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Abstract. For nonlinear parabolic equations of the form = Au™ — «*||Vu™||? + «?, we prove nonexistence of global
admissible solutions for large initial data for some range of the parameters ¢ andp. To do so we use comparison with
suitable blowing up self-similar subsolutions. We also prove that for the complementary range of the parameters for which we
obtain blow-up, there exists globally bounded admissible solutions.
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1. Introduction

In [5] it is proved the existence and uniqueness of a class of solutions, named admissible solutions, for
the problem

uy = D™ + g(u, Vu™) in (0,T) x 2,
u=20 on (0,T) x 042, (1.2)
u(0,2) = up(z) > 0 in £,

ug € C(£2), lim,_a0 uo(x) = 0, wheres? is a bounded domain iRY of classC?™ for certaina > 0,
N >1,m >1,¢:RN*1 — Ris continuous in [0;+00) x RY and locally Lipschitz in (O4oc0) x RV
with ¢(0,0) > 0 and

lg(v, w)| < h(v)(1+ lwl|?),

h:[0,4+00) — [0,+00) a nondecreasing function. Moreover, it is proved that the admissible solution
exists in some maximal interval [Dyax), and if Tmax < +oo then

lim | u(t, )HOO = 00.

t—Tmax

Our aim is to show the existence of blowing up admissible solutions for problem (1.1) with

g(u, Vu™) = uP —u#||Vu™||?, p=1, 1< ¢g<2andy > 0. (1.2)
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When
1<p<pu+mqg ofr m<p=pu+mq (1.3)

we will prove thatThax = +o0o and the global.*°-boundedness of the admissible solutions. And we will
prove thatlihax < +00, i.€., the existence of blowing up admissible solutions, under the complementary
condition

1< u+mg<p. (1.4)

In the limit casep = m, u = 0 andg = 1, problem (1.1) may have global or blowing up solutions.
Problem (1.1) with thg-term like

uP — HVuer“/qu, (1.5)

m>1,m/2+4+ pu/q > 0,1< g < 2, was studied in [2], where it was proved the existence of global
weak solutions for initial data if.>°(£2) (more generally ir.”*t1(£2)) when

1< p<max{m,u+mq}.

Moreover, existence of weak solutions for datalii(f2) whenm = 1,¢ = 2and 1< p < p+ 2, is
studied in [1].

We remark that admissible solutions are weak solutions, but in general, weak solutions of parabolic
equations with a gradient term are not unique (see [3]).

Problem (1.1) withy(u, Vu™) = uP has been extensively studied (see, for instance, [11] and the ref-
erences therein). It is known thatif< m there exists a global mild solution for initial datg € L(12)
and ifp > m solutions may blow-up in finite time.

For the semilinear casen( = 1), problem (1.1), (1.2) with. = 0 was introduced by Chipot and
Weissler [4] in order to investigate the effect of a damping term on existence or nonexistence of solutions.
On the other hand, Souplet in [13] proposes a model in population dynamics where this type of equations
describes the evolution of the population density of a biological species under the effect of certain natural
mechanism, see also [2]. For this semilinear case, several authors have studied the existence of nonglobal
positive solutions, giving conditions for blow-up under certain assumptions gn/N and (2 (see, for
instance, [4,8,6,9,10,12-15]).

Now, in the degenerate case, the blow-up results of Souplet and Weissler [15] (see also [16,17]) imply
that problem (1.1), (1.2) does not admit globkdssical solutionsn the following case

p>p+mqg and m > 2

We shall use the method of comparison with suitable blowing up self-similar subsolutions introduced
by Souplet and Weissler in [15]. Concerning this, we want to stress that the diffusiodt&trdegener-
ates foru = 0, so that one can not expect in general an existence result for classical solutions, and itis in
the framework of weak solutions, or admissible solutions, where this problem makes sense. Remark that
this method of comparison may be used for admissible solutions but not in general for weak solutions,
indeed weak solutions are not unique in general and the comparison principle does not apply.
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2. Results

