform algebraic T -closure space. Then ∆cl
ϕ(B, K) is a uniform algebraic S-closure space.

In fact, for every Y, Z ⊆ Bϕ, if supp(Y ) = supp(Z), then supp(
∐

ϕ Y ) = supp(
∐

ϕ Z), hence, since K is
uniform, we infer that supp(K(

∐
ϕ Y )) = supp(K(

∐
ϕ Z)), thus supp(K(

∐
ϕ Y )ϕ) = supp(K(

∐
ϕ Z)ϕ).
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Let (A, J) be a uniform algebraic S-closure space. If ϕ : S // T is injective, then
∐cl

ϕ(A, J) is a uniform
algebraic T -closure space. In fact, for every

∐
ϕ Y,

∐
ϕ Z ⊆ ∐

ϕ A, if supp(
∐

ϕ Y ) = supp(
∐

ϕ Z), then, by
the injectivity of ϕ, supp(Y ) = supp(Z), hence, since J is uniform, supp(J(Y )) = supp(J(Z)), therefore
supp(

∐
ϕ J(Y )) = supp(

∐
ϕ J(Z)), i.e., supp(Jϕ(

∐
ϕ Y )) = supp(Jϕ(

∐
ϕ Z)).

The functors ∆cl
ϕ and

∐cl
ϕ can, evidently, also be defined for T -closure and S-closure operators, respectively.

Actually, the definition of the functor
∐cl

ϕ for S-closure operators, as shown in the following proposition, is
immediate.

Proposition 3.22 Given a mapping ϕ : S // T and an S-closure space (A, J), the pair (
∐

ϕ A, Jϕ) is a
T -closure space, where the operator Jϕ on

∐
ϕ A assigns to

∐
ϕ X , for any X ⊆ A, the T -sorted set

∐
ϕ J(X).

P r o o f. The definition of the operator Jϕ is sound, since Sub(A) ∼= Sub(
∐

ϕ A) and Sub(
∐

ϕ A) is precisely∐
ϕ[Sub(A)].

However, the corresponding definition of the functor ∆cl
ϕ for T -closure operators is more involved, since, for

a T -sorted set B, we only have, in general, that ∆ϕ[Sub(B)] ⊆ Sub(Bϕ).

Proposition 3.23 Given a mapping ϕ : S // T and a T -closure space (B,K), the pair (Bϕ,Kϕ) is an
S-closure space, where the operator Kϕ on Bϕ is defined as follows:

Kϕ

{
Sub(Bϕ) // Sub(Bϕ)

Y 7−→ K((
⋃

s∈ϕ−1[t]Ys)t∈T )ϕ

P r o o f. The definition of the operator Kϕ as the composite ∆ϕ,B ◦ K ◦ ⋃
ϕ,B is sound since the mapping⋃

ϕ,B from Sub(Bϕ) to Sub(B), which sends a subset Y of Bϕ to the subset (
⋃

s∈ϕ−1[t] Ys)t∈T of B, is isotone
and has the mapping ∆ϕ,B from Sub(B) to Sub(Bϕ), which sends a subset X of B to the subset Xϕ of Bϕ, as
a right adjoint.

The functors ∆cl
ϕ : ClSp(T ) // ClSp(S), parameterized by the mappings ϕ in Set, are the components of

the morphism mapping of a contravariant functor ∆cl from Set to Cat.

Proposition 3.24 There exists a contravariant functor ∆cl from Set to Cat which sends a set S to ∆cl(S) =
ClSp(S), the category of S-closure spaces, and a mapping ϕ : S // T to the functor ∆cl

ϕ from ClSp(T ) to
ClSp(S) defined as follows:

1. ∆cl
ϕ assigns to a T -closure space (B,D) the S-closure space (Bϕ, ∆ϕ[D]).

2. ∆cl
ϕ assigns to a T -continuous mapping f from (B,D) to (B′,D′) the S-continuous mapping fϕ from

(Bϕ, ∆ϕ[D]) to (B′
ϕ, ∆ϕ[D′]).

Remark 3.25 The functors
∐cl

ϕ : ClSp(S) // ClSp(T ), parameterized by the mappings ϕ in Set, are the

components of the morphism mapping of a of a pseudo-functor
∐cl from Set to Cat.

