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Abstract. In this paper we study the questions of existence and uniqueness of solutions
for equations of the form
u—diva(z,Du) =f in Q
ou
IMa

€ B(u) on 09,

where € is a bounded domain in RY, 3 is a maximal monotone graph in R x R
with 0 € 3(0) and f € L'(Q). As a consequence, an m-completely accretive operator in
L(Q)) can be associated to the corresponding parabolic equation, which permits to study
this equation from the point of view of Nonlinear Semigroup Theory.

Introduction

Let ©Q be a bounded domain in RY with smooth boundary 99 and 1 < p < oo.
Consider a vector valued function a mapping Q x RY into RY and satisfying

(Hy) a is a Carathéodory function ( i.e., the map £ — a(x,£) is continuous for almost
all = and the map = — a(x,{) is measurable for every ¢ ) and there exists A > 0 such
that

(a(x,€),€) = Al¢[”

holds for every ¢ and a.e. z € ), where (,) means scalar product in RY.

(Hy) For every ¢ and n € RY, £ #1n, and a.e. x € Q there holds

(a(z, &) —a(x,n),§ —n) > 0.
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(Hs) There exists A € R such that
la(z, €)| < AGi(z) + 177

holds for every £ € RV and a.e. z € Q, with je LP, p/ = p/(p—1).

The hypotheses (H;), (H2) and (Hs) are classical in the study of nonlinear operators in
divergence form ( see [LL] ). The model example of function a satisfying these hypotheses
is a(z,&) = [£[P72¢. The corresponding operator is the p-Laplacian operator A,(u) =
div(|DulP~? Du).

The aim of this paper is to study existence and uniqueness of solutions for equations of
the form

u—div a(z,Du) = f in Q
(1)

—667;“: € f(u) on 0N

where 0/0n, is the Neumann boundary operator associated to a, i.e.,

ou
- = (a(z. Du). )

with 7 the unit outward normal on 02, Du the gradient of v and [ is a maximal
monotone graph in R x R with 0 € $(0) . These nonlinear flux on the boundary occurs
in some problems in Mechanics and Physics [DL] ( see also [Bra] ). Observe also that the
classical Neumann and Dirichlet boundary conditions correspond to 5 = R x {0} and
B = {0} x R, respectively.

We associate a completely accretive operator Ay in L!'()) with the formal differential
expression

—div a(z, Du) + nonlinear boundary conditions.

Recently, in [B-V], a new concept of solution has been introduced for the elliptic equation
—div a(z, Du) = f(x) in Q

u=0 on 09,

namely entropy solution. We use the method developed in [B-V] to characterize and
interpret the closure of the operator Aj.

The plan of the paper is as follows: Some preliminary results and notation are collected
in Section 1. In the second section we study the problem (I) with variational methods.
We introduce a completely accretive operator Ap in L!'(Q) which satisfies the range
condition. Under certain restrictions another completely accretive operator A satisfying
the range condition and smaller than A; is also introduced. In order to characterize
the closure of the operator A we need to define the trace of functions which are not in
the Sobolev spaces. This is the subject of Section 3. In the next section we characterize
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the closure of the operator A. To do that, following [B-V], we introduce the concept of
entropy solution for the elliptic problem. As a consequence of the m-accretivity of the
closure of the operator A, we obtain a result of existence and uniqueness for the entropy
solutions of the elliptic problem. Finally, in Section 5 we consider the evolution problem
associated with the operator Ag.

1. Preliminaries

In this section we give some of the notation and definitions used later. If QO C RV is a
Lebesgue measurable set, An(€2) denotes its measure. The norm in LP(Q2) is denoted
by [, 1<p<oo. If k>0 isan integer and 1 < p < oo, WkP(Q) is the Sobolev
space of functions u on the open set © C RN for which D%u belongs to LP()
when |af < k, with its usual norm ||., . WEP(Q) is the closure of D() = Cg°(1)
in WkP(Q). If ve LY(Q) and Ay (Q) < oo, we denote by ¥ the average of v, i.e.,

U= L v(x) dx
v.—)\N(Q)/Q (z) dz.

Given a finite measure space (S,v), we denote by M (S,v) the set of all measurable
functions w: S — R finite a.e., identifying the functions that are equal a.e. M (S,v) is
a metric space endowed with the distance function of the convergence in measure,

lu — vl
u,v) = [ ———.
o(u;v) /Ql+|u—v|

We recall, cf. [BBC], that for 0 < ¢ < oo the Marcinkiewicz space M9(§2) can
be defined as the set of measurable functions f : £ — R such that the corresponding
distribution function

¢r(k) =An{z € Q : [f(z)] >k}
satisfies an estimate of the form
or(k) < Ck™1, C < o0.

For bounded (2’s, it is immediate that M%(Q) C M9(Q) if § < g, also LI(Q) C M) C
L™(Q) if 1<r<gq.

We will use the following truncature operator: For a given constant k& > 0 we define
the cut function 7, : R — R as
s if |s| <k

Ti(s) o= { k sign (s) if |s| > k.

For a function u = u(x), = € Q, we define the truncated function Tyu pointwise, i.e., for
every x € Q) the value of Tyu at z is just Ty (u(z)). Observe that

) 1 if s>0
]lii% ETk(s) =sign(s):=¢ 0 if s=0
-1 if s<0.
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By the Stampacchia Theorem, cf. [KS], if v € W11(Q), we have
DTk(U) = 1{|u|<k} Du,
where 1p denotes the characteristic function of a measurable set B C €.

As we said in the introduction, our abstract framework is the Theory of Nonlinear
Semigroups. We refer the reader to [Bal, [Be|, [BCP] and [Cr] for background material on
non-linear contraction semigroups.

In [BCr|, Ph. Bénilan and M. Crandall introduce the concept of completely accretive
operator, whose precedents are the results of Brezis-Strauss [BS] on semilinear elliptic

equations ( see also [Be| ). To define this notion of operator we use the following notation.
Let u,v € M(Q), we set u < v if

/Q j(u) < /Q j(v) for jeo,

where
Jo = { convex lower — semicontinuous maps j: R — [0,00] satisfying j(0) =0 }.

An operator A in M (), possibly multivaluated ( i.e., A C M () x M () ), is said to
be completely accretive if

u—u<L<u—u+ANv—0) for A\>0 and (u,v),(q,v) € A.
Let
Po={peC>®R) : 0<p' <1, supp(p’) is compact, and 0 & supp(p) }.
By [BCr, Proposition 2.2], if Q is bounded and wu,v € L*(Q2), the following conditions

are equivalent:

(1.1) u<<u+ v for any A >0,

(1.2) /p(u)v >0 for any pe P.
Q

Remark that if A is a completely accretive operator in L1(Q) and 1 < ¢ < oo, then
the restriction A, of A to L%(Q) is T-accretive in L%((2), that is

[(uw—t+Av— @))Jqu > |l(u— @), for A >0, (u,v),(w,0) € A,.

Consequently, its resolvent Jy = (I+AA,)~" is an order-preserving contraction in L%({2).
If a completely accretive operator A in L'(Q) satisfies the range condition:



“there exists A >0 such that R(I +\A) is dense in L'()”,
then the closure A of A is an m-T-accretive operator in L'(€), that is, A is T-accretive
and there exists A > 0 such that R(I+\A) = L*(2). So, by Crandall-Liggett’s Theorem,
the operator A generates, on the closure of its domain, a semigroup of order-preserving
contractions given by the exponential formula

t—\ —n
e ™y = lim (I+—-4) "u for ue D(A).
n

n—oo

This semigroup solves the corresponding initial value problem for the operator A

(1.3) u' + Au >0, u(0) = up.

