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In this paper we prove the existence of a compact attractor in L i ( 2 ) for a
degenerate nonlinear diffusion problem with nonlinear flux on the boundary. In
order to formulate the equation as a dynamical system, some existence and
uniqueness results for weak solutions are proved.
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1. INTRODUCTION

Attractors play an important role in the study of the asymptotic behavior
of the solutions of partial differential equations. The existence of a maximal
attractor, i.e., a compact set that attracts all solutions as time goes to
infinity, has been derived for a large class of PDEs (see for instance Babin
and Vishik, 1992; Teman, 1988; Haraux, 1991). In this paper we study the
following initial boundary value problem
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in a bounded smooth domain Q a RN, N^-l, where (p: R -> R is a con-
tinuous increasing function which includes the case of pure powers
(p(r) = r\m sign(r), m^l, a n d f , g e C ( R ) satisfy some growth conditions
which will be precised later.

The aim of this paper is to prove the existence of a maximal compact
attractor in L°°(£2). The choice of the space L°°(i2) is motivated by the fact
that the solutions of (I) are bounded for bounded initial data and the com-
pactness of the trajectories is given by classical results (DiBenedetto, 1983).
Remark that if m > 1 the problem is not semilinear and the "natural"
spaces to consider the structure of the attractor for this type of quasilinear
equations are not necessary Hilbert spaces (see Feireisl et al., 1995, Benilan
and Labani, 1989).

Problems of this form arise in a number of areas of science, for
instance, in models for gas or fluid flow in porous media (Bear, 1972;
Aronson, 1986) and for the spread of certain biological populations (Gurtin
and MacCamy, 1977; Okubo, 1980). There is an extensive literature about
the large time behavior of solutions of problems of this type (see for
instance Aronson et al., 1982; Langlais and Phillips, 1985; Bertsch et al.,
1982; Alikakos and Rostamian, 1981; Andreu et al., 1995; Filo and Mottoni,
1992; Eden et al., 1991). In some of these papers, it is shown that the solutions
stabilize as time goes to infinity by converging to a function. In our case
the dynamic is more complicated due to the relative generality of f and g
and we are not able to have a so precise result. Note that the existence of
a global attractor for a similar problem with other growth conditions on
f and different boundary conditions has been considered in Eden et al.,
1991.

In order to formulate the equation as a dynamical system, we establish
the existence and uniqueness of a global weak solution of problem (I) when
the initial datum M06L°°{f2).

We consider the following assumptions on the data. We always
assume Q to be a bounded domain in RN with smooth boundary dQ.
Respect to (p, f and g, we will assume the following hypotheses, which we
shall refer to collectively as (H):



Remark. Hypothese ( H , ( i ) will be enough to prove the existence
and uniqueness results but we need ( H ( i i ) ) to apply the continuity result
of DiBenedetto, 1983.

Note that assumption (H1) is satisfied in the case p(r) = r\m sign(r) is
m>\, that is, for the porous medium equation, and in the semilinear case
q>(r) = r. Remark also that (H,) is also satisfied by a Crandall and Pierre
condition (See M. Crandall and M. Pierre, 1982):

The plan of the paper is as follows. Some a priori estimates for smooth
solutions are obtained in Section 2. In the third section we establish the
existence and uniqueness of a global weak solution when the initial datum
is a function in L°°(i2). Finally, in Section 4 we prove that the semigroup
on L°°(i2) defined by the global solution obtained in the previous section
has a compact global attractor.

where sign is the function

and

Attractor for a Degenerate Nonlinear Diffusion Problem 349



where

Proof. Multiplying the equation of (P) by ((<p(u) — (p(u0))
 + )p and

performing obvious manipulations it yields

Definition 1. By_a smooth solution of problem (P) on QT we mean
a function ueC2'\~Q^) such that V<?(u )eC 2 , 1 (Q T ) , u , e C 2 , l ( Q T ) and
satisfies (P) in a classical sense. We shall say that u is a global smooth solu-
tion of problem (P) if u is a smooth solution on QT for all positive T.

