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Abstract

This paper is primarily concerned with the large time behaviour of
solutions of the initial boundary value problem

ut = ∆φ(u)− ϕ(x, u) in Ω× (0,∞)

−∂φ(u)

∂η
∈ β(u) on ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω.

Problems of this sort arise in a number of areas of science; for instance, in
models for gas or fluid flows in porous media and for the spread of certain
biological populations.

0 Introduction

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. The Filtration
Equation is the degenerated parabolic equation

ut = ∆φ(u) in Ω× (0,∞)

(I) −∂φ(u)

∂η
∈ β(u) on ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω

where φ : R→ R is a continuous increasing function with φ(0) = 0, ∂/∂η is
the Neumann boundary operator and β is a maximal monotone graph in R×R
with 0 ∈ β(0), we enphasize that this assumption is essential throughout the
paper. This equation is very general. Different choices of β’s lead to different
boundary conditions. For instance, β = R × {0} gives Neumann’s condition,
β = {0}×R gives Dirichlet’s condition and β = {0}×]−∞, 0]∪ [0,+∞[×{0}
gives the unilateral boundary condition corresponding to variational inequalities
introduced by J. L. Lions and G. Stampacchia [29]. Also, different choices of
φ’s correspond to equations that arise in many applications. For instance, if
φ(r) = |r|msign(r), we have: for m > 1, the Porous Medium Equation, since it
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arises in the study of gas flows in homogeneous porous media ([35]); for m = 1
we recover the classical Equation of Heat Conduction and for 0 < m < 1 we
have the so-called Fast Diffussion Equation which occurs in the modelling of
plasma ([12]).

N. D. Alikakos and R. Rostamian ([3]) proved that the solution u(x, t) of
the Porous Medium Equation with Neumann boundary condition stabilizes as
t→∞ by converging to the average of the initial data u0 ∈ L1(Ω), i.e.,

u(x, t)
L1(Ω)−→ 1

µ(Ω)

∫
Ω

u0(x)dx as t→∞.

More generally, in [34] it is showed that for very general φ’s and β’s the
solutions of problem (I) stabilize as t→∞ by converging to a constant function
in L1(Ω). The aim of this paper is to show that if we consider perturbations
of equation (I) of the following type:

ut = ∆φ(u)− ϕ(x, u) in Ω× (0,∞)

(II) −∂φ(u)

∂η
∈ β(u) on ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω,

for some ϕ’s the solutions of problem (II) stabilize as t → ∞ by converging
to a constant function in L1(Ω). We want to mention that the techniques used
here are different and easier than the one used in [34] for the unperturbed case.

Problems of type (II) arise in many applications. For instance, the linear
case, i.e., the case φ(r) = r for every r ∈ R, corresponds to Semilinear Heat
Equations. There is an extensive literature about the large time behaviour of
the solutions of semilinear parabolic equations, see for instance the works of P.
Baras and L. Véron [18], N. Chaffe [20], A. Gmira and L. Véron [25], M. W.
Hirsch [26], F. J. Massey, III [30], H. Matano [31, 32] and P. L. Lions [27]. Now,
our main interest lies in the nonlinear case, that is, when φ is a nonlinear
function. Evolution equations with types of nonlinearities arise in modelling
gas flow in porous media [6], and the spread of biological populations ( [24], [37]
). With respect to the stabilization of solutions of this type of problems see the
works of D. Aronson, M. G. Crandall and L. A. Peletier [2] and M. Langlais and
D. Phillips [28] ( see also [1] and [13] ).

There are some alternative approches to problem (II). We study this problem
within the context of nonlinear semigroup theory. The Filtration Equation
with a non-linear flux function was studied from the point of view of nonlinear
semigroup theory in L1(Ω) by Ph. Bénilan in [9] and more recently by Ph.
Bénilan, M. G. Crandall and P. Sacks [8] ( see also [10]). Here we will use the
results of Ph. Bénilan and we will consider (II) as a perturbation ( in the sense
of accretive operators ) of problem (I), so for us a solution of problem (II) will
be a mild-solution obtained via the Crandall-Liggett exponential formula.
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The plan of the paper is as follows: Some preliminary results and notation are
collected in Section 1. In the second section we show that for some ϕ’s, problem
(II) is well-posed and governed by an order-preseving contraction semigroup in
L1(Ω) with relatively compact orbits. In the third section we show that the
mild-solution of problem (II) stabilizes as t→∞ by converging to a constant
function. Finally, in Section 4 we consider the case in which ϕ(x, r) = 0 a.e.
if and only if r = 0. We prove that the solutions of problem (II) for these ϕ’s
stabilize as t→∞ by converging to zero, independently of the choice of β.

1 Preliminaries

In this section we give some of the notation and definitions used later. If Ω ⊂
RN is a Lebesgue measurable set, µ(Ω) denotes its measure. The norm in
Lp(Ω) is denoted by ‖ . ‖p, 1 ≤ p ≤ ∞. If k ≥ 0 is an integer and 1 ≤ p ≤ ∞,

W k,p(Ω) is the Sobolev space of functions u on the open set Ω ⊂ RN for

which Dαu belong to Lp(Ω) when | α |≤ k, with its usual norm. W k,p
0 (Ω)

is the closure of D(Ω) = C∞0 (Ω) in W k,p(Ω). Also, if p = 2 we write Hk(Ω)
for W k,2(Ω).

As we said in the introduction, our abstract framework is the theory of non-
linear semigroups. We refer the reader to [4], [7], [21] and [23] for background
material on non-linear contraction semigroups. From this theory we need the
following:

Let X be a real Banach space. A mapping A from X into 2X , the
collection of all subsets of X, will be called an operator on X. The domain
of A is denoted by D(A) and its range by R(A). An operator A in X is
accretive if

(1) ‖x− x̂+ λ(y − ŷ)‖ ≥ ‖x− x̂‖ for λ ≥ 0, y ∈ Ax, ŷ ∈ Ax̂

From (1), it follows that for every λ > 0 the problem x + λAx 3 z has at
most one solution x ∈ D(A) for a given z ∈ X. Thus, we may define Jλ, the
resolvent of A, for each λ > 0 by Jλ = (I +λA)−1 and D(Jλ) = R(I +λA).
From (1), it readily follows that Jλ is a nonexpansive mapping, i.e.,

‖Jλx− Jλy‖ ≤ ‖x− y‖ for x, y ∈ D(Jλ).