The function u(t) := e~ *4 ug is called the mild-solution of problem (1.3).
2. Variational approach

From now on we assume §) is a bounded domain in RY with smooth boundary 0
of class C!, 1 < p < o0, a is a vector valued mapping from Q x RY into RV satisfying
(Hy) - (H3) and (8 is a maximal monotone graph in R x R with 0 € 3(0).

In this section we study the problem (I) with variational methods. We will introduce
and study a nonlinear completely accretive operator Ag in L'(Q) associated with the
formal differential expression

—div a(z, Du) + nonlinear boundary conditions.

Since 3 is a maximal monotone graph in R x R, there exists a convex lower semicon-
tinuous (l.s.c.) function j on R, such that B = dj. Consider & : WP(Q) — [0, +o0],
defined by
Joqi(u) i j(u) e LY(0Q)

¢W%:{+w it j(u) ¢ LY (09).

It is well-known ( cf. [Bra] ) that & is a convex Ls.c. function in W1P(Q). Now let us
define the operator Ay in L'(Q) by:

(u,v) € Ag if and only if u € WHP(Q)N L>®(Q), v € L}(Q) and

D(w) > D(u) +/

v(w—u) — / (a(z, Du), D(w —u)) for every w € WHP(Q) N L>®(1Q).
Q Q

Here and below the integrals over () are with respect to Lebesgue measure Ay and the
integrals over 0f) are with respect to the area measure g on 0f2. Observe that taking
w =0 in the definition of Ay we obtain that D(Ag) C D(P).

We can now formulate the main result of this section.
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Theorem 2.1. The operator Ay satisfies the following statements:
(i) Ao is univalued, i.e., if (u,v) € Ag, then

v=—diw a(x,Du) in the sense of distributions.

(ii) Ao is completely accretive.
(iii) L>(2) C R(I + Aop).

Proof. (i) : Let (u,v) € Ag. Given ¢ € D(Q), taking w=u+¢ and w=u—¢ as test
functions in the definition of the operator Ag, we get

/Q vg = /Q (a(z, Du), Do),

and consequently v = —div a(z, Du) in the sense of distributions.
(ii) : Let pe Py and (u,v), (u,0) € A. We will show that

(2.1) /ﬂ (v — )p(u— @) > 0.

Taking w=wu—p(u—14) and w =0+ p(u — @) as test functions in the definition of the
operator Ag, we get

(2.2) S(u—p(u—1a)) > P(u) — / vp(u — a) + /Q<a(:l:, Du), Dp(u — )

Q
and
(2.3) &(u+ plu—a)) > d(a) + /Q@p(u —a) + /Q<a(x, D), Dp(u — u)).

Adding (2.2) and (2.3) we obtain

/ (a(x, Du) — a(x, Du), Dp(u — 1)) + / (0 —v)p(u —a) <
Q

<Pu—plu—1a))+P(0+plu—1u)—P(u)—D(a).

By (Haz), the first integral in the above inequality is positive. We thus get

(2.4) / (0 —v)p(u—1a) <P(u—pu—1a))+P(a+plu—1u)) —DP(u) — P(a).
Q

On the other hand, by the convexity of j, it is easy to see that

(2.5) D(u—plu—10))+P(a+plu—1a)) < P(u) +D(u).

We conclude from (2.4) and (2.5) that (2.1) holds. Therefore, by the equivalence between
(1.1) and (1.2), Ay is a completely accretive operator in L!(€).
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The proof of (iii) will involve several steps. The basic idea, however, is classical and
consists in approximating the equation

u—div a(z, Du) = v, v e L),

by problems of the form
1
Yn(un) — div a(z, Du,) = v,  with 7, () :==T,(§) + 5|€|p*2§-

Step 1. For every n € N we consider the operators A, : WP(Q) — (Wl’p(Q))*, defined
by

(Apu,w) :z/ﬂ(a(m,Du),D@u)—k/Qvn(u)w.

It is easy to see that A,, is monotone and hemicontinuous. Hence, A,, is pseudomonotone.
Moreover, by (Hs), we have

(Apu,u) + P(u) _ fQ(a(:U, Du), Du) + fQ Yo (w)u 4+ P(u) -

[ullp [llyp -

A Jo|DulP +1/n [ uf?

> min{\, 1/n} Jull?!

Jull1,p
and thus A o
lim (Ant, u) + P(u) = 4-00.
lull1,p—o0 ||UH1,p

Then, given v € L*(Q), by [Bry, Corollary 30|, there exists wu,, € W1P(Q), such that
(v,w —up) — (Aptn, w — uy) < (w) — P(u,) for allwe WHP(Q).

That is

20) [ i > [ i+ [ vw=u)= [ s w-u)= [ (@ D). Dlw=u,).

Q

for all w e WhHr(Q).
Step 2. A priori estimates. Given p € Py, if we take w = u,, — p(T,,u,,) in (2.6), we get

faQ j(un - p(Tnun)) Z

(2.7)
2 f&Q j(u”) - fQ Up(Tnun) + fQ Vn(un)p(Tnun) + fQ<a(x, Dun)a Dp(Tnun)>-

By the convexity of j, it is easy to see that

J(un = p(Thun)) < j(un).
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From here and (2.7) it follows that

[ Tt < [ o))

Q
This gives Tp,(uy,) < v. Thus, ||T),(tn)]|eo < ||v]|eo for all m € N. In particular,

(2.8) |unlloo < ||v]lee  for all n > ||v||oo-

On the other hand, taking w =0 as test function in (2.6) and using (H;), we obtain

(2.9) A /Q Duy [P < /Q (a(z, Dun), Duy) < / v,

Q

As a consequence of (2.8) and (2.9), {un }nen is bounded in W1P(Q). Hence there exists
a subsequence, still denoted wu,, such that wu, — u € WHP(Q) weakly in W1P(Q).
Moreover, by the Rellich-Kondrachov Theorem, w,, — u in LP(2), and by [M, Theorem
3.4.5], up, — u in LP(0N). After passing to a suitable subsequence, we can assume that
up, — u a.e. in Q. So, by (2.8), ||ullce < ||V]]co-

Step 3. Convergence. We now prove that Du,, converges to Du in measure, to do this
we follow the same technique used in [BG] ( see also [BW] ). Since Du,, converges to Du
weakly in LP(2), it is enough to show that {Du,} is a Cauchy sequence in measure. Let
t and € > 0. For some A>1 we set

C(z, A 1) :=inf{(a(z,£) —a(z,n),§ —n) : | <A [n[<A -2t}

Having in mind that the function ¢ — a(x,1) is continuous for almost all z € 2 and
the set {({,m) : [§] < A, |n| <A, |E—n| >t} is compact, the infimum in the definition
of C(z,A,t) is a minimum. Hence, by (Hs), it follows that

(2.10) C(xz,A,t) >0 for almost all z e Q.
Now, for n,m € N and any k > 0, the following inclusions hold

{|Du,, — Dup,| >t} C

(2.11) C {|Dun| > Ay U {|Dup| > AY U {|up — um| > kY U{C(z, A, t) < k}U

U{|tn — tm| < E?, C(z,A,t) >k, |Du,| < A, |Duy,| < A, |Du, — Duyy,| > th.

