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4.1 Introduction 

Recently, severa! papers have beell published on the intertemporal properties 
of a carbon tax. Arnong thern we can quote Roel (1992, 1993), Sinclair 
(1992, 1994), Ulph and Ulph (1994), Wirl (1994), Wirl and Dockner (1995), 
Tahvonen (1995, 1996), Farzin (1996), Farzin and Tahvonen (1996), and 
Hoel and Kverndokk (1996). These papers can be classified in two groups 
depending on the approach followed by the authors. A first group forrned by 
Roel, Sinclair, Ulph and Ulph, Farzin, Farzin and Tahvonen, and Hoel and 
Kverndokk have focused on the optimal pricing of a non-renewable resource 
with cnvironrnental stock externalities1 . lf the different results obtained in 

1Within this graup we could differentiate Hoel's approach [ram the one followed by the 
rest of the authors. Hoel uses a dynamic pollution game with N countries and defines thc 
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these papers are analysed, it appears that the optimal time path of the 
carbon tax depends critically on the specification of the carbon accumulation 
process, and in particular on the irreversibility of CO2 emissions. Thus, if 
the emissions are partially irreversible, as in Farzin and Tahvonen's (1996) 
paper, or if reversibility is costly, as in Farzin's (1996) paper, the optimal 
carbon tax may increase monotonically or have a U-shaped formo However, 
if reversibility is cost!ess, Le. if a constant rate of decay of the cumu!ative 
emissions is assumed, as happens in the Ulph and Ulph (1994) and Roe! and 
Kverndokk (1996) papers, the tax should initially increase when the initial 
stock of cumulative emissions is small, but falllater on when the stock of oil 
nears exhaustion. This is quite evident when the Farzin and Tahvonen and 
Roel and K verndokk papers are compared, since these two papers only differ 
essentially in the specification of the cumulative emission dynamics and give 
different temporal paths for the carbon tax. 

The second group of authors foIlows a somewhat different approach. They 
have tried to capture the strategic features of the global warming prob!em, 
developing a model of long-term bilateral strategic interaction between a 
resource-exporting cartel and a coalition of resource-importing governments2 . 

In this framework, they have studied the strategic taxation of CO2 emissions 
by the governments of the importing countries. Their model is a global 
warming differential game with irreversible emissions where the coalition of 
governments chooses the carbon tax and the cartel the price3 . \Virl (1994) 
and Wirl and Dockner (1995) have shown, for the case of zero extraction 
cost, that the tax increases monotonicaIly up to the choke price, whereas the 
price declines monotonically to zero when a Markov-perfect Nash equilibrium 
in linear strategies is computed. In Tahvonen (1995, 1996) the monopolistic 
extraction is computed as a feedback Stackelberg equilibrium assuming that 
extraction costs are independent of the resource level. When his results are 
compared with those of Wirl (1994) and Wirl and Dockner (1995) it turns 
out that the intertemporal properties of the carbon tax and price are the 

optimal carbon tax as the pigouvian tax that reproduces the social optimum. We can also 
include Forster's (19S0) paper in this group, although he docs not draw out consequences 
of his model for the temporal path of a pollution tax. 

2In fact, their model considers a simple stock externality, of which carbon dioxide is 
just the most discussed example. 

3Iu scction 4 of Tahvonen's (1996) paper, the case of reversible pollution with deplction 
effects is studied. But thp difficult\' of dcriving un analytical solution leads the author to 
compute Ilumerical examples. 

4.1. Introduction 

same irrespective of whether we have a Nash or Stackelberg equilibrium. 
In this chapter we propose a revision of these two approaches that consists 

in the introduction of depletion effects into the analysis. We assume that 
the extraction costs depend positively on the extraction rate and cumulative 
extractions. In this way, we extend and complete the analysis of the strategic 
taxation of CO2 emissions and present new results on the optimal pricing of 
a polluting non-renewable resource·1. 

Our results show how the depletion effects affect the temporal path of the 
carbon tax and what the distributive effects of strategic taxation are, making 
more precise the results obtained by the previous authors. We find that the 
tax can be decreasing and the price increasing if the environmental damage 
is not very high, or that the tax and producer price can both be increasing. 
With depletion effects the dynamics of the tax depends critically on the effect 
a variation in cumulative extractions has on marginal environmental damage. 
Nevertheless, if the marginal damage is high enough, the producer pricc 
should be decreasing, whereas the tax should be increasing. Furthermore, 
we find that the tax defined by the Nash equilibrium is a neutral pigouvian 
tax, in the sense that the tax only corrects the market inefficiency caused 
by the stock externality, and not the inefficiency associated with the market 
power of the resource cartel. When the efficient so!ution is computed, we find 
the sarne kind of results for the user cost or shadow price of the resource. 
The dynamics of the shadow price also depends on the environmental damage 
parameter value so that an increasing user cost must on!y appcar when the 
environmental damages are high enough. For this solution we get a simple 
expression for the critical value of this parameter that leads us to condude 
that the shadow price would have to be increasing only when the pollution 
damage is high with respect to extraction costs. Moreover, we find that 
the two equilibria converge asymptotically to the same values as in Wirl 
(1994). However, we darify this result showing that the aggrcgate welfare of 
the market equilibrium is lower than the aggregate welfare for the efficient 
solution. This means that the strategic taxation of CO2 ernissions does not 
allow us to re-establish the efficiency of the market since the tax only corrects 
the inefficiency caused by the stock externality as we have just mcntioncd 
aboye, but does not eliminate the market power of thc producers. For this 
reason, we find that thc market equilibrium is more conservationist than 

4See TI.ubio and Escriche (199S) for another extension that consists in the computation 
of the fpedback Stackelberg equilibria. 
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the efficient equilibrium because the prOd1lcers use their monopoly power for 
reducing, for their own profit, the rate of extraction. 

Our chapter is organised as follows: W!, present the global warming differ
ential game with depletion effects in socton 4.2; in section 4.3 we compute 
the Markov-perfect Nash equilibrium, 9-lltl in section 4.4 the optimal pricing 
of polluting non-renewable resources 1:l>,:ld compare the two equilibria. Sec
tion 4.5 summarises the conclusions z¡,(ld suggests directions for additional 
research. 