Let A be an accretive operator on X and consider the initial value problem

(2) u′ +Au 3 0, u(0) = u0

Discretizing the derivative in (2) and using an implicit difference scheme, we
obtain for any partition 0 = t0 < t1 < · · · < tn−1 ≤ T < tn a system of
difference relations

(3)
ui − ui−1

hi−1
+Aui 3 0, i = 1, 2, . . . , n
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where hi−1 = ti − ti−1. Using the resolvent of A, the values ui in (3) are
determined successively by

(4) ui = Jhi−1
ui−1, i = 1, 2, . . . , n

and therefore (3) has a solution if, and only if, ui ∈ R(I + hi−1A) for i =
1, 2, . . . , n. This fact motivates the next definitions. Let A be an accretive
operator in X. A is m-accretive if for every λ > 0, R(I + λA) = X. If
A is m-accretive, then for every u0 ∈ D(A) and every partition 0 = t0 <
t1 < · · · < tn−1 ≤ T < tn, the relation (3) has a unique solution given by (4).
The step function v : [0, T ] → X defined by v(0) = u0 and v(t) = ui for
ti−1 < t ≤ ti is considered to be an approximate solution of (2). The Crandall-
Liggett Theorem states that as max(ti − ti−1)→ 0 the approximate solution
of (2) converges to a unique continuous function u on [0, T ]. This function
u is defined to be the mild-solution of (2) on [0, T ]. To be more concrete we
have:

Crandall-Liggett Theorem Let A be an m-accretive operator in X.
Then, for any u0 ∈ D(A)

e−tAu0 = lim
n→∞

Jnt/nu0

exists uniformly on compact subsets of [0,∞[. Moreover, the family of operators
e−tA, t > 0, is a continuous semigroup of nonexpansive self-mappings of D(A).

Many of the partial differential equations that can be studied by means of
the Crandall-Liggett Theorem satisfy a “comparison principle”. This fact is
equivalent to the order preserving property of the semigroup (e−tA)t≥0. The
operators which generate order-preserving semigroups are the following:

Let X be a Banach lattice and let A be an operator in X. A is called
T-accretive if

(5) ‖
(
x− x̂+ λ(y − ŷ)

)+‖ ≥ ‖(x− x̂)+‖, for λ ≥ 0, y ∈ Ax, ŷ ∈ Ax̂.−

It is clear that A is T-accretive if, and only if, its resolvents are T-
contractions, i.e.,

(6) ‖(Jλx− Jλy)+‖ ≤ ‖(x− y)+‖, for λ ≥ 0, x, y ∈ D(Jλ).−

Now, since every T-contraction is order-preserving, we have that if A is
m-T-accretive then each e−tA is order-preserving. In general, T-accretivity
does not imply accretivity, but in some Banach spaces T-accretivity implies
accretivity, this is the case for the spaces Lp(Ω) for 1 ≤ p ≤ ∞.

If X is a Hilbert space, the notion of m-accretive operator coincides with
that of maximal monotone operator ( see [16] or [4] ). An important class of
monotone operators consists of gradients of convex functions. More precisely,
let ψ be a convex lower semicontinuos function from the Hilbert space X into
]−∞,+∞]. We assume that

D(ψ) := {u ∈ X : ψ(u) <∞} 6= ∅.
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For u ∈ D(ψ), the set

∂ψ(u) := {f ∈ X : ψ(v)− ψ(u) ≥ (f, v − u) ∀ v ∈ D(ψ)}

is called the subdifferential of ψ at u. A result of G. Minty [33] ( see also [16]
or [4] ) says that the operator u→ ∂ψ(u) is maximal monotone.

We use some terminology and notations from classical topological dynamics:
Let (T (t))t≥0 be a continuous semigroup on a metric space X. The orbit or
trajectory of u ∈ X, respect to (T (t))t≥0, is the set

γ(u) = {T (t)u : t ≥ 0},

and the ω-limit set of u is

ω(u) = {v ∈ X : v = lim
n→∞

T (tn)u for some sequence tn →∞}.

This set is possibly empty. Now, it is well-known that if γ(u) is relatively
compact, then ω(u) is a non empty, compact and connected subset of X.
Furthemore, ω(u) is positive invariant under T (t), i.e., T (t)ω(u) ⊂ ω(u) for
any t ≥ 0. An equilibrium or stationary point u ∈ X is a point such that
γ(u) = ω(u) = {u}, or equivalently, T (t)u = u for all t ≥ 0.

2 The Filtration Equation with absorption

In this section we show that, for some ϕ’s, problem (II) is well posed and
is governed by an order-preserving contraction semigroup in L1(Ω), i.e., we
associate with problem (II) an m-T-accretive operator in L1(Ω). To do that,
first we give a result about the m-T-accretivity of some perturbations of m-T-
accretive operators in L1(Ω). For accretive operators this result is an exercise
in [7], we give here the proof for the sake of completeness.

Theorem 2.1 Let X = L1(Ω,B, µ) and let A be m-T-accretive in X.
Let ϕ : Ω× R→ R satisfying:
(a) For almost all x ∈ Ω, r → ϕ(x, r) is continuous nondecreasing.
(b) For every r ∈ R, x→ ϕ(x, r) is in L1(Ω,B, µ).

Let Bϕ be the single-valued operator in X defined by Bϕu(x) := ϕ(x, u(x))
with D(Bϕ) = {u ∈ X : ϕ(., u(.)) ∈ X}. Then, A + Bϕ is T-accretive and
closed in X. Moreover, if A satisfies
(H) There exists ω > 1 and for every M > 0 there exists an N > 0 such
that for (u, v) ∈ A, |u| ≤ M a.e. on { v sign u ≥ ω|u| } implies |u| ≤ N
a.e. on Ω.

