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Abstract

We consider a degenerate elliptic—parabolic problem with nonlinear dynamical boundary conditions. As-
suming L!-data, we prove existence and uniqueness in the framework of renormalized solutions. Particular
instances of this problem appear in various phenomena with changes of phase like multiphase Stefan prob-
lems and in the weak formulation of the mathematical model of the so-called Hele—Shaw problem. Also,
the problem with non-homogeneous Neumann boundary condition is included.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we obtain existence and uniqueness of renormalized solutions for a degenerate
elliptic—parabolic problem with nonlinear dynamical boundary condition of the form

zr —diva(x,Du)=f, zeym)in Qr:=10,T[ x £2,
Py g(f. & 20, wo) w; +a(x,Du)-n=g, wepP)onSr:=]0,T[x 3,
z2(00=z9 in2, w)=wy inas2,
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where T > 0, £2 is a bounded domain in RV with smooth boundary 982, vy € L'(£2),
wo € LY382), f € LY0,T; L' (£2)), g € L' (0, T; L'(3£2)) and 75 is the unit outward nor-
mal on 9£2. Here the function a: 2 x RN — R is a Carathéodory function satisfying the
classical Leray—Lions conditions. The nonlinearities y and 8 are maximal monotone graphs
in R2 (see [20]) such that O € y(0), Dom(y) = R, and 0 € (0). In particular, y and S may
be multivalued and this allows to include the Dirichlet boundary condition (taking S to be the
monotone graph {0} x R), the non-homogeneous Neumann boundary condition (taking S to be
the monotone graph §(r) = 0 for all r € R), as well as many other nonlinear fluxes on the bound-
ary that occur in some problems in mechanics and physics (see [28] or [19]). Note also that, since
y may be multivalued, problems of type P, g(f, g, z0, wo) appear in various phenomena with
changes of phase like multiphase Stefan problem (see [25]) and in the weak formulation of the
mathematical model of the so-called Hele-Shaw problem (see [26] and [29]), for which y is
the Heaviside maximal monotone graph. Also, if y(r) =0 for all r € R, we consider an elliptic
problem with nonlinear dynamical boundary condition.

The dynamical boundary conditions, although not too widely considered in the mathematical
literature, are very natural in many mathematical models as heat transfer in a solid in contact
with moving fluid, thermoelasticity, diffusion phenomena, problems in fluid dynamics, etc. (see
[11,23,30,43] and the references therein). These dynamical boundary conditions also appear in
the study of the Stefan problem when the boundary material has a large thermal conductivity
and sufficiently small thickness. Hence, the boundary material is regarded as the boundary of
the domain. For instance, this is the case if one considers an iron ball in which water and ice
coexist. For more details about these physical considerations one can see for instance [1]. They
also appear in the study of the Hele-Shaw problem. Recall that, in [26] the authors give the weak
formulation of the problem in the form of a nonlinear degenerate parabolic problem, governed
by the Laplace operator and the multivalued Heaviside function, with static boundary condition.
From the physical point of view they assume that the prescribed value of the flux on the boundary
is known, but in some practical situations, it may be not possible to prescribe or to control the
exact value of the flux on the boundary. In [42] (see also [43]), the authors consider the case of
nonlocal dynamical boundary conditions and use variational methods to solve the problem. In
the present paper, we cover the case of general nonlinear diffusion and local dynamical bound-
ary conditions. Notice, that general nonlinear diffusion operators of Leray—Lions type, different
from the Laplacian, appear when one deals with non-Newtonian fluids (see, e.g., [9,37,38] and
the references therein for the case of Hele-Shaw problem with non-Newtonian fluids). Another
interesting application we have in mind concerns the filtration equation with dynamical boundary
conditions (see, e.g., [44]), which appears for example in the study of rainfall infiltration through
the soil, when the accumulation of the water on the ground surfaces caused by the saturation
of the surface layer is taken into account. Observe that 8 may be such that Ran(g) is different
from R, so that we cover the case where the boundary conditions are either dynamical or static
with respect to the values of w in the problem under consideration. This is the situation where
the saturation happens only for values of w in a subinterval of R.

There is an extensive literature for doubly nonlinear problems with homogeneous Dirich-
let boundary conditions (see [2,3,10,15,17,21,34] and the references therein). Nevertheless, to
our knowledge, there is little literature on problem P, g(f, g, 20, wo) as we pointed out in [5],
where existence and uniqueness of weak solutions of this problem have been obtained for LY-
data. Our aim in this paper is to prove existence and uniqueness of solutions for L!-data of
P, s(f, g, 20, wo). There are mainly two types of difficulties in studying this kind of problems,
the nonlinearities y and 8 and the consideration of L'-data so that finite energy solutions could
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not be expected. To solve this last difficulty, the framework of renormalized solutions, which
was originally introduced in [27] for transport equations, has proved to be a powerful approach
to study large class of second order PDEs (see [3,7,16,17,22] and the references therein).

Another main difficulty when dealing with doubly nonlinear parabolic problems is the unique-
ness. For the Laplace operator, thanks to the linearity of the operator, the problem can be solved
by using suitable test functions with respect to u (see for instance [33]). For nonlinear opera-
tors this kind of argument turns out to be nonuseful. In [15], for an elliptic—parabolic problem
with Dirichlet boundary condition, it is shown that the notion of integral solution [12] is a
very useful tool to prove uniqueness (see also [32] for non-homogeneous and time dependent
Neumann boundary conditions). For general nonlinearities, even for homogeneous Dirichlet
boundary condition, the question of uniqueness is more difficult and most of the arguments used
in the literature are based on doubling variables methods (see for instance [8,17,21,22,34] and
the references therein). In [S5] we have shown that the notion of integral solution is a very use-
ful tool to prove uniqueness of weak solutions of problem P, g(f, g, zo, wo) for L? -data. In
this paper, we use the same method to prove uniqueness of renormalized solutions of problem
Py g(f, g, z0, wo) for L!-data.

We also want to point out that our existence and uniqueness proofs work without any continu-
ity assumptions on y ~! or 87! and any hypothesis about the jumps of y or B. For the existence
of the renormalized solution, we use a monotone approximation of f, g, zo and wq, by L™
functions fu.ns 8m.n> 20,m.n and wo .. So that, by using the results of [5], the problem has a
unique weak solution (Z; », Wm,»). Thanks to the nonlinear semigroup theory (see [14,45]), the
results of [4] concerning the stationary problem associated with P, g(f, g, zo, wo), it is not diffi-
cult to get the L! convergence of (Z.n, Wm.n)- Nevertheless, the characterization of the limit of
(Zm.n>» Wm n) in terms of the partial differential equation is very technical due to the fact that the
problem is doubly nonlinear. For the convergence of u,, , (see the proof of Theorem 2.6), we use
the monotonicity with respect to m and #, as it was used in [3], and for the identification of the
limit equation we use Landes approximation (see [39]). Recall that this kind of arguments was
also used in [3] for elliptic—parabolic problems and in [35] for degenerate parabolic problems of
Stefan type. Here we extend these arguments to our general setting (other kind of arguments may
be found in [17]). For the uniqueness, we show that renormalized solutions are integral solutions,
concept due to Ph. Bénilan (see [12,14]). In other words, we show that renormalized solutions
satisfy a contraction property with respect to stationary solutions. The main difficulties here are
due to the nonlinear and non-homogeneous boundary conditions and to the jumps of y and S.
In [17], to obtain a contraction principle for a similar problem in the case of Dirichlet boundary
condition (8 = {0} x R), and for y having a set of jumps without density points, the authors give
an improvement of the “hole filling” argument of [21], using the doubling variable technique in
time and a very useful choice of test functions. This technique can be adapted to our problem.
Now, as in [5], by the nonlinear semigroup theory, we are able to simplify the proof of unique-
ness without using the doubling variable technique in time and without imposing any condition
on the jumps of y and 8.

Let us briefly summarize the contents of the paper. In Section 2 we fix the notation and
give some preliminaries; we also give the concept of renormalized solution for the problem
Py g(f, g, 20, wo) and state the existence and uniqueness result for renormalized solutions of
problem P, g(f, g, 20, wo). In Section 3 we show the existence of renormalized solutions and
finally in Section 4 we prove the uniqueness of renormalized solutions.
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2. Preliminaries and main result

In this section, after some preliminaries, we introduce the concept of renormalized solution
for problem P, g(f, g, z0, wo) and we state the existence and uniqueness result for this type of
solutions.