We start with the definition of admissible solution given in [5] for problem (1.1). For an open set
O c R¥*1 we define its parabolic boundary as

0pO = {(t,z) € d0: there exists®,y) € O, T > t}.
Definition 2.1. We say that is an admissible solution of equation
u = Du™ + g(u, Vu'™) in(0,T) x 2 (2.1)

if u is continuous on [A]) x {2 and

(i) foranywv € C1%(0) N C(O), v > 0 onO, whereO is an open subset of (0) x {2, satisfying

(tir;go{[vt —M™ = g(v, Vo™)|(t,z)} >0 onO and v>wu o0ndpO,

we have
v>=u ono,

and
(i) foranyv € C*%0) N C(0), v > 0 0onO, satisfying

v —DM™ — g(v,Vo™) <0 onO and v <wu ondpO,
we have
v<u onO.
Consider the problem

up = D™ — uH||Vu™ |2+ uP  in (0,T) x £2,
{u =0 on (0,7) x 042, (2.2)(uo)
u(0,2) = up(z) > 0 in £2,
up € C(£2), limg_zoup(x) = 0,m > 1,p > 1,1 < g < 2andp > 0.In[5] it is proved the
existence and uniqueness of admissible solutions of problem«g) Z)at is, an admissible solution of
the equationy, = Au™ — w*||Vu'™||? + uP satisfying the boundary and the initial conditions) defined on
a maximal interval [0 max) such that ifTihax < oo then

lim [t )| = oo (2.3)

t—Tmax

Let see first the global existence result.
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Theorem 2.2. Under the assumptions
1<p<pu+mqg or m<p=pu+mq, (2.4)

for every initial datumug € C(§2), ug = 0, lim,_.30 up(z) = 0, the problem(2.2)(uo) admits a unique
globally bounded admissible solution[id, +oc).

Proof. The case < m is a consequence of [11, Theorem 1.3] and the maximum principle for solutions
of approached problems (see [5]). So consider the gasen.
Let us define

Pw=w; — Aw™ + w“HVmeq —wP
and consider the following positiv@?-function on [0717] x 2
w(t,z) = Ce?,

whereC is a positive constant to be determined arid a vector inR" to be also determined.
ComputingPw we have

Pw = —m2C™||a|? €T 4+ CHFMIma||q||? itmdar _ op graw,
Now, using condition (2.4), fofa|| > 1/m andC' large enough it follows that
Pw > 0.
Taking C' large enough, if necessary, it follows from Definition 2.1(i), usings test function, that
O<u<w.
And this finishes the proof. O
Our blow-up result states that
Tax < +00

for admissible solutions of problem (2.2) with exponents in the complementary range of (2.4) for initial
data large enough.

Theorem 2.3. Under the assumptions
1<p+mg<p, (2.5)

given an initial datumug € C(£2), ug = 0, lim,_30 up(z) = O, there exists\op > 0 (depending onug)
such that for allA > o, the admissible solution of proble(@.2)(\uo) blows-up in finite timelyay.
Moreover,

. 1
Ilm )\p_leax()\uo)

- (2.6)
A—-oo (» — 1)|uollts™
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Proof. By translation, one can assume without loss of generality tlatrDandug(0) = max,c o uo(x).
We seek an unbounded self-similar subsolution of problem (2:3)©n [to, 1/e)xRY, 0 < to < 1/e,

of the form

_ 1 ]
w0 = gy (@)
whereV is the function on [O0) given by
Vi) = ((1-)")"

n > 2,0 > 0, e andtg to be determined.
Let us consider

Pw=w; — Aw™ + w“HVmeq —wP.