Then, A+Bϕ is m-T-accretive in X.
Proof Since Bϕ is s-T-accretive, we have A+Bϕ is T-accretive in X.
Let see now that A + Bϕ is closed. Let (un, vn) ∈ A + Bϕ such that

(un, vn) → (u, v) in X × X. Then, vn = an + Bϕun with (un, an) ∈ A.
Given n,m ∈ N, since A is accretive in X there exists h ∈ L∞(Ω), |h| ≤ 1
and h(un − um) = |un − um| a.e., such that∫

Ω

(an − am)h ≥ 0.
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Now, Bϕun −Bϕum = 0 a.e. in {un = um}. Hence,

‖Bϕun −Bϕum‖1 =

∫
Ω

(Bϕun −Bϕum)h =

∫
Ω

(vn − vm)h−
∫

Ω

(an − am)h ≤

≤
∫

Ω

(vn − vm)h ≤ ‖vn − vm‖1.

The above inequality implies that the sequence (Bϕun) converges in X. We
can assume that un → u a.e. Then, since r → ϕ(x, r) is continuous,
we have that Bϕun → ϕ(., u(.)) a.e., and consequently, u ∈ D(Bϕ) and
Bϕun → Bϕu in X. Hence (un, an) → (u, a) in X ×X. Thus, since A is
closed (u, v) ∈ A+Bϕ, and consequently, A+Bϕ is closed.

Suppose now that A verifies (H) and let see that A + Bϕ verifies the
rank condition R(I + A + Bϕ) = X, which implies A + Bϕ is m-accretive
in X. We can assume that ϕ(x, 0) = 0 ( in other case we will work with
ψ(x, r) := ϕ(x, r) − ϕ(x, 0) ). For every N ∈ N let ϕN : Ω × R → R the
function

ϕN (x, r) :=

 ϕ(x,N) if r ≥ N
ϕ(x, r) if |r| ≤ N
ϕ(x,−N) if r ≤ −N,

and BN the operator associated with ϕN , i.e., BNu(x) := ϕN (x, u(x)). As
a consequence of (b) we have that D(BN ) = X. On the other hand, it follows
from (a) and the Dominated Convergence Theorem that the operator BN is
continuous. Therefore the operator A + BN is m-accretive in X ( see for
instance [7] ). Since R(I +A+Bϕ) = R(I + A + Bϕ), in order to show that
R(I +A+Bϕ) = X it is enough to see that L∞(Ω)∩X ⊂ R(I +A+Bϕ). In
fact: given w ∈ L∞(Ω) ∩X by (H) there exists K > 0 such that

(7) for (u, v) ∈ A, |u| ≤ ‖w‖∞
1 + ω

on {v sign u ≥ ω|u|} implies |u| ≤ K a.e. on Ω.

We know that w ∈ R(I + A + BN ) for any N ∈ N. Hence, there exists
(uN , vN ) ∈ A such that w = uN + vN +BNuN . Set

CN := {vN sign (uN ) ≥ ω|uN |}.

If x ∈ CN , we have that

(vN (x)+uN (x)+BNuN (x))sign uN (x) ≥ ω|uN (x)|+|uN (x)|+BNuN (x) sign (uN (x))

which implies that

CN = {x ∈ Ω : w(x) sign− uN (x) ≥ (1 +ω)|uN (x)|+BNuN (x) sign uN (x)}.

Since BNuN (x) sign (uN (x)) ≥ 0 for x ∈ Ω, if x ∈ CN we have

|uN (x)| ≤ 1

1 + ω
w(x) sign uN (x) ≤ ‖w‖∞

1 + ω
.
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Then, by (7) it follows that |uN (x)| ≤ K a.e. on Ω. Thus, if N > K,
ϕN (x, uN (x)) = ϕ(x, uN (x)) a.e. on Ω. Consequently, w = uN+vN+BϕuN ∈
R(I +A+Bϕ) and the proof concludes.

2

Let Lip(R) be the set of Lipschitz continuous maps from R into R and
set

P0 := { p ∈ Lip(R), p nondecresing, p(0) = 0 and supp(p′) compact}.

The following definition is due to Ph. Bénilan ( [9] ) and its precursor may
be founded in the paper by H. Brézis and W. A. Strauss ( [17] ) on semilinear
elliptic equations.

Definition We say that an operator A in L1(Ω) verifies property (M0) if
for every p ∈ P0 and (u, v) ∈ A,∫

Ω

p(u)v ≥ 0.

Ph. Bénilan [9, Cor. 2.1, Cor. 2.2] shows that if A is an m-T-accretive
operator in L1(Ω) satisfying property (M0), then its resolvent Jλ verifies:

‖Jλu‖p ≤ ‖u‖p for 1 ≤ p ≤ ∞,

and
−‖u−‖∞ ≤ Jλu ≤ ‖u+‖∞.

Lemma 2.2 Every operator A in L1(Ω) verifying property (M0) satisfies
condition (H). Concretely, it verifies

(H’) for every M > 0 if (u, v) ∈ A satisfies |u| ≤M a.e. on { v sign u ≥
0}, then

|u| ≤M a.e. on Ω.
Proof Suppose that (u, v) ∈ A satisfies |u| ≤M a.e. on C := { v sign u ≥

0}. For every n ∈ N, set

pn(r) :=

 0 if r ≤M
n(r −M) if M ≤ r ≤M + 1

n
1 if r ≥M + 1

n .

Since pn ∈ P0 we have

(8)

∫
Ω

pn(u)v ≥ 0 for all n ∈ N.

By (8) and the Dominated Convergence Theorem it follows that

(9)

∫
{u>M}

v ≥ 0.
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If u ≤ M a.e. on Ω does not hold, since u ≤ M a.e. on C, {u >
M} ⊂ Ω ∼ C and µ({u > M}) > 0. Hence, v < 0 a.e. on {u > M} which
contradicts (9).

The same argument taking

pn(r) :=

 −1 if r ≤ −M − 1
n

n(r +M) if −M − 1
n ≤ r ≤ −M

0 if r ≥ −M ,

shows that −M ≤ u a.e. on Ω. 2

As consequence of the above lemma and Theorem 2.1 we have the following
result.

Corollary 2.3 Let ϕ : Ω × R → R satisfying (a) and (b). Let A be an
m-T-accretive operator in L1(Ω) verifying property (M0). Then, A + Bϕ is
m-T-accretive in L1(Ω).

From now on, Ω will be a bounded domain in RN (N ≥ 1) with smooth
boundary ∂Ω. The following definition is given in [17].

