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Abstract. For nonlinear parabolic equations of the formut = ∆um − uµ‖∇um‖q + up, we prove nonexistence of global
admissible solutions for large initial data for some range of the parametersm, µ, q andp. To do so we use comparison with
suitable blowing up self-similar subsolutions. We also prove that for the complementary range of the parameters for which we
obtain blow-up, there exists globally bounded admissible solutions.
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1. Introduction

In [5] it is proved the existence and uniqueness of a class of solutions, named admissible solutions, for
the problem



ut = ∆um + g(u,∇um) in (0,T ) ×Ω,
u = 0 on (0,T ) × ∂Ω,
u(0,x) = u0(x) � 0 in Ω,

(1.1)

u0 ∈ C(Ω), limx→∂Ω u0(x) = 0, whereΩ is a bounded domain inRN of classC2+α for certainα > 0,
N � 1, m � 1, g : RN+1 → R is continuous in [0,+∞) × R

N and locally Lipschitz in (0,+∞) × R
N

with g(0, 0) � 0 and

∣∣g(v,w)
∣∣ � h(v)

(
1 + |w|2

)
,

h : [0,+∞) → [0,+∞) a nondecreasing function. Moreover, it is proved that the admissible solution
exists in some maximal interval [0,Tmax), and ifTmax < +∞ then

lim
t→Tmax

∥∥u(t, ·)
∥∥
∞ = ∞.

Our aim is to show the existence of blowing up admissible solutions for problem (1.1) with

g
(
u,∇um)

= up − uµ
∥∥∇um

∥∥q
, p � 1, 1� q � 2 andµ � 0. (1.2)
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When

1 � p < µ + mq or m < p = µ + mq (1.3)

we will prove thatTmax = +∞ and the globalL∞-boundedness of the admissible solutions. And we will
prove thatTmax < +∞, i.e., the existence of blowing up admissible solutions, under the complementary
condition

1 � µ + mq < p. (1.4)

In the limit casep = m, µ = 0 andq = 1, problem (1.1) may have global or blowing up solutions.
Problem (1.1) with theg-term like

up −
∥∥∇um+µ/q

∥∥q
, (1.5)

m � 1, m/2 + µ/q > 0, 1 � q < 2, was studied in [2], where it was proved the existence of global
weak solutions for initial data inL∞(Ω) (more generally inLm+1(Ω)) when

1 � p < max{m,µ + mq} .

Moreover, existence of weak solutions for data inL1(Ω) whenm = 1, q = 2 and 1� p < µ + 2, is
studied in [1].

We remark that admissible solutions are weak solutions, but in general, weak solutions of parabolic
equations with a gradient term are not unique (see [3]).

Problem (1.1) withg(u,∇um) = up has been extensively studied (see, for instance, [11] and the ref-
erences therein). It is known that ifp < m there exists a global mild solution for initial datau0 ∈ L1(Ω)
and ifp > m solutions may blow-up in finite time.

For the semilinear case (m = 1), problem (1.1), (1.2) withµ = 0 was introduced by Chipot and
Weissler [4] in order to investigate the effect of a damping term on existence or nonexistence of solutions.
On the other hand, Souplet in [13] proposes a model in population dynamics where this type of equations
describes the evolution of the population density of a biological species under the effect of certain natural
mechanism, see also [2]. For this semilinear case, several authors have studied the existence of nonglobal
positive solutions, giving conditions for blow-up under certain assumptions onp, q, N andΩ (see, for
instance, [4,8,6,9,10,12–15]).

Now, in the degenerate case, the blow-up results of Souplet and Weissler [15] (see also [16,17]) imply
that problem (1.1), (1.2) does not admit globalclassical solutionsin the following case

p > µ + mq and m � 2.

We shall use the method of comparison with suitable blowing up self-similar subsolutions introduced
by Souplet and Weissler in [15]. Concerning this, we want to stress that the diffusion term∆um degener-
ates foru = 0, so that one can not expect in general an existence result for classical solutions, and it is in
the framework of weak solutions, or admissible solutions, where this problem makes sense. Remark that
this method of comparison may be used for admissible solutions but not in general for weak solutions,
indeed weak solutions are not unique in general and the comparison principle does not apply.



F. Andreu et al. / Blow-up 145

2. Results

We start with the definition of admissible solution given in [5] for problem (1.1). For an open set
O ⊂ R

N+1 we define its parabolic boundary as

∂PO =
{
(t,x) ∈ ∂O: there exists (τ ,y) ∈ O, τ > t

}
.