For a function u(x, t) we use the notation u(t) to denote the function-
valued map t-*u(-,t),

Proposition 1. Assume (H) holds. Let u be a global smooth solution of
problem (P) with initial datum w(0) = u0 e Lco(i2). For any 1 ̂  p < oo, there
exists C(-c, || M01|^(Q), p) with limT^ „ C(-c, ||MO L«>(0), />) = C(/>) SMC/Z //!«/

2. A PRIORI ESTIMATES FOR SMOOTH SOLUTIONS

In this section we shall establish a priori estimates for the smooth
solutions which will be fundamental for the rest of the paper. For T>0,
consider the problem
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From here, having in mind the assumptions (H2) and (H3), if
d = min{1, c2}, we have

Now, by the generalized Poincare inequality (see Teman, 1988), we have

Then, by (2.2), using Holder and Young inequalities, we can find constants
p, a > 0 such that

On the other hand, the hypotheses on (p yield

Consequently, from (2.3) we get the following differential inequality, with
constants depending on p,

which implies, from Gronwall lemma if m0 = 0 or from a lemma of
Ghidaglia (Lemma 5.1 of Teman, 1988) if m0>0, that



where p(r) = — p( — r), f(r) = —f(— r) and g(r) = — g( — r), if we proceed
as in the previous step, we obtain the similar estimate for v. Finally, since
p is bounded in [ — r0, r0], from (2.6) and the previous remark we get (2.1)
and the proof concludes.

Our main goal now is to get uniform estimates for smooth solutions
independent on time. To do this we apply Moser type techniques. We make
essential use of the following result proved in Lauren9ot (1993).

Lemma 1. Let a>1, b^O, c e R , C0>1, C1>1 and p0 be given
numbers such that

Now, since v = — u satisfies

Hence, using (2.4) and (2.5) we get

and

with
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Consider the sequence of real numbers (pk) defined by

Assume that (yk) is a sequence of positive real numbers satisfying

Then, the sequence (yk
Pl1) is bounded. More concretely,

where

and

Proposition 2. Assume that (H) holds. Let u be a global smooth solu-
tion of problem (P) with initial datum u ( 0 ) = u0eL°°(Q). Then, there exists
a constant C, depending only on \\u0\\L*,(a}, such that

Proof. Let 1 < p < oo and \j/(r) = (q(r) — ( p ( r 0 ) ) + . Then, if

working as in the first part of the proof of Proposition 1, taking p large
enough such that ((p + l)2/4p) c2^ 1, we obtain



Now, if r > ql(q — 1), we can choose s large enough in order to apply again
Holder inequality and obtain

For any s > 1, we can write the above inequality in the form

Now, by (H2), f(s)\lj(s)''^cl(^(sr + (p(rQr)(p(s)p for any seR. Then,
taking F(s) = c 1 ( \ l / ( s ) a + ( />(r 0 ) c a ) and applying Holder inequality, we get for
r > l

Hence, from (2.8), it follows that

Now, by the generalized Poincare inequality and the Sobolev embeddings,
there are q > 1 and al > 0 such that
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where

Applying Young inequality in (2.10), (2.9) yields the following

Changing r0 if necessary, we may suppose that \\F(u)\\Lr(S}^> 1, conse-
quently

where

Therefore, we can find a constant bl >0 such that

Integrating this inequality from 0 to / and having in mind that



Thus, we can write

Now, applying Holder inequality, it is easy to see that

Hence using (2.11) and (2.12) we get

Now, the hypotheses on p yield

with the constant b2> 1 depending only on HuoH^o, we obtain
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Moreover, by (2.1)

Hence, we can take b7 large enough such that

Obviously, we can choose s large enough, such that

Then, we are in the situation of Lemma 1, with

Consequently,

taking p = pk + l + ml — 1 in (2.13), as we can suppose that the right hand
side of the above inequality is greater than 1, it follows that

Since r > ql(q — 1), we can choose ,v large enough such that Bs > 1, and con-
sequently Pic—* + °s as k -> +00.

If we define

Take p0 large enough and define inductively the sequence
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Now, by (H2) and (2.1) we have

Proceeding as at the end of the proof of Proposition 1, we obtain the same
result for j ( u ) = ( p ) ( - r 0 ) - p ( u ) ) + . Then, from (2.14) and (2.15) we obtain
(2.7).