Definition Let u ∈ W 1,1(Ω), v ∈ L1(Ω) and w ∈ L1(∂Ω). We say that
u is a weak solution of the Neumann problem{

−∆u = v, in Ω
∂u
∂η = w, on ∂Ω

provided the following identity holds for all f ∈ C1(Ω):∫
Ω

∇u · ∇f =

∫
Ω

vf +

∫
∂Ω

wf.

Let β be a maximal monotone graph in R × R with 0 ∈ β(0) and
φ : R → R a continuous increasing function with φ(0) = 0. In order to study
problem (I) from the point of view of nonlinear semigroup theory, Ph. Bénilan
[9] defines the following operator in L1(Ω):

Aβ,φ = {(u, v) ∈ L1(Ω)×L1(Ω) : there exists w ∈ L1(∂Ω) such that h = φ(u) is a

weak solution of −∆h = v in Ω,
∂h

∂η
= w on ∂Ω; and−w(x) ∈ β(u(x)) a.e. on ∂Ω}.

In the definition of Aβ,φ we understand the trace of u on ∂Ω as u|∂Ω
=

φ−1
(
φ(u)|∂Ω

)
, which makes sense since φ(u) ∈ W 1,1(Ω) ( Theorem 4.2 of [36]

).
In the following theorem we summarize all the results we need about Aβ,φ,

given in [9].
Theorem 2.4 The operator Aβ,φ verifies the following properties:
(i) Aβ,φ is m-T-accretive in L1(Ω).
(ii) D(Aβ,φ) is dense in L1(Ω).
(iii) ‖Jλf‖p ≤ ‖f‖p for 1 ≤ p ≤ ∞, being Jλ = (I + λAβ,φ)−1.
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(iv) Aβ,φ verifies property (M0).
(v) If B ⊂ L1(Ω) is bounded, then {φ(Jλf) : f ∈ B} is a bounded subset

of W 1,q(Ω)
for 1 ≤ q < N

N−1 .
About the well-posedness of problem (II) we have the following result.
Theorem 2.5 Let ϕ : Ω × R → R satisfying (a) and (b). Let β be a

maximal monotone graph in R×R with 0 ∈ β(0) and φ : R→ R a continuous
increasing function with φ(0) = 0. Then, Aβ,φ+Bϕ is m-T-accretive in L1(Ω)
and D(Aβ,φ + Bϕ) is dense in L1(Ω) . Moreover, if ϕ(x, 0) = 0 a.e., then,
Aβ,φ +Bϕ verifies property (M0).

Proof The m-T-accretivity of Aβ,φ + Bϕ is a consequence of Corollary
2.3 and the above theorem. Since Ω is bounded we have L∞(Ω) ⊂ D(B).
Therefore, C∞0 (Ω) ⊂ D(Aβ,φ +Bϕ) and consequently D(Aβ,φ +Bϕ) is dense
in L1(Ω).

Finally, if ϕ(x, 0) = 0 a.e., we have that Bϕu and u have the same sign.
Hence, since Aβ,φ verifies property (M0), it follows that Aβ,φ + Bϕ verifies
property (M0).

2

As a consequence of the Crandall-Liggett Theorem and the above Theorem
we have that for every initial data u0 ∈ L1(Ω) the problem (II) has a mild-
solution given by

u(x, t) =
(
S(t)u0

)
(x),

being
(
S(t)

)
t≥0

the order-preserving contraction semigroup generated by Aβ,φ+

Bϕ .
In order to prove the stabilization theorem we need the orbits to be relatively

compact. Now, it is not possible to obtain this result from the compacity of the
semigroup because it is known that if φ(r) = |r|m sign(r) and β corresponds
to the Dirichlet boundary condition then, e−tAβ,φ : L1(Ω)→ L1(Ω) is compact
if m > N−2

N (N ≥ 3) (see [5]), but for 0 < m ≤ N−2
N , even the resolvents

are not compact (see [11]). However in [34] it is showed that the orbits of the
semigroup generated by Aβ,φ are relatively compact in L1(Ω) . The next
theorem is a generalization of this result.

Theorem 2.6 Let S(t) be the semigroup generated by Aβ,φ + Bϕ and
Jλ its resolvent. If ϕ satisfies (a), (b) and ϕ(x, 0) = 0 a.e. Then,

(i) Jλ(B) is a relatively compact subset of L1(Ω) if B is a bounded
subset of L∞(Ω).

(ii) For every u0 ∈ L1(Ω) the orbit γ(u0) = {S(t)u0 : t ≥ 0} is a relatively
compact subset of L1(Ω).

Proof (i): Let B a bounded subset of L∞(Ω). Take (fn) ⊂ B and
let un := Jλfn. Set M := supn∈N ‖fn‖∞ < ∞. Since Aβ,φ + Bϕ satisfies
property (M0), ‖un‖∞ ≤M for every n ∈ N. Consequently,

|ϕ(x, un(x))| ≤ ϕ(x,M) + ϕ(x,−M) a.e. for all n ∈ N.
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Hence, (fn − λBϕun) is a bounded sequence in L1(Ω). Now,

un = (I + λAβ,φ)−1(fn − λBϕun).

Therefore, by (v) in Theorem 2.4, we have that φ(un) is a bounded sequence
in W 1,q(Ω) for 1 ≤ q < N/N − 1. Then, by the Rellich-Kondrakov Theorem
we have that φ(un) is a relatively compact subset of L1(Ω). Now, since φ−1

is continuous, there exists a subsequence (unk) such that

lim
k→∞

unk = v a.e.

Now, since ‖un‖∞ ≤M for every n ∈ N, applying the Dominated Convergence
Theorem we have

lim
k→∞

unk = v in L1(Ω).

Consequently, Jλ(B) is a relatively compact subset of L1(Ω).
(ii): Consider first u0 ∈ D(Aβ,φ +Bϕ) ∩ L∞(Ω). Then, since

‖S(t)u0‖∞ ≤ ‖u0‖∞ for all t ≥ 0,

as a consequence of (i), we have that Jλ(γ(u0)) is a relatively compact subset
of L1(Ω) for all λ > 0. Moreover,

‖S(t)u0 − JλS(t)u0‖1 ≤ λ inf{‖v‖1 : v ∈ (Aβ,φ +Bϕ)u0}.
Hence, γ(u0) is relatively compact in L1(Ω).

