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A best Lipschitz extension problem

Let J : ℝN → ℝ be a nonnegative, radial, continuous function, strictly
positive in B(0, 1), vanishing in ℝN ∖ B(0, 1) and such that∫
ℝN J(z) dz = 1.

Let u(x , t) a density of a population at position x at the time t. This
population moves from location y to x using the probability distribution
J(x − y).

Then∫
ℝN

J(x − y)u(y , t)dy is the rate at which inidividuals are arriving at x ,

∫
ℝN

J(x−y)u(x , t)dy is the rate at which inidividuals are leaving location x .

Therefore the evolution of this population follows the nonlocal diffusion
equation

ut(x , t) =

∫
ℝN

J(x − y)(u(y , t)− u(x , t))dy .

We can think in non linear diffusion equations and put boundary
conditions as follows:
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⎧⎨⎩
ut(t, x) =

∫
D

J(x − y)∣u(t, y)− u(t, x)∣p−2(u(t, y)− u(t, x)) dy ,

(t, x) ∈ (0,T )× Ω,
B.C.
u(0, x) = u0(x), x ∈ Ω.

B.C.:
Cauchy problem: Ω = D = ℝN ;
Homogeneous Neumann boundary conditions: D = Ω bounded domain;
Dirichlet boundary conditions: Ω bounded domain and
D = Ω1 := Ω + B(0, 1),

u(t, x) =  (x), (t, x) ∈ (0,T )× (Ω1 ∖ Ω).

When dealing with local problems usually the boundary datum is taken in
the sense of traces. However, in the nonlocal formulation we do not
impose any continuity between the values of u inside Ω and outside it,  .
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Consider the operator

BJ
p, (u)(x) = −

∫
Ω1

J(x−y)∣u (y)−u(x)∣p−2(u (y)−u(x)) dy , x ∈ Ω,

where

u (x) :=

{
u(x) if x ∈ Ω,

 (x) if x ∈ Ω1 ∖ Ω.

Then, we can rewrite the above problem as

PJ
p, (u0)

{
ut(x , t) + BJ

p, (u)(x , t) = 0, x ∈ Ω, 0 < t < T ,

u(0) = u0.
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Definition of solution

A solution in [0,T ] of the Dirichlet nonlocal problem PJ
p, (u0) is a

function
u ∈W 1,1((0,T ); L1(Ω))

which satisfies u(0, x) = u0(x) a.e. x ∈ Ω and

ut(t, x) =

∫
Ω1

J(x − y)∣u (t, y)− u(t, x)∣p−2(u (t, y)− u(t, x)) dy

a.e in (0,T )× Ω.
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Existence and uniqueness. Contraction principle

Theorem

Let u0 ∈ Lp(Ω) and  ∈ Lp(Ω1 ∖ Ω). Then, there exists a unique solution
of PJ

p, (u0).

Moreover, if ui 0 ∈ L1(Ω), i = 1, 2, and ui is a solution in [0,T ] of
PJ
p, (ui 0). Then∫

Ω

(u1(t)− u2(t))+ ≤
∫

Ω

(u10 − u20)+, for every t ∈ (0,T ).

If ui 0 ∈ Lp(Ω), i = 1, 2, then

∥u1(t)− u2(t)∥Lp(Ω) ≤ ∥u10 − u20∥Lp(Ω), for every t ∈ (0,T ).
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Proof: We use Nonlinear Semigroup Theory

This means to discretize in time:

u(ti )− u(ti−1)

ti − ti−1
+ BJ

p, (u(ti , .)) = 0,

solve this problems, pass to the limit.
And for this we proof:

Theorem

∙ A Poincaré’s type inequality: Given p, Ω,  and J there exists � > 0
such that

�

∫
Ω

∣u∣ ≤
∫

Ω

∫
Ω1

J(x − y)∣u (y)− u(x)∣pdydx +

∫
Ω1∖Ω

∣ ∣p, ∀u ∈ Lp(Ω).