4.2 The Model 

In this chapter we extend Wirl and Docl,ner's (1995) mode15 . We begin by 
describing the demand side of the maf}<:e;, assuming that the consumers of 
the importing countries act as price--ta~er agcnts. Under this assumption, we 
can write the consumers' net welfare a...;: ,1;;'" e-6t {aq(t) - (1/2)q(t)2 - fp(t) + 
1jJ(t)]q(t) + R(t) - dZ(t)2}dt, where aq(tJ·. (1/2)q(t)2 is the consumers' gross 
surplus, q(t) is the amount of the resourcebought by the importing countries, 
p(t) is the producer price, 1jJ(t) is the t~x fixed by the importing country 
governments, R(t) is an income transfe! tl1at thc consumers receive from the 
government, and dZ(t)2 is the environríJ.e~tal or pollution damage function, 
where z(t) is the cumulative emissions a1id d is a positive parameter. If we 
consider that global warming is a cle~r 3xample of a stock externality we 
have to establü,h that consumers take a~ a given not only the price of the 
resource but abo the evolution of the iJ-0Cllmulated emissions and, moreover, 
the income transfer, since this is cont!'°Ied by the governments, so that, 
finally, the resource demand only depencis 'm consumer price: q(t) = a-p(t)
1jJ(t). On thc other hand, as 1jJ(t) reprc~ellts the tax fixed by the importing 
country's government, we are implicitlt f:l.'imming that there exists a coalition 
or sorne kind of cooperation among tl¡e importing countries' governments 
which allows us to represent the resolJrc,~ market as a model of long-term 
bilateral stratcgic interaction between ;-J,'esource cxporting cartel (OPEC) 
and a coalition of resource importing cou1\tries' governments (the West). 

The governmcnts are supposed to tfJ.-x ~missions in order to maximise the 

5See that paper for more ddails. Our vcrsi(}~of the game is also dosel)' relat.ed to the 
one developed in sectioll 3 (Jf Tahvonen's (lU96J paper. The Ilovelt.y of our approach in 
the specification of tlH' modeL with respect t O tlese two pil¡WrS, is that we suppose that 
average cxtraction costs depend 011 cumulativ'(~ e'tractiollH. 

4.2. Thc Model 

discounted present value of the net consumers' surplus. We also assume that 
tax receipts, 1jJ(t)q(t), are completely refunded to the consumers through the 
transfer R(t). As a result the optimal time path for the tax is given by the 
solution of the following problem6 : 

max [00 e-6t {a(a _ p(t) -1jJ(t)) - ~(a - p(t) _1jJ(t))2 
{1jJ(t)} Jo 2 

-p(t)(a - p(t) - ¡fi(t)) - dz(t)2} dt, (4.1) 

where b is the discount factor. 
Thc dynamics of cumulative resource cOllsumption determines simultane-

ously the dynamics of the CO 2 concentration in the atmosphere: 

z(t) = a - p(t) -1jJ(t), z(O) = Zo ~ O. (4.2) 

Following Wirl and Dockner's and Tahvonen's approach, we suppose that 
the identity between resource consumption and CO2 emissions is not crucial 
as long as we can measure oil in terms of that unit that relea..'les one ton 
of carbon into the atmosphere. This simplified version of the cumulative 
emission dynamics has also been used by Roel (1992, 1993)1. 

Let us turn to the other side of the market. 'vVe assume that extrac
tion costs depend linearly on the rate of extraction and on the cumulative 
extractions, C(q(t),z(t)) = [cz(t)]q(t), and that the objective of cartelised 
producers is to define a price strategy that maximises the discounted present 
value of profits8 : 

max ['>O e-M {(p(t) - cz(t))(a - p(t) -1jJ(t))} dt. (4.3) 
{p(t)} Jo 

Although we incorporate depletion effects into the analysis, we consider that 
the stock externality is largely irrelevant to the welfare of exporting countries, 

Gln vVirl and Dockner (1995) a study is made of how the Leviathan motive oI the 
governrnents modifies the temporal path of the tax in a global warming differential game 
without extraction costs. 

7 Given this linear relationship between resource mnsmnption aud ernissiollS, 1/J could 
be interpreted as well as a resource import t.ariff, and tlle chapt.er as a study 011 import 
tariffs and non-renewable resourccs with stock ext.emalities. 

HBecause in our model there is no uncertainty, we can establish that in the equilibrium 
market resource consumption is cqllal to extractio]l rate ando conscCjuently, cumulative 
emissions are equal to cumulatiye extractions. 
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• • "t .and that the cumulatIve extractlOns ate not::onstrained by the resource m 
the ground but by its negative impact 0n e:ct/;\::tion costs and climate. More
over, following Karp (1984), we assumethat ('\l producers get no utility from 
consuming the resource. This assumption is \'Ot too great a departure from 
rcality since most major resource eXPGrters ct'':\nsume a negligible portion of 
their production. Thus, we represent tbe straü~¡gic interactions in the resource 
market as a d'ifferential game between a Coali'c)U of importing countries' gov

· l(fernments and cartelised exporters o 011, Whf(~ the coalition of governments 
chooses the tax and the cartel the pric!' 

4.3 A Neutral Pigouvian 
,
tax 

,. 
In this section we obtain the solution to the g/:lbe through the eomputation of 
a Markov-perfect Nash equilibrium. We 115e : larkov strategies because these 
kinds of strategies capture essential st.rate~ic~ihteractions, provide a dynam
ically consistent, subgame perfecto eqmlibriunll.1nd are analytically tradable. 

Mar kov strategies have to satlsf}r t~c fDU1'ving system of Bellman equa
tionso: 

{ ( I 1 ,(, 28W1 max a a - p - '!jJ) ~_( ',_ p _ 'ljJ)
{~} 2 

-p(a - p - 'l/J) - dz2 +- ,!~/: (a _ p _ 'l/J)}, (4.4) 
8W2 = max {(p - cz) (a ~ Ji - 'lf~) + W~ (a _ p _ 'ljJ)}.

{p} (4.5) 

From the first order conditions for th€ rr: nl.lcimisation of the r.h.s. of the 
h t · }I

Bellman equations we get t e reac IOn fm tions of the governments and 
producers: 

l/¡N -W;, 

(4.6)

1 . ~,pN 2(a+cz_¡:.f~_7jJN), (1.7) 

where superscript N stands fO,r the Mar.kov-r~~:3·fect Nash equilibrium. These 
results establish that the optllI:al tax l~ lnca~t>endent of the price fixed by 
thc producers, and that the pncc and tax , i" strategic substitutes for the 
producers. Thus, for the governments (Jf th~: importing countries the opti
mal policy consists, üS we show belmv, d d ~ining a neutral pigo'u,vian tax 

tl 
r "Time argumcnts wil! be elimillatecl when no con "'>ion arises. 