If we takey = ||z|| /(1 — et)?, computingPv, we get

Pu(t, z)
T - s;p/(pl)8 (p ! V) + UyV’(y))
- Et)miq)/(,,_%q mAV D) [V ()|
Ta- et)ml/(p—l)+2a mV" Hy)(=V" (1))
Ta- et)ml/(pl)+2a mV" 7 (y) (—@) (N — 1)
(- 5t)ml/(p1)+2a m(m — V") ‘;/((Z))Z
1

“@_apien’ W

LetO< r < 1/V2,

(17 p p+mg\ p—m
0<a<m|n{—< — > }
g\p—-1 p-1)/)2p-1)

and

1— 7?2 q
=2 .
+2m°2(p—1)+,u+mq

n

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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Then, in the case & y < r, we havePu(t, z) < 0, for
e=(@p—1)1-22)""Y

andtg sufficiently close to 1, taking into account the dominating negative term (2.13).
Considering now < y < 1, we have

Pu(t, z)
. 2 2\yn—1
=~ Gy oo (=)
1 c -
i (1—et)yp/®=1)p — 1(1 —y°)
" (1 - €t)(N+Mq)/(p_l)+o_q mqnqzqu(l —y )
: -2
(- et)n/-1)120 mn(n — 1)4y? (1 — y?)""
: 2ynm—1
i (1 — et)m/(e-D+20 mNn2(1—y°)
g 2442 2ynm—2
- (1 — et)m/(-D+20 m(m — Ln“dy“(1 — y*)
1 pnp
Ao LY

Now, obviously (217) + (2.19) + (2.20) < 0. Moreover, since

1— 72 q

> )
" 207“2(p—1)+,u+mq

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

if ¢o is sufficiently close to A=, taking into account the dominating negative term (2.14), we hatd)2
(2.15) + (2.16) + (2.18) < 0. Consequently, we obtain th&w (¢, ) < 0 in the case: < y < 1. Finally,

it is obvious thatPuv(t, ) < 0if y > 1. Therefore, we have obtained th&w(¢, z) < 0.

On the other hand, sinag is continuous, giver® = ug(0)(1 — r), there exists a balB(0,p) C (2

such that
up(x) = C forall x € B(0,p).

Takingto still closer to ¥e, if necessary, one can assume that
1
supp(v(t,-)) € B(0, (1—eto)’) C B(0,p) forallt e {to, g).

Then, for allA > \g = 1/(C(1 — eto)Y®—Y), it yields

1

)\uo(l‘) 2 (1 — €t0)1/(p_l)

> v(to,xz) forallz € B(0,p),
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and then
Aug(x) = v(to,z) forallx € 2. (2.21)
Moreover,u(t, x) = 0 for (¢, x) € [to, 1/€) x 042.
Let u be the admissible solution of problem (2.2)f). For 0 < 7" < min{TmadAuo), 1/ — to},
consider the open set
Or = {(t,z) € (0,T) x £2: v(t + to, ) > u(t,z)}.
Let us see thaD is empty. By Definition 2.1(ii) it is enough to see
v(t + to,x) < ult,x) INdpOp. (2.22)
To see (2.22), assume first
(t,z) € (0,T) x 2N 0pOr.

In this case, as both andv are continuous we hawdt + tg, z) = u(t, x), thus (2.22) holds.
It remains to examine the case

(t,x) € a((O,T) X Q) NopOr.
But in this case, (2.22) holds sineeandw are null in (0,7") x 042 and (2.21) is satisfied for the initial

time.
SinceOr is empty for all 0< T' < min{Tmax(Auo), 1/ — to}, we have

. 1
v(t +to,x) <wult,x) forallze 2, 0<t< mln{TmaX()\uo), - to},
which implies
1

€

since lim_1 /.4, v(t + to, 0) = +o0.
Let¢1 be such thaty < ¢1 < 1/e. Proceeding as before, we have that

1 1
Consequently, if
1 1

A> L A=
C(1— eto)/—D C(L— ety)V/e-D
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for somet; such thattg < t1 < 1/e. Hence

1

AT (2.23)

1
TmadAug) <

EW fOI’)\}

Foré > 0, we consider now

(A + 0)uo(0)