From where it follows, taking 5 -> oo, that

Therefore, taking limit as k -> oo, we get

where

Therefore, applying Lemma 1
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In the next result we obtain the following energy estimates.

Proposition 3. Assume that (H) holds. Let u be a global smooth solu-
tion of problem (P) with initial datum u(0) = u0eLco(Q). Then, given r>0,
there exist constants depending only on \\u0\\L^((i) and T, such that

Proof. Multiplying the equation of (P) by cp(u), we get

If we set

from (2.18) it follows that

Now, by the above Proposition, there are constants M1, M2 > 0 such that

and consequently

Moreover, from (2.19), we can write



respectively. Let \l/ e C2(Q), \ j / ^ \ on Q such that

and

Hence, by (2.16), (2.17) holds.
We finish this section with the following result.

Lemma 2. Let F,FeL\Qt), G,GeLl(Sr) and v0,v0eLx(Q).
Suppose v and v are smooth solutions of the problem

Then, by the uniform Gronwall's Lemma (Teman, 1988), we obtain (2.16).
Finally, integrating (2.18) over ]r, T[, we get

On the other hand, multiplying the equation of (P) by <p(u), integrating
over ];, t + h[ x£ and using Proposition 2, it is easy to see that
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where L > 0 is a given constant. Then

for every 0<t<T.

Proof. Multiplying the difference of the two equations by
sign+(v — v) i and integrating over Q, we get

Hence

Integrating the above inequality from 0 to t and using (2.20) the proof
concludes.

3. EXISTENCE AND UNIQUENESS OF GLOBAL
WEAK SOLUTIONS

In this section we prove the existence and uniqueness of a global weak
solution of problem (I) when the initial datum is in LCO(Q).



We are going to divide the proof into several steps.

Existence of Solution

To prove the existence of solution we will consider a sequence of
approximated nondegenerate problems which can be solved in a classical
sense. To do that we consider sequences of functions (q>n), (fn) and (gn)
satisfying:

for any function 0 e L2(0, T; Hl(Q)) n W 1 , l (0 , T: L\Q}) with i( T) = 0.
We shall say that u is a global weak solution of problem (I) if u is a

weak solution on QT for all positive T.

Theorem 1. Under the assumptions (H),for every u0€Lco(O) there
exists a unique global weak solution u of problem (I) satisfying

Definition 2. Given u0eL°°(Q), by a weak solution of problem (I)
on gr we mean a function ue C([0, T]; ^(Q))nLC°(QT) such that ( p ( u ) e
L2(0, T; H 1 Q } ) and satisfies the identity
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In the next step we are going to see, by compactness arguments, that
it is possible to pass to the limit in (PJ in order to get a weak solution of
problem (I).

From (3.4) we can suppose (up to extraction of a subsequence, if
necessary) that

By a classical result (Theorem 7.4 of Ladyzenskaja et al., 1968), for any
T>0, (Pn) has a unique smooth solution un in QT. Moreover, as a conse-
quence of Propositions 2 and 3, the following estimates hold:

Consider the approximated problems

and

Using the same technique as in the proof of Proposition 3 of Filo and
de Mottoni (1992), we can find functions u0<neC*(Q], \\u0<n\\L«,(a^
HMollioo(o) + 1) satisfying the compatibility condition
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On the other hand, (3.6) and (3.4) yields

Multiplying the equation of (Pn) by (pn(un) and integrating over £, we have

where

Then, integrating over [0, T] and using (3.4) we get

Now, fixed O < T < T, by (3.4), (3.8) and (3.9), we have that

{<?„(«„): neN] is a relatively compact subset of LZ(]T, T[ x Q) (3.10)

Since (/>„-> q> uniformly on compact subsets of R, by (3.4), (3.7) and (3.10),
it is easy to see that

Consequently, up to extraction of a subsequence, we can obtain

Next, we get by (3.9)

New, by (3.11) and the Dominate Convergence Theorem, we get

As a consequence of (3.9) and (3.12), we obtain Y = V<p(u).



and

respectively, where q>n, fn and gn satisfy (G1), (G2) and G3, uO ,«"*"«>
w 0 n - > M 0 ZH L ' fO) bounded in L°°(Q) independently on n and verify the
corresponding compatibility conditions. Then, there exists C > 0 such that

In particular we also have

From where it follows that <p(u)e C(]0, T]; Ll(Q)) and consequently
u e C( ]0, T]; L 1 (Q) ) . To get the continuity of u at 0 we need the following
result.