¡
I 

• 
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equal to the user cost or shadow price of cumulative emissions. This means 
that when there is no strategic advantage, Le. when the two players move 
simultaneously, the importing countries cannot use the tax for reducing the 
market power of the cartel, since the optimal tax only corrects the market 
inefficiency caused by the stock externality. For this reason we define this tax 
as a neutral pigouvian tax that does not correct the inefficiency associated 
with the market structure. Notice also that the tax is positive. This dif
fers from the well known proposition, see Buchanan (1969), that establishes 
that the pigouvian instrument under a monopoly should be a subsidy. The 
explanation of this divergence is, as Wirl and Dockner (1995) have already 
pointed out, that the resource market is divided into exporting and import
ing eountries, and the latter do not take into aceount the produeers' surplus 

in their objedive function. 
Applying standard techniques of optimal eontrol we get (see Kamien and 

Schwartz (1991, section 23)): 

W = e-8(r-t)2dz dT _ e-ó(r-t)p_ dT.
1'1 loo ¡ex:> 8pI t t 8z 

This express ion allows us to present an economic interpretation of the user 
cost or shadow price for the importing countries of an increment in one unit 
of the cumulative emissions at any time t. The first component appears in 
different papers on the optimal pricing of a non-renewable resource with en
vironmental stock externalities; see, for instance, Farzin (1996) and Farzin 
and Tahvonen (1996); and it is equal to the discounted present value of the 
increment in future and present environmental damage caused by an incre
ment at time t of the cumulative emissions. However, the second component 
only appears when the interdependence between thc exporting and import
ing eountries is taken into account; see in this case Tahvonen (1996); and it 
is equal to the discounted prescnt value of the effect on future and present 
consumers' welfare caused by the reaction of the exporting countries to a 
variation of cumulative emissions at time t. Notice that thc sign of this ef
fed can be positive or ncgative, depending on thc optimal policy or strategy 

adopted by the cartel. 
By substitution of (4.6) in (4.7) we get the solution of the price as a func

tion of the first derivatives of the value functions: pN = ~ (a +cz +W¡ - W~). 
Next, incorporating the optimal strategies into the Bellman equations (4.4) 
and (4.5) we eliminate the maximisation and obtain, after some calculations, 
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a pair of non-linear differential equations: 

1 ( " 2 28W1 8" a - cz + W 1 + W2 ) - dz , (4.8) 

1 ( " 28W2 "4 a - cz + W 1 + W 2 ) . (4.9) 

N otice that both value functions depend on W¡ + W~, and so does the con
sumer price, 7r = P +1/;, and the rate of extraction: 

1 " 1fN 2[a + cz - (W1 + W2 )], (4.10) 

1 ( ','qN 2 a - cz + W1 + W2)' (4.11) 

This regular occurrence of the term W; + W~ simplifies the solution of thc 
differential equation system (4.8) and (4.9) and allows, as happens in Wirl 
and Dockner's model, a complete analysis of the asyrnmetric game defined 
in scction 4.2. 

Before presenting the Markov-perfect Nash equilibrium we want to estab
lish and demonstrate the result we have mentioned aboye. 

Proposition 4.1 The Markov-perfect Nash equilibTi'um of the game defines 

a neutral pigouvian tax. 

Proof. This proof is quite obvious if one realises, firstly, that in the market 
there exist two kinds of inefficiencies, one caused by thc stock externality 
and the other by thc market power of the producers, and, secondly, that the 
optimal tax is equal to the user cost of the cumulative emissions. The strategy 
of the proof is simple: we compute the monopolistic equilibrium without 
intervention of importing countries' governments, assuming that consumers 
takc into account the damage caused by the cumulative CO2 emissions, and 
then we check that this equilibrium is identical to the Nash equilibrium. 
The monopolistic equilibrium is calculated in two stages. In the first stage, 
price-taker consumcrs determine the demand function, and, in the second, 
the cartel decides the price. Then the extraction ratc is determined by the 
demand function. 

The Bellman equation for the consumers, if thcy internalise external 
costs, is: 

1 2 .),
HV¡ = max {o.q - -q - pq - dz- + y'Vl !]}. (4.12)

{q} 2 

774.3. A Neutral Pígouvían Tax 

The maximisation of the right-hand side gives u3 the resource demand func
tion, q = a - p - W¡, and substitution in tl1:~ producers' profit function 

yields: 

8W~ = max {(p - cz) (a - p - W¡) + W~I'a - p - W')}. ( 4.13) 
{p} ,1 

From the maximisation of the right-hand s~e ',ve obtain the same optimal 
strategy as in the Nash equilibrium, pM =.p . == ~(a + cz + W¡ - W~), where 
the superscript M stands for the monopohstH; (quilibrium without the inef
ficiency caused by the stock externality. Then Ly substitution of the control 
variables into the Bellman equations, we get th, same system of differential 
equations (4.8) and (4.9) and, consequently, ü 8 same solution. Therefore, 
the monopolistic equilibrium, without stock e.liternality, is identical to the 
Nash equilibrium and we can conclude that. th•. optimal tax defined by the 
Nash equilibrium is a neutral pigouvian tax ~n tl1e sense that it only corrects 
the inefficiency caused by the stock externahty tnd leaves the cartel with its 

monopolistic profits. 

The solution to the differential equation sys'em (4.8) and (4.9) allows us 
to calculate the linear Markov-perfect Nash eq1¡librium strategies. 

Proposition 4.2 Let 

0, ZN < z 

qN(Z) ~ { 00 

(4.14)
~[a + yN - (e - xIV)Z z < ziV 

00' 

where 

x N (4.15)H2c + ~o - [~ (cO + ~ +ld)rl 
30.( e - :rN ) () ,v

yN _é.-----'-- < , a + y N (4.16)48 + 3(e _ XN) > O and c - x > O 

ILnd 
ZN = (zo - z:::) exp{ -1/2(c- ,)'¡t} + z;;', (4.17) 

whcre a8 
",lV_~. 

"'ce - ( 4.18) cD + 2d 

..... 
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Then qN(Z)· constitutes a global asymptotically stable Markov-perfect Nash 
equilibrium (MPNE) for the infinite horizon differential game under consid
eration, where z!:o is the cumulative emission long-run equilibrium. 

Proof. See Appendix A (section 4.7). 

