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LOCAL AND NONLOCAL WEIGHTED p-LAPLACIAN

EVOLUTION EQUATIONS WITH NEUMANN

BOUNDARY CONDITIONS

F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo

Abstract
In this paper we study existence and uniqueness of solutions to

the local diffusion equation with Neumann boundary conditions
and a bounded nonhomogeneous diffusion coefficient g ≥ 0,ut = div

(
g|∇u|p−2∇u

)
in ]0, T [×Ω,

g|∇u|p−2∇u · η = 0 on ]0, T [×∂Ω,

for 1 ≤ p < ∞. We show that a nonlocal counterpart of this

diffusion problem is

ut(t, x)=

∫
Ω
J(x−y)g

(
x+y

2

)
|u(t, y)−u(t, x)|p−2(u(t, y)−u(t, x)) dy

in ]0, T [×Ω,

where the diffusion coefficient has been reinterpreted by means of

the values of g at the point x+y
2

in the integral operator. The

fact that g ≥ 0 is allowed to vanish in a set of positive measure
involves subtle difficulties, specially in the case p = 1.

1. Introduction

We consider the p-Laplacian evolution equation with homogeneous
Neumann boundary conditions and a bounded nonhomogeneous diffu-
sion coefficient g ≥ 0, that is

Ng
p (u0)


ut = div

(
g|∇u|p−2∇u

)
in ]0, T [×Ω,

g|∇u|p−2∇u · η = 0 on ]0, T [×∂Ω,

u(x, 0) = u0(x) in Ω,
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where Ω ⊂ RN is a bounded smooth domain, η is the unit outward
normal on ∂Ω,

g can vanish in a subset of Ω of positive measure

and
1 ≤ p < +∞.

We will see that a nonlocal counterpart of this problem is the following
nonlocal nonlinear diffusion problem

P J,gp (u0)


ut(t, x) =

∫
Ω

J(x− y)g

(
x+ y

2

)
×|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy,

u(x, 0) = u0(x),

where the kernel J satisfies

(HJ): J : RN→R is a nonnegative continuous radial function with com-
pact support, J(0) > 0 and

∫
RN J(z) dz = 1,

and where the diffusion coefficient appears measuring the values on in-
termediate points in the integral operator g

(
x+y

2

)
. Note that the form in

which the diffusion coefficient appears in the nonlocal problem involves
nice symmetry properties as well as a precise behavior under scalings of
the kernel J . In fact, we will prove that solutions of the nonlocal prob-
lem converge to solutions of the local one when the kernel J is suitable
rescaled in relation to the size of its support. It is at this point where we
need the choice of the point where g is evaluated, x+y

2 . Note that sim-
pler choices like g(x) or g(y) will not give the right limit under scaling.
We want to remark that, for this convergence result, the fact that g can
vanish in a subset of Ω of positive measure turns the whole issue more
involved that previous known results for homogeneous diffusion (g = 1)
since the nonlocal problem, in contrast with what happens in general
for the local one, takes into account the part of the domain where the
diffusion coefficient g is null, that is, this part of the domain plays a role
in the nonlocal diffusion case.

For the homogeneous diffusion g = 1, the operator in the local prob-
lem is given by

div
(
g|∇u|p−2∇u

)
= div(|∇u|p−2∇u) = ∆pu,

that is, the well-studied p-Laplacian of u (see for instance, [47], [48]),
while the study of the nonlocal problem has been done in [6] where,
moreover, it is proved that suitable rescaled nonlocal problems converge
to the local one.
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Although the study of the existence of solutions of the nonlocal prob-
lem with non-homogeneous diffusion coefficient g ≥ 0 is somehow easy
after the results in [6], for the local problem we have to face new techni-
cal difficulties due to the lost of coercivity of the associated functional in
the usual Sobolev spaces (this happens even if g > 0 a.e. but not greater
than a positive constant). These difficulties are overcome, for p > 1, by
using weighted Sobolev spaces involving g with appropriate hypothesis
on it, let us say, g is taken in the Muckenhoupt’s Ap class.