Definition 2.1. We say thatu is an admissible solution of equation

ut = ∆um + g
(
u,∇um)

in (0,T ) ×Ω (2.1)

if u is continuous on [0,T ) ×Ω and

(i) for anyv ∈ C1,2(O) ∩ C(O), v > 0 onO, whereO is an open subset of (0,T ) ×Ω, satisfying

inf
(t,x)∈O

{[
vt − ∆vm − g

(
v,∇vm)]

(t,x)
}
> 0 onO and v > u on∂PO,

we have

v � u onO,

and
(ii) for any v ∈ C1,2(O) ∩ C(O), v > 0 onO, satisfying

vt − ∆vm − g
(
v,∇vm)

� 0 onO and v � u on∂PO,

we have

v � u onO.

Consider the problem



ut = ∆um − uµ‖∇um‖q + up in (0,T ) ×Ω,
u = 0 on (0,T ) × ∂Ω,
u(0,x) = u0(x) � 0 in Ω,

(2.2)(u0)

u0 ∈ C(Ω), limx→∂Ω u0(x) = 0, m � 1, p � 1, 1 � q � 2 andµ � 0. In [5] it is proved the
existence and uniqueness of admissible solutions of problem (2.2)(u0) (that is, an admissible solution of
the equationut = ∆um −uµ‖∇um‖q +up satisfying the boundary and the initial conditions) defined on
a maximal interval [0,Tmax) such that ifTmax < ∞ then

lim
t→Tmax

∥∥u(t, ·)
∥∥
∞ = ∞. (2.3)

Let see first the global existence result.
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Theorem 2.2. Under the assumptions

1 � p < µ + mq or m < p = µ + mq, (2.4)

for every initial datumu0 ∈ C(Ω), u0 � 0, limx→∂Ω u0(x) = 0, the problem(2.2)(u0) admits a unique
globally bounded admissible solution in[0,+∞).

Proof. The casep < m is a consequence of [11, Theorem 1.3] and the maximum principle for solutions
of approached problems (see [5]). So consider the casep � m.

Let us define

Pw = wt − ∆wm + wµ
∥∥∇wm

∥∥q −wp

and consider the following positiveC2-function on [0,T ] ×Ω

w(t,x) = C ea·x,

whereC is a positive constant to be determined anda is a vector inRN to be also determined.
ComputingPw we have

Pw = −m2Cm‖a‖2 ema·x + Cµ+mqmq‖a‖q e(µ+mq)a·x − Cp epa·x.

Now, using condition (2.4), for‖a‖ > 1/m andC large enough it follows that

Pw > 0.

TakingC large enough, if necessary, it follows from Definition 2.1(i), usingw as test function, that

0 � u � w.

And this finishes the proof. �

Our blow-up result states that

Tmax < +∞

for admissible solutions of problem (2.2) with exponents in the complementary range of (2.4) for initial
data large enough.

Theorem 2.3. Under the assumptions

1 � µ + mq < p, (2.5)

given an initial datumu0 ∈ C(Ω), u0 � 0, limx→∂Ω u0(x) = 0, there existsλ0 > 0 (depending onu0)
such that for allλ > λ0, the admissible solution of problem(2.2)(λu0) blows-up in finite timeTmax.
Moreover,

lim
λ→+∞

λp−1Tmax(λu0) =
1

(p− 1)‖u0‖p−1
∞

. (2.6)
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Proof. By translation, one can assume without loss of generality that 0∈ Ω andu0(0) = maxx∈Ω u0(x).
We seek an unbounded self-similar subsolution of problem (2.2)(λu0) on [t0, 1/ε)×R

N , 0 < t0 < 1/ε,
of the form

v(t,x) =
1

(1− εt)1/(p−1)
V

( ‖x‖
(1− εt)σ

)
, (2.7)

whereV is the function on [0,∞) given by

V (y) =
((

1− y2)+)n

n > 2, σ > 0, ε andt0 to be determined.
Let us consider

Pw = wt − ∆wm + wµ
∥∥∇wm

∥∥q −wp.

If we takey = ‖x‖/(1− εt)σ , computingPv, we get

Pv(t,x)

=
1

(1− εt)p/(p−1)
ε

(
1

p− 1
V (y) + σyV ′(y)

)
(2.8)

+
1

(1− εt)(µ+mq)/(p−1)+σq
mqV µ+(m−1)q(y)

∣∣V ′(y)
∣∣q (2.9)

+
1

(1− εt)m/(p−1)+2σ
mV m−1(y)

(
−V ′′(y)

)
(2.10)

+
1

(1− εt)m/(p−1)+2σ
mV m−1(y)

(
−V ′(y)

y

)
(N − 1) (2.11)

− 1

(1− εt)m/(p−1)+2σ
m(m− 1)V m−1(y)