As we have just seen in Appendix A, Proposition 4.2 permits us to cal
culate the optimal dynamics of the rate of extraction, the producer price, 
the tax and the consumer price and the discounted present value for the 
two players, praviding a complete analytical characterisation of the solution 
of the game. The long-run equilibrium vaIue for cumulative emissions has 
been computed as a particular solution of the differential equation that de
fines the dynamics restriction of the problem. However, this value can be 
derived directly using more straightforward economic arguments. The pra
ducers exploit the resource until the value function is zero. This implies 
fram (4.5) that p - cz = - W~. On the other hand, the first order condi
tion which gives the reaction function of the producers can also be written as 
p - cz - (a - p - 7jJ) = - W~, so it follows immediately that a - p -7jJ = qoo = O 
and a - p = - W¡, using the reaction function of the governments. With 
qoo = O the consumers' value function is 8W1 = -dz!, and - W¡ = 2dzoo /8 
and by equalisation we get p = a - (2dzoo /8). Finally, if we assume that 
extraction of the resource continues until the marginal profit is zero we get 
p = CZ, and then we obtain Zoo = a8/ (c8 +2d). This means that the exploita
tion of the resource rnust end for a zero marginal profit and value function. 

The solution incIudes the pay-offs of the players, which are given by the 
value function for the initial value of the state variable, zo, 

W N () 1 N 2 (JN N
1 Zo = '2a1 Zo +, 1 Zo + 111 , (4.19) 

where 

Ct 
N 
1 b1[14(c - XN? - 2d] , (4.20) 

(3. IV a(c - .rN ) 

1 -= (4.21)
48 + 3(c - x N )' 

l1i'V s18(a + yN)2. ( 4.22) 

4.3. A Neutral Pigouvian Tax 

Thus, for the consumers and for thc pnducers, 

w:N() 1 N 2 N N
2 Zo = '2a2 Zo + (32 Zo + 112 , ( 4.23) 

where 

1Na 2 -(c - xN)2 ( 4.24) 26 ' 
2ac - XN)

(3:; (4.25)
46 +3(c - xN) , 

1 
112 

N -(a -¡ yN)2 (4.26)46 . 

Fram these expressions, the following; corollary holds. 

Corollary 4.3 Jf the inítíal cumulatíve emíssíons are zero, the discounted 
present values of the net consumers' welJare and profits are positíve and equal 
to (4.22) and (4.26). 

Proof. Straight frarn (4.19) and (4.~3). If we make Zo = O in the value 
functions we have W1(0) = ~(a + yN)2 and W2 = ft;(a + yN)2. 

IIowever, we cannot extrapolatc thi:, result for Zo in the interval (O, zoo) 
because, as we have shown above, the value function for the consumers is 
strictly negative for Zoo' This means thiJ.t the extraction of the resource will 
be prafitable only if the initial value f<ir the cumulative extractions is not 
very high. In particular, the exploitatirm of the resource will take place if 
the initial value is in the interval [O, z], where z is defined by the positive 
root of the equation W1 (z) = O. For the prod ucers, the extraction gives a 
positive pay-off pravided that the initia) value of the state variable is in the 
interval [O, zoo). However, as long as th(! consumers only demand a positive 
quantity of the resource when the curnulative ernissions are below the upper 
bound, z, the exploitation of the resOUrce will occur only when the initial 
value of cumulative emissions is below lhis critical value. From now on, we 
will assume that Zo = O. This sirnplifie, the analysis enormously and helps 
us to reduce the lcngth of the chapter. Neverthcless, we want to point out 
that the results obtained in the rest of 1he chapter can be generalised for Zo 
in the interval (O, Z).lO 

illThe generalisation of the result.s for Zo E (1), E) iR l1vailable from the authors. 
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Finally, we compute the dynamics of the rate of extraction, the producer 

price, the emission tax and the consumer price. To get the temporal paths 
of these variables we substitute W¡ and W~ in the linear strategies for q, 
p, 7jJ and 1f by the coefficients of the value functions we have calculated in 
Appendix A, and then we rearrange the terms and eliminate z, using (4.58): 

qN 1/2(a + yN) exp{ -1/2(e - xN)t}, ( 4.27) 

aeo _.!.( N N NpN e8+2d 2 e+a¡ -(2 )zooexp{-1/2(e-xN)t}, ( 4.28) 

2ad N N 7jJN e8+2d +0'1 zooexp{-1/2(e-xN)t}, ( 4.29) 

1fN a - 1/2(a + yN) exp{ -1/2(e - xN)t}. (4.30) 

We can now summarise the dynamics of the variables and the long-run equi
librium of the game as follows. 

Proposition 4.4 Along the equilibrium path the rote of extroetion deereases 
while the eonsumer price increases. The producer price is increasing (de
ereasing) if e + ai" - af is positive (negative) and the emission tax is in
creasing (decreasing) if a l'v is negative (positive). Moreover, the market equi
librium approaches a long-run equilibrium charocterised by: qoo = O, 1f00 = a, 

ac1i d ni, 2ad
Poo = cb+2d an 'f'00 = c1i+2d' 

If we focus on the tax dynamics, we have just seen that this depends on 
the sign of coefficient ai", which is given by (4.20). This expression allows us 
to study the relationship between this coefficient and the damage parameter, 
d, and hence the relationship between the pollution damage and the optimal 
temporal path of the tax. We know that af is positive when d = O; see 
(4.20). Now, using (4.15) it is easy to establish that al" is decreasing with 
rcspect to d and that there exists a positive value, that we name as fi.:, 
for which the coefficicnt of the value function W¡ is zero. Thus, we get that, 
when d is lower than d.~, the emission tax is decreasing, and, when d is higher 
than d.~, it is increasing. Or, in other words, if the pollution damage is high 
with respect to extraction costs the optimal tax would have to be increasing. 

The intcrprdation of this result is quite intuitive if one realises that the 
differential game under consideration integrates characteristics of two models 
with different properties. Making e = O we have Wirl and Dockner's (1995) 
model, and for d = O we have a version of Karp's (1984) model, where 1/; 

4.3. A Neutral Pigouvian Tax 

Illust be interpreted as an import tariff and the issue addressed is whether 
it is advantageous for the importing countries to fix a tariff on the resource. 
In the first case, we can check that xN and al" are negative for any positive 
value of parameter d and that the tax is always increasingll . For e = O, 
(4.29) is written as 7jJN = a + ai"z~ exp{xNt/2} and then d7jJN /dt > O. 
This means that if there are no depletion effects, the optimal tax for the 
importing countries must rise. In the second case, it is evident that al" is 
positive and the tax is decreasing. For d = O, (4.29) is written as 7jJN = 
afz~exp{ -1/2(e - xN)t} and then d7jJN /dt < O, since the sign of e - xN 

does not change (this is shown in the next paragraph). We obtain, in this 
case, that, when the environmental damage is zero and the depletion effects 
are positive, the optimal policy for the importing countries is a decreasing 
import tariff. Thus, we have two trends of opposite sign acting in our game, 
and we find that when the pollution damage is high with respect to extraction 
costs, the increasing trend dominates, and the tax is increasing. However, if 
on the contrary the pollutíon damage ís low, the decreasing trend domínates 
and the tax is decreasing. 