Since {Duy, tnen is bounded in LP(€2) we can choose A large enough in order to have
(2.12) An({|Dun| > A} U {|Dun,| > A}) < i for all n,m € N.
By (2.10) we can choose k small enough in order to have

(2.13) Anv({C(x, A1) < k}) <

I
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On the other hand, if we use u,, — Tk (up — Up,) and wy, + Ti(u, — uy) as test functions
in (2.6), we obtain

— Jo VT (un — um) + [o Yo (n) T (tr, — ) + [ (@, Duy,), DTy (un — tp)) <

(2.14)
< fag J(un — Ti(un — um)) — faQ J(un).
and
Jo 0Tk (tn — um) = [ Yo (U ) Tr (un — um) — [o(al@, Dup), DT (ty — ty,)) <
(2.15)

< fan(um + Th(tn — um)) — fGQ J(tm).

Adding (2.14) and (2.15), we get

/ (a(x, Duy) — a(x, Duy,), DTk (ty — tm)) + / (Y (un) = Yo () T (un, — up) <
Q Q

< /mjwn = Telun = um)) + (o + Ti(un = tm)) = /a

() - /a ilu) <0

Consequently,

/(a(m,Dun) — alx, Dun,), DTty — 11yy)) < k:/ o ()| + 1o (1) < K.
Q Q

Hence

ANt — um| <k, C(x, A t) >k, |Duy| < A, |Duy,| < A, |Du, — Duy,| > t}) <

(2.16) < AN {|un — um| < k2, (a(x, Duy,) — a(z, Duy,), D(u, — up)) > k}) <

1 1
< —/ (a(z, Duyn) — a2, D), D(tn — upy)) < — k*M <

k _ 2 k

{lun —um|<k?}

for k£ small enough.

Since A and k have been already choosen, if ng is large enough we have for n,m > ng
the estimate Ay ({|un —um| > k?}) < <. From here, using (2.11), (2.12), (2.13) and (2.16),
we can conclude that

AN ({|Dup, — Dup,| > t}) <€ for m,n > no.

According to Nemytskii’s Theorem [K, Lemma 1.2.2.1] the convergence of Du, to Du
in measure implies that a(z, Du,) converges in measure to a(x, Du), and a.e. (up to
extraction of a subsequence, if necessary ). Moreover, since {Duy,}nen is bounded in
LP(Q), from (Hg) it follows that {a(z, Duy,)}nen is bounded in LP (). Therefore,

(2.17) a(z, Du,) — a(z, Du) weakly in L” (Q).
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Step 4. To complete the proof it remains to show that

(2.18) [ itw= [ i+ [ o =ww=w - [ (e Du.Dw=w).

Q

for all w e WhHP(Q) N L>(Q).
Let w e WhHP(Q)N L>°(Q), from (2.17), it follows that

(2.19) /(a(x,Du),Dw} = lim [ (a(z, Du,), Dw).
Q n—oo Q

By Fatou’s Lemma, we have

(2.20) /(a(:c,Du),Du) < liminf/(a(x,Dun),Dun).
Q nmee Ja

and

(2.21) /a (0 < limint /8 ().

Since wu, — u in LP(£) we have

(2.22) lim [ (v — 90 (un))(w—uy) = /Q(v —u)(w — u).

n—oo o)

From (2.19), (2.20), (2.21) and (2.22), passing to the limit in (2.6), we get (2.18), and the
proof is concluded.

Next we are going to introduce another operator in L'(£2), smaller than A, which will
be used later to characterize the variational operator Ag. To define the new operator we
need introduce the following subset of WP(Q): Given 3 a maximal monotone graph in
R xR with 0¢€ 3(0), we set

WP (Q) == {uecW'P(Q) : u(z) € D(B) ae. x €N}

The above definition uses the fact that the trace of u € WH1(Q) on 99 is well defined
in L'(0Q) [N, Theorem 4.2]. Observe that we use the same notation u for w and its
trace when convenient.

Remark that Wﬁl’p () is a closed convex subset of W1P(Q). In case [ corresponds
to the Dirichlet boundary condition, Wﬁl’p (Q) = W, (), and in case 3 corresponds to
the Neumann boundary condition, Wﬁl’p (Q) = whr(Q).

We define the operator A in L!(£2) by the rule:

(u,v) € A if and only if uw € WhP(Q)N L>®(Q), v € L1(Q), there exists w € L'(99)
with —w(z) € B(u(x)) a.e. on 9N and

/g)(a(x,Du),D(u —¢)) < /Qv(u — )+ /émw(u —¢) forevery ¢ € Wﬁl’p(ﬂ) N L>(Q).
Since 0j = f3, it is easy to see that A C Ay. Consequently, A is a completely accretive
operator. Let us see now, that under certain conditions, the operator A satisfies the

range condition.
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Theorem 2.2. If D(B) is closed, then the operator A satisfies the range condition.
More precisely,

L=(Q) C R(I + A).

Proof. For every n € N, let 7,(§) :=T,(§) + 1|¢[P72¢, and 3, be the Yosida approxi-
mation of f,ie., (3, = n(I —(I+1/n ﬁ)*l). Consider the operators A, : Wﬁl’p(Q) —
(W'P(Q))", defined by

(A, v) = /Q (a(z, Du), Dv) + /Q ()0 + /8 T

As a consequence of (Hz) and having in mind that WP(Q) is continuously embedded
in LP(0Q2) ( see e.g., [M, Theorem 3.4.5] ), we have that the operators A, are well
defined and map bounded subsets into bounded subsets. Proceeding as in the proof of
the above theorem we have A, is a monotone, hemicontinuous and coercive operator.
Given v € L™ (Q), by a classical result of Browder ( cf. [KS, Chapter III] ), there exists
U € Wﬁl’p(Q) such that

fQ<a(x7 Duy,), D(un — ¢)) + fQ Yo (Un ) (un — @) + faﬂ T B (un) (un, — @) <

(2.23)
< Jov(un, — @), for every ¢ € Wﬁl’p(Q).
Now, as in the the steps 2 and 3 of the proof of the above theorem, we get the same

estimates and convergence results for {u,}. So the proof is completed by showing that
there exists w € L'(9Q) with —w(z) € B(u(z)) a.e. in 99, such that

(2.24) im [ T ()t — 6) = / wu— o).
nee Joo o0

In fact, since u, € D(0), |Bn(un(z))| < inf{|r| : r € B(u,(x))}. From here, if D(f)

is bounded, {6, (un)}nen is bounded in L*(092). In case D(F) is unbounded, the

boundedness of {8, (u,(z))} in L*(0Q) follows from the boundedness of {u,(z)} in

L*>(Q2). Consequently,

(2.25) T, 0n(upn) — w € LY(0Q) weakly in L'(09Q).

Then, since {u, —¢ : n € N} is bounded in L>®(Q), u, —¢ — u— ¢ a.e. in 9Q and
u(09) < oo, (2.25) yields (2.24).

Finally, since u, — u in L(9Q) and (2.25), from [BCS, Lemma G] it follows that
—w(x) € B(u(x)) a.e. in 0N, and the proof is concluded.

The assumption D(8) closed can be removed when the function a is “smooth enough”.
More precisely, we give the following definition due to Ph. Bénilan ( personal communi-
cation ). We say that a is smooth if for every f € L°°(f) there exists g € L'(99) such
that the solution u of the Dirichlet problem

—div a(z,Du) = f in Q
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u=0 on 0N
is solution of the Neumann problem
—div a(z,Du) = f in

ou
g

For a smooth we have the following result.

=g on 0.