∙ BJ
p, is completely accretive with is dense in Lp(Ω) and verifies the

range condition
Lp(Ω) ⊂ Ran(I + BJ

p, ).
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Rescaling

For Ω an smooth bounded domain and  ̃ ∈ L∞(∂Ω) ∩W 1/p′,p(∂Ω), the
solutions of

Dp, ̃(u0)

⎧⎨⎩
ut = Δpu in (0,T )× Ω,

u =  ̃ on (0,T )× ∂Ω,

u(0, x) = u0(x) in Ω.

can be approximated by solutions of a sequence of Dirichlet nonlocal
p-Laplacian problems:

Consider Jp,"(x) :=
CJ,p

"p+N J
(
x
"

)
, C−1

J,p := 1
2

∫
ℝN J(z)∣zN ∣p dz .

Assume J(x) ≥ J(y) if ∣x ∣ ≤ ∣y ∣. Then:

Theorem

For T > 0, u0 ∈ Lp(Ω),  ∈ L∞(Ω1) ∩W 1,p(Ω1) such that  ∣∂Ω
=  ̃, u"

the unique solution of P
Jp,"
p, (u0) and u the unique solution of Dp, ̃(u0),

lim
"→0

sup
t∈[0,T ]

∥u"(t, .)− u(t, .)∥Lp(Ω) = 0.
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For the proof we need the following result

Based on a result of Bourgain, Brezis, Mironescu: Another look at Sobolev spaces,

2001.

Theorem

Let 1 < q < +∞, D a smooth bounded domain in ℝN and � : ℝN → ℝ a
nonnegative continuous radial function with compact support, non
identically zero, �(x) ≥ �(y) if ∣x ∣ ≤ ∣y ∣. Set �n(x) := nN�(nx).
Let {fn} be a sequence of functions in Lq(D) such that∫

D

∫
D

∣fn(y)− fn(x)∣q�n(y − x) dx dy ≤ M
1

nq
.

Then, there exists a subsequence {fnk} such that

fnk → f in Lq(D)

with f ∈W 1,q(D); and moreover

(�(z))1/q �D

(
x +

1

n
z

)
fn
(
x + 1

n z
)
− fn(x)

1/n
⇀Lq×Lq (�(z))1/q z ⋅ ∇f .
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The Prigozhin model for sandpiles

Prigozhin [Euro. J. Applied Mathematics, 1996] interprets

⎧⎨⎩ f (., t)− (v∞)t(., t) ∈ ∂IK(u0)(v∞(., t)), a.e. t ∈ (0,T ),

v∞(x , 0) = u0(x), in Ω,

K (u0) =
{

v ∈W 1,∞(Ω) : ∥∇v∥∞ ≤ 1, v∣∂Ω
= u0∣∂Ω

}
,

to explain the movement of a sandpile (v∞(x , t) describes the amount of
the sand at the point x at time t), the main assumption being that the
sandpile is stable when the slope is less or equal than one and unstable if
not.
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Fix Ω a convex domain in ℝN and consider the solution up of the
Dirichlet nonlocal p-Laplacian evolution problem with source f⎧⎨⎩

ut(t, x) =

∫
Ω1

J(x − y)∣u (t, y)− u(t, x)∣p−2(u (t, y)− u(t, x))dy + f (t, x),

(t, x) ∈ (0,T )× Ω,

u(0, x) = u0(x), x ∈ Ω.

Letting p → +∞ we obtain a solution u∞ of{
f (t, .)− ut(t, .) ∈ ∂IK 1

∞, 
(u(t, .)), t ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

K 1
∞, :=

{
u ∈ L2(Ω) : ∣u(x)− u(y)∣ ≤ 1 for x ∈ Ω, y ∈ Ω1, ∣x − y ∣ ≤ 1

}
,

for  ∈ L∞(Ω1 ∖ Ω) such that K 1
∞, ∕= ∅, T > 0, f ∈ L2(0,T ; L∞(Ω)),

and u0 ∈ L∞(Ω) such that u0 ∈ K 1
∞, :

lim
p→∞

sup
t∈[0,T ]

∥up(t, ⋅)− u∞(t, ⋅)∥L2(Ω) = 0.
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Recovering the Prigozhin model

For " > 0 we consider the following rescaled functionals: IK"∞, with
K"∞, :=

{
u ∈ L2(Ω) : ∣u(x)− u(y)∣ ≤ ", for x ∈ Ω, y ∈ Ω", ∣x − y ∣ ≤ "

}
.