Lemma 3. Given u0, w0eL°°(f2) , let u and u be limit of the smooth
solutions of the approximated problem

We now prove that ueC([0, T]; L 1 Q ) ) . Given 0 < T < T, by (3.8) we
can suppose that

From (3.9), (3.12) and Theorem 3.4.5 of Morrey (1966), it is easy to
see that
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Proof. Applying Lemma 2 we have that

By (G1), (G2) and (3.4) we get

Now, by (3.4) there exists R0>0 such that ||wn||L«,(a) ^R0, \\un\\L*w^R0.
Then, taking L = c3(R0) we get for any te[0, T]

where Mi = M i (R 0 ) , i= 1, 2. Hence, applying Gronwall Lemma and pass-
ing to the limit when n -> oo we obtain the desired conclusion with C =
C(R0) for all 0 < t < T.

To finish the proof of the continuity of u at 0, firstly we assume
u 0 eC 1 (Q) . Then, in the construction of u0,n we can suppose that
{\V<pn(uQ>n)\: n e N } is bounded in L2(Q). Multiplying the equation (Pn) by
(pn(un)t, we have

If we set



by Lemma 3, we obtain the continuity of u at 0.
Finally, since un is a smooth solution of (PJ, it clearly satisfies

for any test function i. From here, passing to the limit when n -» i we
obtain that u is a weak solution of problem (I).

Uniqueness

Definition 3. Let FeLco(QT], GeL°°(ST) and v0eLx(Q), we say
that v is a weak solution of problem

From where it follows that {(#>„(«„)),: ne N} is bounded in L2(QT). Then,
proceeding as in the proof of the continuity in ]0, T], we conclude that
ueC([0, T ] ; L l ( Q ) ) and u(0) = u0.

It remains to drop the condition u0 smooth. If M0eL°°(i2), there exists
a sequence of smooth functions v0 „ such that v^n-m0 in Ll(Q). The
corresponding vn, constructed as above, are continuous at 0, then as

integrating (3.13) we obtain
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for any function l>eL2(0, T;Hl(Q))^ W l , l ( Q , T; L l ( G ) ) with 4(T) = 0.

In order to prove the uniqueness we need the following lemma.

Lemma 4. Let F,FeLca(QT), G,GeL'x(ST), v0, v0e L^Q] and (p,
q> satisfying (H 1 ) . If v and v are weak solutions of S(q, F, G, v0) and
S(<p, F, G, VQ) respectively, then

Proof. It is enough to take as test function

and the result follows.

Proof of Uniqueness. Suppose that u and u are two weak solutions of
problem (I) on QTwith the same initial datum u0eL°°(Q). Let Fn, Fn, Gn,
Gn smooth functions, Fn, Fn bounded in LCO(QT) and Gn, Gn bounded in
LCO(ST) uniformly in n, such that

Let pn satisfying (G1). Using again the same technique introduce in
Proposition 3 of Filo and de Mottoni (1992), we can find functions
u0,n> u 0 , n e C 3 ( Q ] bounded in Lm(Q) uniformly in n satisfying the com-
patibility conditions



Consequently un<<!;,,< C(||i/'||z«,(a), y, T) on QT. Similarly a lower bound
for un can be obtained.

Now, multiplying the equation by (f>n(un) and integrating on QT it is
easy to see that {\V(pn(un)\: neN} is bounded in L2(QT).