V ′(y)2

V (y)
(2.12)

− 1

(1− εt)p/(p−1)
V p(y). (2.13)

Let 0< r < 1/
√

2,

0 < σ < min
{

1
q

(
p

p− 1
− µ + mq

p− 1

)
,

p−m

2(p− 1)

}
,

and

n = 2 +
1− r2

2σr2(p− 1)
+

q

µ + mq
.
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Then, in the case 0� y � r, we havePv(t,x) � 0, for

ε = (p− 1)
(
1− 2r2)n(p−1)

andt0 sufficiently close to 1/ε, taking into account the dominating negative term (2.13).
Considering nowr < y � 1, we have

Pv(t,x)

= − 1

(1− εt)p/(p−1)
εσ2y2n

(
1− y2)n−1

(2.14)

+
1

(1− εt)p/(p−1)

ε

p− 1

(
1− y2)n

(2.15)

+
1

(1− εt)(µ+mq)/(p−1)+σq
mqnq2qyq(1− y2)(µ+mq)n−q

(2.16)

− 1

(1− εt)m/(p−1)+2σ
mn(n− 1)4y2(1− y2)nm−2

(2.17)

+
1

(1− εt)m/(p−1)+2σ
mNn2

(
1− y2)nm−1

(2.18)

− 1

(1− εt)m/(p−1)+2σ
m(m− 1)n24y2(1− y2)nm−2

(2.19)

− 1

(1− εt)p/(p−1)

(
1− y2)np

. (2.20)

Now, obviously (2.17)+ (2.19)+ (2.20) � 0. Moreover, since

n >
1− r2

2σr2(p− 1)
+

q

µ + mq
,

if t0 is sufficiently close to 1/ε, taking into account the dominating negative term (2.14), we have (2.14)+
(2.15)+ (2.16)+ (2.18) � 0. Consequently, we obtain thatPv(t,x) � 0 in the caser < y � 1. Finally,
it is obvious thatPv(t,x) � 0 if y > 1. Therefore, we have obtained thatPv(t,x) � 0.

On the other hand, sinceu0 is continuous, givenC = u0(0)(1− r), there exists a ballB(0,ρ) ⊂ Ω
such that

u0(x) � C for all x ∈ B(0,ρ).

Takingt0 still closer to 1/ε, if necessary, one can assume that

supp
(
v(t, ·)

)
⊂ B

(
0, (1− εt0)σ

)
⊂ B(0,ρ) for all t ∈

[
t0,

1
ε

)
.

Then, for allλ � λ0 = 1/(C(1− εt0)1/(p−1)), it yields

λu0(x) � 1
(1− εt0)1/(p−1)

� v(t0,x) for all x ∈ B(0,ρ),
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and then

λu0(x) � v(t0,x) for all x ∈ Ω. (2.21)

Moreover,v(t,x) = 0 for (t,x) ∈ [t0, 1/ε) × ∂Ω.
Let u be the admissible solution of problem (2.2)(λu0). For 0 < T < min{Tmax(λu0), 1/ε − t0},

consider the open set

OT =
{
(t,x) ∈ (0,T ) ×Ω: v(t + t0,x) > u(t,x)

}
.

Let us see thatOT is empty. By Definition 2.1(ii) it is enough to see

v(t + t0,x) � u(t,x) in ∂POT . (2.22)

To see (2.22), assume first

(t,x) ∈ (0,T ) ×Ω ∩ ∂POT .

In this case, as bothu andv are continuous we havev(t + t0,x) = u(t,x), thus (2.22) holds.
It remains to examine the case

(t,x) ∈ ∂
(
(0,T ) ×Ω

)
∩ ∂POT .

But in this case, (2.22) holds sincev andu are null in (0,T ) × ∂Ω and (2.21) is satisfied for the initial
time.

SinceOT is empty for all 0< T < min{Tmax(λu0), 1/ε − t0}, we have

v(t + t0,x) � u(t,x) for all x ∈ Ω, 0 < t < min
{
Tmax(λu0),

1
ε
− t0

}
,

which implies

Tmax(λu0) � 1
ε
− t0,

since limt→1/ε−t0
v(t + t0, 0) = +∞.

Let t1 be such thatt0 < t1 < 1/ε. Proceeding as before, we have that

Tmax(λu0) � 1
ε
− t1 for λ � 1

C(1− εt1)1/(p−1)
.