And we prove:

Theorem

Let Ω a convex bounded domain in ℝN and T > 0. For
f ∈ L2(0,T ; L∞(Ω)),  ∈W 1,∞(Ω1 ∖ Ω), ∥ ∥∞ ≤ 1, and
u0 ∈W 1,∞(Ω) such that ∥∇u0∥ ≤ 1, u0∣∂Ω

=  ∣∂Ω
, the solutions of{

f (t, ⋅)− ut(t, ⋅) ∈ ∂IK"∞(u(t)), t ∈ (0,T ),

u(0, x) = u0(x), in Ω,

converges, in C ([0,T ] : L2(Ω)), to the solution of Prigozhin model.
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Nonlocal sand pile model

We are approximating the sandpile model of Prigozhin by a nonlocal
model in which a configuration of sand is stable when its height u verifies
∣u(x)− u(y)∣ ≤ " if ∣x − y ∣ ≤ ". This is a sort of measure of how large is
the size of irregularities of the sand; the sand can be completely irregular
for sizes smaller than " but it has to be arranged for sizes greater than ".
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Explicit solutions. Source

Let us assume that we are in an interval Ω = (−L, L), " = L/n, n ∈ N,
u0 = 0, homogeneous Dirichlet boundary conditions (a table!),
and the source f is an approximation of a delta function,

f (t, x) = f�(t, x) =
1

�
�

[− �2 ,
�
2 ](x), 0 < � ≤ 2".
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Limit as � → 0

Taking limit as � → 0, we get that the expected solution to P"
∞, (u0, �0)

is given by
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Limit as � → 0

Remark that, since the space of functions K "
∞, is not contained into

C (ℝ), this solution has to be understood as a generalized solution to
P"
∞(u0, �0) (it is obtained as a limit of solutions to approximating

problems).
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Recovering the sandpile model as "→ 0

Taking limit as "→ 0 in the previous example, we get that
u"(t, x)→ v(t, x), where

v(t, x) = (l − ∣x ∣)+ for t = l2,

(until the time at which t = L2, and from that time the solution is
stationary).
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A best Lipschitz extension problem

Theorem

∙ For p ≥ 2, there exists a unique u"p ∈ Lp(Ω) such that

BJ"
p, (u"p) = 0.

This is, in fact, the asymptotic limit as t goes to +∞ of the solutions of
the Dirichlet nonlocal diffusion problems.

∙ u"p → u" ∈ L∞(Ω) strongly in any Lq(Ω) as p → +∞.
∙ (u") is the unique solution of{

−Δ"
∞u = 0 in Ω,

u =  on Ω" ∖ Ω,

where Δ"
∞u(x) := supy∈B"(x) u(y) + infy∈B"(x) u(y)− 2u(x) is the

discrete infinity Laplace operator. This is in fact the value function of a
TUG-OF-WAR game.
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A best Lipschitz extension problem

Connection with the Lipschitz extensions

(Peres, Schramm, Sheffield and Wilson, 2006)

lim
"→0

u" = h,

the absolutely minimizing Lispchitz extension (AMLE) of  to Ω,

that is, G. Aronsson (1967), h : Ω→ ℝ such that:

∙ h∣∂Ω =  and Ld(h,Ω) = Ld( , ∂Ω) (this is, h is a minimal Lipschitz

extension of  to Ω: h ∈ MLEd( ,Ω)),

∙ for every open set D ⊂⊂ Ω,

Ld(h,D) ≤ Ld(v ,D) ∀v : h∣∂D = v∣∂D .
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A best Lipschitz extension problem

To obtain this AMLE extension of a datum  on the boundary, Aronsson
proposed to take the limit as p →∞ in{

−Δpup = 0 in Ω,
up =  on ∂Ω.