On the other hand, it is easy to see that D(Aβ,φ + Bϕ) ∩ L∞(Ω) is dense
in L1(Ω). Thus, given u0 ∈ L1(Ω) and ε > 0, there exists v0 ∈ D(Aβ,φ +
Bϕ) ∩ L∞(Ω) such that ‖u0 − v0‖1 < ε. So we have,

sup
t≥0

inf
s≥0
‖S(t)u0 − S(s)v0‖1 ≤ sup

t≥0
‖S(t)u0 − S(t)v0‖1 ≤ ‖u0 − v0‖1 < ε.

From where it follows that γ(u0) is relatively compact in L1(Ω). 2

3 The stabilization results

In this section we stablish that the mild-solutions of problem (II) stabilize as
t → ∞ by converging to a constant function. We use Lyapunov’s method
for semigroups of nonlinear contractions introduced by A. Pazy [38]. In order
to apply this method we need some regularity results for the elliptic problem
associated to (II), similar to the one obtained by Ph. Bénilan [9] for the elliptic
problem associated to (I). To obtain this results we need the following.

Let β be a maximal monotone graph in R× R with 0 ∈ β(0). Consider
in L2(Ω) the operator A2

β with domain

D(A2
β) = {u ∈ H2(Ω) : −∂u

∂η
∈ β(u) a.e. on ∂Ω},
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A2
βu = −∆u, u ∈ D(A2

β).

H. Brézis in [14] ( see also [4, ?] ) shows that A2
β coincides with ∂ψ1, being

ψ1 : L2(Ω)→ [0,+∞] the convex lower semicontinuos function defined by

ψ1(u) :=

{
1/2

∫
Ω
|∇u|2 +

∫
∂Ω
j(u), u ∈ H1(Ω), j(u) ∈ L1(∂Ω)

+∞, otherwise

where j(r) :=
∫ r

0
β0(s) ds, β0(s) = min{r : r ∈ β(s)}.

Assume now that x → ϕ(x, r) is in L2(Ω) for all r ∈ R. We define in
L2(Ω) the operator B2

ϕ as

B2
ϕ := {(u, v) ∈ L2(Ω)× L2(Ω) : v = ϕ(., u(.)) a.e.}.

Take ψ0 : L2(Ω)→ [0,+∞], defined by

ψ0(u) :=

{ ∫
Ω
g(x, u(x)) dx, x→ g(x, u(x)) ∈ L1(Ω)

+∞, otherwise

where g(x, r) :=
∫ r

0
ϕ(x, s) ds. It is easy to see that L∞(Ω) ⊂ D(ψ0) and ψ0

is convex. Moreover, by Fatou’s lemma ψ0 is lower semicontinuos. Hence, ∂ψ0

is a maximal monotone graph in L2(Ω). We have the following result.
Lemma 3.1 Under the above conditions we have.
(i) ∂ψ0 = B2

ϕ.
(ii) ∂(ψ0 + ψ1) = A2

β +B2
ϕ.

Proof (i): Let see that B2
ϕ ⊂ ∂ψ0. Let u ∈ D(B2

ϕ) be. We must prove that

ψ0(v)− ψ0(u) ≥
∫

Ω

ϕ(x, u(x))(v(x)− u(x)) for all v ∈ D(ψ0).

Since g(x, u(x)) ≤ ϕ(x, u(x))u(x) and u and ϕ(., u) are in L2(Ω), it follows
that u ∈ D(ψ0). Thus,

ψ0(v)− ψ0(u) =

∫
Ω

∫ v(x)

u(x)

ϕ(x, s) dsdx =

=

∫
Ω

ϕ(x, z(x))(v(x)− u(x)) ≥
∫

Ω

ϕ(x, u(x))(v(x)− u(x)),

since z(x) is between u(x) and v(x).
On the other hand, it is easy to see that B2

ϕ is monotone. Thus, since
∂ψ0 is maximal monotone, to prove that ∂ψ0 = B2

ϕ, it is enough to show that
given v ∈ L2(Ω) there exists u ∈ L2(Ω) such that u + B2

ϕu = v. In fact:
Fix x ∈ Ω. Since the mapping r → r + ϕ(x, r) is one to one from R onto
R, there exists a unique u(x) such that u(x) + ϕ(x, u(x)) = v(x). Since
x → ϕ(x, r) is measurable for all r ∈ R, it is not difficult to see that u is
measurable. Moreover, since |u| ≤ |v|, it follows that u ∈ L2(Ω), and the proof
of (i) finishes.
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(ii): Obviously, ψ0 +ψ1 is convex and lower semicontinuous. Hence ∂(ψ0 +
ψ1) is a maximal monotone graph in L2(Ω). Thus, since ∂ψ0+∂ψ1 is monotone
and ∂ψ0 + ∂ψ1 ⊂ ∂(ψ0 + ψ1), we must only prove the rank conditon

R(I + ∂ψ0 + ∂ψ1) = L2(Ω).

To do that it is enough to prove

(10) ∂ψ0 + ∂ψ1 is closed in− L2(Ω)

and

(11) L∞(Ω) ⊂ R(I + ∂ψ0 + ∂ψ1).

Let (un, fn) ∈ ∂ψ0+∂ψ1 with un → u and fn → f . Then, fn = A2
βun+B2

ϕun.
Now,

‖A2
βun −A2

βum‖2 =
(
A2
βun −A2

βum,
un − um
‖un − um‖2

)
=

=
(
fn − fm,

un − um
‖un − um‖2

)
+
(
B2
ϕum −B2

ϕun,
un − um
‖un − um‖2

)
≤

≤
(
fn − fm,

un − um
‖un − um‖2

)
≤ ‖fn − fm‖2.

From here, since A2
β is closed, it follows that (u, f) ∈ ∂ψ0 + ∂ψ1 and,

consequently, (10) holds. Finally, let u ∈ L∞(Ω). Since Aβ,1 + Bϕ is m-
accretive in L1(Ω) by Theorem 2.5, there exists v ∈ L1(Ω) such that u = v+
Aβ,1v+Bϕv. Moreover, ‖v‖∞ ≤ ‖u‖∞, hence, Bϕv ∈ L2(Ω) and consequently
v ∈ D(A2

β) and u = v +A2
βv +B2

ϕv
2

Using the above lemma and slight modifications of the arguments in the
proof of [9, ?], we have the following result.