Consequently, if

λ � 1
C(1− εt0)1/(p−1)

, λ =
1

C(1− εt1)1/(p−1)
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for somet1 such that,t0 < t1 < 1/ε. Hence

Tmax(λu0) � 1
ε

1
(λC)p−1 for λ � 1

C(1− εt0)1/(p−1)
. (2.23)

Forδ > 0, we consider now

wδ(t,x) =
(λ + δ)u0(0)

(1− νt)1/(p−1)
, 0 � t < 1/ν,

which is aC2-function such that

Pwδ > 0

if ν > (p− 1)(λ + δ)p−1u0(0)p−1. Then, sincewδ > u in ∂p(Ω × (0,T )), by Definition 2.1(i), it follows
that

u(t,x) � wδ(t,x) for 0 � t < min
{
Tmax(λu0),

1
ν

}
,

and therefore, asu blows up inTmax(λu0), 1/ν � Tmax(λu0). Then taking

ν = (p− 1)(λ + 2δ)p−1u0(0)p−1,

we get

Tmax(λu0) � 1
(p − 1)(λ + 2δ)p−1u0(0)p−1 ,

and lettingδ → 0+, we obtain

1
(p− 1)(λu0(0))p−1 � Tmax(λu0). (2.24)

Using now (2.23) and (2.24), lettingr to 0 it follows that

lim
λ→+∞

λp−1Tmax(λu0) =
1

(p− 1)‖u0‖p−1
∞

. �

Remark 2.4. A similar formula like (2.6) was proved using the eigenfunction method by Gui and
Wang [7] for the Cauchy problem (i.e.,Ω = R

N ) for the semilinear heat equation. In the semilinear
case forΩ bounded, Souplet and Weissler in [15] obtain the estimate

1
(p− 1)(λ‖u0‖∞)p−1 � Tmax(λu0) � C1

(λ‖u0‖∞)p−1 ,

whereC1 is a constant depending on the parameters of the equation,N andΩ.
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In the critical case, that is forµ = 0, q = 1 andp = m � 1, for some parameterα,β > 0, we consider
the problem



ut = ∆um − α‖∇um‖ + βum in (0,T ) ×Ω,
u = 0 on (0,T ) × ∂Ω,
u(0,x) = u0(x) � 0 in Ω.

(2.25)

We are going to see now that in this critical case, depending on the relations between the parameters
α andβ, we get globally bounded admissible solutions or blowing up admissible solutions.

Theorem 2.5.

(i) Under the assumption

α > 2
√

β, (2.26)

for every initial datumu0 ∈ C(Ω), u0 � 0, limx→∂Ω u0(x) = 0, the problem(2.25) admits a
unique globally bounded admissible solution in[0,+∞).

(ii) Assume thatm > 1. Givenα0 > 0, there existsβ0 > 0, depending onα0, N , m andΩ, such
that, if 0 < α � α0 andβ � β0, then for initial datau0 large enough the admissible solution of
problem(2.25)blows up in finite time.

Proof. (i) Let P be the differential operator

Pw = wt − ∆wm + α
∥∥∇wm

∥∥ − βwm

and consider the following positiveC2-function on [0,T ] ×Ω

w(t,x) = C ea·x,

whereC is a positive constant to be determined anda is a vector inRN to be also determined. Computing
Pw we have

Pw = −m2Cm‖a‖2 ema·x + αCmm‖a‖ema·x − βCm ema·x.

Then,Pw > 0 if α > (β + m2‖a‖2)/(m‖a‖). Now, sinces =
√
β/m is a minimum of the function

s 
→ (β + m2s2)/(ms), choosing‖a‖ =
√
β/m, we have thatPw > 0 if α > 2

√
β. TakingC large

enough, if necessary, it follows from Definition 2.1(i) that

0 � u � w.

(ii) Consider again the differential operator

Pw = wt − ∆wm + α
∥∥∇wm

∥∥ − βwm.

Let B the greatest open ball contained inΩ. By translation, one can assume without loss of generality
thatB = B(0,A), A > 0.
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We seek an unbounded self-similar subsolution of problem (2.25) on [0, 1/ε) × R
N of the form

v(t,x) =
1

(1− εt)1/(m−1)

((
A2 − ‖x‖2)+)n

, (2.27)

where 1/m < n � 2/(m − 1), andε is a positive constant to be determined. If we takey = ‖x‖, in the
case 0� y < A, computingPv, we get

Pv(t,x)

=
1

(1− εt)m/(m−1)

(
ε

1
m− 1

(
A2 − y2)n

)
(2.28)

+
1

(1− εt)m/(m−1)

(
2mn(αy + N )

(
A2 − y2)nm−1)

(2.29)

− 1

(1− εt)m/(m−1)

(
4nm(nm− 1)y2(A2 − y2)nm−2)

(2.30)

− 1

(1− εt)m/(m−1)