Throughout the paper, £2 C R is a bounded domain with smooth boundary 952, p > 1,
y and B are maximal monotone graphs in R? such that Dom(y) = R, 0 € y(0) N B(0) and
the Carathéodory function a: 2 x RY — RV satisfies

(Hy) there exists A > 0 such that a(x, £) - &£ > A|€|P for a.e. x € £2 and for all £ e RV,
(H,) there exist ¢ > 0 and o € L? (£2) such that |a(x, £)| < c(o(x) + |£|P~") for a.e. x € £2 and
for all £ e RV, where p’ = %,

(H3) (a(x,&)—a(x,n)-(E—n)>0forae. x € 2andforall £, n e RN, & #£y.

The hypotheses (H;)—(H3) are classical in the study of nonlinear operators in divergence form
(see [41] or [13]). The model example of function a satisfying these hypotheses is a(x, &) =
|E|P~2£. The corresponding operator is the p-Laplacian operator Ap(u) =div(|Du |P=2Du).

In [13], the authors introduce the set

TP (2) = {u: 2 — R measurable such that Ty (u) € whr(2) vk > 0},

where T (s) = sup(—k, inf(s, k)). They also prove that given u € T1-P(£2), there exists a unique
measurable function v : £2 — R" such that

DTy (u) =vx{u<ky Yk>0.

This function v will be denoted by Du. It is clear that if u € WP (£2), then v € LP(£2) and
v = Du in the usual sense.

We denote ’Z'Tl’p (£2) the set of functions u in 717 (£2) such that there exists a measurable
function w on 02 with Tp(w) = tr(Tx (1)) a.e. on 982 for all k > 0, where tr is the usual
WP_trace. The function w is the trace of u in a generalized sense. In the sequel, the trace of
ue ’]}1""(.(2) on 052 will be denoted by u.

For a maximal monotone graph ¢ in R x R, its main section 90 is defined by

the element of minimal absolute value of ¥ (s) if ¥ (s) #£ 0,
9%(s) ;= { 400 if [s, +00) N Dom() = @,
—o0 if (=00, s]NDom(¥) = @.

We shall denote ¥_ := infRan(¢) and ¥4 := supRan(?). If 0 € Dom(#}), js(r) = for 90(s) ds
defines a convex ls.c. function such that ¢ = djs. If jj is the Legendre transformation of jy
then 9! = Qj5-

For the maximal monotone graphs y and g, we shall denote

Ry =y |21+ 620021, R 4=y |21+ -102].

In the sequel, we suppose R;ﬂ < R;r’ﬂ and we write R, g := ]R;’ﬁ, R;r’ﬂ[.
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It is said that a is smooth (see [6] and [4]) if, for any ¢ € L°°(£2) such that there exists a
bounded weak solution u of the homogeneous Dirichlet problem

—diva(x, Du) = ¢ in §2,
(D) { u=20 on 452,

there exists g € L' (d£2) such that u is also a weak solution of the Neumann problem

—diva(x, Du) = ¢ in £2,

(N) {a(x,Du)~n=g on d52.

Functions a corresponding to linear operators with smooth coefficients and p-Laplacian type
operators are smooth (see [19] and [40]).

The following integration by parts formula, which is a slight modification of [5, Lemma 4.1],
will play an important role in our arguments. We denote by (.,.) the pairing between (W17 (£2))’
and W7 (£2).

Lemma 2.1. (See [5].) Let 9 and o be maximal monotone graphs in R2. Let z € C([0,T] :
L'(2)), w e C(0,T]: L'(@3)), F € LP (0, T; (W'P(2))), f € L'(0,T; LY (2)) and
g€ LY(0,T; L (82)) such that

T T T T T
//z%dxdt—l—//wI/ftdodt=f(F(t),1//(t))dt+//f1/fdxdt+//gl/fdcrdt
0 2 0 0 2

0 982 0 082

forany v € WHL0, T: WL (2)NL®(2))NLP(0, T; WP (£2))NL>®(0, T: L®(£2)), ¥ (0) =
Y (T)=0. Then,

T z(t) T w(t)
//(/H(x,(z‘/‘_l)o(s))ds>l//tdxdt+/ (/ H(x,(g_l)o(s))ds)l//;dodt
0 2 0 0 082 0

T

T T
=/(F(t),H(x,u(t))l//(t))dt+//fH(x,u)lpdxdt+//gH(x,u)lpdadt,
0 2

0 0 082

being u € LP(0, T; WhP(2)) such that z € ©(u) ae. in Qr and w € o(u) a.e. in Sr,
H(x,r) a bounded Carathéodory function of bounded variation in r, such that H(.,u(.,.)) €
LP(0, T; WhP(82)), and € D(J0, T[xRN).

We now recall the concept of weak solution for problem P, g(f, g, zo, wo) and state the exis-
tence and uniqueness result given in [5] for such solutions.

Definition 2.2. Given f € L1(0,T; L' (£2)), g € L'(0,T; L'(382)), zo € L' (£2) and wg €
L1(8.{2), a weak solution of P, g(f,g,z0,wo) in [0,T] is a couple (z,w) such that
z€ C(0,T]: LY(R)), w e C(0,T]: L'(382)), z(0) = zo, w(0) = wy and there exists
ueLP(,T; WhP(£2)) such that z € y (1) a.e.in Q7, w € B(u) a.e. on St and
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d d
E/Z(t)édx+E/w(t)édo—i—/a(x,Du(t))‘Dde

2

/f(r)s dx +/ (V)& do (1)

082
in D’(]0, T|) for any & € C'(£2).

Theorem 2.3. (See [5].) Assume Dom(y) = R and assume either Dom(B) = R or a smooth. Let
T >0.Let f €LP(0,T;LP(82)), g € LP (0, T; L (382)), zo € L (22) and wo € L? (82)
such that

Y- <20 < Vs :3— Swp < .3+9 (2)
/j;(ZO) dx + / Jjg(wo)do < 400 3)
2 052

and

t
/Zde+fwoda+[(/f(s)dx+/g(s)d0>dS€Ry,ﬂ “)
2 PYe, 2 FYe)

0

Sforallt € [0, T). Then, there exists a unique weak solution (z, w) of problem P, g(f, g, zo, Wo)
in[0,T].

Moreover, the following L'-contraction principle holds. For i = 1,2, let f; € Ll(O, T;
L' (2)), gi € L'(0, T; L'(32)), zig € L' (22) and w;y € L' (382); let (z;, w;) be a weak so-
lution in [0, T] of problem Py, g(f;, &i, zio, Wio), i =1,2. Then

/ (21() — 22(0)) " dx + [ (wi () — wa (1)) " do

2 082

f(ZIO —z20) T dx + /(wlo —wy) T do

/ f fils) — fo(s))dxds + f f g1(5) — 2(5)) " do dis

0 082
foreveryt [0, T].
Let us give the concept of renormalized solution.
Definition 2.4. Given f € L'(0,T; L' (2)), g € L'(0,T; L' (32)), z0 € L' (£2) and wy €

LI(B.Q), a renormalized solution of P, g(f, g, z0, wo) in [0, T'] is a couple (z, w),z € C([0, T]:
LY(£2)), we C(0,T]: L'(382)), z(0) = zo, w(0) = wy, for which there exists a measurable
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function u in 10, T[ x £2, u(t) € T."P(2) ae. t € 10, T[, such that Ty (u) € L?(0, T; WP (£2))
forallk >0,z € y(u) ae.in Q7, w € B(u) a.e. on St,

49 w(r)
% (/ H((V_I)O(S))ds>§dx+%‘/</ H((ﬁ_l)o(s))ds)wa

0 0

+ / a(x. Du()) - D(H(u())E) dx

2

=/f(t)H(u(t))sdx+fg(t)H(u(t))é do (5)
2

082

in D’(J0, T|), for any & € C'(£2) and any Lipschitz continuous function H : R — R of compact
support, and

lim a(x,Du) - Dudxdt =0. (6)

n——+00
{t,.x)€07: n<u(r,x)|<n+1}

Remark 2.5. (i) In (5) and (6) every term is well defined. Observe that the third term of the
left-hand side of (5) has to be understood as

/a(x,Du)~D(H(u)§)dx=fa(x,DTM(u)) - D(H (T (w))§) dx,
2 2

where M > 0 is such that supp(H) C [—M, M]. Similarly, the integral in (6) has to be understood
as

a(x, DTn_H(u)) - DTy (u)dxdt.
{(t,x)€Qr: n<ult,x)|<n+1}

(ii) A renormalized solution satisfies

t

/Z(t)dx—i—/w(t)da=/zodx+/woda—i-/(/f(s)dx—i-/g(s)dcr)ds 7
2

2 982 2 982 0 a2

forallt € [0, T].