@ _pye-yr 0SSV

wg(t, x) =

which is aC2-function such that
Pws >0

if v > (p — L)\ + 0)PLug(0)~L. Then, sincavs > u in 3,(2 x (0,T)), by Definition 2.1(i), it follows
that

1
u(t,z) <ws(t,z) forO<t< min{TmaX()\uo), —},
v

and therefore, ag blows up iNTmax(Aug), 1/v < Tmax(Auo). Then taking
v=(p— 1)\ + 25" tup(0) 1,
we get

1
(> — D\ + 20)P~ Lup(0p—1

TmadAuo) =

and lettingd — 0", we obtain

1
(» — DAuo(0)p 1

Using now (2.23) and (2.24), lettingto 0 it follows that

< TmaxAuo). (2.24)

1
lim AN Thadug) = ———————.
oo T (p — 1)l "

Remark 2.4. A similar formula like (2.6) was proved using the eigenfunction method by Gui and
Wang [7] for the Cauchy problem (i.eQ = RY) for the semilinear heat equation. In the semilinear
case forf2 bounded, Souplet and Weissler in [15] obtain the estimate

1 C1
< Tmax(Awg) € ————,
& =D uolyp t S Tmadduo) S s

where( is a constant depending on the parameters of the equaii@md (2.
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In the critical case, thatis for = 0,¢ = 1 andp = m > 1, for some parameter, 3 > 0, we consider
the problem

u=0~0 on (0,1 x 042, (2.25)

up =M™ — of| V™| + pu™ in(0,7) x £2,
u(0,2) = up(z) > 0 in £2.

We are going to see now that in this critical case, depending on the relations between the parameters
« andg, we get globally bounded admissible solutions or blowing up admissible solutions.

Theorem 2.5.

(i) Under the assumption

a> 28, (2.26)
for every initial datumug € C(§2), up > 0, lim,_,30 ug(z) = 0, the problem(2.25) admits a
unigue globally bounded admissible solutior{@+oc).

(i) Assume thatn > 1. Givenag > 0, there existsdy > 0, depending onyg, N, m and {2, such
that, if 0 < a < ap and 8 > [y, then for initial dataug large enough the admissible solution of
problem(2.25)blows up in finite time.

Proof. (i) Let P be the differential operator
Pw = w; — Mw™ + of| V™| — fu™
and consider the following positiv@?-function on [017] x 2

w(t,x) = Ce*?,

whereC is a positive constant to be determined ansla vector inR" to be also determined. Computing
Pw we have

Pw = —m?C™[la|2€"*" + aC™ml[a|| €"** — BC™ &7
Then, Pw > 0 if a > (8 + m?||al|?)/(m||al]). Now, sinces = /B/m is a minimum of the function
s — (B + m?s?)/(ms), choosing||a|| = +/B/m, we have thaiPw > 0 if o > 2,/3. TakingC large
enough, if necessary, it follows from Definition 2.1(i) that
O<u<w.
(i) Consider again the differential operator
Pw =w; — Mw™ + of Vu™|| — fu™.

Let B the greatest open ball contained(ih By translation, one can assume without loss of generality
that B = B(0,A4), A > 0.
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We seek an unbounded self-similar subsolution of problem (2.25) ofigpLR" of the form

1

W((A2 —[l)™)", (2.27)

v(t,x) =

where ¥m < n < 2/(m — 1), andz is a positive constant to be determined. If we tgke ||z||, in the
case 0< y < A, computingPv, we get

Pu(t,z)
- gt)%n/(m_l) <€m1_ T(4% - yz)”) (2.28)
+ Wlm/(m_l) (2mn(ay + N)(A2 - y2)"" ) (2.29)
- Wlm/(m_l) (Anm(nm — 1)y?(A2 - 2)"" ) (2.30)
- Wlm/(m_l) (B(A%—?)"™). (2.31)