By applying the EG-construction to ∆cl we get the category of many-sorted closure spaces as stated in the
following

Definition 3.26 The category MClSp, of many-sorted closure spaces and continuous mappings, is given by
MClSp =

∫ Set ∆cl. Therefore MClSp has as objects the triples (S, A, C), where S is a set and (A, C) an
S-closure space, and as morphisms from (S,A, C) to (T, B,D) the triples ((S,A, C), (ϕ, f), (T, B,D)), which
we agree to denote by (ϕ, f) : (S,A, C) // (T, B,D), where ϕ is a mapping from S to T and f an S-continuous
mapping from (A, C) to (Bϕ, ∆ϕ[D]). Henceforth, to shorten terminology, we will say closure space and contin-
uous mapping, instead of many-sorted closure space and many-sorted continuous mapping, respectively, when
this is unlikely to cause confusion.

From the definition of MClSp it follows that the projection functor πMClSp for MClSp is a split fibration.
Moreover, for every set S, the fiber of πMClSp at (S, idS) is, essentially, the category ClSp(S).
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Remark 3.27 The forgetful functor from the category MClSp to the category MSet has left and right
adjoints and constructs limits and colimits, exactly as it happens for the forgetful functor from the category
ClSp(S) to the category SetS (as indicated in Remark 3.8).

4 Functorization of the Birkhoff-Frink representation theorems.

Our main aim in this last section is to provide the functorial version of the Birkhoff-Frink representation theorems
both for single-sorted algebras and for many-sorted algebras, by defining the appropriate categories and functors,
covariant and contravariant, involved in the process. The categories which are necessary for it are of three types.
On the one hand, we have the categories Alg(S), of S-algebras and S-homomorphisms, which are, essentially,
the fibers, at the pairs (S, idS), of the fibration πSig,Alg from Alg to Set, as stated after Definition 2.9. In
particular, the category Alg(1), i.e., the fiber of πSig,Alg at (1, id1), where 1 is the standard final set, has

1. As objects, essentially, the pairs (Σ,A), where Σ = (Σn)n∈N is a single-sorted signature, i.e., an object of
SetN, and A = (A, F ) a Σ-algebra, i.e., an ordinary set A together with an N-sorted mapping F from Σ to
(Hom(An, A))n∈N, and

2. As morphisms from (Σ,A) to (Λ,B), where B = (B, G), the pairs (d, f) with d = (dn)n∈N an N-sorted
mapping from Σ to Λ in SetN, and f a Σ-homomorphism from A = (A,F ) to Bd = (B, G ◦ d).

On the other hand, we have the categories AClSp(S), of algebraic S-closure spaces and S-continuous mappings,
and UAClSp(S), of uniform algebraic S-closure spaces and S-continuous mappings, which are subcategories
of the fibers ClSp(S), at the pairs (S, idS), of the split fibration πMClSp from MClSp to Set. In particular,
the category AClSp(1), i.e., the fiber of πMClSp at (1, id1), is, essentially, the category AClSp, of algebraic
closure spaces and continuous mappings. And, finally, we have the category ALat which is the subcategory of
the category CLat∧, of complete lattices and lattice morphisms which preserve arbitrary meets, determined by
the algebraic lattices and the morphisms which, in addition, preserve directed joins.

The functors involved in the Birkhoff-Frink representation theorems are of two types, both parameterized by
sets (of sorts) S in Set. On the one hand, we have the covariant functors SgS from Alg(S) to UAClSp(S),
which assign to an S-algebra (Σ,A) the uniform algebraic S-closure space (A,SgS

A), where, we recall, SgS
A is

the subalgebra generating operator on A induced by A. On the other hand, we have the contravariant functors
FixS from UAClSp(S) to ALat, which assign to a uniform algebraic S-closure space (A, J) the complete
lattice FixS(J) of the fixed points of J .

We begin by stating the functorial version of the first classical Birkhoff-Frink representation theorem. But
before doing that we introduce, for a single-sorted signature Σ and a Σ-algebra A, the following notation. We
will write EA to denote the operator on Sub(A) which sends a subset X of A precisely to X ∪ (

⋃
n∈N

σ∈Σn

Fσ[Xn]).

We will also use (En
A(X))n∈N to denote the family in Sub(A) specified as: E0

A(X) = X , and, for all n ∈ N,
En+1

A (X) = EA(En
A(X)), and Eω

A(X) as an alternate notation to
⋃

n∈N En
A(X).