The case p = 1 is somehow different. We need to work in weighted
BV spaces (that is, weighted bounded variation spaces), an issue that
forces us to introduce some delicate results from measure theory. The
local problem for g = 1 with p = 1, that is, the Neumann problem for the
total variation flow, was studied in [3] (see also [4]), motivated by prob-
lems in image processing. This PDE appears when one uses the steepest
descent method to minimize the total variation, a method introduced by
L. I. Rudin, S. Osher and E. Fatemi [43] in the context of image denois-
ing and reconstruction. The use of weighted total variational functionals
in image processing began with the seminal work of V. Caselles, R. Kim-
mel and G. Sapiro ([25], [26]) on geodesic active contours. Also in the
the unpublished paper [46] the weighted total variational functionals in
image processing was considered (see also [29]). Until the recent paper
of V. Caselles, G. Facciolo and E. Meinhardt [24], it was always sup-
posed that the weight g is positive. In [24] it is admitted that g can be
null in a set of positive measure. Here, this is the possibility considered.

To finish this introduction, let us briefly introduce some references for
the prototype of nonlocal problem considered along this work. Nonlocal
evolution equations of the form ut(t, x) = (J ∗ u− u)(t, x) =

∫
RN J(x−

y)u(t, y) dy−u(t, x), and variations of it, have been recently widely used
to model diffusion processes. More precisely, as stated in [39], if u(t, x)
is thought of as a density at the point x at time t and J(x − y) is
thought of as the probability distribution of jumping from location y to
location x, then

∫
RN J(y−x)u(t, y) dy = (J ∗u)(t, x) is the rate at which

individuals are arriving at position x from all other places and −u(t, x) =
−
∫
RN J(y−x)u(t, x) dy is the rate at which they are leaving location x to

travel to all other sites. This consideration, in the absence of external or
internal sources, leads immediately to the fact that the density u satisfies
the equation ut = J ∗ u − u. Nonlocal diffusion equations have been
recently widely studied and have connections with probability theory
(for example, Levy processes are related to the fractional Laplacian), see
[5], [6], [7], [12], [13], [22], [21], [23], [27], [28], [32], [33], [34], [39],
[44], [45] and references therein. Concerning inhomogeneous nonlocal
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diffusion we quote [31] and [35] where the authors study the nonlocal
analogous to the linear equation ut = ∆(g2u) in the whole RN .

Organization of the paper. The rest of the paper is organized as
follows: in Section 2 we prove existence and uniqueness for the nonlocal
problem with p > 1. Section 3 deal with the local problem for p > 1 and
in Section 4 we show the convergence of the nonlocal problems to the
local problem for p > 1. In Sections 5, 6 and 7 we deal with analogous
questions for p = 1. We prefer to present the results for p = 1 in separate
sections since, as we have mentioned, in this case the use of weighted
BV spaces introduces technical differences that we want to highlight.

2. Existence and uniqueness of solutions for the
nonlocal problem. The case p > 1

Let us begin this section by collecting some preliminaries and nota-
tions that will be used in the rest of the paper. We denote by J0 and P0

the following sets of functions,

J0 = {j : R→ [0,+∞], convex and lower semi-continuos with j(0)=0},

P0 = {q ∈ C∞(R) : 0 ≤ q′ ≤ 1, supp(q′) is compact, and 0 /∈ supp(q)} .

In [15] the following relation for u, v ∈ L1(Ω) is defined,

u� v if and only if

∫
Ω

j(u) dx ≤
∫

Ω

j(v) dx for all j ∈ J0,

and the following facts are proved.

Proposition 2.1. Let Ω be a bounded domain in RN .

(i) For any u, v ∈ L1(Ω), if
∫

Ω
uq(u) ≤

∫
Ω
vq(u) for all q ∈ P0, then

u� v.

(ii) If u, v ∈ L1(Ω) and u� v, then ‖u‖r ≤ ‖v‖r for any r ∈ [1,+∞].

(iii) If v ∈ L1(Ω), then {u ∈ L1(Ω) : u� v} is a weakly compact subset
of L1(Ω).

Solutions of the nonlocal problem P J,gp (u0) will be understood accord-
ing to the following definition.

Definition 2.2. Let p > 1. A solution of the problem P J,gp (u0) in [0, T ]

is a function u ∈ W 1,1(0, T ;L1(Ω)) which satisfies u(0, x) = u0(x) a.e.
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x ∈ Ω and

ut(t, x) =

∫
Ω

J(x−y)g

(
x+ y

2

)
|u(t, y)−u(t, x)|p−2(u(t, y)−u(t, x)) dy

a.e. in ]0, T [×Ω.