Let us see now thaPv < 0. Observe that the negative term (2.30) has not contribution whisn
close to 0, thus we will use the dominating negative term (2.31) wtisrtlose to 0 and the dominating
negative term (2.30) whemis close toA. Fix somer, 0 < r < A. Then, we have

-1

1 . n\m-—
(228)+ 5231 <0 ife< B 2342 — r))"™ D and 0< y < 1, (2.32)

and, sincen < 2/n + 1, it follows that

1
(228)+ 5(230) < 0

(2.33)
if e <2(m — Lnm(nm — 1)r?(A? — rz)n(mfl)fz andr <y < A.
On the other hand, to get.@9) + %(2.31) < 0, we need that
2mn(N + ay) < g(AZ —7),
or equivalently, that
By? + dmnay + 4mnN — BA% < 0. (2.34)

Let

~ —2mna + /4m?n2a2 — dmnN 3 + (2A2
ya”g = ﬁ .
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If 3> 4mnN/A?, then 0< Yo, < A, and (2.34) holds for & y < y.,3- Hence, we obtain that

(2.29) + %(2.31) <0 if8> N ando<y < Yo g (2.35)

A
To get (229) + 3(2.30) < 0, we need that

(ay + N) (A% = °) < (nm — 1),
or equivalently, that

Qa(y) = ay® + ((mn — 1)+ N)y? — aA?y — NA? > 0.
SinceqQ),, is a polynomial of degree three,

Qa(0)= —NA%2<0, Qu(—A)=mm—-1A42>0 and Q.(4) = (nm —1)A%2 >0,
there exists a roat,, of the polynomial,, such that 0< =, < A andQ.(y) > O for all y > z,. Now,
since > 4mnN/A2, we havey,, g = Ya,s if a1 < an. Moreover, ifa; < ap, and we consider the
function

£(@) = Qalza,) = az3, + ((mn — 1)+ N)2i, — ad’z,, — NA?,
we have

f(a)—ac Awaz\O.
Consequentlyf (1) > f(az) = 0. Thus,z,, < z4,. On the other hand,

lim = A.
Btoo ya,@

Hence, if we fixeng > 0, there existgly > 4mnN/A? such thaty, g > z, forall 0 < o < g @and all
8 = Bo. Thus, we obtain that

(2.29) + %(2.30) <0 ifB3>fo, 0<a<apgandy,s <y < A. (2.36)
From (2.32), (2.33), taking = y,,3, (2.35) and (2.36), it follows thaPv < O if

B = Po, O<a<a

and

2

O<e< min{ m ﬂ(Az o Tz)n(m—l)’ 2(m — Lynm(nm — 1)r2(A2 _ TZ)n(m—l)—Z}‘
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Letug € C(£2), ug = 0, lim,_ 30 uo(x) = 0, such that
v(0,2) < up(xz) forallx € £, (2.37)
and letu be the admissible solution of problem (2.25) for the initial datwynlLet us see that blows-up
in finite time. To do that we shall prove th@,ax(uo) < 1/e. In fact: for 0< 7' < min{Tmaxuo), 1/},
consider the open set

Or = {(t,z) € (0,T) x £2: v(t,x) > u(t,x)}.

Sincev > 0 on this open set, € C+%(O7) andPv < 0. Let us see thad is empty. By Definition 2.1(ii)
it is enough to see

v(t,z) < u(t,z) indpOr. (2.38)
To see (2.38), assume first
(t,.%') S (O,T) x 2N 0p0T.

In this case, as both andv are continuous we hawt, x) = u(t, x), thus (2.38) holds.
It remains to examine the case

(t,x) € a((O,T) X Q) NopOr.
But in this case, (2.38) holds sineeandw are null in (0,7") x 042 and (2.37) is satisfied for the initial

time.
SinceOr is empty for all 0< 7' < min{Tmax(uo), 1/¢}, we have

v(t,z) <u(t,z) forallz e 2, 0<t< min{TmaX(uo), %},
which implies

Tmaduo) <

o=

since lim_y/. v(¢, 0) = +oc. O
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