Using Lemma 4 for un, the solution of S(in, Fn, Gn, u0,n), and for u,
the weak solution of S ( p , f ( u ) , g(u), u0), we have

for y large enough. On the other hand, we have

which implies

Set £,n = pn
 l(tl/ + yt) where y is a positive constant. On the one hand, for

C large enough, we have by (G1)

By classical results (see Theorem 7,4 of Ladyzenskaja et al., 1968), there
exist un and un smooth solutions of the problem S(cpn, Fn,Gn, u0,n) and
S(pn, Fn ,Gn , u0,n) respectively.

First, using the maximum principle, we prove that un are bounded in
L i Q T ) uniformly in n. Indeed, there exists C>0 such that
ll^«IL-(gT)<C, ||GJ|io=(Sj.)<C and ||^n(Mo,M)IL« (Q)< C. Consider

\fr e C2(i2) satisfying

and
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Then, as

and {un: n e N } is bounded in LCO(QT), we obtain

By the monotonicity of p we conclude, up to extraction of a subsequence,
that un converges almost everywhere to u. Consequently, pn(un) - » p ( u ) in
L2(QT). Moreover, { \ V < p n ( u n ) \ : n e N } is bounded in L2(QT). Hence, by
Theorem 3.4.5 of Morrey (1966), it is easy to see that

Similarly, we obtain the same for un. Then, applying Lemma 2 and
passing to the limit we obtain

Proceeding as in the proof of Lemma 3 we conclude u < u a.e. on QT. Inter-
changing the role of u and u the proof of uniqueness is finished.

As a consequence of Lemma 3 and the uniqueness of weak solutions
we have the following L1-Contraction Principle, which will be useful in the
next section.

Proposition 4. Suppose u0, w 0 eL°° (£ ) and let u, u be weak solutions
of problem (I) on QT with initial date u0, u0, respectively. Let R0 be an
upper bound of | |«oi lz ,«>(a)> ll"olli°°(a)> then there exists a constant C =
C(R 0 )>0 , such that



is bounded in L°°(I3). Now, as a consequence of the corollary of
Theorem 6.2 of DiBenedetto (1983), which is also true for the non-
degenerate case (see also Ladyzenskaja et al., 1968), we obtain that for any
t0 > 0 the set

is equicontinuous. Then, from Ascoli's Theorem we conclude the proof.

Next we are going to prove the existence of a bounded absorbing set.
For this we proceed in two steps. Firstly, we see that the set of stationary
solutions of (I) is bounded in L™(Q). Then, to conclude, we use the fact
that the problem is gradient-like (i.e., if S ( t n ) v - * w in L°°(D), where
tn-» oo and veLco(Q), then w is a stationary solution of (I)).

Lemma 6. Let S= {weLx(Q): S ( t ) w = w, W^O} be the set of the
stationary solutions. Then, there exists p0>0 such that SdB(Q,p0), where
B(0, p0) is the ball in LCO(Q) centered at 0 of radius p0.

is relatively compact in L°°(i) .

Proof. By (3.1) of Theorem 1, we have that

4. EXISTENCE OF THE GLOBAL ATTRACTOR

By Theorem 1, we can define a semigroup (S(t))t>0 on L°°(i) by
S ( t ) M0 = u( •, t), where u is the unique global weak solution of problem (I)
with initial datum u0. In this section we establish the existence of a global
compact attractor for (S(t))l>0 in this space (see Teman, 1988, for the
definition of attractor and related concepts). We start proving that the
operators S(t) are uniformly compact for t large.

Lemma 5. Given a bounded subset B of LX(Q) and t0>0 the set

and
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Take p0 ^ 1 and define inductively the sequence

where \j/(r) = ((p(r) — <p(r0))+ and F(>v) = c 1 ( ( w ) a + p(r0) t) . Consequently,

Letting n -> i in the last inequality, it follows that

proceeding as in the proof of Proposition 2, we get

Then, if

Proof. Let weS. Take w n e C 3 ( Q ) such that wn-+w in Ll(Q), wn

bounded in LX(Q) uniformly in n and satisfies the compatibility condition.
Let un be the smooth solution of problem
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As in the proof of Proposition 2, pk -> i as k -» i. Taking p = B sp k — 1 in
(4.1), we obtain

If we define

(4.2) can be rewritten as follows

New, using the fact that l im T _ 0 0 C(r, ||MO||£,«(O), p) = C(p) in Proposi-
tion 1, there exists C1 > 1 (independent of ||w||Loc(0)) such that yo^Cf .
Consequently, (4.3) yields

Therefore, applying Lemma 1

Now, by (H2) and Proposition 2.1, \\F(w)]\Lr(0) ^C(r). Then, taking k -> i
and proceeding as in the proof of Proposition 1, we conclude.