Theorem 2.3. If a is smooth, then the operator A satisfies
L>°(Q) C R(I+ A).
Proof. Fix v € L*(Q). Let (3, be the Yosida approximations of /. Since Wg;p Q) =

WLP(Q), by Theorem 2.2, there exists u,, € WHP(Q)NL>(Q) such that 8, (u,) € L'(09Q)
and

(2.26) [ @@.u).06)+ [~ [ w0 [ g

for every ¢ € WHP(Q) N L>(Q).

We can now proceed analogously to the proof of Theorem 2.2. So the proof is completed
by showing that the sequence {f3,(u,) : n € N} is a relatively weakly compact subset
of L'(09Q). To see this, let @ be the solution of the Dirichlet problem

4 —div a(z,Dt) =v in

u=0 on O9.

Since a is smooth, it follows that

(2.27) /u¢>+/ a(x, Du), Dgp) = /W)%—/@ﬂg@

for every ¢ € WHP(Q) N L2 (Q
Given p € P, if we take ng = p(Bn(un, — @) as test function in (2.26) and (2.27),
substracting (2.27) from (2.26), we get

| (@@ Dun) ~ ale. Da). Dp(3a i, ~ ) + [ (= @)plB(un — ) =
Q Q

- —/ (9 + Bn(un))p(Br(un — 0)).
oN

Since the left hand side is non negative and o € WO1 P(Q), it follows that

/ (9 + B (1)) p(Ba (1)) < 0.
onN
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Hence f,(u,) < —g for all m € N. Then, since g € L*(99), from [BCr, Proposition
2.11], it follows that {83, (u,) : n € N} is a relatively weakly compact subset of L!(99)
and the proof is completed.

Remark 2.4. The condition a smooth is satisfied in some cases. For instance, in the linear
case when the coeficients of a are regular, cf. [Bry]. As a consequence of the regularity
results given in [Li] it is also possible to show the smoothness of the p-Laplacian operator.
We do not know if the assumptions (H;), (Hy) and (Hs) implies the smoothness of a.

An interesting problem is to characterize the operator A. In the case of Dirichlet
boundary condition, this has been done recently in [B-V], where a new concept of solution,
named entropy solution, is defined for the elliptic problem

—div a(x, Du) = F(x,u) in
u(x) =0 on ONQ.

For that, the authors need to introduce a new space 7T, ?(Q), which is an extension of

VVOl P(Q). Here, in the same spirit, we need to extend the concept of trace. This is the
subject of the next section.

3. A generalization of the trace.

Before to discuss the concept of trace we recall the following spaces introduced in [B-V]:
7;(1);1 (©2) is defined as the set of measurable functions u : 2 — R such that for every
k>0 the truncated function Ty(u) belongs to W,o'(Q). For 1< p < oo, T,LP(Q) is
the subset of 7,0'(Q) consisting of the functions wu such that DTy (u) € LP (Q) for
every k > 0. Likewise, 7'P(2) is the subset of 7;'(Q) consisting of the functions u
such that DTy (u) € LP(Q) for every k > 0. Observe that in the definition of 71P(Q) is
not imposed the condition Ty (u) € LP(2). Of course, this condition follows immediately

when ) is bounded. So in this case we have
T'P(Q) = {u: Q — R measurable : Ty(u) € WP(Q) for all k > 0}.

It is possible to give a sense to the derivative Du of a function u € 7;3;’01 (€2), generalizing
the usual concept of weak derivative in Wli’cl (), thanks to the following result (see [B-V,
Lemma 2.1)):

“For every u € 7;3;761 (Q) there exists a unique measurable function v :Q — R such
that

(3.1) DTk(U) = Ul{|v|<k} a.e.

Furthermore, if u € VV;DC1 (Q), then v = Du in the usual weak sense.”

The derivative Du of a function u € ’];(1)’61 (©?) is defined as the unique function v
satisfying (3.1). This notation will be used throughout in the sequel. We remark that this
definition of derivative is not a definition in the sense of distributions.
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Let Q be a bounded open subset of RV of class C' and 1 < p < oco. It is well-known
(cf. [N] or [M] ) that if u € WhP(Q), it is possible to define the trace of u on 9.
More precisely, there is a bounded operator ~ from W?P(Q) into LP(99) such that
v(u) = ujpq whenever u € C (€2). Now, it is easy to see that, in general, it is not possible
to define the trace of an element of 71P(€). In dimension one it is enough to consider
the function wu(z) = 1/x for z €]0,1[. Nevertheless, we are going to define the trace for
the elements of a subset T,07(Q) of TYP(Q). T,0P(Q) will be the subset of 7T17(Q)
consisting of the functions that can be approximated by functions of W1P(Q) in the
following sense: a function u € T2?(Q2) belongs to T,-P(Q) if there exists a sequence
u, € WHP(Q) such that

(a) up, —u ae. in Q,

(b) DTy(u,) — DTp(u) in LY(Q) for any k>0,

(c) the sequence {v(u,)} converges a.e. in 0.

Obviously, we have

(3.2) WhP(Q) c T, (Q) c THP(Q).

In (3.2) the inclusions are strict. In fact: It is easy to see that the function wu(x) = 1/z
for 2 €]0,1[ is an element of 751(]0,1[) \ 7,2 (]0,1[). Moreover the function u defined
by

{ 1z if z €01
u(zx) == _
—1/z it x€]—1,0]

is an example of an element of T;'(] —1,1[) \ Wh(] —1,1[).
In the following result we obtain an extension of the trace defined in W1P(Q).

Theorem 3.1. Let Q be a bounded open subset of RY of class C' and 1 <p < 0.
Then, there exists a map 7 : T,P(Q) — M (9, ), such that

7(u) = v(u)  whenever u € W1P(Q).

Moreover,

(i) Y(Twu) = Tp(tu) for every ue T,0P(Q) and k> 0.

(ii) If ue T,"(Q) and ¢ € WHP(Q)NL®(Q), then u—¢ € T,(Q) and 7(u— ¢) =
7(u) = 7(6).

Proof. Given u € T,-*(Q), let u, € W'?(Q) be such that

(a) u, —u ae in Q

(b) DTk(un) — DTy(u) in L) for any k>0,

(¢) ~(up) —ve MO u) ae. in ON.
Then, by the Dominated Convergence Theorem, Tyu, — Tyu in W1H1(Q). Consequently,
since the trace v from W11(Q) into L'(9Q) is a linear bounded operator, it follows
that
lingO |Y(Thun) = ¥(Thu)||Lr o0y =0  for every k& N.

—

Now, by (¢), Tk(y(un)) — Tk(v) a.e. in 0. Consequently, v(Tx(u)) = Tk(v) a.e. in
oY for any k > 0. Thus, y(Tk(u)) — v a.e. in 0Q. Therefore we can defined 7(u)



15

as the a.e. limit in 99 of ~(Tkx(u)) as k — oo. Obviously, 7(u) = vy(u) whenever
u € WHP(Q). Also, by the definition of the map 7, (i) holds.

(i) Let w € TLP(Q) and ¢ € WHP(Q) N L®(Q). Then, there exists u, € WH?(Q)
satisfying (a), (b) and (c). Take 1, := u, — ¢ € WHP(Q). Then, ¢, - u—¢ a.e. in Q
and Y(¢,) — Tu—T1¢ a.e. in INQ. Hence, to finish the proof we only need to prove that
DTy () — DTi(u—¢) in LY(Q). Indeed: it is easy to see that DT} (¢,) — DTi(u— @)
a.e. On the other hand, if M =k + ||¢|/~, we have

Moreover, since DTy (un) — DTar(u) in LY(Q), there exists g € LY(2) such that
| DTy (un)| < g a.e. Therefore, by the Dominated Convergence Theorem it follows that
DTy () — DTy (u — ¢) in LY(Q).