If we focus now on the temporal path of the producer price we get the 
same kind of results. The dynamics of the variable depends on the sígn of 
the following expression: 

N N 1 N2 2d 
e + 0'1 - 0'2 = e - 48(e - x ) - 8' (4.31) 

It is easy to show that for el equal to zero this expression is positive. As 
e + ai" - af can be written as e - xN + 2ai", we can use this last expression 
for determining the sign of the former. For d = O we have found that ai" 
is positive; then e + af - af is positive if c - x N is positive for d = O. To 
calculate e - x N we use (4.15), yielding: 

1 {4 [16 ( 82)]1/2}e - J;N - 2" - 3'8 + :3 eo + '3 . ( 4.32) 

If we suppose that e _.rN is negative or zero, the following must be satisfied: 

[16(., t?)]1/2 4 
- cÓ + - < -8.
3 3 - 3 

11 In fact, the tax is also increasing w hen the extractioll costs are quadratic but incle
pelldcllt of the cumulative extractiollS, as has been showed by Tahvonen (1996). 
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Taking the square of this inequality we get 16/3(c.5) :::; O, which is a contra
diction. As a result we have to accept that c - xN is positive and condude 
that e + al" - aiJ is positive as well. Now, applying calculus to (4.31) and 
using (4.15) we can establish that c + al" - aiJ is decreasing with respect to 
d and that there exists a positive value, that we represent by f1:, for which 

the producer price is constant. Thus, we get that when d is lower that f1: 
the price is increasing, whereas it is decreasing if d is higher than ¿; . Or, in 
other words, if the pollution damage is high with respect to extraction costs 
the optimal producer price must be decreasing. This result is also justified 
by the two opposite trends we have found in our modcl. For e = O we know 
that the producer price is decreasing, but for d = O it is increasing. Conse
quently, when these two parameters are positive we can obtain both types 
of dynamics depending on the values of the parameters. On the other hand, 
the compatibility between a decreasing quantity and price can be explained 
by resorting to the reaction function (4.7). According to this function the 
producer price and the tax are strategic substitutes since the tax reduces the 
marginal revenue of the cartel. Moreover, the reaction funetion establishes 
that the price increases, ceteris paribus, with the complete marginal cost 
of the resource, defined by the marginal extraction cost plus the user cost, 
cz - W~. Then as the tax increases and the complete marginal eost deereases 
along the equilibrium path, when the pollution damage is high enough, we 
find that the dynamics of the producer price have to be decreasing. Obvi
ously, as the extraction rate is deereasing, the negative effect of an increase of 
the tax on the quantity must be higher than the positive effect of a reduction 
of the complete marginal cost on the extraction rateo 

Finally, we can describe the different temporal paths that the tax and 
producer price can follow, depending on the environmental damage. First, 
we define the existing relationship between f1~ and f1~. As c + al" - aiJ is 

equal to c - xN + 2al", we get that when d = f1~, e + al" - a!J = c - xN , 

which is positive for any positive value of d, as is established in (4.16). Thus, 
c + al" - a!J is zero for a higher value than f1~, and then we can condude 
that ~ is lower than f1~. Now, we are able to present the different temporal 
trajectories dcpending OIl the value of parameter d. Given c and 8, if d is 
lower than f1~ the price is increasing and the tax is decreasing; if d is in 
the interval (d~ ,ª~V) the price and tax are increasing; and, finally, if d is 
higher than d: the price is decreasing but the tax is increasing. This last 
relationship can also be presented as follows. 

4.4. Optimal Pricing oE Polluting Rcsources 

Corollary 4.5 Jf an increase in cumulative emissions has an effect on mar
ginal damage higher than 2f1:, then the optimal producer price is decreasing 
whereas the optimal tax is increasing. 

Notice that the effect of an increase in cumulative emissions on marginal 
damage is given by {j2 D / f.}z2 which is equal to 2d, so that it is sufficient with 
{)2D / {)z2 higher than 2f1: to have an increasing tax with a decreasing price. 

This result already appears in Wirl and Dockner (1995) and Tahvonen's 
(1996) papers, but as long as they do not take into account the depletion 
effects on the extraction of the resource, the pollution tax is increasing and 
the producer price is decreasing for a11 d. In this chapter we complete their 
analysis showing that the tax can be decreasing and the price increasing if 
the pollution damage is not very high, or that thc tax and producer price 
can both he increasing. 

4.4 Optimal Pricing of Polluting Resources 

In order to get a welfare evaluation of the MPNE we compute in this scc
tion the Pareto efficient solution of the game. To obtain this solution we 
maximisc the addition of the consumers' welfarc ami profits taking into ac
count the evolution of the cumulative emissions. Then the efficient strategy 
of extraction has to satisfy the Bellman equation: 

8V = max {aq - ~q2 - dz2 - czq + V'q}. (4.33)
{q} 2 

From the first order condition for the maximisation of the Lh.s. of the 
Bellman equation we gct the optimality condition: marginal utility (price) 
equal to marginal cost, which indudes two components, the marginal extrac
tion cost and the efficient shadow price or user cost of the resource: 

a - q = cz - V', (4.34) 

so that the efficient extraction strategy is given by: 

F ' qO=a-cc+V, (4.35) 

where superscript E stands for the efficicnt solution. Next, incorporating the 
efficient strategy into the Bellman cquation (4.:33) we eliminate the maximisa
tion and obtain, after sorne calculations, the fo11owing non-linear differential 
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equatión: 

oV = ~(a - cz + V ' )2 - dz2 (4.36)2 . 

The solution to this differential equation allows us to calculate the linear 
efficient strategy. 

Proposition 4.6 Let 

ZE <_ zE { O, 00 
(4.37)q (z)= a+pE-(c-aE)z, z:::; z!, 

where 

a E ~ {2C + O- (4co + 02 + 8dr/2} , ( 4.38) 

a(c - a E )pE - ' < O a + pE > Oand e - a E > O (4.39)
0+ c - a E ' , 

and 
ZE = (zQ - z!) exp{ -(c - aE)t} + z!, ( 4.40) 

where 
aOE_ . (4.41 )

Zoo - co + 2d 

Then qE(z) constitutes a global asymptotically stable efficient equilibrium 
(EE) for the infinite horizon differential game under consideration, where 
z! is the cumulative emission long-run equilibrium. 