Lemma 7. The ball B(0, 2p0) is an absorbing set in L°°(Q) for the
semigroup (S(t))t>0.

Proof. Let first see that the problem is gradient-like. Given w e w ( v ) ,
veL(Q), there exists tn-> oo such that S(tn) v-+ w in Lm(Q). Fix t>0.
Then
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By (3.3), there exists e(n), l im n - > i e (n ) = 0 such that

Now

On the other hand, since (pe C1(R) and by Proposition 4

From (4.4), (4.5), (4.6) and (4.7), p(S(t) w) = g(w) and consequently
S(t) w = w .

Suppose now that B(0, 2p0) is not an absorbing set. Then, there exists
a bounded subset B0 of Z,°°(i), tn-> i and w 0 , n eB, satisfying

By Lemma 5, we can suppose (up to extraction of a subsequence, if
necessary) that

Now, there exists a constant k>0 such that — k < u 0 , n k a.e. in Q.
By Proposition 4, S(tn)(-k) < S ( t n ) ( u 0 , n ) ^ S ( t n ) ( k ) a.e. in Q. Then, by
the previous step we can suppose (up to extraction of a subsequence,
if necessary) that S ( t n ) ( — k ) - > w 1 and S ( t n ) ( k ) - > w2, where w1,w2eS.
Consequently weB(0 , p0), which is a contradiction with (4.8) and (4.9).

With all these ingredients, if we could define a dynamical system (see
Haraux, 1991) in LC(Q), the existence of a compact global attractor is well
known (see Teman, 1988). But since we only have the continuity of
u -» S(t) u in L'-norm and the continuity at 0 of t -> S(t) u in the L'-norm,
this is not possible. Anyway, we can prove the existence of the attractor in
L°°(i2) as a consequence of the following lemma.

Lemma 8. Let Q be a bounded subset of RN and S(t): LX(Q)-+
LX(Q) a semigroup satisfying S(t) e C([0, T], L1(Q)), for all T>0 and



Then, there exist tn-> i, vneB and e>0 such that

Suppose that

Since we can take t n >t(B) , S ( t n ) v n e H for all neN. Consequently, we
can assume that

Therefore WEA which is a contradiction with (4.11).
Finally, let us see that A is an invariant set, i.e., S(t) A = A for all

t>0. If w e S ( t ) A , there exists veA such that w = S ( t ) v . Since v e A ,
there exist tn-> c and vneH such that S ( t n ) v n > v in L i ( Q ) , conse-
quently S ( t n ) va->v in L1(Q). Hence, by (4.10)

Now, for n large enough, S(t + tn) v n e H . So, we also have

Therefore, w e A .

Then, K is a compact absorbing set in L c (Q) . Let

Let us see that A is attractive in L°°(Q). Let B be a bounded subset of
L°°(Q). Since H is absorbing, there exists t(B) > 0 such that

with C= C(R0) where R0 is an upper bound of \\u0\\L^n^ | |Molli°°(o)- Assume
there exists an absorbing set BQ in LX(Q) for the semigroup (S(t))t>0 and
r>0 such that S(i): I°°(f2)-> L°°(i3) is a compact operator. Then, there
exists a compact attractor stf in L°°(£?) for (S(t))t>0.

Proof. We set
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Reciprocally, given w e A , there exist tn -> i and vn e K such that

Since K is a compact absorbing set, we can suppose that S(tn — t ) v n e K
and

for some v. From where it follows that

and we conclude that w = S(t) v and weS(t) A.
Finally, as a consequence of Proposition 4, Lemmas 5, 7 and 8, we can

state the main result of this section.

Theorem 2. The semigroup ( S ( t ) ) t > 0 admits a compact global at tractor
in LX(Q).
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