(iii) A weak solution in the sense of Definition 2.2 is a renormalized solution. In fact, if (z, w)
is a weak solution of P, g(f, g, z0, wo) in [0, T'], then there exists u € L? (0, T’; WP (£2)) such
that z € y(u) a.e. in Qr, w € B(u) a.e. on ST and
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T T
//a(x Du) - Dyrdxdt = //m/ﬁdxdt—i—//w#x,dodt
0 2 0 0 082
T
+f/f¢dxdt+// Ydodt (8)
0 0 082

forany ¥ € Wh1 (0, T; WhI(2)NL®(2))NLP (0, T; WhP(82)), ¥ (0) = ¥ (T) = 0. Then, by
Lemma 2.1, we have

T z(1) T w(t)
/f H (s) dstﬁldxdt~|—///H (s))dSI/ftdodt
0 £2 0 002 0
T
//a(x,Du)~D(H(u)1ﬂ)dxdt
0 2
T T
—//fH(u)lpdxdt—f/gH(u)l//dodt )
0 2 0 982

for any H :R — R Lipschitz continuous of compact support and (¢, x) = ¢(t)&(x), with ¢ €
D0, T[) and & € C'(£2). Hence (5) holds. Moreover, since u € L?(0, T; WP (£2)), (6) also
holds, and consequently (z, w) is a renormalized solution of P, g(f, g, z0, wo) in [0, T'].

(iv) If u is a renormalized solution such that u € LP(0, T: WP (£2)), u is a weak solution in
the sense of Definition 2.2.

The main result of this paper is the following existence and uniqueness theorem.

Theorem 2.6. Assume Dom(y) = R and assume either Dom(8) = R or a smooth. Let T > 0.
() Let f € LY(0,T; L'(2)), g € L' (0, T; L' (882)), z0 € L' (£2) and wo € L' (82) such that

Y- <20 < Vs B- <wo < Bt (10)

and

t
/z()dx+/woda+/</f(s)dx+/g(s)do>dsGR%/; (11)
2

a2 0 £ 082

forallt €0, T]. Then, there exists a unique renormalized solution (z, w) of P, g(f, g, z0, Wo)
in [0, T].

(ii) Moreover; the following L'-contraction principle holds. For i = 1,2, let f; € L' (0, T;
LY(£2)), gi € LY(0, T; L' (882)), zig € L' (2) and wiy € L' (382); and let (z;, w;) be a renor-
malized solution in [0, T] of Py g(fi, &i»Zio, Wio), i =1,2. Then
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/ (z1() — 22(0)) " dx + / (wi (1) — wa (1)) " do

2 082
< /(ZIO —z220)Tdx + /(wlo —wyg) T do
2 082
t t
+ / / (f1(s) = f2(9)) T dxds + / / (g1(5) — g2(8)) " do ds (12)
0 2 0 082

foreveryt €[0,T].
To prove the above theorem we use the nonlinear semigroup theory (see [12,14] or [24]).

Remark 2.7. We recall that in the case 8 = 0, for the Laplacian operator and y the multival-
ued Heaviside function (i.e., for the Hele-Shaw problem), existence and uniqueness of weak
solutions for this problem is known to be true only if

t

/zgdx+/(/f(s)dx+/g(s)da)dse(O,|Q|) for any ¢ € [0, T]
2 0 2

982

(see [36, Theorem 3.1 and Example 8.1], see also [31]). The same example works for renormal-
ized solutions, so condition (11) is necessary.

3. Existence of renormalized solutions

In this section we prove the existence part of Theorem 2.6. We use the following lemma
proved in [5, Lemma 4.2].

Lemma 3.1. (See [5].) Let {un}neny € WHP(2), {zntneny C LY(82), {wnlnen C LY(382) such
that, for everyn € N, z,, € y (up,) a.e. in 2 and w, € B(u,) a.e. in 952. Let us suppose that

a) if R; g =100, there exists M > 0 such that

/Z,fdx+/wjdo<M Vn eN;
2 a2

1) if R;’ g <00, there exists M € R such that

/zndx+/wndU<M<R;r’ﬁ

2 a2
and
lim ( / 20| dx + f |wn|do)=0
L—+o0
{xe2: z,(x)<—L} {x€d82: wy(x)<—L}

uniformly in n € N.
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Then, there exists a constant C = C (M) such that
(In ||LP(.Q) < C(|Duy ||LP(.Q) +1) VneN

Proof of Theorem 2.6. (Existence) We divide the proof in several steps.

Step 1: Approximate problems. For f € LY, T; LY(2)), g€ LY, T; LY(32)), 20 € LY(2)
and wo € L' (8£2) satisfying (10) and (11), let

fmn= sup{inf{m, I} —n}, 8mn = sup{inf{m, gl —n},

Zom,n = sup{inf{m, z0}, —n} and  wom,, = sup{inf{m, wo}, —n},
where m, n € N, and consider the approximate problems

Py,ﬂ(fm,n, 8m,n> Z0m,n>» wOm,n)-

It is clear that for m, n large enough, fi 4, &m.n» 20m.n> Wom.n satisfy (2)—(4), in fact, there exist
r1, ro € R such that, for any m, n large enough and any ¢ € [0, T],

R;’ﬂ <r < /\Z()m,n dx + / wom,n dU
2 a2
t

—i—/([fm,n(s)dx—i—/gm,n(s)dcr)ds<r2<7€;ﬂ. (13)
Q

0 082

Therefore, by Theorem 2.3, there exists a unique weak solution (2, n, Wm.n) of problem
Py g(fin.ns 8m.n> 20m.n» Wom.n)» SO there exists uy, , € LP(0,T, WLP(£2)) such that Zmn €
Y Ump) ae. in 2 x 0, T[, Wy n € BUm,n) a.e.in 082 x 10, T[, and

T T T
/‘/a(x,Dum,n)-Dlﬁdxdt:ffzm,,llﬁ,dxdt+ffwm,ntﬂ,dadt
0 2 0 2 0 082
T T
+//fm,nwdxdt—l—//gm,n1/fdodt (14)
0 2 0 982

for any ¢ € W10, T; Wh1(£2) N L®(2)) N LP(0, T; WP (£2)), ¥ (0) = ¢ (T) = 0. Since
Smons &nons 20m.n and wyg,, , are monotone nondecreasing in m and monotone nonincreasing
in n, by results of [4] and [5], we can also consider that so are u,;, , Zm,» and w, ,. Therefore,
there exists a subsequence {n(m)},, such that

lir’11n(zm,n(m)a wm,n(m)) =(z,w) ae.in Qr x S7, (15)

limumyn(m) =u ae.in or, (16)
m
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and

limuy ymy =v a.e.on St, (17
m
where z(, x), w(t, x), u(t, x), v(t, x) € R. Let us write

Zm = Zm,n(m)>» Wm = Wm,n(m)»
Um = Um,n(m),
Sm = fm,n(m)a 8m = 8m,n(m)»

20m = 20m,n(m) and  wo, = WO, n(m)- (18)
Step 2: Convergence of z,,, wp,. Let us see that

lim(zm, wn) = (z, w) in C([0, T]; X), (19)

where X = L1(£2) x L' (382) provided with the natural norm

I =1 @ +glneae. (fre)eX

Observe that then z(0) = zg and w(0) = wyq also hold.
Consider the operator BY-# defined in X by (2, w) € BY"#(z, w) if and only if there exists
u € WP (£2) such that z(x) € y(u(x)) a.e.in 2, w(x) € B(u(x)) a.e. in 3§2, and

/a(x,Du)~Dvdx=/2vdx+/ﬁ)vda (20)

2 2 082

for all v e L®(2) N WhP(02). By results in [4] and [5], we know that the abstract Cauchy
problem in X,

{V’(t)—i—BV*ﬂ(V(t)) 5(f,g), te€(0,T), 21
V(0) = (z0, wo),
has a unique mild solution forany f € L'(0, T; L'(£2)), g € L'(0, T; L'(8£2)), zo € L' (£2) and
wo € LY(382) satisfying (10) and (11). Moreover, under the hypothesis of Theorem 2.3, in [5] it
is proved that the mild solution of problem (21) is the unique weak solution of P, g(f, g, zo, wo).
Therefore, (z,,, wy,) is the mild solution of problem (21) for data ( f;,, gm) and (2o, Wo,,)-
Since (fin, gm) — (f, &) in L'(0,T; X) and (z0m > wWom) — (20, wo) in X, by the nonlinear semi-
group theory, there exists limy, (z,,, w;,) in C([0, T]; X) and by (15), (19) holds, being (z, w) the
mild solution of (21) for data ( f, g) and (zp, wo). We shall see that (z, w) is, in fact, a renormal-
ized solution of problem Py, z(f, g, zo, wo).