Proposition 4.1 There exists a functor Sg from Alg(1) to AClSp which is surjective on the objects.

P r o o f. It suffices to take as Sg the functor from Alg(1) to AClSp which sends an algebra (Σ,A) to the
algebraic closure space (A, SgA), where SgA is the subalgebra generating operator on A induced by A; and a
morphism (d, f) from (Σ,A) to (Λ,B) in Alg(1) to the morphism f from (A, SgA) to (B, SgB) in AClSp.

The action of Sg on the morphisms is well defined, i.e., for every X ⊆ A, f [SgA(X)] ⊆ SgB(f [X]).
This follows, by induction, taking into account the following facts: (1) SgA(X) = Eω

A(X), (2) f [Eω
A(X)] =⋃

n∈N f [En
A(X)], (3) SgB(f [X]) is a subalgebra of the Λ-algebra B, and (4) f is a Σ-homomorphism from

A = (A,F ) to Bd = (B,G ◦ d).
The proof of the fact that the functor Sg from Alg(1) to AClSp is surjective on the objects can be found,

e.g., in [10], p. 80.

Remark 4.2 Of course, as pointed out, e.g., by Cohn in [10], p. 81, there are many ways of choosing the
structure of single-sorted algebra to produce the given algebraic closure space. However, if we take into account
only the standard way in which it has been chosen in [10], p. 80, [16], p. 48, [21], p. 91, and [25], p. 183,
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14 Climent and Soliveres: Birkhoff-Frink representations as functors

then this allows us to assert that the morphism mapping of Sg is also surjective with regard to the injective
continuous mappings between algebraic closure spaces. In fact, let f be an injective continuous mapping from
an algebraic closure space (A, J) to another (B, K). Then the pair (df , f), where df is the morphism from
Σ(A,J) to Σ(B,K) which to a pair (x, a), with x ∈ An, for some n ∈ N, and a ∈ J(Im(x)), assigns the pair
(fn(x), f(a)), is a homomorphism from the algebra (Σ(A,J), (A,F (A,J))) to the algebra (Σ(B,K), (B, F (B,K))),
since the injectivity of f entails (taking into account the definition of the structural operations of the involved
algebras given in any of the four items referred to above) that F

(B,K)
fn(x),f(a) ◦ fn = f ◦ F

(A,J)
x,a . Obviously, the

functor Sg sends (df , f) to the morphism f . Therefore, the morphism mapping of the functor Sg is surjective, as
asserted, for the injective continuous mappings between algebraic closure spaces.

To render functorial the second Birkhoff-Frink representation theorem it is required to work with the subcate-
gory ALat of the category CLat∧.

Proposition 4.3 There exists an essentially surjective contravariant functor Fix from AClSp to ALat.

P r o o f. Let Fix be the contravariant functor from AClSp to ALat which assigns to an algebraic closure
space (A, J) the algebraic lattice Fix(J) of the fixed points of J , and to a morphism f : (A, J) // (B, K) the
morphism Fix(f) = f−1[·] from Fix(K) to Fix(J) which sends a fixed point Y = K(Y ) of K to f−1[Y ], its
inverse image under f , which is, obviously, a fixed point of J . The morphism mapping of Fix is well defined
since, on the one hand, for every Y ⊆ Fix(K), it happens that

f−1[
∧Y] = f−1[

⋂
Y ∈Y Y ] =

⋂
Y ∈Y f−1[Y ] =

∧{f−1[Y ] | Y ∈ Y},

and, on the other hand, for every directed subset Y of Fix(K), we have that f−1[
∨Y] =

∨{f−1[Y ] | Y ∈ Y}.
Finally, on account of Theorem 5.8 in [6], we conclude that Fix is essentially surjective.

From Proposition 4.1 and Proposition 4.3 we obtain the functorial version of the second classical Birkhoff-
Frink representation theorem as stated in the following

Corollary 4.4 The contravariant functor Fix ◦ Sg from Alg(1) to ALat is essentially surjective.

P r o o f. Because the object mapping of the functor Sg is surjective and the contravariant functor Fix is
essentially surjective.