To study the Dirichlet problem, in [B-V], it is introduced the subspace 7,°7(Q) of
T1P(Q) consisting of the functions that can be approximated by smooth functions with
compact support in Q in the following sense: a function u € T5?(Q) belongs to 7, ()
if for every k > 0 there exists a sequence (, € C§°(€2) such that

Cn — Tru in Llloc(Q)7
D¢, — DTi(u) in LP(Q).
As a consequence of the characterizations of ’261’70 (Q) given in [B-V, Appendix II] we have

Ker(7) = 7,77 (Q).

4. The closure of the operator A.

In this section we characterize the closure of the operator A by means of a new concept
of solution. As we mention in the introduction, a new concept of entropy solution for the
Dirichlet problem

—div a(z, Du) = v(z) in
u=0 on 0.

is introduced in [B-V]. Following this idea we define the concept of entropy solution for
the problem

—div a(x, Du) = v(z) in
(11)

4% = p(u) on 90
where v € L'(£2), in the following way: We say that u € T,.7(Q) is an entropy solution
of (IT) if there exists w € LY(99Q), —w(z) € B(u(z)) a.e. on N such that

(4.1) /Q (a(z, Du), DTy (u — ) < /

Q

oTilu— ) +/ WTi(u — 6)

oN
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for every ¢ € Wﬁl’p(Q) NL>®(Q) and k> 0.

Notice that the integrals in (4.1) are well defined. In general, the diference of two
elements of 71P(Q) is not an element of T1P(Q) ( see [B-V] ), however, since ¢ €
W2(Q)NL® (), we have u—¢ € T,27(Q) ( Theorem 3.1 ). Hence, Ty, (u—¢) € WH2(Q)N
L*>°(€2) and consequently the two first integrals in (4.1) are well defined. Moreover, in the
last integral we can use the fact that the trace of f € W1P(Q) on 99 is well defined in
LP(092). Observe we use the same notation f for f and its trace when convenient.

Using the concept of entropy solution we define the operator A in L!'(Q) by the
rule: (u,v) € A if and only if u,v € L'(Q) and w is an entropy solution of (II). Since
u € ’];jp (), by Theorem 3.1, the trace of u on 0 is well defined as a function of
M (02, ).

In order to show that the operator A is the closure of A we need the following lemma.

Lemma 4.1. If (u,v) € A and a,k > 0. Then the following inequality holds

1 1
E / Dufp < & / o]
k {a<|ul<a+k} A {lu|>a}

Proof. 1f we take T,(u) as test function in (4.1) we have

/Q (a(z, Du), DTy (u — T (u))) < /

quTk(u—Ta(u))+/ Wl (u — To(u)).

o

Now, since the last integral is negative, using (H;), it follows that

k v a(x,Du), DTy (u — Ty (u))) =
/{u|2a}|!2/9<( ), DTy (s — To(u))

:/ (a(z, Du), Du) > )\/ Duf?.
fa<lul <kta) fa<lul<ath)

Now we come to the main result.

Theorem 4.2. Suppose 1 <p < N and assume that D(0) is closed or a is smooth.
Then, the operator A is the closure of A in LY(Q). Consequently, A is an m-T-accretive
operator in L*(Q2). Moreover, if (u,v) € A, then

u € MPH(Q), |Du| € MP2(Q)

where p; = %;})

1 <q<ps.

and py = 2. In case p>2—1/N, ue Whi(Q) for every

Proof. By Theorem 2.2 or Theorem 2.3 and maximal accretivity, it is enough to show that
A is accretive in L}(2) and A C A.
Step 1. Accretivity of A. To prove the accretivity of A, we must show that

(42) [e-il< [17-
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whenever f € u+ Au, f € a+ Ad. In fact: Let w,w € L'(99Q) with —w(z) € B(u(z))
and —w(x) € f(u(x)) a.e. on I such that for every h >0,

/Q (a(z, Du), DTy (u — T () < / (f = w)Th(u — Th(2)) + / wTi(u — Th(a))

Q o0
and
[ ta@ Di, DT - Th(u)) < [ (7= 0T~ Tufa)) + | oTu(a - Th(w)
Q Q o0
We write
Tnp = /Q<a(a:,pu),DTk<u _Th@) + /ﬂ(a(az,Da),DTk(ﬁ _ Th(w)),
T [ (= 0Tiu=T@) + [ (= )Tk~ Taw)
and

J,% = / wTk(u—Th(ﬁ))+/ ﬁ)Tk(ﬁ—Th(u))
o9 oQ
Adding up the above two inequalities we get
(4.3) I < J;{ + Ji.

By the Dominated Convergence Theorem it follows that

(4.4 dm = [ (=0 = (F - @) Tl )
and
(4.5) h—{%o JP = /89(10 —0)Tk(u — a).

Since the integral in (4.5) is negative, from (4.3) and (4.4) we have that

(4.6) / ((f —w) = (f — @) Ty (u — a) > liminf I 1.
Q —o0

Then, if we prove that,

(4.7) lihminflh,k >0 for any k>0,

we get from (4.6)

pfa-inu-a< g [g-ima-a< [ 11
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From here, passing to the limit as k — 07, it follows (4.2). To prove (4.7) we proceed by
splitting the integral into different integration sets. We write

Inx = Iilz,k + I/%,k + Iﬁ,k + Iﬁ,lm
where

Iflb,k = / (a(xz, Du) — a(z, Du), DTy (u — 1)) > 0.
{lu|<h, |a|<h}

12, = / (a(x, Du), DTy (u—hsign(i1)))+ /
{lul<h, al2h}

(a(w, Dit), DTy (it—u)) ZI
{ul<h, [a]2h)

> / (a(z, Da), DT; (it — u)).
{lul<h, |a|>h}

Ij = a(z, Du), DTj,(u—1 a(z, D), DTy, (i—hsign(u))) >
7 /{UI>h, |ﬁ|<h}< ( ) ( >>+/ (a( ) ( gn(u))) >I

{lul=h, |a|<h}

> / (a(x, Du), DTy (u — u)).
{lul=h, |a|<h}
In g = / (a(z, Du), DTy (u — hsign(a)))+
{lul=h, |a|=h}

+/ (a(x, Du), DTy (u — hsign(u))) > 0.
{lul=h, [a|=h}
Combining the above estimates we get

I > Lilz,k + Ll21,k:a

where

Lj = / (a(z, D), DTy (1 — u))
{lul<h, |a|>h}

and
L} = / (a(z, Du), DTy (u — @0)).
{lul>h, |a]<h}

Now, if we put
C(h,k):={h<|u| <k+h}n{h—k<|u| <h},

we have
L2, < / \(a(z, Du), Du — Da)| <
{lu—a|<k, |u|>h, |G|<h}

< /C -, \(a(x, Du), Du)| + / [(a(x, Du), D).

C(h,k)
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Then, by Hoélder’s inequality, we get

1/ 1/p 1/p
gial= ([ oo ) ([ apar) T ([ par) ),
C(h,k) C(h,k) C(h,k)

Now, by (Hs),
A P '\ 1/p'
([ tawowr) " < ([ (sg@+oar) )
C(h,k) C(h,k)
) , 1/p
(48) ey Dap)
{h<|u|<k+h}
On the other hand, applying Lemma 4.1, we obtain
k
(49) / <t e
{h<lul<k+h} A S {julzn}
and
(4.10) / papr < [ -l
{h—k<|a|<h} A J{jalzh—r}

From (4.8), (4.9) and (4.10), it follows that

2 1 ok 2
shal <Az (Wl +5 [ ir-al)
{lul=h}

k 1/p k . ) 1/p
(o) G i) )

Then, since u, 4, f, f € LY(2), we have that

lim Lj ; = 0.

h—o0

Similarly,
lim Ly, = 0.

h—oo

Therefore claim (4.7) holds and consequently the proof of step 1 is finished.