Following [6] we can solve the evolution problem P J,gp (u0). This is

done by using Nonlinear Semigroup Theory. We introduce in L1(Ω) the
following operator associated with our problem.

Definition 2.3. Let J satisfies (HJ), g ∈ L∞(RN ), g ≥ 0 a.e., and
1 < p < +∞. We define in L1(Ω) the operator BJ,gp by

BJ,gp u(x)=−
∫

Ω

J(x−y)g

(
x+y

2

)
|u(y)−u(x)|p−2(u(y)−u(x)) dy, x∈Ω.

It is easy to see that,

(1) BJ,gp is positively homogeneous of degree p− 1,

(2) Lp−1(Ω) ⊂ Dom(BJ,gp ), if p > 2,

(3) for 1 < p ≤ 2, Dom(BJ,gp ) = L1(Ω) and BJ,gp is closed in L1(Ω) ×
L1(Ω).

Moreover, we have the following monotonicity lemma, whose proof is
straightforward.

Lemma 2.4. Let T : R→ R a nondecreasing function. Then,

(i) for every u, v ∈ Lp(Ω) such that T (u− v) ∈ Lp(Ω), it holds

∫
Ω

(BJ,gp u(x)−BJ,gp v(x))T (u(x)− v(x)) dx

=
1

2

∫
Ω

∫
Ω

J(x−y)g

(
x+ y

2

)
(T (u(y)−v(y))−T (u(x)−v(x)))

×
(
|u(y)−u(x)|p−2(u(y)−u(x))−|v(y)−v(x)|p−2(v(y)−v(x))

)
dy dx.

(2.1)

(ii) Moreover, if T is bounded, (2.1) holds for u, v ∈ Dom(BJ,gp ).

Following the technique of the proof of [6, Theorem 2.4] we have that
BJ,gp is completely accretive and verifies the range condition Lp(Ω) ⊂
Ran(I + BJ,gp ). In short, this means that for any φ ∈ Lp(Ω) there is a

unique solution of the problem u + BJ,gp u = φ and the resolvent (I +

BJ,gp )−1 is a contraction in Lq(Ω) for all 1 ≤ q ≤ +∞.
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Theorem 2.5. The operator BJ,gp is completely accretive and verifies
the range condition

(2.2) Lp(Ω) ⊂ Ran(I +BJ,gp ).

As a consequence we get the following existence and uniqueness the-
orem for the evolution problem.

Theorem 2.6. Assume p > 1. Let T > 0 and u0 ∈ L1(Ω). Then, there
exists a unique mild solution u of

(2.3)

{
u′(t) +BJ,gp u(t) = 0, t ∈]0, T [,

u(0) = u0.

Moreover,

(1) If u0 ∈ Lp(Ω), the unique mild solution u of (2.3) is a solution
of P J,gp (u0) in the sense of Definition 2.2. If 1 < p ≤ 2, this is

true for any u0 ∈ L1(Ω).
(2) Let ui0 ∈ L1(Ω), i = 1, 2, and ui a solution in [0, T ] of P J,gp (ui0),

i = 1, 2. Then∫
Ω

(u1(t)− u2(t))+ ≤
∫

Ω

(u10 − u20)+ for every t ∈]0, T [.

Moreover, for q ∈ [1,+∞], if ui0 ∈ Lq(Ω), i = 1, 2, then

‖u1(t)− u2(t)‖Lq(Ω) ≤ ‖u10 − u20‖Lq(Ω) for every t ∈]0, T [.

Proof: As a consequence of Theorem 2.5 we get the existence of mild
solution of (2.3) (see [16] and [15]). On the other hand, u(t) is a solution
of P J,gp (u0) if and only if u(t) is a strong solution of the abstract Cauchy

problem (2.3). Now, due to the complete accretivity of BJ,gp and the
range condition (2.2), u(t) is a strong solution (see [15]). Moreover, in
the case 1<p≤2, since Dom(BJ,gp ) = L1(Ω) and BJ,gp is closed in L1(Ω)×
L1(Ω), the result holds for L1-data. Finally, the contraction principle is
a consequence of the general Nonlinear Semigroup Theory.