Our next goal is to extend Proposition 4.1 and Corollary 4.4 to the many-sorted case, i.e., to the case when the
set of sorts S is such that card(S) ≥ 2. We begin by proving for the functor SgS from Alg(S) to UAClSp(S)
(to be defined below) the many-sorted counterpart of the first classical Birkhoff-Frink representation theorem.
However, to do this we need to state beforehand, for an S-sorted signature Σ and a Σ-algebra A, a constructive
characterization of the subalgebra generating operator SgS

A on A induced by A, and the uniformity of SgS
A.

Definition 4.5 Let Σ be an S-sorted signature and A = (A,F ) a Σ-algebra.

1. The operator EA on Sub(A) is defined, for every X ⊆ A, by EA(X) = X ∪ ( ⋃
σ∈Σ·,s Fσ[Xar(σ)]

)
s∈S

,
where, for s ∈ S, Σ·,s =

⋃
w∈S? Σw,s and, for ar(σ) = (sj)j∈m ∈ S?, the arity of σ, Xar(σ) =

∏
j∈m Xsj .

2. Let X be a sub-S-sorted set of A. Then the family (En
A(X))n∈N in Sub(A) is defined by recursion as:

E0
A(X) = X , and, for all n ∈ N, En+1

A (X) = EA(En
A(X)).

3. The operator Eω
A on Sub(A) is defined, for every X ⊆ A, by Eω

A(X) =
⋃

n∈N En
A(X).

Proposition 4.6 Let Σ be an S-sorted signature, A a Σ-algebra, and X ⊆ A. Then SgS
A(X) = Eω

A(X).

P r o o f. See [7].

Proposition 4.7 Let Σ be an S-sorted signature, A a Σ-algebra, and X,Y ⊆ A. Then

1. If supp(X) = supp(Y ), then, for each n ∈ N, supp(En
A(X)) = supp(En

A(Y )).

2. supp(SgS
A(X)) =

⋃
n∈N supp(En

A(X)).
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3. If supp(X) = supp(Y ), then supp(SgS
A(X)) = supp(SgS

A(Y )).

Therefore the many-sorted algebraic closure operator SgS
A is uniform.

P r o o f. See [7] again.

Proposition 4.8 Let S be a nonempty set of sorts. Then there exists a functor SgS from Alg(S) to UAClSp(S)
which is surjective on the objects.

P r o o f. Let SgS be the functor from Alg(S) to UAClSp(S) which sends an S-algebra (Σ,A) to the uni-
form algebraic S-closure space (A,SgS

A), where SgS
A is the subalgebra generating operator on A induced by

A, and a morphism (d, f) from (Σ,A) to (Λ,B) in Alg(S) to the morphism f from (A, SgS
A) to (B, SgS

B) in
UAClSp(S).

To prove that the action of SgS on the morphisms is well defined, i.e., that, for every X ⊆ A, f [SgS
A(X)]

is a sub-S-sorted set of SgS
B(f [X]), we can now proceed analogously to the proof of the corresponding fact in

Proposition 4.1.
The proof of the fact that the functor SgS from Alg(S) to UAClSp(S) is surjective on the objects can be

found in [8], and this is precisely the first Birkhoff-Frink representation theorem for many-sorted algebras.

Remark 4.9 In what follows, to shorten notation, we continue to write, for a set of sorts U , SgU for the com-
posite of SgU : Alg(U) // UAClSp(U) and of the canonical embedding of UAClSp(U) into AClSp(U).
Let ϕ : S // T be a mapping. Then the functor ϕ∗ from Alg(T ) to Alg(S) which sends a T -algebra (Λ,B),
with B = (B,G), to the S-algebra ϕ∗(Λ,B) = (Λϕ?×ϕ, (Bϕ, Gϕ?×ϕ)), and a morphism (e, g) from (Λ,B) to
(Λ′,B′) in Alg(T ) to the morphism ϕ∗(e, g) = (eϕ?×ϕ, gϕ) from ϕ∗(Λ,B) to ϕ∗(Λ′,B′) in Alg(S), has a left
adjoint ϕ∗. Moreover, there are natural transformations βϕ from

∐acl
ϕ ◦SgS to SgT ◦ ϕ∗ and αϕ from SgS ◦ ϕ∗

to ∆acl
ϕ ◦ SgT adjoint for the noncommutative square constructed from the adjunction ϕ∗ a ϕ∗, the adjunction∐acl

ϕ a∆acl
ϕ (stated in the first part of Proposition 3.21), and the functors SgS and SgT (for an explanation of

the concept of adjoint natural transformations see, e.g., [29], p. 14). Finally, if ϕ is injective, then, considering
the adjunction

∐uacl
ϕ a ∆uacl

ϕ (stated in the second part of Proposition 3.21), there are also, as above, natural
transformations which are adjoint for the corresponding noncommutative square.