Proof. The proof follows that of Proposition 4.2. 

The long-run equilibrium value for cumulative emissions has been cal
culated as a particular solution of the differential equation that defines the 
dynamic constraint of the modcl. However, this value can be derived di
rcctly using more straightforward arguments. First, we establish that the 
exploitation of the resource continues until the marginal cost is equal to the 
maximum price consumers are willing to payo This occurs for a zero ex
traction rate (q! = O), which implies, according to the optimality conclition 
(4.34), that a = cZ(X) - V~, where a is the maximum price consumers are 
willing to payo On the other hancl, the value function for a zero extraction 
rate is Voo = -d(z!?lo and the user cost or shaclow price is V~ = -2dz!lo; 
thcn hy substitution in the optimality condition we get (4.41). 

4.4. Optimal Prióng of Polluting Resources 

The solution ineludes the pay-offs of the agents, which are given by the 
value function for the initial value of the state variable, zo, 

V E() 1 E 2 r.¡E EZo ="2a Zo + fJ Zo + {L , ( 4.42) 

where a E and ,BE are given by (4.38) and (4.39) and {LE is ~(a + f3E)2. SO, 
we can conclude the following. 

Corollary 4.7 Jf the initial cumulative emissions are zero, the discounted 
present value of the addition of the net consumers' welfare and profits is 

V(O) = ~(a + pE)2. 

Finally, we compute the dynamics of the extraction rate and resource 
shadow price. To get the temporal paths of these variables first we eliminate 
z from (4.37) using (4.40), and then using condition (4.34) we obtain the 
dynamics of the shadow price12 : 

qE (a + pE) exp{ -(c  aE)t}, ( 4.43) 

-Vi 2ad E E ;:-- + (} Zoo 
Cu + 2d 

cxp{ -(e  P;a )t}. (4.44 ) 

We can now summarise the dynamics of the variables and the long-run equi
librium of the efficient solution as follows. 

Proposition 4.8 Along the efficient path the rate of extraction decreases. 
The shadow price of the resource is increasing (decreasing) if erE is negative 
(positive). Moreover, the efficient path approaches a long-run steady state 

characterised by qoo = O and - Vi = cf~~d' 

This proposition establishes that the dynamics of the shadow price de
pends on the sign of coefficient a E , which is given by (4.38). This expression 
allows us to study the relationship between this coefficient and the damage 
parameter, d, and hence the relationship between the pollution damage ami 
the efficient temporal path of the shaclow price. We know that a E is positive 
when d = O. Suppose that 

2c + O- (4co + 02)1/2 :::; 0, 

12vVe assume that the initial cumulative emissiollS are zero. 

L 
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then 
2c + 8:::; (4c8 + 82)1/2, 

and 
(2c + 8)2 :::; 4cb + 82 , 

resuIting in a contradiction: 4¿ :::; O. 
On the other hand, a E is decreasing with respect to d and there exists 

a positive vaIue, that we name as dE, for which the coefficient of the value 
function V is zero. In fact, it is easy to check that dE = c2 /2. Thus, we get 
that when d is lower than dE the shadow price of cumulative emissions is 
decreasing, and when d is higher than dE it is increasing. Or, in other words, 
if the pollution damage is high with respect to extraction costs the shadow 
price would have to be increasing. The interpretation of this result follows 
the intuition presented in section 4.3 to explain the dynamics of the emission 
tax. 

This reIationship between the coefficient a E and the damage parameter 
allows us to establish the following. 

Corollary 4.9 Jf an increase in cumulative emissions has an effect on mar
ginal darnage higher than c2 , the efficient shadow price is increasing. 

Notice that the effect of an increase in cumuIative emissions on marginal 
damage is given by [PD/8z 2 which is equal to 2d, so that it is sufficient with 
82D /OZ2 higher than c2 to have an increasing shadow price, since dE = c2 /2. 

Finally, we use this solution to evaluate the efficiency of the equilib
rium market. If one compares the two long-run equilibria one immedi
ately realises that the market equiIibrium converges to the efficient vaIues: 
z;;, = z! = a8/(c8+2d), q~ = q! = Oand 1/J~ = -V~ = 2ad/(c8+2d). This 
property is explained because the optimality conditions that characterise the 
two equilibria, (4.7) and (4.34), are identical in the long-runo Condition (4.7) 
can be rewritten as 

a - 2q = cz - (W¡ + W~), ( 4.45) 

using the inverse demand function to eliminate the price. U sing this expres
sion we have that when the rate of extraction is zero the marginal revenue 
is equal to average revenue or the maximum price consurners are willing to 
pay, a, and thc l.h.s. of the two optimality conditiollS coincide. On the 
other hand, for a zero extraction rate the value function of the efficient solu
tion, (4.33), and the vaIue function of the importing countries for the market 

4.4. Optimal Pricing oi Polluting Resources 

equilibrium, (4.4), present the same expression, V = W1 = -dz2/8, so that 
V' = W¡. Moreover, it is well known that with depletion effects the user 
cost or shadow price the producers associated to the resource, - W~, tends 
to zero, giving as a resuIt that the r.h.s for the two optimality conditions is 
the same and the two conditions define the same long-run equiIibrium. 

This property has been used by Wirl (1994, p. 11) to conclude that 
from an environmentalist's point of view, cooperation between consumers 
and producers is not necessary as long as non-cooperation implies the same 
stationary stock of pollution. This is right strictly from an environmentalist's 
point of view but is questionable from an economic point of view since the 
equilibrium market is not efficient and, in that case, the cooperation could 
increase the pay-offs of the players. To show this argument we compare the 
aggregate pay-offs of the two equiIibria: 

1 
VE(O) = /-lE = 28(a + (3E)2, ( 4.46) 

and 
3 

WN(O) = /-lf +/-lf = 88(a+ yN )2. (4.47) 

Let us suppose that VE(O) :::; W N (O); then 

8(a + (JE)2 :::; 6(a + yN)2: 

using (4.39) to calculate a + ,BE, and (4.16) to calculate u + yN, we can 
eliminate them by substitution and get 

(48+3(c- X N))2:::; 12(8+c-aE)2. 

Developing the squares yields 

482 + 248(c - x N ) + 9(c - .TN )2 

< 248(c - c/') + 12(c - OE)2 

Using (4.38) to calcuIate c- o,E, and (4.15) to obtain c-:rN , we can eliminate 
thern by substitution yieIding 

16( 8'2 )]1/2 ..
8 + 3 ['"3 c8 +"3 + 2d :::; 3(4cb + 82 + 8d)1;2. 
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I 
Finally, raising to a square and simplifying terrns, we obtain the following Proof. See Appendix e (section ,1.9). 
contradiction: 

[ 16 ( tP )]1/2
12c8 + 882 + 24d + 68 :3 c8 + "3 + 2d ::; O. 