3. The local problem for p > 1

We consider now the local evolution equation with homogeneous Neu-
mann boundary conditions

Ng
p (u0)


ut = div

(
g|Du|p−2Du

)
in ]0, T [×Ω,

g|Du|p−2Du · η = 0 on ]0, T [×∂Ω,

u(·, 0) = u0 ∈ L1(Ω) in Ω,
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where Ω is a bounded smooth domain, η is the unit outward normal
on ∂Ω and g verifies

(3.1)


g ∈ L∞(Ω),

g > 0 a.e. in S,

g = 0 a.e. in Ω \ S,
being S a smooth domain contained in Ω, and

(3.2) g
1

1−p ∈ L1(S).

We will work in the following weighted Sobolev space.

Definition 3.1. Set W 1,p
g,S(Ω) the space of functions u ∈ Lp(Ω) such

that the distributional derivatives in S, ∂u
∂xi

, satisfy

g1/p ∂u

∂xi
∈ Lp(S), i = 1, 2, . . . , N.

This space W 1,p
g,S(Ω) endowed with the norm

‖u‖W 1,p
g,S(Ω) :=

(∫
Ω

|u(x)|p dx+

∫
S

|Du(x)|pg(x) dx

) 1
p

is a Banach space.

Let us recall that w is a weight in the Muckenhoupt’s Ap-class, or an
Ap-weight, if w is a nonnegative, locally (Lebesgue) integrable function
in RN such that

sup

(
1

|B|

∫
B

w(x) dx

)(
1

|B|

∫
B

w(x)
1

1−p dx

)p−1

= cw,p <∞,

where the supremum is taken over all ball B in RN .
We also assume that

(3.3) there exists a weight function g0 in the Muckenhoupt’s Ap-class

such that g0 = g in S.

This hypothesis implies (3.2) since S is bounded. Moreover, under this

hypothesis, functions in W 1,p
g,S(Ω) ∩ L∞(Ω) can be approximated in the

‖ · ‖W 1,p
g,S(Ω)-norm by smooth functions (see [30], [37], [41], [42] and

references therein for related topics). Indeed, we have the following
result.

Lemma 3.2. For any u ∈ W 1,p
g,S(Ω) ∩ L∞(Ω) there exists ϕn ∈ C∞(Ω)

such that ϕn → u in W 1,p
g,S(Ω).
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Proof: Given u ∈W 1,p
g,S(Ω)∩L∞(Ω), by the results in [30], u|S can be ex-

tended to a function ũ ∈W 1,p
g0,RN (RN ) ∩ L∞(RN ) with ||ũ||W 1,p

g0,RN
(RN ) ≤

K||u||W 1,p
g,S(S) and ||ũ||L∞(RN ) ≤ ||u||L∞(S), where K is independent of u.

Now, by the results of [42], ũ can be approximated in the W 1,p
g0,RN (RN )-

norm by C∞ functions ϕ̃n that are uniformly bounded in L∞. On the
other hand, u|Ω\S can be approximated in the Lp-norm by smooth func-
tions ϕ̂n uniformly bounded in L∞. Therefore, we can find ϕn such
that

ϕn =

{
ϕ̃n in S,

ϕ̂n in Ω \
(
S +B(0, 1

n )
)
,

and in such a way that ϕn is smooth and uniformly L∞-bounded. We
conclude that ϕn → u in W 1,p

g,S(Ω).

We use the following concept of solution for problem Ng
p (u0).

Definition 3.3. A function u ∈ W 1,1(0, T ;L1(Ω)) is an entropy solu-

tion of problem Ng
p (u0) in ]0, T [ if u(0) = u0, Tk(u(t)) ∈ W 1,p

g,S(Ω) for
every k > 0 and∫

Ω

u′(t)Tk(u(t)−φ) dx+

∫
S

g(x)|Du(t)|p−2Du(t)·D(Tk(u(t)−φ)) dx ≤ 0,

for every φ ∈W 1,p
g,S(Ω)∩L∞(Ω) and all k > 0. Here Tk(r) is the classical

truncature function Tk(r) = sup{inf{r, k},−k}.

To get the existence of entropy solutions of problem Ng
p (u0) we use

again the Nonlinear Semigroups Theory, so we start with the study of
the elliptic problem

Egp(f)

{
u− div

(
g|Du|p−2Du

)
= f in Ω,

g|Du|p−2Du · η = 0 on ∂Ω.

