Nonlocal problems
A model for sandpiles
A best Lipschitz extension problem

Nonlocal p-laplacian type operators with
Dirichlet boundary conditions
& Applications

Julian Toledo

2011

Joint works with F. Andreu, J. M. Mazén and J. D. Rossi

Julian Toledo Applications of Nonlocal Problems



© Nonlocal problems

A model for sandpiles
(2] p

e A best Lipschitz extension problem

[m]

=
Applications of Nonlocal Problems



Nonlocal problems
A model for sandpiles
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Let J: RY — R be a nonnegative, radial, continuous function, strictly
positive in B(0,1), vanishing in RV \ B(0,1) and such that

Jon J(2) dz = 1.

Let u(x, t) a density of a population at position x at the time t. This
population moves from location y to x using the probability distribution

J(x—y).
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Let J: RY — R be a nonnegative, radial, continuous function, strictly
positive in B(0,1), vanishing in RV \ B(0,1) and such that

Jon J(2) dz = 1.

Let u(x, t) a density of a population at position x at the time t. This
population moves from location y to x using the probability distribution
J(x —y). Then

/ J(x — y)u(y, t)dy is the rate at which inidividuals are arriving at x,
RN

J(x=y)u(x, t)dy is the rate at which inidividuals are leaving location x.
RN
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Let J: RY — R be a nonnegative, radial, continuous function, strictly
positive in B(0,1), vanishing in RV \ B(0,1) and such that

Jon J(2) dz = 1.

Let u(x, t) a density of a population at position x at the time t. This
population moves from location y to x using the probability distribution
J(x —y). Then

/ J(x — y)u(y, t)dy is the rate at which inidividuals are arriving at x,
RN

J(x=y)u(x, t)dy is the rate at which inidividuals are leaving location x.
RN

Therefore the evolution of this population follows the nonlocal diffusion
equation

() = [ Iy )(uly. ) = ate, )y
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Let J: RY — R be a nonnegative, radial, continuous function, strictly
positive in B(0,1), vanishing in RV \ B(0,1) and such that

Jon J(2) dz = 1.

Let u(x, t) a density of a population at position x at the time t. This
population moves from location y to x using the probability distribution
J(x —y). Then

J(x — y)u(y, t)dy is the rate at which inidividuals are arriving at x,
RN

J(x=y)u(x, t)dy is the rate at which inidividuals are leaving location x.
RN
Therefore the evolution of this population follows the nonlocal diffusion
equation

() = [ Iy )(uly. ) = ate, )y

We can think in non linear diffusion equations and put boundary
conditions as follows:
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ue(t, x) = /DJ(X = y)lu(t, y) = u(t, x)|P"*(u(t, y) - u(t,x)) dy,
(t,x) € (0, T) x Q,

B.C.

u(0, x) = up(x), x € Q.

B.C.
Cauchy problem: Q = D =R";
Homogeneous Neumann boundary conditions: D =  bounded domain;

Dirichlet boundary conditions: 2 bounded domain and
D=0Q;:=Q+ B(0,1),

u(t,x) = (x), (t,x) € (0,T) x (Q\ Q).
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ue(t, x) = /DJ(X = y)lu(t, y) = u(t, x)|P"*(u(t, y) - u(t,x)) dy,
(t,x) € (0, T) x Q,

B.C.

u(0, x) = up(x), x € Q.

B.C.
Cauchy problem: Q = D =R";
Homogeneous Neumann boundary conditions: D =  bounded domain;

Dirichlet boundary conditions: 2 bounded domain and
D=0Q;:=Q+ B(0,1),

u(t,x) = (x), (t,x) € (0,T) x (Q\ Q).

When dealing with local problems usually the boundary datum is taken in
the sense of traces. However, in the nonlocal formulation we do not
impose any continuity between the values of u inside Q2 and outside it, .
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Consider the operator

S(0)(0) = / (= y) g (y) — u() P2 (ug(y) — u(x)) dy,  x € 9,
where

B u(x) if xeQ,
W=\ G i xem\ T
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Consider the operator

By (u)(x) = — A Jx=y)uy(y) —u()P2(uy(y) —u(x)) dy, x€Q,

u(x if xeQ,
uw(x)::{ b ©

where

P(x)  if xeQ\ Q.
Then, we can rewrite the above problem as

J —
P,fw(uo) ur(x,t) + By, (u)(x,t) =0, x€Q,0<t<T,
' u(0) = wp.
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Definition of solution