Step 3: Boundedness of Ty (u,,). Let us see there exists C; > 0 such that, for any k > 0,

T

k
[ [101l? xar < S0y r + 1o w0 ) @2)
0 2
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and

17 ((0n ) Loy < CLIPT(n @) ) [ ooy +1) Vi€lO.TL (23

By Lemma 2.1, we have

T Zm (1) T W (1)
/// (s) dswtdxdt—i—// / (s))dsw,dadt
0 0 082
=/fa(x,Dum)-D(G(um)w)dxdt
T
//fmG(um)lﬁdxdt //gmG(um)lldedt (24)
0 0 082

for any bounded function of bounded variation G (r) such that G (u,,) € L?(0, T; WP (£2)) and
for any ¢ € D(]0, T[xRN). Taking in (24) ¥ (¢, x) = ¢(1), ¢ € D(]0, T[), and G(r) = Ti(r),
k >0, we get

T Zm (1) T Wi (1)

%f / Tk((y_l)o(s))dsdxdt+[g0t/ / Tk((ﬂ_l)o(s))dsdadt
0 2 0 0 2 0
T
:/(p/a(x,Dum)-DTk(um)dxdt
0 2
T T
/(p/fmTk(um)dxdt /w/ngk(um)dadt (25)
0 £ 0 e
Therefore

Zm (1) wm (1)

%/ / Te((y _l)o(s))dsdx+%/ / T(5~)° ) ds do

12 0

+/a X, Dum(t) DTk(um(t)) dx
Q

Z/fm(t)Tk(um(t))dx+/gm(t)Tk(um(l))dG (26)
2

82

in D'(]0, T[). Integrating (26) from O to T and using (H;), we get (22).
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In order to prove (23) we need to treat separately different cases. In the case R;f g =100, let

M = sup (/Z+(t)dx+/w+(t)dcr) + 1.
tel0,T] o

982

Then, by (19) there exists mg € N such that

tel0, T

sup </(Zm)+(t)dx+ /(wm)+(l)d(7) <M Vm>=my.
] 2 982

In the case R;f g < T, by (13) (see Remark 2.5(ii) and (iii)), there exist M € R and mg € N
such that, for all m > my,

sup (/zm(t)dx+fwm(t)da> <M<R;rﬁ_
1€[0,T] P ’

082

Moreover, by (19),

lim ( / |zm ()] dx + f |wm(t)|da> =0

L—+o00
{xef2: 7, (1) (x)<—L} {x€082: wy, (t)(x)<—L}

uniformly inm € Nand ¢ € [0, T].
Let us define

m if lum| < k,
= Vo(k) if u, >k,
yOo=k) ifum < —k,

I =

and

Wiy if luy| <k,
wy, =1 k) ifu, >k,
Bo(—=k) ifu, < —k.

Then ka € y(Tk(u;,)) ae.in Qr and w’,; € B(Ti(u;,)) a.e. in St. Now, in the case R;ﬁ =400,
there exists M € R such that, for all £ > 0,

sup (/(Z’fn)+(t)dx+ /(w@)*(r)&:) <M VYm>=my.

te[0,T]
ko) 952

And in the case ’R;‘ g < 400, there exist M < ’R;‘ 8 and kg such that, for all k > kg and for all

m 2z mo,
sup (/z,i(t)dwrfw,’;(r)do) <M
te[0,T]
2 052
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and

lim < / |28 )| dx + f |wln‘1(t)|da) =0
L—+oo

{xe: £ 1) (x)<—L}) {x€d2: wk ) (x)<—L}

m

uniformly in m,k € N and ¢ € [0, T]. Therefore, by Lemma 3.1, (23) follows for the positive
part of u,,. For the negative part of u,, we use again Lemma 3.1 for U = —Ums Zm = —Zm,
Wy = —w;,; and the graphs y (r) = —y (—r) and B(r) = —B(—r).

Step 4: Convergence of Ty (uy,). In this step we show that

u s finite a.e. in O, (27)
u(t) e TIP(2) ae.rel0,Tl, (28)
zey@) ae.inQr, (29)
weBu) ae. inSt, (30)

and, for any k € N,

Tic(um) converges to T (u) ~ weakly in L?(0, T; Wl’p(.Q)),

strongly in Lp(O, T; Lp(.Q)) 31
and
T (u;,) converges to Ty (1) in LP(O, T; LP(E)Q)). (32)

Indeed, having in mind (22) and (23),

T
+
ENH({(t,x)eQT: uj(r,@)k})g// |Tk((Mm(f)) )P dx d
0 2

T
C2

C
S/ UT | DT () * o) at k_s(l +h).

(=)

This implies, taking limits first as m goes to 400 and after as k goes to 400, that (27) holds.
Hence, again by (22), (31) and (32) hold for any k > 0, and consequently u () € T"7(R2) a..
te]0, T[.

Similarly, since
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(' x HYN N ([, x) € Sr: up(t, x) > k})
T
+
gffwdm
kP
0 082

C4

T

Cs
kp/ | 7o (Cum) )”Lp((z)+||DTk((”m) )”LP(Q)) dt<k7(l+k)v
0

v is measurable in S7, and (28) holds.
Finally, by (15)-(17), (27) and (28) and the facts that

Zm €Y (Uum) ae.in Or,
wy, € B(u,) ae.in St,

and y and B are maximal monotone graphs, (29) and (30) hold.

Step 5: Uniform renormalized condition for u,,. Let us define
v(n) :=sup / a(x, Duy,) - Du,, dx dt.
" {(t,x)eQ7: n<|uy (t,x)|<n+1}
Then

lirgn v(n)=0. (33)

In order to prove (33) we take in (26) k = n 4 1 and after k = n. Subtracting the corresponding
equalities and integrating from 0 to 7', we get

0< / a(x, Du,,) - Du,, dx dt
{(t,x)e€QT: n<|up(t,x)|<n+1}

zm(T) win (T)

=_/ / () (s) dsdx—/ / (s))dsda

2 om 082 Wo
T T
—i—//fmGn(um)dxdt—i—//gmGn(um)dadt, (34)
0 2 0 982

where G, (r) := T,41(r) — T,,(r). Therefore, since

lim LY ({(,x) € Qr: [um(t, x)| 2 n}) =0

n——+o00
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and

lim (ﬁl X HNfl)({(t,x) e Sr: |um(t,x)| >n}) =0

n——+00

2779

uniformly in m, by equiintegrability, the two last terms on the right-hand side of equality (34) go

to zero as n goes to 4-00. For the first term on the right-hand side of (34) we have

Zm(T)
—f / Gu((v™")°(s)) ds dx
2 Zom
<f(zg —supy(n))+dx+/(infy(—n) —zy) do,
2 2

which converges to zero by (10). Similarly, we can handle with the second term on the right-hand

side of (34) and the proof of (33) is concluded.

Step 6: Convergence of a(x, DTy (u,;)). Let us see that

a(x, DTk(um)) — a(x, DTk(u)) weakly in Lp/(QT) as m — +00.

(35)

Letn € N, n > k. Given any subsequence of u,,, by (22) and (Hj), there exists a subsequence,

still denoted by u,,, such that
a(x, DTy (un)) = & weakly in (L' (01))",
a(x, DT 1 () = Ppy1 weakly in (L7 (Q1))"
and

. / N
a(x, DTp1m)) X{jum >k} = Pnr1k  weakly in (L7 (Q7))
as m — +o0. Let us prove that, for any ¢ € D(]0, T[),0< ¢ < 1,
T

m——+00
0 2

Then, by Minty—Browder’s method, it is easy to see that
@ =a(x, DTi(u)),

and (35) is proved.
Now, in order to get (39), we take limit in (25) to obtain

T
lim (p/a(x, Duy,) - DTy (uy) dx dt < /(p/QDk - DTy (u)dxdt.
0 2

(36)
(37

(38)

(39)

(40)
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T
mll>r-rs-loo /a(x,Dum) DT (uy,)dx dt
0 2
z(1) w(r)
:/ //Tk (s))dsdxdt+/ //Tk (s) dsdadt
20
T T
+/g0/ka(u)dxdt+/<p/ng(u)dadt. 41
0 2 0 0J82
Consequently, it is enough to prove that
T
/(p/@k~DTk(u)dxdt
0 2
z(t) T w(t)
2/ fka (s))dsdxdt+/ //Tk((ﬂ_l)o(s))dsdodt
0 20 0 2 0
T T
+/(p/ka(u)dxdt+/<p/ng(u)dodt. 42)
0 2 0 0J82