Step 2. A C A. Let (u,v) € A. Then, there exist (u,,v,) € A such that wu, — u and
v, — v in LY(Q) and a.e. Also, there exists g € L'(Q) such that |u,| < g, |v.| <g ae.
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for all n € N. Since (un,v,) € A there exists w, € L}(0Q) with —w,(z) € B(u,(x))
a.e. on 0f) and

(4.11) /Q<a(:c,Dun),D(un o) g/

Q

ol =)+ [ wnfun = 6),

o

for every ¢ € Wﬁl’p(ﬂ) N L>®(Q). Taking u, — Tk (uy,) as test function in (4.11), by (Hy)
we get

A Jo | DT (un) P < f{\un|<k} (a(x, Dun), Duy) <

(4.12)
= Jo vnThk(un) + [oq wnTk(un) < kllgl1,
i.e.,
k
(4.13) / | DTy (un) [P < X||g||1 for every n € N.
Q

Moreover, from (4.12) we also get

1 1
- [ Telun) < [ onTulun) < gl
1o19) Q

From here, letting k — 0, we get the estimate
(4.14) / lwn| < |lglls  for every n € N.
o

From (4.13) it follows that {Tj(u,) : n € N} is a bounded subset of W1P(Q). Hence,
after passing to a suitable subsequence, we have {Tj(u,)}nen is weakly convergent in
W1P(Q). Now, since T (u,) — Ti(u) in LP(2) as n — oo, we have DT} (u,) — DTk (u)
weakly in LP(2) as n — oo. Therefore, Ti(u) € WHP(Q) for every k > 0 and
consequently, u € T1P(Q).

In the next step we are going to see that {Duy,}nen is a Cauchy sequence in measure.
Let ¢t and € > 0. As in the proof of Proposition 2.3, if for some A > 1 we set

Clz, A t) = inf{(a(z,§) —a(z,n), —mn) : [{] <A [n| <A |E—nl=1},
we have that
(4.15) C(z,A,t) >0 for almost all z € Q.
For n,m € N and any k > 0, we have

{|Dup — Duy| > £} € {|DTatun| > A} U {|DTatm| > A} U {Jun| > AIU

(4.16) Uf[tm] > AY U {tn, — | > k2 U{C(2, A, 1) < k} U {Jtn — um| < k2,
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lun| < A, |um| < A, C(x,A,t) >k, |DTaun| < A, |DTaum| < A, |Du, — Du,y,| > t}.

Since {u, : m € N} is bounded in L!(f2) we can choose A large enough in order to
have

(4.17) AN{|un] > A} U {lupm| > A}) < for all n,m € N.

(2 e

Similarly, by (4.13), we can choose A large enough in order to have

(418)  An({|DTaun| > A} U {|DTaun| > A}) <

for all n,m € N.

By (4.15), taking k small enough we have

(4.19) Anv({C(x, A1) < k}) <

[S2 8 e)}

On the other hand, if
S = |ty — um| <K, Jun| < A, |un| <A, Cz,A,t) >k, |DTyu,| < A, |DTgun,| < A,
|Duy, — Duyy,| > t},

since DTqu,, = Du,, a.e. in S, arguing as in the proof of (2.13) we get

(4.20) AN (S) < for k small enough.

ol

Since A and k have been already choosen, if ng is large enough we have for n,m > ng
the estimate Ay ({|un — um| > k?}) < £. From here, using (4.16) - (4.20), it follows that

AN ({|Dup, — Dup,| > t}) <€ for m,n > no.

Consequently, { Duy, }nen is a Cauchy sequence in measure. So, there exists ¢ € M(Q, An)
such that {Du,},en converges to ¢ in measure. Now, the above argument also shows
that {DTyun,}nen is a Cauchy sequence in measure for every k > 0. Hence, since
{DTyup}nen weakly converges to DTg(u) in LP(Q2), we have {DTjup,}nen con-
verges in measure to DTj(u). Thus, there exist n; < ng < -+ < np < ---, such
that limg_ oo 0(DTkun, , DTiu) = 0. Hence, limy_,o0 0(DTyuy,,Du) = 0. Then, up to
extraction of a subsequence, we have convergence a.e., and we can say that

(4.21) {Dup}nen converges to Du in measure.
We claim
N(p-1
(4.22) {un}nen is bounded in MP*(Q), p; = (p—1)
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Fixed ng, ko € N such that

k
ul+1 <

Yl —ul<1/3 for all nmn,

and
2

AN ()

/ g<1/3 for all k&> ko.
{9>Fk}

For n>ng and k > kg fixed, consider the sets

C = {|Ti(un)| > k/2+ @ + 1}, D :={|Ti(un) — Tr(un)| > k/2}.

If x € C ~ D, we have

k/2 4 [al + 1 < [Th(un ()] < [Th(un(2)) = T(un)] + [Th(un)]| <

S E/2+ [T(un)| < k/2+ |Te(un) — ] + |u] +1/3 <

which is a contradiction. Thus, C C D. Hence, if p* = ﬁ—fp,

<k/2+4|u|+1/3+

AN ({lun| > k}) < AN({[Th(un)| > k/2 + [u] +1}) = An(C) <

1 -
<AND) < —— T (upn) — Th(un) |2
< AN(D) < (k/Z)p*\! k(un) = Th(un) |l
Then, by Poincaré’s inequality ( cf. [Zi, Cap. 4] ) and (4.13), there exist constants
C,M > 0 such that

*

p*/p
= Mk™P1

1 “ k
A n kY) < C———||DTi(u,) ||l <M
for every n >ny and k > kg. Consequently, the claim (4.22) holds.
Next, we claim that

Nip—-1)

(4.23) {Duy}neny is bounded in MP*(Q), py = N T

Let ¢t > 0. By (4.13), there exists a constant ()7 > 0, such that for every k£ > 0 and
n € N,

(4.24) AN ({IDTs(un)| > t/2}) < %.

On the other hand, by (4.22), there exists a constant (2 > 0, such that

(4.25) AN {|un| > k}) < % for every k>0 and n e N.
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From (4.24) and (4.25), it follows that
AN({[Dun| > t}) < AN({|Dun = DTk (un)| > /2}) + AN ({1 DTk (un)| > t/2}) <

< A ({lal = KY) + A ({DTilu)| > 1/2}) < 22 4 GE.

Then, taking k := tP2/P1, we have

AN ({|Duy| > t}) <Qt7P2  for every n € N.

Consequently, the claim (4.23) holds.
From (4.21), (4.22) and (4.23) we can state that

u € MP(Q), |Du| e MP?(Q)

where p; = Ni—_p and ps = ——~. Suppose we are in the case p > 2 —1/N. Then,

pa > 1. Hence, if 1 < ¢ < po, we have that {u, : n € N} is bounded in W14(Q).
Consequently, u € WH9(Q).