A solution in [0, T] of the Dirichlet nonlocal problem P »(Uo) is a

function
ue Wl*l((O, T); Ll(Q))

which satisfies u(0, x) = ug(x) a.e. x € Q and
ue(t, x) :/Q JOx = Y)lug(t,y) — u(t, x)[P~2(up(t,y) — u(t, x)) dy

a.ein (0, T) x Q.
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Existence and uniqueness. Contraction principle

Theorem

Let up € LP(Q) and ¢ € LP(Q1 \ Q). Then, there exists a unique solution
of P,il[,(uo)-

Moreover, if ujg € L}(Q), i = 1,2, and u; is a solution in [0, T] of
=5

wa(u,-o). Then

/(ul(t) — ()t < /(u10 — o)t for every t € (0, T).
Q Q

If uig € LP(Q), i = 1,2, then

||ua(t) — U2(t)||Lp(Q) < |Ju1g — U20||Lp(Q), for every t € (0, T).
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This means to discretize in time:

u(t,-) — U(t,'_l)

ti—ti—1

+ BJ ,(u(t,.)) =0,

«O>» «Fr « E» A



This means to discretize in time:

U(t,') - U(t,'_l)

ti—ti—1
solve this problems,

«O>» «Fr « E» A

+ BJ ,(u(t,.)) =0,



This means to discretize in time:

u(t) —u(ti-1) | oy
—— =" +B ti,.)) =0,
2 4B (u(t )
solve this problems, pass to the limit.

«O0>» «F»r» « E» E E 9Ar
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Proof: We use Nonlinear Semigroup Theory

This means to discretize in time:

U(t,') — U(t,'_l)

J —
e Blulu(t ) =0,

solve this problems, pass to the limit.
And for this we proof:
Theorem

e A Poincaré’s type inequality: Given p, €2, b and J there exists A > 0
such that

s [ ] e lply) — ) P+ / P vue @)

. B‘;’ y I1s completely accretive with is dense in LP(QQ) and verifies the
range condition

LP(Q) C Ran(l + Bj.,).
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Rescaling

For Q an smooth bounded domain and ¢ € L=(8Q) N W/P"P(9Q), the
solutions of
ur = Apu in (0, T) x Q,
D, ;(uo) u=1 on (0, T) x 09,
u(0,x) = wp(x) in Q.
can be approximated by solutions of a sequence of Dirichlet nonlocal
p-Laplacian problems:
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Rescaling

For Q an smooth bounded domain and ¢ € L=(8Q) N W/P"P(9Q), the
solutions of
ur = Apu in (0, T) x Q,
D, ;(uo) u=1 on (0, T) x 09,
u(0,x) = wp(x) in Q.
can be approximated by solutions of a sequence of Dirichlet nonlocal
p-Laplacian problems:

Consider J, -(x) := Cpi,’; (%), C =3 Jan J(2)|2n]P dz.
Assume J(x) > J(y) if |x| < |y|. Then

Theorem

For T >0, up € LP(Q), w € L°°(Q) N WhP(Qy) such that 1)), = 0, ue

the unique solution ofP . (Uo) and u the unique solution of D, ;(uo),

Jimy sup llue(t, ) = (t, Jrey = ©.
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For the proof we need the following result

Based on a result of Bourgain, Brezis, Mironescu: Another look at Sobolev spaces,

2001.
Theorem

Let1l < g < 400, D a smooth bounded domain in RN and P RV SR a
nonnegative continuous radial function with compact support, non
identically zero, p(x) > p(y) if |x| < |y|. Set p,(x) := nNp(nx).

Let {f,} be a sequence of functions in L9(D) such that

/ / fa(y) — £2(X)|9pn(y — X) dx dy < M%,
D JD

Then, there exists a subsequence {f, } such that
fo, = f in L9(D)

with f € W19(D); and moreover

1/q 1\ folx+32) = £(x)
(o) o (x+ 72) )

n —taxte (p(2)) 2 VF.
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The Prigozhin model for sandpiles

Prigozhin [Euro. J. Applied Mathematics, 1996] interprets

£ ) = (Voo)e(r £) € Oy (Voo (1)), ae. t€(0,T),

Voo (X, 0) = up(x), in Q,

K(UO) = {V € Wlﬁoo(Q) : ”vv”oo <1, Vigoa = u0|an} ’

to explain the movement of a sandpile (vo.(x, t) describes the amount of
the sand at the point x at time t), the main assumption being that the
sandpile is stable when the slope is less or equal than one and unstable if
not.
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Fix Q a convex domain in RN and consider the solution u, of the
Dirichlet nonlocal p-Laplacian evolution problem with source f