Proposition 3.2 Let ϕ : Ω× R→ R satisfying (a), ϕ(x, 0) = 0 a. e. and
(b’) For every r ∈ R, x→ ϕ(x, r) is in L2(Ω).
Let β be a maximal monotone graph in R×R with 0 ∈ β(0) and φ : R→ R
a continuous increasing function with φ(0) = 0. Then, given v ∈ L∞(Ω) there
exists u ∈ C(Ω) with φ(u) ∈ H2(Ω) verifying

u−∆φ(u) + ϕ(., u) = v a. e. in Ω

−∂φ(u)

∂η
∈ β(u) a. e. in ∂Ω.

Proof Let k := ‖v‖∞ be. Define

φ1(r) :=

 φ(k) + r − k, r ≥ k
φ(r), |r| < k
φ(−k) + r + k, r ≤ −k,
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β1 := β ◦ φ−1, ϕ1(x, r) := ϕ(x, φ−1(r)). By the above lemma A2
β1

+B2
ϕ1

is a

maximal monotone graph in L2(Ω). Moreover, A2
β1

+B2
ϕ1
⊂ Aβ1,1 +Bϕ1

and
by Theorem 2.5 the operator Aβ1,1 +Bϕ1 is T-accretive and verifies property
(M0). Then, by the proof of Proposition 2.5 of [9], there exists h ∈ L2(Ω) such
that

φ−1
1 (h) +A2

β1
h+B2

ϕ1
h = v a. e. in Ω.

Thus, if u := φ−1
1 (h), we have that

u+A2
β1
φ1(u) + ϕ(., φ−1φ1(u)) = v a. e. in Ω.

Now, by the property (M0), ‖u‖∞ ≤ ‖v‖∞ = k, so φ1(u) = φ(u) and conse-
quently we obtain that

u−∆φ(u) + ϕ(., u) = v a. e. in Ω

−∂φ(u)

∂η
∈ β(u) a. e. in ∂Ω.

Finally, since (h, v + h − φ−1
1 (h) − B2

ϕ1
h) ∈ I + A2

β1
, it follows from [14,

Theorem 1.10] that φ(u) = h ∈ H2(Ω) and

‖φ(u)‖H2(Ω) = ‖h‖H2(Ω) ≤ C‖v + h− φ−1
1 (h)−B2

ϕ1
h‖2 ≤

≤ C1

(
sup
|r|≤k

|φ(r)− r|+ ‖v‖∞ + ‖ϕ(., k)‖2
)
.

2

Now we come to the main result.
Theorem 3.3 Let β be a maximal monotone graph in R × R with

0 ∈ β(0) and φ : R → R a continuous increasing function with φ(0) = 0.
Suppose ϕ verifies (a), (b’) and ϕ(x, 0) = 0 a. e. Let u0 ∈ L1(Ω). Then,
if u(x, t) is the mild-solution of problem (II) there exists a constant K,
K ∈ β−1{0} ∩ {s ∈ R : ϕ(x, s) = 0 a.e} such that

‖u(., t)−K‖1 → 0 as t→∞.

Moreover, if u0 ∈ L∞(Ω) then

‖u(., t)−K‖p → 0 as t→∞

for any p ∈ [1,∞[.
Proof Suppose first that u0 ∈ L∞(Ω). Let S(t) be the semigroup generated

by Aβ,φ +Bϕ and Jλ, its resolvent. Let V : L1(Ω)→]−∞,+∞] defined by

V(u) =


∫

Ω
j(u), if j(u) ∈ L1(Ω)

+∞, if j(u) 6∈ L1(Ω)
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being j(r) =
∫ r

0
φ(s)ds. Since φ is increasing, it is easy to see that j is

continuous and convex, hence V is lower semicontinuous (see [15, pag. 160]).
On the other hand, as a consequence of [9, Proposition 2.3] we have that∫

Ω

j(Jnt/nf) ≤
∫

Ω

j(f) for f ∈ L1(Ω), t > 0 and n ∈ N.

Now, by the Crandall-Liggett Theorem, since V is lower semicontinuous, we
have

V
(
S(t)f

)
≤ lim inf

n→∞
V
(
Jnt/nf

)
≤ V(f), for t ≥ 0.

Therefore, V is a Liapunov functional for the semigroup
(
S(t)

)
t≥0

.

Let W : L1(Ω)→]−∞,+∞] defined by

W(u) =


1
2

∫
Ω

(
∇φ(u)

)2
, if

(
∇φ(u)

)2 ∈ L1(Ω)

+∞, if
(
∇φ(u)

)2 6∈ L1(Ω)

Since u0 ∈ L∞(Ω), u0 ∈ D(V), and it follows from Proposition 3.2 that
Jλu0 ∈ D(V) ∩ D(W). Our next step will be to prove

(12) V(Jλu0) + λW(Jλu0)− V(u0) ≤ 0.

Since φ is continuous and increasing, it easy to see that

(13)
1

λ

(
V(Jλu0)− V(u0)

)
≤
∫

Ω

1

λ
(Jλu0 − u0) φ(Jλu0).

On the other hand, if ψ : L2(Ω)→]−∞,+∞] is defined by

ψ(u) =
1

2

∫
Ω

(
∇u
)2

+

∫
∂Ω

∫ u

0

β ◦ φ−1(s) ds+

∫
Ω

∫ u

0

ϕ(x, φ−1(s)) ds,

when the integrals are finite, and ∞ otherwise, it follows from Lemma 3.1 that

∂ψ = A2
β◦φ−1 +B2

ϑ,

being ϑ(x, s) = ϕ(x, φ−1(s)).
Since

(
Jλu0,

1
λ (u0−Jλu0)

)
∈ Aβ,φ+Bϕ and 1

λ (u0−Jλu0) ∈ L∞(Ω), from
Proposition 3.2 it follows that

−∆φ(Jλu0) + ϕ(., Jλu0) =
1

λ
(u0 − Jλu0) a. e. in Ω

−∂φ(Jλu0)

∂η
∈ β(Jλu0) a. e. in ∂Ω,

which implies that(
φ(Jλu0),

1

λ
(u0 − Jλu0)

)
∈ A2

β◦φ−1 +B2
ϑ = ∂ψ.
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Then, by the definition of subdifferential and (13) we obtain

1

λ

(
V(Jλu0)− V(u0)

)
≤
∫

Ω

1

λ
(Jλu0 − u0) φ(Jλu0) ≤

≤ ψ(0)− ψ(φ(Jλu0)) = −ψ(φ(Jλu0) ≤ −W(Jλu0),

and (12) holds.
Replacing u0 by Jk−1

λ u0 in (12) we find

V(Jkλu0) + λW(Jkλu0)− V
(
Jk−1
λ u0

)
≤ 0.