That is, obtain (Bhattacharya, DiBenedetto and Manfredi, 1989) the
unique (Jensen, 1993) viscosity solution to{

−Δ∞u∞ = 0 in Ω,
u∞ =  on ∂Ω,

where Δ∞u :=
∑N

i,j=1 uxi uxj uxixj is the infinity Laplace operator.

Are (u") the best Lipschitz extensions with respect to some distance?
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A best Lipschitz extension problem

The distance to be considered is the discrete distance

d"(x , y) =

⎧⎨⎩
0 if x = y ,
" if 0 < ∣x − y ∣ ≤ ",
2" if " < ∣x − y ∣ ≤ 2",
...

We see that (u") is the best Lipschitz extension to Ω of the function  ,
defined on the strip Ω" ∖ Ω, w.r.t. this distance, but not in the usual
sense.

We want to remark that (Ω", d") is not a separable length space and the
boundary of any subset for this metric is empty. Then, even the results of
Juutinen (2002), which extend those of Aronsson, does not apply here.
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A best Lipschitz extension problem

Given u : Ω" → ℝ and D ⊂ Ω,

L"(u,D) := sup
x ∈ D, y ∈ D"
∣x − y∣ ≤ "

∣u(x)− u(y)∣
"

(D convex) = sup
x∈D, y∈D", x ∕=y

∣u(x)− u(y)∣
d"(x , y)

≥ Ld"(u,D)

Definition

Let  defined on Ω" ∖ Ω. A function h : Ω" → ℝ is an AMLE" of  to
Ω" if

(i) h =  in Ω" ∖ Ω,

(ii) ∀ D ⊂ X and v such that v = h in Ω" ∖ D, then
L"(h,D) ≤ L"(v ,D).

For convex Ω, h ∈ AMLE"( ,Ω") iff

(i) h ∈ MLEd"( ,Ω"),

(ii) ∀ D ⊂ X and v such that v = h in Ω" ∖ D, then
L"(h,D) ≤ L"(v ,D).
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A best Lipschitz extension problem

Theorem

Let  : Ω" ∖ Ω→ ℝ be bounded. Then, u is a solution of{
−Δ"

∞u = 0 in Ω,

u =  on Ω" ∖ Ω,

if and only if

u : Ω" → ℝ is AMLE"( ,Ω).

Julián Toledo Applications of Nonlocal Problems



Nonlocal problems
A model for sandpiles

A best Lipschitz extension problem

TUG-OF-WAR GAME

∙ There are two players moving a token inside Ω". The token is placed at
an initial position x0 ∈ Ω.

∙ At the kth stage of the game, player I and player II select points x I
k and

x II
k respectively, both belonging to B(xk−1, ").
∙ The token is then moved to xk , where xk is chosen randomly between
x I
k or x II

k with equal probability.
∙ After the kth stage of the game, if xk ∈ Ω then the game continues to
stage k + 1.
∙ Otherwise, if xk ∈ Ω" ∖Ω, the game ends and player II pays player I the
amount  (xk), where  : Ω" ∖ Ω→ ℝ is called the final payoff function
of the game.
The value of the game is the minimum (max.) amount that player I (II)
expects to win (lose).
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A best Lipschitz extension problem

Dynamic Programming Principle

The value function u" of the above game satisfies:

u"(x) =
1

2
sup

y∈B"(x)

u"(y) +
1

2
inf

y∈B"(x)
u"(y).
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A best Lipschitz extension problem

Example

For " = 1, Ω =]0, 1
2 [ and f = 0�]−1,0] + 1�[ 1

2 ,
3
2 [.

-2 -1 0 1 2

-1

0

1

2

y = f (x)

is the unique AMLE1(f ,Ω).
There is not AMLE in the classical sense.
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A best Lipschitz extension problem

Extending x�]−1,0](x) + 2�[2,3[(x) to ]0, 2[ for " = 1

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

y = f (x)
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y = f (x)

Green and yellow graphs are Whitney and McShane extensions
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