(t,x) = / J(x = y)luy(t,y) — u(t, x)[P2(up(t,y) — u(t, x))dy + (t,x),
(¢,x) € (0, T) x Q,

u(0,x) = w(x), xe€Q.
Letting p — 400 we obtain a solution vy, of

f(t,.) — u(t,.) € 8HK;,d}(u(t, ), teq,
u(0,x) = wp(x), xe€Q,

K! b= {u€L2(Q) Hu(x) —u(y)| < 1forx € Qy ey, |x—y| <1},

[o oN

for ¢ € L>°(Q1 \ Q) such that KL, #0, T >0, f € L*(0, T; L>(Q)),
and ug € L>°(Q) such that yg € Kéo,

P20 tcl0,T]

lim sup [lup(t,-) — oo (t, )| 2() = 0. }
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Recovering the Prigozhin model

For € > 0 we consider the following rescaled functionals: Ix-_ w with
Ke, *{uELZ(Q) lu(x) —u(y)| <&, for x € Q,y € Q, \x—y|<a}
And we prove:

Theorem

Let Q a convex bounded domain in RN and T > 0. For
f e 12(0, T; L=(Q)), & € WE(Q; \ Q) [[¢]loc < 1, and
up € WH2°(Q) such that |[Vuo|| <1, ug|,q = |y, the solutions of

F(t,-) = ue(t, ) € Ollke (u(t)),  t€(0,T),
u(0, x) = up(x), in Q,

converges, in C([0, T] : L?(2)), to the solution of Prigozhin model.
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Nonlocal sand pile model

We are approximating the sandpile model of Prigozhin by a nonlocal

model in which a configuration of sand is stable when its height u verifies
|u(x) — u(y)| <eif [x —y| <e. Thisis a sort of measure of how large is
the size of irregularities of the sand; the sand can be completely irregular
for sizes smaller than ¢ but it has to be arranged for sizes greater than ¢.
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Explicit solutions. Source

Let us assume that we are in an interval Q = (—L,L), e =L/n, n € N,
up = 0, homogeneous Dirichlet boundary conditions (a table!),
and the source f is an approximation of a delta function,

f(t,x) = f(t,x) =

Julian Toledo Applications of Nonlocal Problems
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is given by

Taking limit as 7 — 0, we get that the expected solution to P, ,(uo, do)

«Or 4F>» «=)» « =) = Q>
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Limitasn — 0

Remark that, since the space of functions K2 . Is not contained into

C(R), this solution has to be understood as a generalized solution to
P<_(up, dp) (it is obtained as a limit of solutions to approximating
problems).
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ue(t, x) = v(t, x), where

Taking limit as € — 0 in the previous example, we get that

v(t,x) = (I=Ix])*

stationary).

for t = I,
(until the time at which t = L2, and from that time the solution is

«40>» «F> «=Z)>» « ) = Q>
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A best Lipschitz extension problem

Theorem

e For p > 2, there exists a unique ug € LP(Q) such that
JE p—
B, (65) = 0.

This is, in fact, the asymptotic limit as t goes to +oo of the solutions of
the Dirichlet nonlocal diffusion problems.
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A best Lipschitz extension problem

Theorem

e For p > 2, there exists a unique ug € LP(Q) such that
JE p—
B, (65) = 0.

This is, in fact, the asymptotic limit as t goes to +oo of the solutions of
the Dirichlet nonlocal diffusion problems.
o us — u. € L(Q) strongly in any L9(2) as p — +oo.
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A best Lipschitz extension problem

Theorem

e For p > 2, there exists a unique uy, € LP(Q) such that
JE —_—
Bp,w(uﬁ) =0.

This is, in fact, the asymptotic limit as t goes to +o0o of the solutions of
the Dirichlet nonlocal diffusion problems.

o uy — u. € L°(Q2) strongly in any L9(2) as p — +oc.

o (ug)y is the unique solution of

—AS u=0 in Q,
u=1 on Q. \Q,
where AS u(x) :=sup,cg_ u(y) +inf g . uly) — 2u(x) is the

discrete infinity Laplace operator. This is in fact the value function of a
TUG-OF-WAR game.
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Connection with the Lipschitz extensions

(Peres, Schramm, Sheffield and Wilson, 2006)

lim u. = h,
e—0

the absolutely minimizing Lispchitz extension (AMLE) of ¢ to Q,

that is, G. Aronsson (1967), h: Q — R such that:

e hiog =¥ and Ly(h, Q) = Lg(p, 0Q) (this is, h is a minimal Lipschitz
extension of 1 to Q: h € MLE4(v), Q)),
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Connection with the Lipschitz extensions

(Peres, Schramm, Sheffield and Wilson, 2006)
slino ue = h,

the absolutely minimizing Lispchitz extension (AMLE) of 1 to Q,

that is, G. Aronsson (1967), h: Q — R such that:

® hipg =1 and Ly(h, Q) = Ly(v0, 0) (this is, h is a minimal Lipschitz
extension of 1 to Q: h € MLE4(v, Q)),
e for every open set D CC €,

Ly(h,D) < La(v,D)  Vv: hap = Vjop.