Let us introduce the following operator related to the local problem.

Definition 3.4. For p > 1 and g satisfying (3.1) and (3.3), we define
the operator Bgp in L1(Ω) by the following rule: (u, û) ∈ Bgp if and only

if u ∈W 1,p
g,S(Ω) ∩ L∞(Ω), û ∈ L1(Ω) and∫

S

g(x)|Du|p−2Du ·Dv dx =

∫
Ω

û(x)v(x) dx ∀ v ∈W 1,p
g,S(Ω) ∩ L∞(Ω).

Proposition 3.5. Assume g satisfies (3.1) and (3.3). Then the opera-
tor Bgp is completely accretive and satisfies the range condition L∞(Ω) ⊂
R(I +Bgp).
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Proof: Given (ui, vi) ∈ Bgp , i = 1, 2, for any q ∈ C∞(R), 0 ≤ q′ ≤ 1,
supp(q′) compact, 0 /∈ supp(q), we have that∫

Ω

(v1 − v2)q(u1)− u2)

=

∫
S

gq′(u1 − u2)
(
|Du1|p−2Du1 − |Du2|p−2Du2

)
·D(u1 − u2) ≥ 0,

from where it follows thatBgp is a completely accretive operator (see [15]).
Let n ∈ N. By the results in [9], given f ∈ L∞(Ω) there exists a

unique un ∈W 1,p(Ω) ∩ L∞(Ω) such that

(3.4)

∫
Ω

g(x)|Dun|p−2Dun ·Dv+
1

n

∫
Ω

|Dun|p−2Dun ·Dv =

∫
Ω

(f−un)v

for every v ∈ W 1,p(Ω) ∩ L∞(Ω). Moreover, un � f for every n ∈ N,
which implies that

(3.5) ‖un‖q ≤ ‖f‖q for every n ∈ N, and all 1 ≤ q ≤ ∞.

Taking v = un as test function in (3.4), we get

(3.6)

∫
Ω

g(x)|Dun|p dx

+
1

n

∫
Ω

|Dun|p dx ≤
∫

Ω

(f − un)un dx for every n ∈ N.

From (3.5), taking a subsequence if necessary, we have there exists u ∈
L∞(Ω) such that

(3.7) un ⇀ u weakly in Lp(Ω).

On the other hand, by (3.5) and (3.6), we get∫
Ω

g(x)|Dun|p dx+
1

n

∫
Ω

|Dun|p dx ≤M for every n ∈ N.

Then, by Hölder’s inequality we have∣∣∣∣ 1n
∫

Ω

|Dun|p−2Dun ·Dv
∣∣∣∣ ≤ M

1
p′

n
1
p

‖Dv‖p ∀ n ∈ N,(3.8)

‖g
1
p |Dun|‖Lp(Ω) ≤M

1
p ∀ n ∈ N(3.9)

and

‖g
1
p′ |Dun|p−2Dun‖Lp′ (Ω,RN ) ≤M

1
p′ ∀ n ∈ N.(3.10)
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From (3.9), taking a subsequence if necessary, we have that

(3.11) g
1
p
∂un
∂xi

⇀ wi weakly in Lp(Ω), i = 1, . . . , N.

Given ϕ ∈ D(S), by (3.2), we have g−
1
pϕ ∈ Lp

′
(S). Then, having in

mind (3.11), we obtain〈
∂u

∂xi
, ϕ

〉
= −

∫
S

u
∂ϕ

∂xi
dx = − lim

n→∞

∫
S

un
∂ϕ

∂xi
dx = lim

n→∞

∫
S

∂un
∂xi

ϕdx

= lim
n→∞

∫
S

g
1
p
∂un
∂xi

g−
1
pϕdx =

∫
S

wig
− 1

pϕdx.

Consequently, we get

∂u

∂xi
= wig

− 1
p in D′(S), i = 1, . . . , N.

Hence, since wi ∈ Lp(Ω) and g−
1
p ∈ Lp′(S), we obtain that ∂u

∂xi
∈ L1(S),

and u ∈W 1,1(S). Moreover, since g ∈ L∞(RN ),

(3.12) g
1
p
∂u

∂xi
= wi ∈ Lp(S), i = 1, . . . , N.