Let us see now that u € 7,27(Q). Indeed: Obviously, u,, — u a.e. in €. Since
{DTy(u,) : n € N} is bounded in LP(Q2) and DTy(u,) — DTi(u) in measure, it
follows from [B-V, Lemma 6.1] that DTy (u,) — DTy(u) in L'(Q). Finally, let us see
that {7(un)}nen converges a.e. in 0. For every k > 0, let

A ={z €09 : |Tiu(z)| <k} and C: =00~ UgsoAk.
Then,
1 1 C
c o0
C C
= fHT’fu”Ll(Q) + fHDTkUHLP(Q)-

Now, by (4.13) and the boundedness of {||Tyullz1(q) @ k > 0},

k 1/p
IDTwull ey < ( <9l for any k> 0.
)

Hence,

C C
,u(C)S?S—f—FAi/p for any k> 0.

Taking limit as k — oo we have u(C) = 0. Moreover, A, C A, if k <r. Thus, if we
define in 9} the function v by

v(z) = (Tpu)(z) if x € Ay,

it is easy to see that u, — v a.e. in 9. Therefore, u € T,.7(Q).
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To complete the proof it remains to show that there exists w € L'(9Q) with —w(z) €
B(u(x)) a.e. in 0f, such that

42 [ ou. DT - o) < |

Q

oTi(u — ) +/ WTi(u— 8),

o0

for every ¢ € Wé’p(Q) N L>(Q). For this, let us see first that {w, : n € N} is a Cauchy
sequence in L1(0€). Indeed: Taking u, — Tk(un — tp,) and , + Ti(u, — upy) as test
functions in (4.11), we have

1 1
- /89(wn - wm)ETk(un - um) S /Q(Un - Um)ETk(un - um)_

1
- /Q<a<m,pun) —a(r, D), 7 D(Ti(u — ) < /ﬂ (n — Uil.

Letting k — 0, we get

(4.27) / |wn—wm|§/ lm — Url.
o0 Q

Now, since {v,}nen is convergent in L'(Q), by (4.27), {w,} nen is a Cauchy sequence
in L1(09).
We introduce the class F of functions S € C?(R) N L>°(R) satisfying:

S(0)=0,0<8 <1, S(s)=0 for s large enough,

S(—s) =—S5(s), and S"(s) <0 for s>0.

Let ¢ € Wﬁl’p(Q) NL>*(Q) and S € F. Taking wu, —S(u, —¢) as test function in (4.11)
we get

(4.98) /Q (a(z, Duy), DS(un — ) < /

Q

U S (Up, — @) +/ WS (un — @).

oN

We can write the first member of (4.28) as

(4.29) / (a(z, Dun), Duy)S' (u — 6) — / (a(z, Dun), D&)S' (tn — o).
Q Q

Since wu,, —» u and Du, — Du a.e., Fatou’s Lemma yields

/(a(x, Du), Du)S'(u — ¢) < lim inf/ (a(x, Duy), Duy)S (uy, — ).
Q Q

n—oo

The second term of (4.29) is estimated as follows. Let 7 := ||¢||oo + ||S]|co- By (4.13) and
(Hs), it follows that

{a(z, DT,u,) : n €N} is bounded in L” (Q).
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Then, since DT,u, — DT,u in measure, it follows that
(4.30) a(z, DT,u,) — a(z, DTyu)  weakly in LP (Q).
On the other hand,

[ D$S (un — ¢)| < [Do| € LP().

Then, by the Dominated Convergence Theorem, we have
(4.31) DS (up, — ¢) — DS’ (u —¢) in LP(Q)N.

Hence, by (4.30) and (4.31), it follows that

lim | (a(z, Duy), D&YS (ur, — &) = / (a(z, Du), D)S' (u — &).
Therefore, applying again the Dominated Convergence Theorem in the second member of
(4.28), we obtain

vS(u— @) —|—/ wS(u— ¢).

o0

| (. 0w, DS -0 < [

Q

From here, to get (4.26) we only need to apply the technique used in the proof of [B-V,
Lemma 3.2].

Finally, since w, — w in LY(9Q) and —w, € B(u,) a.e. in 09, from the maximal
monotonicity of [ it follows that —w € f(u) a.e. in 9 and the proof concludes.

As a consequence of the m-accretivity of A in L'(Q), we have the following result of
existence and uniqueness for the entropy solutions of the nonlinear elliptic problem.

Corollary 4.3. Under the assumptions of Theorem 4.2, given v € L'(Q) the problem

u—div a(z,Du) =v in

— 4% = f(u) on I

has a unique entropy solution. Moreover, if 2 — % < p < N, the solution belongs to

Wha(Q) for every 1< q < ps.
Corollary 4.4. Under the assumptions of Theorem 4.2, we have A = Ay and Ay = A.

Proof. Since A C Ay, A= A C Ay. Therefore, by maximal accretivity we have Ay = A.
Let (u,v) € Ag. Then, (u,v) € A and u € WHP(Q) N L>°(2). Hence, there exists
w e LY(09) with —w(z) € B(u(x)) ae. on IO such that

| (. D), DT - o) < [

Q

VT (u — @) +/ wly(u — @)

o

for every ¢ € Wﬁl’p(Q) NL>(Q) and k > 0. From here, since u— ¢ € L>(Q), it follows
that (u,v) € A.
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5. The evolution problem

In this section we study in L!(€), from the point of view of Nonlinear Semigroup
Theory, the quasi-linear parabolic equation with nonlinear boundary condition

uy = div a(z, Du) in Q x (0,00)

ou

(I11) B

€ B(u) on 09 x (0,00)

u(z,0) = up(z) in €.

We transcribe (III) as the evolution problem in L!(Q)
(IV). — 4+ Apu=0, u(0)=mug

In order to get solution of (IV) for every initial data ug € L*(Q2) we need the following
result.

Proposition 5.1. The domain of the operator Ag is dense in L(2).

Proof. We are going to prove that L>*(Q) C D(Ap). Given v € L>(Q), if we set
up = (I +1/nAg) " v,

then (un,n(v —uy,)) € Ap, so taking w = 0 as test function in the definition of the
operator Ay we get

—n/Q(v — Up ) Up, + /Q<a(a:,Dun),Dun) < —/ j(uy) <0.

oN

From where it follows that

1
—/(al(:U,Dun),Dun)—F/u?I S/vun.
nJao Q Q

/(a(m,Dun),Dun> < n/ VU, < nHUHiO AN (Q2) = nM.
Q Q

Thus,

Now, using (H;) and (Hs), we have

/ﬂla@c,Dun)rp’ < /QAP’ (j(2) + [Dun[P~1)” <

< AP'9p' -1 ( /j(x)p'+/ yDunyP) <
Q Q
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/ / / 1
< AP 2Pl < /j(x)p + X/(a(gc,Dun),Dun> ) < a1 + nas,
Q Q

with i
’ ’ MAP 2P —
oy = AP 2P 1 / jx)?  and @y =—-——.
Q A
Consequently,
1 / oq naosg
5.1 — , Duy)lP < — =~
(51) |t Du < S 2

On the other hand, if ¢ € D(R2), taking u, —¢ and wu, + ¢ as test functions in the
definition of the operator Ay we have that

%/Q(a(a;,Dun),D@+/Qun¢:/gv¢v

so, by (5.1), we get

(5.2) lim [ u,¢= / vp for every ¢ € D(0).
Now, since {un}nen is bounded in L*°(£2), there exists a subsequence {u,, }reny such
that wu,, — u weakly in LP(Q2), which implies, by (5.2), that u = v.

Finally, since Ag is completely accretive, we have ||uy|, < ||v||,. Hence, u,, — v in
LP(Q), and we can conclude that v € D(Ay).