To this end we use the regularization method of Landes [39]. For k, v € N, we define the regu-
larization in time of the function T (u) given by

t

(Tk(u))v(t,x) = / e”(“t)Tk(u(s,x)) ds

—00

extending Ty (u) by 0 for s < 0. Observe that (T (u)), € LP(0, T; WHP(£2)) N L®(Q), it is
differentiable for a.e. t € (0, T') with
(k) . x)| <k(l—e™™) <k ae.,

ATk (u))v

= v(Tiw) — (Te(w)),) € LP(0, T; WP (2)) N L™(Q),

(Tk(u))v(O,x) =0 VxeS2,
Nim (7)), = Ti@) in LP(0, T W!r(£2)) and in L” (10, T[x352)

and, moreover,

T T
/¢/¢k~DTk(u)dxdt: lim lim (p/a(x,DTk(um)) . D(Tk(u))vdxdt.
0

V—00 m— 00
2 0 £
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By considering H,(r) = inf(1, (n + 1 — |r|)*), for any n > k, which implies H, (i) =1 if
lum| < k, we have

T
/(p/@k~DTk(u)dxdt
0 2

T
= lim lim /(p/a(x,DTk(um))-D(Hn(um)(Tk(u))v)dxdl
2

V—>00 m—> 00
0

T
= lim lim (/(p/a(x,DTn+1(um)) - D(Hy (um)(Ti(w)) ) dx dt
0

V—>00 m—>00
2

- / pa(x, DTy (um)) - D(Hy (um)(Ti(w)) ) dx dt)

{(t,x)eQ1: k<|up (t,x)|<n+1}

T
= lim lim (/go/a(x,DTn+](um)) - D(Hy (um) (T (w)) ) dx dt
0

V—> 00 m—>00
2

- / pa(x, Duy,) - D((Tk(u))v)Hn (um)dxdt

{(t,x)eQ1: k<|upm(t,x)|<n+1}

— / pa(x, Diuy) - Duy Hy () (Te (), dx dt)
{(t.X)€Q7: k<|up (t.3)|<n+1}

T
= lim lim </¢/a(x,DTn+1(um)) - D(Hy (um)(Ti(w)) ) dx dt
0

V—>00 m—>00
2

T
—/QO/a(x,DTnH(Mm))'D((Tk(u))V)Hn(um)X{(z,x)eQT: [t (2,2)| >k} A X dt
0 2

— / pa(x, Duy,) - DumH,’l(um)(Tk(u))v dx dt).
{(t,x)€0r: k<|um(t,x)|<n+1}

Since |(Tx (w))y| = k(1 —e™") in {(¢, x) € O7: |u(t, x)| > k}, having in mind (38), we get
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T
lim lim wfa(x,DTn+1(um)) - D(Tie (), Hy (tm) X((1.5)€ Q7 lum(1.)|>k) dX di

V— 00 M—>00
0

T
= lim lim g0|:/a(x,DTn+1(um))-D(Tk(u))v

V—00 m— 00
0 2

X Hy (W) X{(2,x)€ 071 Jum(t,0)|>k} X{(1.0)€Q7: Ju(t,x)| <k} dx} dr=0.

Hence, for any n > k, we have

T

/(p/q5k-DTk(u)dxdt
0 2
T

= lim lim (fw/a(x,DTn+1(um))-D(Hn(um)(Tk(u))v)dxdt

V— 00 m—>00
0o

- / ga(x, Duy) - Duy Hy () (T (), dx dt). (43)
{(t,x)EQT: k<|uy (t,x)|<n+1}
Now,

ga(x, Duy) - Duy Hy () (Ti (), dx dt

{(t,x)eQr1 :k<|um(t,x)|<n+1}

<kv(n),

thus

— / pa(x, Du,,) - DumH,’l(um)(Tk(u))U dxdt > —kv(n),

{(t,x): k<|upy (t,x)|<n+1}
so that, by (43) and (33), we get

T

/¢/¢k~DTk(u)dxdt
0 2
T

> liminf liminf liminf/ [0 / a(x, DTn_H(um)) . D(Hn(um)(Tk(u))U) dxdt. 44)

n—>o00 V—>00 m—>00
0 £

Since H,, is a bounded function of bounded variation, from (24), by approximation of (T} (#)), ¢,
we deduce
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T
[0 [ ate. DB1) - Dt (0), ) v
0

T
://a(x,Dum)~D(Hn(um)(Tk(u))v(p)dxdt
0 £

T
f/b,’f(zm) (Tiw),), dxdt—i—//bﬁ(wm)( (Tcw)),), do dt
0 2

0 082

T
+//fH@M¢nw)wm+fthwmmnm)ww
0 2

0 082

where

b,{(r)zfﬂn((y—l)o(s))ds for r € Ran(y),
and

bP(r) = /H (s) s for r € Ran(B).

Letting m — oo in (45), we have

lim //a(x,Dum)-D(Hn(um)(Tk(u))v(p)dxdt

m_)OOO 2
T T
//by(z) (Trw), dxdt—l—//b w)(¢(Tk(w)),), do dt
0 £ 0 982
T T
+//fH (u)go(Tk(u) dxdt—l—//gH,,(u)go Tk(u)) do dt.
0 2 0 082

2783

(45)

(46)

(47)

For the first term on the right-hand side, using the fact that (T (v)), = Tr (T (w))y), z € v (1),

the monotonicity of b}, and the integration by parts formula, we get
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T
f/b( ¢o(Ti(w)), ), dx dt
0 2

T

T
=//b ()¢ (T () dxdt+v//b @e(Te(w) — (Te(w)), ) dx dt
0 0 2
T T
//bn @¢ (T () dxdl+v//b (Te@)) ) (T () — (Tx(w)) ) dx dt
0 0
T T
_ / / b @ (Tiw)), dxd + / f b, (O ((Tew)),)) (Tew)). ), o dx dt
0 0 2

(T ()

T T
[ [proa(na),ava- [ / / y0(5)) ds 1 dx dt.
0 2 0

Now, letting v — co, we deduce that

1ivrgi£f//b%(z)(w(Tk(u))U)tdxdt
0 £

T Ty (u)

T
>//b5(z)¢,Tk(u)dxdt—/f / by (v°(s)) ds ¢ dx dt,
0 2

0 2

so that,

n—-oo v—>00 m—>0

liminf liminf liminf / / by, zm)(9(Te(w)) ), dx dt

T T Ty (u)

>f/¢tsz(u>dxdt—f/ f VO(s) ds gr dox dt.
0 2 02 0
Using the fact that, since z € y (u),
Tj (u) b4
Bw - [ Pods= [ 1) ©)ds
0 0

we obtain that
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liminf liminf lim inf / / by, (zm)(¢(Te () ), dx dt

n—-oo0 v—>00 m—>o0

T z(1)
2[(,0;//Tk((y_l)o(s))dsdxdt.
0 2 0

In the same way, we get that

liminfliminfliminf//bf(wm)@p(Tk(u))V)tda dt

n—o00 V—>00 m—>00
0 082

/w:/(/ (s))ds) dodt.

Then, passing to the limit in (45), by (44), (42) follows.

Step 7: Passing to the limit. In this step we see that

0 (j’) (™) (S))ds>5dx+—/<w/ )’s) ds)Sdo

0

4 / a(x. Du(t)) - D(H (u(1))&) dx

2

- / FOH (D) dx + / (O H(u() do 48)
2

982

in D'(10, T]).
By Step 6, for any ¢ € D(]0, T[), 0 < ¢ < 1, we have

T
ETmfwf(a(x, DTk(um)) — a(x, DTk(u))) . (DTk(um) — DTk(u)) dxdr =0.
0 2

Then, we can suppose, extracting a subsequence if necessary, that
¢(a(x, DTx(um)) —a(x, DTxw))) - (DT (um) — DTx(u)) — 0 (49)
in L'(Qr), a.e.in Qr, and is dominated in L' (Q7).