The sign of this inequality leads us to conclude that the aggregate pay-offs 
of the efficient equilibrium are higher than the aggregate pay-offs of the 
equilibrium market and, consequently, that the cooperation can increase the 
welfare of the economic agents. 

In the last part of this section we compare the temporal paths of the 
variables of the game. First, we try to establish the relationship between the 
optimal linear strategies. We can summarise our findings as follows. 

Proposition 4.10 The MPNE is more conservative than the EE, i.e., given 
any resource stock level, the efficient extraction exceeds the N ash extraction 
rate. Aloreover, the efficient initial value for the extraction rate is higher 
than in the MPNE. 

Proof. See Appendix B (section 4.8). 

These results are independent of the parameter values. Besides, they 
are consistent with the finding obtained by Hotelling that establishes that 
the monopolist is the conservationist's best friendo In section 4.3, Propo
sition 4.1, we have concluded that the MPNE defines a neutral pigouvian 
tax because it only corrects the inefficiency caused by the stock externality 
but it do es not affect the market power of the producers. This means that 
the inefficiency of the MPNE is caused by the monopoly power of the cartel 
that reduces in its own benefit the rate of extraction, Thus, as the ineffi
ciency caused by the stock externality is corrected by the tax the importing 
countries' governments fu, the rate of extraction would have to increase to 
approach the resource efficient intertemporal allocation. For this reason the 
extraction efficient strategy is less conservationist than the strategy defined 
by the market equilibrium. 

From this result we can compare the temporal path of the cumulative 
emissions ami the rate of extraction. 

Proposition 4.11 The cumulative extractions for the EE are higher than for 
the AIPNE for all t E (0,00). However, this variable converges asymptotically 
to the same value in both cases. The rate of extraction for the EE is first 
above but later below the MPNE rate ol e.rtraction. 

This result establishes clearly the difference between the two equilibria 
although they converge asymptotically to the same values. The equilibrium 
rnarket is more conservationist throughout the period of exploitation of the 
resource, resulting in lower cumulative emissions. However, for the rate of 
extraction the temporal paths intersect once since the cumulative extractions 
are the same in the long-run, Nevertheless, even with a second phase for 
which the efficient rate of extraction is more conservationist the discounted 
present value of the aggregate welfare is higher for the efficient solution as 
we have just shown aboye. This is better understood if it is remembered that 
the discount effect gives greater weight to the pay-offs closer to the present, 

4.5 Conclusions 

We have examined the strategic pigouvian taxation of CO2 emissions in the 
framework of a global warming differential game with depletion effects be
tween a resource-exporting cartel and a coalition of resource-importing coun
tries' governments. 'Ve have determined the intertemporal properties of the 
carbon tax showing that these depend on the importance of environmental 
damage in comparison with depletion effects. Nevertheless, we have found 
that if environmental damage is high enough the tax should be increasing 
and the producer price decrea'ling. Besides, we have shown that the pigou
vian tax only corrects the market inefficiency caused by the stock externality 
and that, in that case, the strategic taxation of emissions does not affect the 
monopolistic power of the cartel. For this reason we find that the market 
equilibrium is more conservationist than the efficient equilibrium because the 
producers use their monopoly power for reducing the rate of extraction and 
increasing their profits. From the efficient equilibrium we are also able to 
characterise the optimal pricing of the resource and show that if the pollu
tion damage is high with respect to extraction costs the shadow price would 
have to increase. 

The scope of our results is limited by the specification of the game and the 
irreversibility assumption for tho emissions. However, this approach seems to 
us, for the moment, inevitable to make the analysis tractable13 . Obviously, 

l:l Notice that thc irreversibility of ernissioIlS allows us to work with a unique state 
variable, Se" Tahvoncn (1996), section ,1, to get an idea of the difficulties that appcar 
when two stat.e variables are considered. 
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these limitations point out directions for additional research, although in the 
framework of the modcl developed in this chapter sorne additional extensions 
could be considered. \Ve have supposed that the stock externality is largely 
irrelevant to the welfare of exporting countries. However, this reduces the 
global character of thc greenhouse cffect. For this reason it would be in
teresting to introduce into the analysis environmental damage along with 
domestic energy consumption in the exporting countries, and to study the 
issue of the unilateral taxation of CO2 cmissions. Another extension could 
be to incrcase the number of the importing countries to analyse the issue 
of cooperation among the importing countries to control the global warming 
problem. Finally, cooperative game theory could be applied when the im
porting countries' governments have sorne strategic advantage, since in this 
case cooperation could increase the pay-offs of the two players. 

4.6 	 Acknowledgement 

Financial support from the l\Iinisterio de Educación y Cultura (DGES) under 
grant PB96-0664-C02-02 is gratefully acknowlcdged. 

914.7. Appendix A 

4.7 	 Appendix A: Derivation of Linear Markov
Perfect N ash Equilibrium Strategies 

The linear stratcgies can be determined by proposing quadratic solutions for 
the value functions: 

lN2 	 f3N NWI(Z) '20: 1 Z + l Z + ¡..tI , 

1 N 2 N NW2(Z) -0'2 Z +f32 Z+J.L2·
2 

Substituting the value functions and their first derivatives into the Bellman 
equations and equating coefficients yields the following system of equations 
(we omit the superscript N when no ambiguityarises): 

5 1 )2
-O'] 	 -(C-0'1-0'2 -d, (4.48)
2 	 8 

5,3 1 	 -~(a + (3] + f32)(c - al - a2), ( 4.49) 

bp1 	 ~(a + /3 1+ ,32)2, ( 4.50) 

5 1 2 
-a2 	 -(e-et] -a2) , (4.51)
2 4 


1 

bf32 	 -'2(a + /3 1 + f3 2)(c - a] - a2), (4.52) 

SP2 	 ~(a+,B] +/32)2. (4.53) 

Even though this system of equations presents a recursive structure its solu
tion is quite long and complexo However, a simple transformation enormously 
simplifies its solution. \Vc define x = 0'1 + 0:2 and y = f31 + f32 and add equa
tions (4.48) and (4.51) and cquations (4.49) and (4.52), obtaining a simplified 
systcm of equations in the new variahles: 

3 
bx -((: - :C)2 - 2d, (4.54)

4 
3 

!íy -	 -'4(a + y)(c - x). (4.55) 