Since the closure of the operator Ay is an m-T-accretive operator in L1(Q) with
dense domain, according to Crandall-Liggett’s Semigroup Generation Theorem ( cf. [Cr])
the operator Ay generates a semigroup of order-preserving contractions S(t) in L(Q)
which solves, in a generalized sense called usually mild sense, the evolution problem (IV).
The mild-solution of problem (III) is given by u(.,t) = S(t)ug.

To finish this section we study the continuous dependence of u on a and [ where
u is the solution of the elliptic problem

u—div a(z,Du) =v in Q

B ou
g

Using nonlinear semigroup theory, this result implies the continuous dependence of solu-
tions of the asociated nonlinear parabolic problem on the nonlinearities in the problem.

As in the above section we assume that € is a bounded domain in RY with smooth
boundary 9Q of class C!, 1 < p < N. Also we assume that aj,as,...,a, are
Caratheodory functions from € x RY into RY satisfying

€ B(u) on Of.

(Gy) there exist A, >0 with inf,en A, = A >0 such that

(an(z,€),6) = Anl€]”
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holds for every & and a.e. x € ().

(Go) For every & and n € RN, £+#£mn, and a.e. z €  there holds

<an(m,§) - an(l‘,ﬂ),ﬁ - 77> > 0.

(G3) There exist A,, € R with sup, .y A, < 0o and j, € LP with sup,,cy ||7n|l,r < o0,
such that

| (2, )] < A (@) + [€[P)
holds for every ¢ € RY.

Theorem 5.2. Let a, be satisfying (G1), (G2), (Gs) and for almost all = €
a,(r,&) — ax(x,§) uniformly in & on compact subsets. Let (3, be maximal mono-
tone graphs in R x R with 0 € (,(0), B, — B in the sense of mazximal monotone
graphs and D(B,) = D(Bs) for all n € N. Suppose D(0~) 1is closed. Let A, be the
operator associated to a, and [3,. Then

I+ A) v — (IT+Ax) v in LY(Q)

for every v € L*(Q).

Proof. Since (I +A,)~! are contractions in L'(Q) and L*°(Q) is dense in L'(Q), we
can suppose that v € L>°(Q) and work with the operators A,,. By Theorem 2.2, for every
n € N there exist u, € WHP(Q)NL>®(Q) and w, € LY(0Q) with —w,(x) € B, (u,(x))
a.e. in 0f such that

(5.3) /Q<an(x,Dun),D(un—¢)>+/

Q

Un (Un — @) < /

o U(un - (b) + /89 wn(un - ¢)7

for every ¢ € Wﬁl’p () N L>(2). Moreover, the complete accretiveness of A, implies

(5.4) ltnlloo < ||v]|oo  for every n € N.

Taking ¢ =0 as test function in (5.3) we obtain

2 1/p
(5.5) | Dy ||, < ()\— ||v||C2>O)\N(Q)> for every m € N.

As a consequence of (5.4), (5.5), Rellich-Kondrachov’s Theorem and [M, Theorem 3.4.5]
we can establish, after passing to a subsequence,the following fact:

(5.6) u, —u weakly in WP(Q).

(5.7) U, —u in L'(Q) and a.e.
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(5.8) u, —u in LP(ON).

With a similar argument than the one used in the proof of Theorem 2.2 we get, up to
extraction of a subsequence if necessary, w,, — w € L'(99Q) weakly in L(9). Moreover,
by [BCS, Lemma G|, —w(z) € fo(u(z)) a.e. in 0.

Now we prove that Du, converges to Du in measure. Since Du, converges to Du
weakly in LP((2), it is enough to show that {Du,} is a Cauchy sequence in measure. Let
t and ¢ > 0. For some A>1 and n,m €N we set

Crm(z, A t) i=inf{(an(2,8) —am(z,n),{ —n) : [{[ <A In| <A |E—n[>t}
As in the proof of Theorem 2.1 we have that the infimum in the definition of C, ,,(x, A, 1)
is a minimum for almost all = € Q. Moreover, by (Gz), and since a,(z,£) — ax(z,§)
uniformly in £ on compact subsets, it follows that there exists ng € N, such that for
every n,m > ng, we have
(5.9) Cpm(z,At) >0 for almost all x € Q.

For n,m € N and k > 0, we have

{|Du,, — Duy,| >t} C

(5.10) € {[Dup| > A} U {|Dupm| = A} U {Jtp — tm| = k2} U {Crm(z, A, 1) < kIU

U {|up — um| < k2, Crnm(z, A t) >k, [Duy| < A, |Dup| <A, |Du, — Duy,| > t}.

Since {Duptnen is bounded in LP(§2) we can choose A large enough in order to have
(5.11) An({|Dun| > A} U {|Duy,| > A}) < i for all n,m € N.
By (5.9) we can choose k small enough in order to have

(5.12) AN{Chm(z, At) < k}) < for n,m > ny.

A~ o

On the other hand, if we use w,, — Tg2 (tup —Up,) and wy, + Tz (uy — Uy, ) as test functions
in (5.3), we obtain

/ (an(z, Duy) — am (z, D), D(uy — ty)) =
{|un_um|gk2}
= / (an(z, Duy) — am(z, D), DTi2 (uy — up,)) <
Q

< = | o = )T = )+ [ (10 = 00) T (= ).
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Then, by (5.4),

/{| | k2}<an(:c,Dun) — am (T, D), D(Uuy — Up)) < k2Q.
Up —Um | <

Hence

AN {|tn — U] < k2, Crom(z, A t) >k, |Duy| < A, |Dup| <A, |Du, — Du,,| >t}) <

(5.13) < AN {tn — | < K2, (an (2, Dup) — am (2, D), D(tn — uy)) > k}) <
<./ (n (1, Ditn) — 2 (2, D), Dot — 1)) < = K2Q < &,

kS fjun -l <) k 1
for k& small enough.

Since A and k have been already choosen, if ng is large enough we have for n,m > ng
the estimate Ay ({|un —um| > k?}) < £. From here, using (5.10), (5.11), (5.12) and (5.13),
it follows that

AN ({|Dup, — Dup,| > t}) <€ for m,n > no.

Consequently, {Du,,} is a Cauchy sequence in measure. Therefore, we can assume, after
passing to a suitable subsequence, the a.e. convergence of Du, to Du, and since
a,(r,£) — ax(x,£) uniformly in £ on compact subset, that a,(x, Du,) — a(x, Du)
a.e. in . On the other hand, since {Du,}nen is bounded in LP(£2), it follows from
(Gs) that {a,(x, Du,)}nen is bounded in L¥ (Q). Therefore,

an(z, Duy) — ase(x, Du) weakly in LP ().
In particular,

| @@, Du.). D) = [ (oo, D). D),

for every ¢ € Wﬁl’p(Q) N L>(Q). From here, (5.5) and (5.8), passing to the limit in (5.3)
we get

[ nte. D). D=0+ [ wtw=0)< [ ow=0)+ [ wiu-o)

for every ¢ € Wﬁl’p(Q) N L% (). Therefore, u = (I + As) v and the proof is completed.

Remark 5.3. The above Theorem jointly with [Cr, Theorem 6] implies the continuous
dependence of solutions of the associated nonlinear parabolic problem on the nonlinearities
in the problem. More concretely, suppose a;,as,...a, and [, satisfy the assumptions
of Theorem 5.2. Let A, be the operator associated to a, and (,. Then, if w, are
the mild-solutions of the problems

ul, + Aptn 30, u,(0) = fp

and f, — fo in LY(Q), we have that wu, converges in C([0,00[; L}(2)) to the
mild-solution wu., of the problem

ULy + Asotioo D0, oo (0) = foo-
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