After having stated the functorial version of the first Birkhoff-Frink representation theorem for many-sorted
algebras, we devote the remainder of this section to state the second one. To this end we need to prove, ultimately,
that, for every set of sorts S, there exists an essentially surjective contravariant functor FixS from UAClSp(S)
to ALat and for this we must state the following auxiliary results.

Proposition 4.10 Let S be a set of sorts. Then there exists a contravariant functor FixS from ClSp(S) to
CLat∧.

P r o o f. Let FixS be the contravariant functor from ClSp(S) to CLat∧ which assigns to an S-closure
space (A, J) the complete lattice FixS(J) of the fixed points of J , and to a morphism f from (A, J) to (B,K)
the morphism FixS(f) = f−1[·] from FixS(K) to FixS(J) which sends a fixed point Y = K(Y ) of K to
f−1[Y ] = (f−1

s [Ys])s∈S , its inverse image under f , which is, obviously, a fixed point of J . What is left is
to show that the morphism mapping of FixS is well defined, i.e., that, for every Y ⊆ FixS(K), it happens that
f−1[

∧Y] =
∧{f−1[Y ] | Y ∈ Y}. But the same proof works for it as for the homologous fact in Proposition 4.3.

The contravariant functor FixS from ClSp(S) to CLat∧ can actually be restricted to a contravariant functor
from the subcategory AClSp(S) of ClSp(S) to the subcategory ALat of CLat∧, and to a contravariant
functor from the subcategory UAClSp(S) of AClSp(S) to ALat. That is, for every algebraic or uniform
algebraic S-closure operator J on an S-sorted set A, it happens that FixS(J) is an algebraic lattice. However,
in order to verify it we need to prove beforehand the following property relative to the finite sub-S-sorted sets of
the union of a family of S-sorted sets.

Lemma 4.11 Let (Ai)i∈I be a family of S-sorted sets and X ∈ Subf(
⋃

i∈I Ai). Then there exists a finite
subset K of I such that X ∈ Subf(

⋃
i∈K Ai).
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16 Climent and Soliveres: Birkhoff-Frink representations as functors

P r o o f. For each s ∈ S and each x ∈ Xs, define Ix,s = {i ∈ I | x ∈ Ai
s}. Then (Ix,s)(x,s)∈∐

X , where∐
X =

⋃
s∈S(Xs × {s}), is a family of nonempty sets, since, for every s ∈ S and every x ∈ Xs, x ∈ ⋃

i∈I Ai
s,

therefore
∏

(x,s)∈∐
X Ix,s 6= ∅. Let f be an arbitrary but fixed element of

∏
(x,s)∈∐

X Ix,s and K = Im(f).
Then X ⊆ ⋃

i∈K Ai and, since card(K) ≤ card(
∐

X) and
∐

X is finite, K is finite.

Proposition 4.12 Let J be an algebraic S-closure operator on an S-sorted set A. Then FixS(J) is an
algebraic lattice and the compacts of FixS(J) are precisely the S-sorted sets of the form J(X), where X is a
finite sub-S-sorted set of A.

P r o o f. We restrict ourselves to prove that if X is a finite sub-S-sorted set of A, then J(X) is a compact of
FixS(J) since the verification of the remaining parts is straightforward. Let us suppose that J(X) is a sub-S-
sorted of

∨
i∈I J(Xi). Then, since X ⊆ J(X) and J is algebraic, it happens that

X ⊆ ∨
i∈I J(Xi) = J(

⋃
i∈I Xi) =

⋃
Z∈Subf(

⋃
i∈I Xi) J(Z).

Therefore, for every s ∈ S and every x ∈ Xs, there exists a Zx,s ∈ Subf(
⋃

i∈I Xi) such that x ∈ J(Zx,s)s.
Hence, by Lemma 4.11, there exists a Kx,s ∈ Subf(I) such that Zx,s ∈ Subf(

⋃
i∈Kx,s Xi). Let us denote by K

the set
⋃

(x,s)∈∐
X Kx,s. Then, for every s ∈ S and every x ∈ Xs, it happens that Zx,s ∈ Subf(

⋃
i∈K Xi), thus

J(Zx,s) ⊆ J(
⋃

i∈K Xi) =
⋃

Z∈Subf(
⋃

i∈K Xi) J(Z).