In the light of thesc two cquations and the differential equations (4.8) and 
(4.9), it appears that th(~ solUtiOIl corresponds to an aggregate value function 

-
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v = W1+ W2 = ~xz2 + yz + w whose coefficients must satisfy equation: 
6V = 3/8(a - ez + V')2 - dz2. Equation (4.54) has two realroots. We choose 
the one which satisfies the stability condition: di/dz < O. To apply this 
condition, we write the rate of extraction (4.11) in terms of coefficients x and 
y, resulting in q = 1/2[a + y - (c - x)z], and then as i = q we have that 
di/dz = -1/2(e - x) < 0, which requires that e - x> O. Expression (4.15) 
is the root that satisfies this condition. Given the value of x, (4.55) yields 
the value of the coefficient y; see (4.16). Knowledge of these two coefficients 
is sufficient for the computation of the rate of extraction, as can be seen 
aboye, and the consumer price ?r. To obtain the producer price and the tax 
strategies, we need to solve (4.48), (4.49), (4.51) and (4.52), using (4.54) and 
(4.55), to obtain (}:1,¡31,a2 and ¡32' 

Finally, we solve the first order differential equation i = 1/2[a + y - (e
x)z] to obtain the long-run cumulative extraction equilibrium. The solution 
to this equation is: 

z = C exp{-1/2(e - x)t} + a + y, ( 4.56) 
e-x 

where (a + y) / (e - .T) is the particular solution i = °and e is an integration 
constant. Then, as e- x is positive, the long-run equilibrium is the particular 
solution. If we substitute a + y in the long-run equilibrium value we get: 

4a6 
zoo = 405 - 46x + 3(e - x)2' 

which can be rewritten as: 

4ao a8 
z - - ------ ( 4.57) 

00 - 4c6 + 8d - eO + 2d' 

taking into account that -46x + 3(c - x)2 = 8d, according to (4.54). Then 
using the initial condition. zo, to eliminate the integration constant we get 
the optimal dynamics of the state variable of the game: 

z = (zo - zoo) exp{ -1/2(c - x)t} + ZCX), ( 4.58) 

and by substitution in the linear strategies the dynamics of the rest of the 
variables of the model, achieving a complete analytical characterisation of 
the Markov-perfect Nash equilibrium. 

934.8. Appendix B 

4.8 Appendix B: Proof of Proposition 4.10 

If we take into account that the strategies are linear, see (4.14) and (4.37), 
and define the same rate of extraction for the same long-run equilibrium value 
of the cumulative emissions, it is sufficient to know the relative position of 
the independent terms to make the comparison. Let us suppose that a + pE 
:::; !(a+yN). Using (4.39) to calculate a+¡3E, and (4.16) to calculate a+yN, 
we can eliminate them by substitution and get 

26 + 3(e - xN ) 5 2(e - a E ). ( 4.59) 

Resorting to (4.38) to calculate e - ai'J, and (4.15) to obtain e - x N , we can 
eliminate them by substitution yielding 

82 . 3[16( )]1/2 ,0+ 2 :3 e6+"3+ 2d :::; (4e8+62 +8d)1/2. 

Finally, raising to a square and simplifying terms, we obtain the following 
contradiction: 

82 , [16 ( )J1/2462 + 8e6 + 16d + 36 :3 cb + "3 + 2d :::; O. 

The sign of this inequality leads us to conclllde that a + {JE > ~ (a + yN) 
which determines the relative position of the linear strategies and allows us 
to establish the comparison between the slopes. As long as q;;' = q! and 
z!:o = z! = Zoo we have that 

,)E ( E) 1 ( N) 1 ( N)a + p - e - o: Zoo = 2 a + y - 2 e - x ZCX), 

which can be rewritten as 

E 1 ¡y ( E) 1 ( ¡y,)a + ¡3 - 2(a + y ) = (e - n" -' 2 e-x') ZCX) . 

Then, as the difference in the I.h.s. is positive, we have that 

e - aE > ~ (e - xN ). (4.60)
2 

The comparison between the initial values for the rate of extraction is 
immediate sinee r¡N(O) = ~(a + yN) and (/'(0) = a + ¡3E. 
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4.9 Appendix C: Proof of Proposition 4.11 

We begin comparing the temporal paths of cumulative extractions. For the 
MPNE the dynamics ofthis variable is given by (4.58), which, íor Zo = O, can 
be written as ZN = Zoo (1 - exp{-1/2(e - xN)t}) . For the EE using (4.40) 

we get zE = Zoo (1 - exp{ - (e - aE)t}), so that the difference between the 
temporal paths is 

ZN - zE = Zoo [exp{-(e - aE)t} - exp{ -1/2(c - XN)t}] , 

which is negative for aH t E (0,00) since e - aE > 1/2 (e - xN), as we have 
just shown in the proof of Proposition 4.6. 

For the comparison oí tbe extraction rate temporal paths we use (4.27) 
and (4.43). In this case the difference between the two temporal paths is 
given by the following expression 

qN _ qE 	 1/2(0, + yN) exp{ -1/2(e _ :¡;N)t} 

-(a + (3E) exp{ -(e - aE)t}. 

For t = Owe know that the difference qN (O) - qE(O) is negative, since 1/2(a+ 
yN) < a + (3E, as we have just established in tbe comparison of the linear 
strategies of the two equilibria; see also proof oí Proposition 4.6. For tolO 
we can find the number of intersection points from the equation qN - qE = O. 
Tbis equation can be written as 

1/2(a + yN) = exp{1/2(c _ xN)t _ (e _ aE)t}, (4.61) 
a + (3E 

where the l.h.s. is a positive constant less than one and tbe Lb.s. is a 
decreasing and convex function which takcs the value one for t = O, and 
tcnds to zero when t tends to infinity. This sbows us that the temporal paths 
cut each otber once in the interval [0,:)0), and, consequently, we can condude 
that fol' OS t < t', whel'e t' is the solution to equation (4.61), the MPNE 
extraction rate is lowel' than the EE extraction rate, wbereas fOl' t' < t the 
l'elationship bctween the two temporal trajectOl'ies is the contrary. 
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5.1 Introduction 

Most of the dynamic phenomena observed in modern economies are due to 
a rapidly growing volume of innovations aimed at increasing the efficiency 
of firms' responses to the needs of the market. An important share of the 
aforementioned innovations aim at installing or improving the infrastructure 
which is required for the transportation of economic goods from the place of 
produdion to the place of consumption. Both the state and private investors 
are involved in such an effort. For example, a highway may be the result 
of public investment, but firms have to invest in their own transportation 
infrastructure if they want to use the highway. Communication networks 
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