Taking in (24) G(r) = H(r), being H :R — R a Lipschitz continuous function of compact
support, and ¥ (1, x) = ¢(1)&(x), ¢ € D10, T[) and & € C'(£2), we have
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Zm (l )

(]

/(p[a(x Duy) - D(H (um)§) dx dt
2

T T
/ ¢ f Fo H ()& dx di — f 0 f o (0 H (1t )£ dor d.
0 0

2 982

0 982

Now, if supp(H) C [-M, M],

T
/ga/a(x, D) - D(H () dx dt
0

0 / a(x. DTy () - D(H(Tyr ())& dx di

2

(p/H(TM(um))a(x, DTy (um)) - DE dx dt

St O — Q

T
+/¢/€H’(TM(um))a(x,DTM(um))-DTM(um)dxdt
0o
T
=/¢/H(TM(um))a(x,DTM(um))-Df;‘dxdt

T
+ / ¢[ / & H' (T um)) a(x, DT ) — a(x, DTy @)))
0 2
X (DTp(um) — DTy () dx] di

(p/SH’(TM(um))a(x, DTy (um)) - DTy (u) dx dt
(p/EH/(TM(um))a(x, DTy (w)) - DTy () dx dt

7 f EH'(Ty (um))a(x, DTy (u)) - DTy (u) dx dt.
2

I + +
St O — O —

Win (1)
H((y —1) (s) ds)é@;dxdt+//< / (s))ds)&ptdodt

(50)
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Since by approximation we can assume H to be smooth, by (35) and (49), we get

T
lim (p[a(x, Duy,) - D(H(um)f)dx dt

m— 00

T
/(p/H TM(u) x DTM(u)) D& dx dt
0

2

T
+f<png’ Ty (w))a(x, DTy () - DTy (u)dx dt
0

T
=/<p/a(x,Du)'D(H(u)S)dxdt.
0 2

Consequently, taking limit in (50) as m — oo, (48) follows.

Step 8: Renormalized condition. Let us see finally that

lim / a(x, Du) - Dudxdt = 0. (51)

n——+00
{t,0)€07: n<|ut,x)|<n+1}

By (49), we have

T—s
lim //ax DTk(um)) DTy (uy,)dx dt
m——+00
s Q
T—s
/ /a X, DTk(u) - DTy (u)dxdt (52)
s

forany 0 < s < 7' /2. Taking now in (52) k = n+ 1, k = n and subtracting the resulting equalities,
forany 0 <s < 7/2,

T—s
lim / / a(x, Du,, (t)) - Du,, (t)dx dt
" s {xeR: nlum (t,x)|1<nt+1)
T—s
= / a(x,Du(t)) -Du(t)dxdt.

s {xeR2: n<Ju(t,x)|<n+1}
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Then, by the definition of v(n),

T—s
a(x, Du(t)) -Du(t)dxdt <v(n).

s {xef2: n<Ju(t,x)|<n+1}

Therefore, taking limits as s goes to 0, and taking into account (33), (51) is proved.
With this last step the proof of the existence part of Theorem 2.6 is concluded. O

Remark 3.2. Using (49), we can get, as in [18, Lemma 5], the strong convergence of
{DTy (wm) -

4. Uniqueness of renormalized solution

In this section we prove the uniqueness part of Theorem 2.6 using as main tool the concept of
integral solution due to Ph. Bénilan (see [12,14]).

Definition 4!.1. A function V = (z, w) € C([0, T]; X) is an integral solution of (21) in [0, T'], if
for every (f, §) € BV#(Z, ) we have

d . d A
E/|z(r)—z|dx—|—E/|w(t)—w|d0
Q 2

< f (F(0) — f) signg () — 2) dx + / £(@) - fldx

2 (xef: z(t,x)=%(x)}
+ f(g(t) — Q) signo(w(t) - 11)) do + / |g(t) — §| do
382 {x€082: w(t,x)=w(x)}

in D'(10, T[), and V (0) = (z0, wo).

Under the hypothesis Dom(y) = R and either Dom(8) = R or a smooth, the operator 377
(see Section 3) is accretive in X (see [4] and [5]). In [5, Theorem 3.6] the existence of mild
solutions of problem (21) is proved under conditions (11) and (10). Now, mild solutions and
integral solutions of problem (21) coincide (see [12,14]). In Theorem 4.3, we shall prove that a
renormalized solution of P, g(f, g, z0, wo) in [0, T] is an integral solution of (21). Consequently,
since in fact BY-# is T-accretive in X (see [4] and [5]), the contraction principle (12) follows
by the nonlinear semigroup theory. Finally, under the assumptions of Theorem 2.6(i), the mild
solution of (21) in [0, T'] is the unique renormalized solution of P, g(f, g, zo, wo) in [0, T].

We shall use the following integration by parts formula.

Lemma 4.2. Let (z, w) be a renormalized solution of P, g(f, g,z0, wo) in [0,T]. Let k > 0,
neN, H,(r)=inf(l, n+1—|r)"), and h € WH-P(2). Then,
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20
%/(/ H"((y_l)O(s))Tk((y_l)O(s)—h)ds>l//dx

w(t)

</H,, )°(s) Tk((ﬁl)o(s)—h)ds>wdo

u(t)) ( ,,(u(t))Tk(u(t)—h)t//)dx

+/
2
/f(t)H () Ti (u(t) — )wdx+/g(z)H (@) T (ut) — b)Y do

982

in D' (10, T|), for any € D(RY), being u the function given in the definition of (z, w) as renor-
malized solution.

Proof. Let b}, and bg be defined as in (46) and (47),_respectively. Since (z, w) is a renormalized
solution of P, g(f, g,z0, wo) in [0, T'], for & € Cl(.Q),

_d [y _4 [
o /bn (z(t))é dx T /bn (w(t))é do
2 82
=/a(x,Du(t))~D(Hn(u(t))é)dx—ff(t)H,,(u(t))";‘dx—fg(t)Hn(u(t))Eda
2 2 a2

in D’'(]0, T[). Therefore, since b}, (z(t)) € (b} o y)(u(1)), bf(z(t)) € (bf o B)(u(t)), by Lem-
ma 2.1, applied with H (x,r) = Ty (r — T,,(h)) and

(F@).€) = [ als. T ) DE d.

2

m € N, it follows that

T )
//( / (B ov)” )(s)—Tm(h))ds)w,dxdt
0
(P ACIO)
+/f( / Tk(((bfoﬁ)l)o(s)—Tm(h))ds)w,dadt
0 982 0
T

://a(x,Du) - D(Hy () Tx(u — Tn(h))¥) dx dt
2
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T

_//an(u)Tk(u—Tm(h))l//dxdt
0 2

- f / §Hy)Ti (1 — T (h)) ¥ do dt

0 082

for any ¥ € D(]0, T[xRY). Therefore, by the change of variables formula,

T z(1)
/ / ( [ ) OV 7)) B 6) = Tuth) ds) vy dxdi
0
w(t)

+//(0/ Hy(( (s) Tk(((bEOﬁ)il)o(b,’f(s)) _Tm(h))dS>w;dodt

0 082

T

//a(x Du) - D(H, (u)Tx(u — T, (h))¥) dx dt

0 £
T

—//fH ) Tx(u — Ty (W) ¥ dx dt — //gH )T (u — Tu(h)) ¥ dodt  (53)
0 £

0 982
for any ¢ € D(]0, T[xRN). Observe that

z(t)
[ G T o)) o) ) ds

z(t)
_ / Hy (™) ) Te((r ™)) — T () dis

0
and
w(t)

[ (6 O T(((#E 0 8) ) 041) ~ Tutin)as

w(t)

= [ E(5 o)1) ) = Tati)ds

0

Indeed, let us see, for example, that
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Hy((y ™) @) Te(((BY 0 %)) (81 ) = T(h)
=H,((r ")) T ((r ™) () = Tu (). (54)

If s =0 then (y "H)%(s) = 0= (b} o y)™H2(b) (s)) and (54) holds. If b}, (s) =0 and s # O then

H,((y "H0(s)) = 0 and (54) also holds. If b}, (s) > 0 then 0 < (y 1H)0(s) € (B o )1 (B) (5)),

and if a € (b}, o y)~1 (b} (5)) then there exists ¢ € y («) such that b}, (s) = b}, (c); now, if s < ¢

it is easy to see that (y ~1)%(s) < a, so (¥ H0(s) = (B o y)"HO(b) (5)), and, if s > ¢ then

H,((y~1H0(s)) = 0, therefore in any case (54) holds. Similarly, if b}, (s) < 0, (54) is true.
Therefore, taking limit as m goes to 400 in (53) we finish the proof. O

To prove the following theorem we use a similar scheme to that used in the proof of The-
orem 5.3 in [5]. Now here, we have to overcome the added difficulties due to the fact that for
u we only know that its truncations are in L”(0, T; W7 (£2)). In this sense the renormalized
condition (6) plays a role.

Theorem 4.3. Let (z, w) be a renormalized solution of Py g(f, g, 20, wo) in [0, T]. Let (f, g) €
BY-B(3, ). Then,

d . d .
Z/|Z(t)—z|dx+5/\w(t)—w|do
2 082

g/(f(r) — f) signg(z(r) — 2) dx + / |f(@)— fldx

2 {xef: z(t,x)=Z(x)}
+ /(g(t) — 8) signg(w(t) — ®)do + / lg(t) — g|do
082 {x€d2: w(t,x)=w(x)}

in D'(10, T|), that is, since (z(0), w(0)) = (z0, wo), (z, w) is an integral solution of (21) in
[0, T].