Summing these inequalities from k = 1 to k = n and choosing λ = t/n, we
get

(14) V(Jnt
n
u0) +

n∑
k=1

t

n
W(Jkt

n
u0)− V(u0) ≤ 0.

Next we define a piecewise constant function Fn(τ) = W(Jkt
n
u0) for (k −

1)t/n < τ ≤ kt/n. Then

n∑
k=1

t

n
W(Jkt

n
u0) =

∫ t

0

Fn(τ) dτ.

On the other hand, by the Crandall-Liggett Theorem and the Dominated
Convergence Theorem it follows, taking a subsequence if necessary, that

lim
n→∞

φ(Jkt
n
u0) = φ

(
S(τ)u0

)
in L2(Ω).

Now, it is easy to see that the functional

U(u) =


1
2

∫
Ω

(
∇u
)2
, if

(
∇u
)2 ∈ L1(Ω)

+∞, if
(
∇u
)2 6∈ L1(Ω)

is lower semicontinuous in L2(Ω). Hence,

W
(
S(τ)u0

)
= U

(
φ
(
S(τ)u0

))
≤ lim inf

n→∞
U
(
φ(Jkt

n
u0)
)

=

= lim inf
n→∞

W
(
(Jkt

n
u0)
)

= lim inf
n→∞

Fn(τ).

Now, by Fatou’s lemma, we obtain∫ t

0

W
(
S(τ)u0

)
dτ ≤

∫ t

0

lim inf
n→∞

Fn(τ) dτ ≤ lim inf
n→∞

∫ t

0

Fn(τ) dτ.

Hence,

(15)

∫ t

0

W
(
S(τ)u0

)
dτ ≤ lim inf

n→∞

n∑
k=1

t

n
W(Jkt

n
u0).
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Passing to the limit as n → ∞ in (14) and taking into account (15) and the
lower semicontinuity of V, we find

V
(
S(t)u0

)
+

∫ t

0

W
(
S(τ)u0

)
dτ − V(u0) ≤ 0,

From where it follows that∫ ∞
0

W
(
S(τ)u0

)
dτ ≤ V(u0).

Thus, there exists a sequence tn →∞, such that W
(
S(tn)u0

)
→ 0 as n→∞.

Now by Theorem 2.6, there exists a subsequence (tnk) such that

lim
k→∞

S(tnk)u0 = v ∈ ω(u0).

Hence, by the Dominated Convergence Theorem,

lim
k→∞

φ
(
S(tnk)u0

)
= φ(v) in L2(Ω)

and by the lower semicontinuity of U , it follows that

W(v) ≤ lim inf
k→∞

W
(
S(tnk)u0

)
= 0.

Therefore, v is a constant K. If K = 0, since 0 is an equilibrium, ω(u0) = {0}.
Suppose K > 0. Then, since ‖S(t)K‖∞ ≤ ‖K‖∞ = K,

(16) 0 ≤ S(t)K ≤ K.

Now, since S(t)K, K ∈ ω(u0) and V is a Liapunov functional, it follows
from the invariance principle of Dafermos [22, ?] that V

(
S(t)K

)
= V(K).

Consequently, by (16) and the definition of V, S(t)K = K for all t ≥ 0, hence
we get ω(u0) = {K} and the proof for the case u0 ∈ L∞(Ω) concludes. Now,
since L∞(Ω) is dense in D(Aβ,φ +Bϕ) = L1(Ω) and S(t) is a T-contraction,
from the above we obtain easily the conclusion in the general case u0 ∈ L1(Ω).

As K is an equilibrium, it follows that K ∈ β−1(0) ∩ {s ∈ R : ϕ(x, s) =
0 a.e}.

Finally, if u0 ∈ L∞(Ω), since ‖u(., t)‖∞ ≤ ‖u0‖∞ and u(., t) → K in
L1(Ω), we obtain by the Dominated Convergence Theorem that

lim
t→∞

‖u(., t)−K‖p = 0

for any p ∈ [1,∞[. 2

To finish this section we shall see that for the Neumann boundary problem
( i.e., problem (II) with β = R × {0} ) we can be more precise about the
stabilization constant of the above theorem. If v ∈ L1(Ω), we denote by v the
average of v, i.e.,

v :=
1

µ(Ω)

∫
Ω

v(x) dx.
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Theorem 3.4 Suppose ϕ and φ verifies the assumptions of Theorem 3.3.
Let

b := ess infx∈Ω sup{r ∈ R : ϕ(x, r) = 0}

and 0 ≤ u0 ∈ L1(Ω). If u(x, t) is the mild-solution of the Neumann boundary
problem

ut = ∆φ(u)− ϕ(x, u) in Ω× (0,∞)

∂φ(u)

∂η
= 0 on ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω,

Then, there exists a constant K such that

lim
t→∞

u(., t) = K in L1(Ω)

and
inf{u0, b} ≤ K ≤ inf{u0, b}.

Proof By Theorem 3.3, K ≤ b. Let see that K ≤ u0. Since ‖u(., t)‖1 ≤
‖u0‖1 and u0 ≥ 0, we have∫

Ω

u(x, t) dx ≤
∫

Ω

u0(x) dx.

Then from Theorem 3.3 it follows that∫
Ω

K dx ≤
∫

Ω

u0(x) dx,

and consequently K ≤ u0.
Let ub := inf{u0, b} be. To finish the proof let see that ub ≤ K. In fact:

Take vb := Jλub. Since ub ≤ b, we have vb ≤ Jλb = b, from where it follows
that Bϕvb = 0. Hence,

ub =
(
I + λ(Aβ,φ +Bϕ)

)
vb = (I + λAβ,φ)vb.