From the above it follows that

X ⊆ ⋃
(x,s)∈∐

X J(Zx,s) ⊆ ⋃
Z∈Subf (

⋃
i∈K Xi) J(Z) ⊆ J(

⋃
i∈K Xi) =

∨
i∈K J(Xi).

Consequently, since J is idempotent, J(X) ⊆ ∨
i∈K J(Xi), which is the desired conclusion.

Corollary 4.13 The contravariant functor FixS from ClSp(S) to CLat∧ can be restricted to a contravari-
ant functor from AClSp(S) to ALat, as well as to a contravariant functor from UAClSp(S) to ALat, both
of them denoted by FixS for short.

For a nonempty set of sorts S the contravariant functor FixS from ClSp(S) to CLat∧ is essentially surjec-
tive, as we prove in the following

Proposition 4.14 Let S be a nonempty set of sorts. Then every complete lattice is isomorphic to the complete
lattice of the fixed points of an S-closure operator on an S-sorted set, i.e., the contravariant functor FixS from
ClSp(S) to CLat∧ is essentially surjective.

P r o o f. Let L be a complete lattice. Since the set of sorts S is nonempty, for an arbitrary but fixed sort t ∈ S,
let δt,L be the S-sorted set whose s-th coordinate, for s ∈ S, is L, if s = t, and ∅, if s 6= t. Then for the
S-closure system CL on δt,L defined as CL = {X ⊆ δt,L | ∃ a ∈ L (Xt =↓ a)}, where, for every a ∈ L,
↓a = {b ∈ L | b ≤ a} is the principal ideal in L associated to a, or, what is equivalent, for the S-closure operator
JL on δt,L defined, for every X ⊆ δt,L and every s ∈ S, as JL(X)s = {a ∈ L | a ≤ ∨

Xt}, if s = t, and as
JL(X)s = ∅, if s 6= t, it happens that CL = (CL,⊆) = FixS(JL) is isomorphic to L.

As above, also, for a nonempty set of sorts S, the contravariant functor FixS from AClSp(S) to ALat is
essentially surjective, as we prove in the following

Proposition 4.15 Let S be a nonempty set of sorts. Then every algebraic lattice is isomorphic to the algebraic
lattice of the fixed points of an algebraic S-closure operator on an S-sorted set, i.e., the contravariant functor
FixS from AClSp(S) to ALat is essentially surjective.

P r o o f. Let L be an algebraic lattice, K(L) the set of all compact elements of L, and δt,K(L) the S-sorted set
whose s-th coordinate, for s ∈ S, is K(L), if s = t, and ∅, if s 6= t. Then for the S-closure operator JL on
δt,K(L) defined, for every X ⊆ δt,K(L) and every s ∈ S, as JL(X)s = {a ∈ K(L) | a ≤ ∨

Xt}, if s = t, and as
JL(X)s = ∅, if s 6= t, we infer that FixS(JL) is isomorphic to L.
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Finally, since the algebraic S-closure operator JL defined in the proof of the above proposition is, in ad-
dition, uniform, we have proved all auxiliary results needed to show that there exists an essentially surjective
contravariant functor FixS from UAClSp(S) to ALat.

Corollary 4.16 Let S be a nonempty set of sorts. Then every algebraic lattice is isomorphic to the algebraic
lattice of the fixed points of a uniform algebraic S-closure operator on an S-sorted set, i.e., the contravariant
functor FixS from UAClSp(S) to ALat is essentially surjective.

From Proposition 4.8 and Corollary 4.16 we obtain the many-sorted functorial version of the second Birkhoff-
Frink representation theorem as stated in the following

Corollary 4.17 Let S be a nonempty set of sorts. Then the contravariant functor FixS ◦ SgS from Alg(S)
to ALat, obtained by composing the functor SgS from Alg(S) to UAClSp(S) and the contravariant functor
FixS from UAClSp(S) to ALat, is essentially surjective.

Acknowledgement. We are grateful to the referee for his careful work and for providing several comments
leading to a substantial improvement in the exposition.
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