Proof. We divide the proof in three steps.

Step 1: Inequality inside §2. Let AH" be as in Lemma 4.2, ¢y € D(£2), 0 < ¢ < 1,
peWhP(2), =1 < p < 1. Given (f, ) € B/"P(z,0) there exists 71 € WP (£2) such that
Z(x) € y(ii(x)) a.e. in 2, w(x) € B(u(x)) a.e. in 982, and

/a(x,Dﬁ).Dvdx=/fvdx+/gvda
2

2 52

for all v e L>®(§2) N WhP(£2). Then, if u is the function given in the definition of (z, w) as
renormalized solution, we have, for0 <7 <t < T,



2792 F. Andreu et al. / J. Differential Equations 244 (2008) 2764-2803

z(t)
/ H"((V_l)o(s)) signg(s — 2)Y dsdx
2 2(h)
z(t)
+/ / H((r™")°)) (0 = signg(s = ) X(s: (y-10()=iy ¥ ds dx
2 2%

t
+ / /(a(x, Du(s)) — a(x, D)) - Du(s)H, (u(s)) signg (u(s) — &)y dx ds

+ / /(a(x, Du(s)) — a(x, Dit)) - DY Hy, (u(s)) signg (u(s) — it) dx ds

i 2

</[/(f(S)—f)Hn(“(s))

2

x (signg(z(s) — 2) + signg (u(s) — @) X(xe@: 2(s,x)=200)) ¥ dx:| ds
// (f(s) = f)Hn(u(s)) (0 — signg(z(s) — 2)) Xxe@: uts.xyixy¥ dx ds.  (55)

In order to prove (55), let us take in Lemma 4.2, h(x) = fi(x) — kp(x), p € WhP (), —1 <
p <1, k> 0. Then, for any ¢ € D(£2),0< ¢ < 1,

z(1)
d

e (/H,,((y‘l)o(s))%Tk((y_l)o(s)—ft—i—kp)ds)tpdx

2 "z

+ / (a(x. Du(t)) — a(x. DiD)) - D ( () Tk(u(t)—u+k,o)1/f>d
2

_ / (F0) = F) H(u0)  Telwto) i+ ko) d (56)

2
in D’(J0, T]). Integrating fromfto ¢, 0 <7 <t < T,

z(t)

//H (s) Ti((y *l)o(s)—ﬁ+kp)wdsdx

()
1
—//Hn((y”)o(s));Tk((y*‘)o(s)—ﬁ+kp)wdsdx
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+j[/(a(x,Du(s)) —a(x, Dit)) D ( (u(s)) Tk(u(s) —u+kp)w) dxi| ds

2

f
// f(s)— u(s)) Tk(u(s)—u+kp)1ﬁdxds

For the first term in (57), we take limit in k£ and use that
.1 .
;}“%ET"U —q +kp)=signy(r —q) + pxpr=qy Y—1<p<1,
and
signg(r — q) + signg(F — §) Xr=¢)
=signy(F — @) +signg(r — @) x5=gy Vr ey (), 4 €y(q),

to obtain

z(1)
1
limffH,,((y_l)o(s))%Tk((y_l)o(s)—ft+k,0)1//dsdx

k—0

(1)
//H N)"(9)) (signg (¥ )" (5) = ) + pxgs: (1005121 dis dx

B /[ / Ha (v ™) () (signg(s — 2) + (o = signg(s = H) X(s: (y-10(1=)

+ signo((y_l)o(s) — ﬁ)x{x: s:ﬁ})w ds:| dx

z(1)
= / / Hn((y—l)o(s)) (signo(s -2+ (p — signg(s — 2)))({3: (y—l)o(s):ﬁ})'(p dsdx
o %

=/ / Ha (v~ (5)) signg (s — 2)vr ds dx

Q2 z
+/ / H (( ) (S))( —signo(s—ﬁ)))({S: (yfl)O(S):a}l/dedx.
Q2 z

Similarly, for the second term in (57),

2793

(57)

(58)

(59)
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z(H) :
. —110 —110 N
lim <_/ / () ) Tl () ) — +k,o)1/fdsdx)
2z

k—0

2(f)

//H (s) signg(s —2)Y dsdx
2(f)
- / f Hy((v ™)) (p = signo(s = ) Xis; (=102 ¥ ds dx.
2 z

Let us now decompose the third term in (57) as Di(k,n) + Da(k,n) + D3(k,n) + Da(k,n),
where

t
D (k,n) =//(a(x,Du(s)) —a(x,th))-Du(s)H,/,(u(s))%Tk(u(s) — i+ kp)y dxds,

;2

t
D (k,n) =//(a(x, Du(s)) —a(x, Di1)) - Dan(u(s))%Tk(u(s) — i +kp)dxds,
r 2
t
Ds(k,n) =/[/(a(x,Du(s)) —a(x, Dit)) - (Du(s) — Dit)
2

i
(u(s)) Tk (u(s) —u+ k,o)w dx:|

and

t
Dy(k,n) = / /(a(x, Du(s)) —a(x, Di)) - DpHy (u(s)) T} (u(s) — it + kp) ¥ dx ds.

;2

Now, by the Dominated Convergence’s Theorem, and using that Du(s) = Dii when u(s) = i,

t
girrb Dy (k,n) =//(a(x, Du(s)) —a(x, Dit)) - Du(s) H, (u(s)) signg (u(s) — i)y dx ds,

;i 2

t
]}irr%) Dy(k,n) = / f(a(x, Du(s)) —a(x, Dﬁ)) -Dy H, (u(s)) Signo(u(s) - 12) dxds,
P 0

lim Dy(k, n) =
k—0
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and, using (H3), since F<t,
D3(k,n) > 0.

Finally, for the fourth term in (57), using (58) and (59), we have that

llm// f(s)— u(s)) Tk(u(s)—u+k,0)1/fdxds
/ / £() = ) Ha(u(5)) (signg (2(s) — 2) + signg (u(s) — i) X(ve: w(s.0mz00)) ¥ dx ds
// f(S)— M(S))( —Signo(Z(S)—f))X{xesz: u(s,x):ﬁ(x)}ded&

Hence, taking limit in (57) as k goes to 0, we get (55).

Step 2: Inequality up to 32. Forany 0 < <t < T,

/|z(t)—2|dx—/|z(f)—2|dx+f|w(t)—@|da—/|w(f)—uv|da
2 2 982 982

t

< f[/(f(s) - f) (Signo(Z(S) - 2) + Signo(u(s) - ’/A‘)X{xe.@: z(s,x)=2(x)}) dxi| ds

Po)
t
+f
f

t
/ /(g(s) — 8)(signg(w(s) — ) + signg (u(s) — &) X(xen2: wis,0)=i(x)}) dU] ds
f

8

/(f(s) - f) (signg (z(1) — 2) — signg(2(s) — £)) X(re@: uts.0)mia(x)} dx:| ds

2

+

t
+/ /(g(s) - )(Slgno(w(f) - w) - Slgno(w(s) - w))X{er)S? u(s,x)=i(x)} d6:| ds.
i

E]?]

(60)

In fact, since in (55) there are no space derivatives of p, by approximation, we can take, for each
t fixed, p =signy(z(¢) — z). Then, by monotonicity of sign, the second term in (55) is positive
and so, forany 0 <7 <t < T,



2796 F. Andreu et al. / J. Differential Equations 244 (2008) 2764-2803
z(t)

/ H,,((y_l)o(s)) signg(s — 2)Y dsdx
2 (@)

t
—i—/[/(a(x, Du(s)) —a(x, Dii)) - Du(s)
2

i

x H, (u(s)) signg(u(s) — 1)y dx] ds+1

t
<[ [ [(76) = Pyt singlets) ~ )
P
+ Signo (u (s) — ﬁ)X{xe.Q: z(s,x)=2(x)})1/f dx:| ds

t

+[ [/ (£ = F) Hn (1)) (signo (e — 2)

- SignO (Z(S) - 2))X{xe!2: u(s,x):ﬁ(x)}w dx] ds, (61)

where

t
1= / /(a(x, Du(s)) — a(x, Dit)) - D Hy (u(s)) signg (u(s) — i) dx ds

t
= / f(a(x, Du(s)) —a(x, Dﬁ)) -D(y — 1)H, (u(s)) signo(u(s) - 12) dxds.