Julian Toledo Applications of Nonlocal Problems



To obtain this AMLE extension of a datum 1) on the boundary, Aronsson
proposed to take the limit as p — oo in

{ —Apup =0 inQ,

up =1 on 912

[m]

=
Applications of Nonlocal Problems



Nonlocal problems
A model for sandpiles
A best Lipschitz extension problem

To obtain this AMLE extension of a datum ) on the boundary, Aronsson
proposed to take the limit as p — oo in

—Apup =0 inQ,
up, =1 on 09Q.

That is, obtain (Bhattacharya, DiBenedetto and Manfredi, 1989) the
unique (Jensen, 1993) viscosity solution to

Al =0 inQ,
Uso = P on 09,

N . e
where A u := Zii:l Uy, Ux; Uyx;x; 1S the infinity Laplace operator.

Julian Toledo Applications of Nonlocal Problems



Nonlocal problems
A model for sandpiles
A best Lipschitz extension problem

To obtain this AMLE extension of a datum ) on the boundary, Aronsson
proposed to take the limit as p — oo in

—Apup =0 inQ,
up, =1 on 09Q.

That is, obtain (Bhattacharya, DiBenedetto and Manfredi, 1989) the
unique (Jensen, 1993) viscosity solution to

Al =0 inQ,
Uso = P on 09,

N . e
where A u := Zii:l Uy, Ux; Uyx;x; 1S the infinity Laplace operator.

Are (u.)y the best Lipschitz extensions with respect to some distance?
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The distance to be considered is the discrete distance

0 if x=y,
€ if 0<|x—y|<e,
dE(X7.y): 2e

if e<|x—y| <2,
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The distance to be considered is the discrete distance

0 if x=y,
€ if 0<|x—y|<e,

dE(Xay): 25 If €<|X_y|§267

We see that (u.)y is the best Lipschitz extension to Q of the function ¢,
defined on the strip Q. \ Q, w.r.t. this distance, but not in the usual
sense.
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The distance to be considered is the discrete distance

0 if x=y,
€ if 0<|x—y|<e,

de(x,y) =14 2¢ if € <|x—y|<2e,

We see that (u.)y is the best Lipschitz extension to Q of the function ¢,
defined on the strip Q. \ Q, w.r.t. this distance, but not in the usual
sense.

We want to remark that (€., d.) is not a separable length space and the

boundary of any subset for this metric is empty. Then, even the results of
Juutinen (2002), which extend those of Aronsson, does not apply here.
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Given u: Q. —wRand D C Q,
L.(u,D)

= sup

x €D,y € De
x—yl <e

|u(x) — uy)l

3

it
v

«40r «4F»r « =) 4 Q>



Given u: Q. —wRand D C Q,

La(u> D) = sup
x €D,y € De
Ix—vyl <e
(D convex) =

sup

lu(x) — u(y)]
x€D, yeD., x#y

3

d-(x,y)

[m]
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Given u: Q. —wRand D C Q,

Lo(u,D) = sup —|u(x) —u)l
x €D, y€ De €
x—yl <e
(D convex) = sup lulx) — uly)] > Ly
xeD,yeD,, x£y ds(va)
Definition

5(“7 D)
Let ¢ defined on Q. \ Q. A function h: Q. — R is an AMLE. of ¢ to
Q. if
(i) h=11in Q. \ Q,

[m]
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Given u: Q. —wRand D C €,
lu(x) — u(y)|

L.(u,D) := sup
x €D, y€ De €
Ix—yl <e
(D convex) = sup ) = uly)] > Ly (u,D)

xeD,yeD,, x#y dg(X,y) -

Definition
Let ¢ defined on Q. \ Q. A function h: Q. — R is an AMLE. of ¢ to
Q. if
(i) h=11in Q. \ Q,
(i) V D € X and v such that v = hin Q. \ D, then
Le(h, D) < Lc(v, D).
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Given u: Q. —wRand D C €,
|u(x) — u(y)|

L(u,D) := sup
x €D,y € De €
Ix—yl <e
(D convex) = sup ) = uly)] > Ly (u,D)

xeD,yeD,, x#y dE(Xay) -

Definition
Let ¢ defined on Q. \ Q. A function h: Q. — R is an AMLE. of ¢ to
Q. if
(i) h=11in Q. \ Q,
(i) V D € X and v such that v = hin Q. \ D, then
L(h,D) < L-(v, D).