Thus, Jλub = (I + λAβ,φ)−1ub and by the Crandall-Liggett Theorem,

e−t(Aβ,φ+Bϕ)ub = e−tAβ,φub.

Now, by [34, ?]
lim
t→∞

e−tAβ,φub = ub.

Finally, since ub ≤ u0 we have

K ≥ lim
t→∞

e−t(Aβ,φ+Bϕ)ub = ub.

2
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Remark 3.5 E. A. Carl [19] has observed that arctic ground squirrels mi-
grate from densely populated areas into sparsely populated areas, even when
the latter provides a less favorable habitat. Gurtin and MacCamy [24] give a
possible model for the spatial diffusion of such biological species. This model
leads to the non-linear partial differential equation

ut = ∆φ(u) + σ(x, u)

with φ non-linear and increasing. Here, u(x, t) is the population density and
σ is the population supply by births and deaths.

Let Ω ⊂ R2 be a bounded domain and Σ ⊂ Ω such that µ(Σ) > 0.
If we suppose that Σ is a death-dominant region, i.e., σ(x, u) = λ(x)u for
x ∈ Σ with the Malthusian parameter λ(x) < 0; Ω ∼ Σ is a stable region, i.e.,
σ(x, u) = 0 for x ∈ Ω ∼ Σ, and the population is confined in Ω ( for instance
if Ω is an island ). Then the Gurtin-MacCamy model leads to the problem

ut = ∆φ(u)− ϕ(x, u) in Ω× (0,∞)

(III) −∂φ(u)

∂η
= 0 on ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω,

where

ϕ(x, u) =

{
−λ(x)u if x ∈ Σ
0 if x ∈ Ω ∼ Σ.

As a consequence of Theorem 3.4, if u(x, t) is the solution of problem (III),
there exists a constant K such that

lim
t→∞

u(., t) = K in L1(Ω)

and
inf{u0, b} ≤ K ≤ inf{u0, b},

where
b := ess infx∈Ω sup{r ∈ R : ϕ(x, r) = 0}.

Now, in our case, b = 0. Hence K = 0 and consequently the population
stabilizes as t → ∞ by converging to zero. This shows that the Gurtin-
MacCamy model is a good model for populations for which migration to avoid
crowding, rather than random motion, is the primary cause of dispersal.

4 Stabilization to zero

In general, by comparison arguments, if the solution of problem (I) stabilizes
to zero, then the solution of problem (II) also stabilizes to zero. In this section
we show that, although problem (I) does not stabilize to zero, the solutions of
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problem (II) stabilize to zero when ϕ(x, r) = 0 a.e. if and only if r = 0. This
fact is a consequence of Theorem 3.3 but here we will obtain it under a weaker
assumption on ϕ.

We need to know the equilibrium points of the semigroup generated by
Aβ,φ +Bϕ. For some ϕ’s we have the following result.

Lemma 4.1 Assume ϕ verifies (a), (b) and
(c) ϕ(x, r) = 0 a.e. if and only if r = 0.
Then,

(Aβ,φ +Bϕ)−10 = {0}.

i.e., 0 is the only equlibrium point of
(
S(t)

)
t≥0

.

Proof Obviously, (0, 0) ∈ Aβ,φ + Bϕ. Let (u, 0) ∈ Aβ,φ + Bϕ, then 0 =
v1 + v2 with (u, v1) ∈ Aβ,φ and (u, v1) ∈ Bϕ, so v2 = Bϕu and consequently
v1 = −Bϕu. Hence, by assumption on ϕ we have

C := {x ∈ Ω : v1 sign u ≥ 0} = {x ∈ Ω : u = 0} a.e.

Thus given ε > 0, |u| ≤ ε a.e. on C, from where it follows by (H’) that
|u| ≤ ε a.e. on Ω. Therefore, u = 0 a.e. on Ω. 2

Remark 4.2 Observe that in the above lemma we can change Aβ,φ by an
m-T-accretive operator A in L1(Ω) verifying (H’) and such that (0, 0) ∈ A.

In the above lemma the assumption (c) is necessary. In fact: Take Ω =]0, 1[,
r > 0 and ϕ : Ω× R→ R defined by

ϕ(x, r) :=

{
r − x, if r > x
0, if r ≤ x.

Then ϕ satisfies (a) and (b). However, if u(x) = x for all x ∈ Ω,
u ∈ (A+Bϕ)−10, being A = −∆ in L1(Ω).

Now we come to the main result of this section.
Theorem 4.3 Let ϕ : Ω × R → R satisfying (a), (b) and (c). Let β

be a maximal monotone graph in R × R with 0 ∈ β(0) and φ : R → R a
continuous increasing function with φ(0) = 0. Let u0 ∈ L1(Ω). If u(x, t) is
the mild-solution of problem

ut = ∆φ(u)− ϕ(x, u) in Ω× (0,∞)

−∂φ(u)

∂η
∈ β(u) on ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω,

Then,
lim
t→∞

u(., t) = 0 in L1(Ω).

Proof As L∞(Ω) is dense in L1(Ω) and the semigroup generated by
Aβ,φ +Bϕ is a contraction semigroup in L1(Ω), we can consider u0 ∈ L∞(Ω).
Take q1 := −‖u0‖∞ and q2 := ‖u0‖∞. Then, for all λ > 0 we have
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Jλq2 =
(
I + λ(Aβ,φ +Bϕ)

)−1
q2 = (I + λAβ,φ)−1

(
q2 − λBϕ(Jλq2)

)
≤

≤ (I + λAβ,φ)−1q2 ≤ ‖(I + λAβ,φ)−1q2‖∞ ≤ ‖q2‖∞ = q2,

since (I + λAβ,φ)−1 is order-preserving and (iii) of Theorem 2.4. The same
argument shows that Jλq1 ≥ q1. By the Crandall-Liggett Theorem we have
q1 ≤ S(t)q1 and q2 ≥ S(t)q2 for all t ≥ 0. Then it follows from [26, ?] that
ω(q1) and ω(q2) only contain equilibrium points. Consequently, by the above
lemma, we have that ω(q1) = ω(q2) = {0}. From here, since q1 ≤ u0 ≤ q2, it
follows that ω(u0) = {0} and the proof concludes. 2
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