Now, for p € Wl’p(.Q), —1 < p <1, proceeding as in Step 1 and using the fact that ¢y — 1 =
—1 on 052, we obtain that
z(1)
1> / / H (s) signy(s —2)(¥ — 1)dsdx
2 20
z(t)
B / / Hy((r ™) ) (5 = signo(s =) xis: 10512y (¥ — D dx
$2 2(%)
w(r)
+ / / H,((87)°(s)) signg (s — b) ds do
32 ()
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w(t)
" / f Ha((871) () (5 = signo(s — ) x(s: (510 45 do
082 w(7)

+ / [ / (f() = F)Ha(u(s))

7

x (signg(z(s) — 2) + signg(u(s) — &) Xxe@: zs0)=20)) (¥ — D dx] ds

t
+ / /(f(s) - f)Hn (u(9)) (P — signg(2(s) — 2)) Xxe: uts)=iy) (¥ — D dx ds
P2

t

—f[/(g(s) — &) Hy (u(s))

P Yo:

x (signg(w(s) — ) + signg (u(s) — i) X(xen@2: wis.x)=b(x)}) d0:| ds

t
- / f(g(s) - g)Hn (u(s)) (/5 - Signo(w(s) - ID))X{xea.Q: u(s,x)=i(x)} do ds
o)

t
- / /(a(x, Du(s)) — a(x, D)) - Du(s)H, (u(s)) signg (u(s) — @) (¢ — 1) dxds.
;2

Therefore, from (61) we get

z(t)
/ Ha((v~)"(s)) signg (s — 2) ds dx
2 23D
z(?)
- / / Hy((r™))) (5 —signg s = ) Xy 10912 (¥ = D s dx
$2 2(1)
w(t)
+ / / Ha((B7")°(s)) signg(s — ) ds do
02 w(h)
w(t)
* / / Hy (7)) (5 = signg(s — ) xis: ¢p-1005)=a) ds do
982 w(f)
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/ / (£(5) — ) Ha(u(5)) (signg (2(5) — 2) + sign (u(s) — @) xpreg: 2(s.0zzey) dx ds

/ / 769 = )i () (sgno (20 — 2) = signo 265) — ) X utrmicony dds
/f F() = f)Hn(u()) (6 — signg (2(5) = 2)) X(re: uts,y=acoy (¥ — D dxds
/I:/ g(S) n I/L(S))
PR Ye;
x (signg (w(s) — ) + signg (u(s) — ) X(xe2: w(s.x)=ibx)}) da} ds
/ / (8() = &) Hyu(u(s))(p — signg(w(s) — W) X(res: uis,x)=ir(x)) 4O ds
P

+ / /(a(x, Du(s)) — a(x, D)) - Du(s)H, (u(s)) signg (u(s) — &t) dx ds.
P2

Letting now n go to 400, on account of (6), we obtain

z(t)
/|z(t) —z]dx —/|z(f) —z]dx —/ /(ﬁ—signo(s =) Xgs: (p-1)05)=i) (¥ — D dsdx

2 2 2 2(9)

—|—/|w(t) - u?’do - /|w(ﬂ — zf)‘da
82 982
w(r)

+ / / (6 — signg(s — W) x(s: (5-10(s)=i) 45 do

32 w()

t

< /[/(f(s) — ) (signg(z(s) — 2) + signg (u(s) — &) X(reg: 2(5.00=2()) dx} ds
PR
t

+ / [/(f(s) - f) (signg(z(r) — 2) — signg(2(s) — 2)) X(re@: u(s.x)=i(o ¥ dx] ds

{2



F. Andreu et al. / J. Differential Equations 244 (2008) 2764-2803 2799

t
- / /(f(s) - f) (6 —signg(z(s) — 2)) X(xe@: uts.x)ymir)y (¥ — Ddxds
P2

t

+ / |: / (8(s) — &) (signg(w(s) — ) + signg (u(s) — &) X{xen: wis.0)=i(x)}) dﬁ} ds

PooR

t
+ / /(g(s) —8)(p — signg(w(s) — D)) X(reoe: uts.x)=ix)) do ds. (62)
Yo

t

Taking into (62) ¥, instead of ¥ such that LY(£2)-1im,, Ym = 1 and letting m go to 400, we
have

/\z(r)—z\dx—/|z(t3—2|dx+/}w(r)—w\do—/|w(z3—u§]da
2 2 82 a2
w(t)
+/ /(ﬁ—signo(s—ﬁ)))x{s: (B-1)0(s)=ir) 4 do
32 w(h

t

< /[/(f(s) - f) (Signo(Z(S) - 2) + Signo(u(s) - ﬁ)X{er: z(s,x)=2(x)}) dxi| ds

P!
t

+ / |:/(f(s) - f) (signg(z(1) — 2) — signg(2(s) — £)) X(re@: u(s.)=ii(x)) dxi| ds
P
t

+ f |: f (g(s) - g) (Sign()(w(s) - 12)) + Signo(”(s) - ﬁ)X{xeB.Q: w(s,x):zb(x)}) dxi| ds
f 082

t
+/ /(S(S) —8)(p — signg(w(s) — W) xxes@: u(s.x)=i(x) 4o ds. (63)
)

¥

Now, by approximation, we can take, for each ¢ fixed, p such that its trace is equal to
signy(w(7) — w). Then the fifth term in the above expression is positive and (60) follows.

Step 3: Integral solution. Let

©1(1) :=/‘Z(I)—2‘dx+/‘w(t)—vb‘do,

2 952
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2(s) == /(f(S) - f) (signg(z(s) — 2) + signg (u(s) — @) X{xe@: 2(s.00=5(x)}) A%
2

+ /(g(s) — &) (signg(w(s) — ) + signg (u(s) — &) X(xes2: wis.)=ivir)}) 40
a2

and

@3(t,s) = / (£(s) = f)(signg(z(r) — 2) — signg (2(s) — 2)) Xpre: u(s.x)=a()) dX

2

+ /(g(s) — &) (signg(w(t) — W) — signg(w(s) — V) x(xes2: uts.x)=i(x)} 40
a2

Taking in (60) = ¢ — h, h > 0, dividing by & and letting & go to 0, we get for any n € D(]0, T[),
n =0,

T T
. t+h)—n(t
- [aonwai=— tim [ 0" 010 4
h—0t h
0 0
; h
t — —
— lim /@1() et )n(t)dt
h—0+ h
0
T | ' T | '
< lim (/—( /(pz(s)ds>n(t)dt+/—</¢3(t,s)ds)n(t)dt).
h—0t h h
0 t—h 0 t—h
(64)
By the Dominated Convergence Theorem,
T1 t T , 1 N
t —n(t
lim | — f@z(s)ds n(6)dt = — lim/ /qu(s)ds nt+n=n .
=0t ) h h—0+ h
0 t—h 0 0
T , t T
=—/(/wz(S)dS)m(t)dt=/<p2(t)n(t)dt-
0 0 0
On the other hand, for 4 small enough,
T ! t T 1 s+h
/E( ffps(t,S)dS>n(t)dt=/E(/¢3(I,S)n(t)dt)ds
0 t—h 0 s

and
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s+h
(/<p3(t,s)n(t)dt> ds

N

[y

T
[3
0
s+h

T
! .
</ﬁ(//|f(s)—f||SigHo(Z(t)—2)—signo(z(s)—2)|n(z)dxdz> ds

0 s

T s+h

1 . o A
+/Z(/ /|8(S)—g||81gn0(w(t)—w)—51gn0(w(s)—w)|n(t)dadt) ds
0 s 382
s+h

< Iz, T)// fls)— f’— / |signg (z(r) — 2) — signg(z(s) — 2)|dt dx ds

T s+h

+||77”L90(0,T)/|: /|g(s)—g| /|81gno w(t) — W) — signg(w(s) — )|dtdo:| ds.

0 a0
Now, since (t, x) — signy(z(r, x) — Z(x)) € L'(Q7), if we set

s+h

1 . . . .
Qh(s,X)=Z/}Slgno(z(t,x)—z(x))—Slgno(z(s,x)—z(x)ﬂdt

we have that

lim on(s,.)=0 inL'(2)ae.s€el0,T].
h—0t
Moreover,

on(s,x) <2 ae.in Qr.
Consequently, applying twice the Dominated Convergence Theorem, we get

s+h

hm //‘f(s) f|— / |signg (z(t) — 2) — signg(z(s) — 2)|dt dx ds = 0.

Similarly,

s+h

hm ff|g(s) g| /|51gn0(w(t)—ﬁ))—signo(w(s)—zi))|dtdads=0.

0 302

Therefore, from (64) we obtain that
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d . d .
E/\z(t)—z’dx—i—E/]w(t)—wMo
2 082

< /(f(r)—f)signo(z<r>—z)dx+ / () — f|dx

2 {xef2: z()=3}
+ /(g(t) — 8)signg(w(t) — ) do + / |g(t) — g|do
02 {x€d2: w(t)=w}

in D’'(10, T[), and the proof of Theorem 4.3 is finished. O
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