For convex Q,
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Given u: Q. —wRand D C €,
lu(x) — u(y)|

L.(u,D) := sup
x €D,y € De €
b=yl <e
(D convex) = sup M > Ly (u,D)

xeD,yeD,, x#y dE(Xay) -

Definition
Let ¢ defined on Q. \ Q. A function h: Q. — R is an AMLE. of ¢ to
Q. if
(i) h=11in Q. \ Q,
(i) V D € X and v such that v = h in Q. \ D, then
Le(h, D) < Lc(v, D).

For convex Q, h € AMLE (¢, Q.) iff
(i) heMLEq, (¢,9),

(i) V D C X and v such that v = h in Q. \ D, then
L.(h,D) < L.(v, D).
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Theorem

Let ¢ : Q. \ Q — R be bounded. Then, u is a solution of

if and only if

—A u
u=1

u:Q.—R

=0 in €,

on Q.\Q,

is AMLE. (b, Q).

[m]
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an initial position xp € Q.

e There are two players moving a token inside £2.. The token is placed at
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TUG-OF-WAR GAME

e There are two players moving a token inside €2.. The token is placed at
an initial position xy € Q.

e At the kth stage of the game, player | and player Il select points x,i and
x!! respectively, both belonging to B(xx_1,€).
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TUG-OF-WAR GAME

e There are two players moving a token inside €2.. The token is placed at
an initial position xy € Q.
e At the kth stage of the game, player | and player Il select points x,i and
x!! respectively, both belonging to B(xx_1,€).

The token is then moved to xx, where xi is chosen randomly between

x! or x}! with equal probability.
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TUG-OF-WAR GAME

e There are two players moving a token inside €2.. The token is placed at
an initial position xy € Q.
e At the kth stage of the game, player | and player Il select points x,i and
x!! respectively, both belonging to B(xx_1,€).

The token is then moved to xx, where xi is chosen randomly between
x! or x}! with equal probability.
o After the kth stage of the game, if xx € € then the game continues to
stage k + 1.
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TUG-OF-WAR GAME

e There are two players moving a token inside €2.. The token is placed at
an initial position xy € Q.
e At the kth stage of the game, player | and player Il select points x,i and
x!! respectively, both belonging to B(xx_1,€).

The token is then moved to xx, where xi is chosen randomly between
x! or x}! with equal probability.
o After the kth stage of the game, if xx € € then the game continues to
stage k + 1.

Otherwise, if x, € Q. \ Q, the game ends and player Il pays player | the
amount t(xx), where ¢ : .\ Q — R is called the final payoff function
of the game.

Julian Toledo Applications of Nonlocal Problems



Nonlocal problems
A model for sandpiles
A best Lipschitz extension problem

TUG-OF-WAR GAME

e There are two players moving a token inside €2.. The token is placed at
an initial position xy € Q.

e At the kth stage of the game, player | and player Il select points x,i and
x!! respectively, both belonging to B(xx_1,€).

The token is then moved to xx, where xi is chosen randomly between
x! or x}! with equal probability.

o After the kth stage of the game, if xx € € then the game continues to
stage k + 1.

Otherwise, if x, € Q. \ Q, the game ends and player Il pays player | the
amount t(xx), where ¢ : .\ Q — R is called the final payoff function
of the game.

The value of the game is the minimum (max.) amount that player | (II)
expects to win (lose).

Julian Toledo Applications of Nonlocal Problems



The value function u. of the above game satisfies:

1

1
us(x) = 5 sup us(y) + =
yEEe(X)

«O>» «Fr « E» A

v



For ¢ = 1, Q =]0, 3[ and f = 0X]_1 0 + IX3 3(-

v+
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Example

For ¢ = 1, Q =]0, %[ and f = OX]_l,o] S 1X[%’%[.

= u(x)
v+

is the unique AMLE;(f, Q).
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Example

For ¢ = 1, Q =]0, %[ and f = OX]_l,o] T 1X[%’%[.

= u(x)
v+

is the unique AMLE;(f, Q).

There is not AMLE in the sense of Juutinen.
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Green and yellow graphs are/ Whitney and Mc$hane extensions
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B Green and yellow graphs areWhitney and Mc$hane extensions
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