(
β

(
A2 − y2)nm)

. (2.31)

Let us see now thatPv � 0. Observe that the negative term (2.30) has not contribution wheny is
close to 0, thus we will use the dominating negative term (2.31) wheny is close to 0 and the dominating
negative term (2.30) wheny is close toA. Fix somer, 0 < r < A. Then, we have

(2.28)+
1
2

(2.31) � 0 if ε � m− 1
2

β
(
A2 − r2)n(m−1)

and 0� y � r, (2.32)

and, sincem � 2/n + 1, it follows that

(2.28)+
1
2

(2.30) � 0

if ε � 2(m− 1)nm(nm− 1)r2(A2 − r2)n(m−1)−2
andr � y < A.

(2.33)

On the other hand, to get (2.29)+ 1
2(2.31) � 0, we need that

2mn(N + αy) � β

2

(
A2 − y2),

or equivalently, that

βy2 + 4mnαy + 4mnN − βA2 � 0. (2.34)

Let

yα,β :=
−2mnα +

√
4m2n2α2 − 4mnNβ + β2A2

β
.
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If β > 4mnN/A2, then 0< yα,β < A, and (2.34) holds for 0� y � yα,β. Hence, we obtain that

(2.29)+
1
2

(2.31) � 0 if β >
4mnN

A2 and 0� y � yα,β. (2.35)

To get (2.29)+ 1
2(2.30) � 0, we need that

(αy + N )
(
A2 − y2) � (nm− 1)y2,

or equivalently, that

Qα(y) := αy3 +
(
(mn− 1) + N

)
y2 − αA2y −NA2 � 0.

SinceQα is a polynomial of degree three,

Qα(0) = −NA2 < 0, Qα(−A) = (nm− 1)A2 > 0 and Qα(A) = (nm− 1)A2 > 0,

there exists a rootxα of the polynomialQα, such that 0< xα < A andQα(y) > 0 for all y > xα. Now,
sinceβ > 4mnN/A2, we haveyα1,β � yα2,β if α1 � α2. Moreover, ifα1 � α2, and we consider the
function

f (α) := Qα(xα2) = αx3
α2

+
(
(mn− 1) + N

)
x2

α2
− αA2xα2 −NA2,

we have

f ′(α) = x3
α2

−A2xα2 � 0.

Consequently,f (α1) � f (α2) = 0. Thus,xα1 � xα2. On the other hand,

lim
β→+∞

yα,β = A.

Hence, if we fixeα0 > 0, there existsβ0 > 4mnN/A2 such thatyα,β � xα for all 0 < α � α0 and all
β � β0. Thus, we obtain that

(2.29)+
1
2

(2.30) � 0 if β � β0, 0 < α � α0 andyα,β � y < A. (2.36)

From (2.32), (2.33), takingr = yα,β, (2.35) and (2.36), it follows thatPv � 0 if

β � β0, 0 < α � α0

and

0 < ε � min
{
m− 1

2
β

(
A2 − r2)n(m−1)

, 2(m− 1)nm(nm− 1)r2(A2 − r2)n(m−1)−2
}
.
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Let u0 ∈ C(Ω), u0 � 0, limx→∂Ω u0(x) = 0, such that

v(0,x) � u0(x) for all x ∈ Ω, (2.37)

and letu be the admissible solution of problem (2.25) for the initial datumu0. Let us see thatu blows-up
in finite time. To do that we shall prove thatTmax(u0) < 1/ε. In fact: for 0< T < min{Tmax(u0), 1/ε},
consider the open set

OT =
{
(t,x) ∈ (0,T ) ×Ω: v(t,x) > u(t,x)

}
.

Sincev > 0 on this open set,v ∈ C1,2(OT ) andPv � 0. Let us see thatOT is empty. By Definition 2.1(ii)
it is enough to see

v(t,x) � u(t,x) in ∂POT . (2.38)

To see (2.38), assume first

(t,x) ∈ (0,T ) ×Ω ∩ ∂POT .

In this case, as bothu andv are continuous we havev(t,x) = u(t,x), thus (2.38) holds.
It remains to examine the case

(t,x) ∈ ∂
(
(0,T ) ×Ω

)
∩ ∂POT .

But in this case, (2.38) holds sincev andu are null in (0,T ) × ∂Ω and (2.37) is satisfied for the initial
time.

SinceOT is empty for all 0< T < min{Tmax(u0), 1/ε}, we have

v(t,x) � u(t,x) for all x ∈ Ω, 0 < t < min
{
Tmax(u0),

1
ε

}
,

which implies

Tmax(u0) � 1
ε

,

since limt→1/ε v(t, 0) = +∞. �
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