Therefore u ∈W 1,p
g,S(Ω). Moreover, by (3.11) and (3.12), we have

(3.13) g
1
pDun ⇀ g

1
pDu weakly in Lp(S,RN ).

By (3.10), taking a subsequence if necessary, there exists z ∈ Lp′(Ω,RN )
such that

(3.14) g
1
p′ |Dun|p−2Dun ⇀ z weakly in Lp

′
(Ω,RN ).

Given v ∈ W 1,p(Ω), taking limit in (3.4) and having in mind (3.7),
(3.8) and (3.14), we obtain

(3.15)

∫
Ω

g(x)
1
p z ·Dv dx =

∫
Ω

(f − u)v dx.

Setting v = un in (3.15), using (3.7) and (3.13), and taking limit we get

(3.16)

∫
S

g(x)
1
p z ·Dudx =

∫
Ω

(f − u)u dx.
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Then, by Minty-Browder’s method, it is easy to see that g
1
p z =

g|Du|p−2Du a.e. in S. Therefore, by (3.15),

(3.17)

∫
S

g(x)|Du|p−2Du ·Dv dx =

∫
Ω

(f − u)v dx ∀ v ∈W 1,p(Ω).

Now, using the fact that g in S is the restriction of a weight of Muck-
enhoupt’s Ap-class, by Lemma 3.2, any v ∈ W 1,p

g,S(Ω) ∩ L∞(Ω) can be

approximated by smooth functions and then, from (3.17), we obtain

(3.18)

∫
S

g(x)|Du|p−2Du·Dv dx=

∫
Ω

(f−u)v dx ∀ v∈W 1,p
g,S(Ω)∩L∞(Ω).

Therefore, (u, f − u) ∈ Bgp , and consequently, f ∈ R(I +Bgp).

As we are considering a weight g that is strictly positive in S and
the corresponding integrals that involve g take place in S, we can follow
the arguments of [9], with minor modifications, to obtain the following
characterization of the closure Bgp of the operator Bgp in L1(Ω)×L1(Ω).

Proposition 3.6. The closure of Bgp in L1(Ω)×L1(Ω) is given by (u, v)∈
Bgp if u, v ∈ L1(Ω), Tk(u) ∈W 1,p

g,S(Ω) and∫
S

g(x)|Du|p−2Du ·D(Tk(u− φ)) dx ≤
∫

Ω

vTk(u− φ) dx,

for every φ ∈W 1,p
g,S(Ω) ∩ L∞(Ω) and all k > 0.

Theorem 3.7. For any u0 ∈ L1(Ω) and any T > 0, the problem Ng
p (u0)

has a unique entropy solution in ]0, T [. Moreover, an L1-contraction
principle holds for such solutions.

Proof: As a consequence of Proposition 3.5 the operator Bgp is m-com-

pletely accretive in L1(Ω). On the other hand, it is easy to see that

D (Bgp)
L1(Ω)

= L1(Ω). Therefore, using the Nonlinear Semigroup The-
ory (see [36] and [16]), for any u0 ∈ L1(Ω), the abstract Cauchy problem
associated to Ng

p (u0) has a unique mild solution given by the exponential

formula v(t) = e−tB
g
pu0. Moreover, as the operator is homogeneous of

degree p− 1, this solution is the unique strong solution of such abstract
problem (see [15]). Now, by Proposition 3.6, the concept of strong so-
lution and the concept of entropy solution of Ng

p (u0) coincide. The
contraction principle follows by the Nonlinear Semigroup Theory.

Remark 3.8. Observe that, in fact, a solution u of Egp(f) satisfies

u = f a.e. in Ω \ S
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and u|S is a solution of{
u− div

(
g|Du|p−2Du

)
= f in S,

g|Du|p−2Du · η = 0 on ∂S.

We can think that g is a space-depending diffusion coefficient such that
it has broken its diffusivity to 0 in some parts, so u = f where there
is no diffusivity. For the parabolic problem u must be equal to the
initial condition in places where g vanishes. However, if |Ω \ S| > 0,
when dealing with the nonlocal problem, it is not true that in general
u = f in Ω \ S, even if supp(J) is very “small”, there exists O ⊂ Ω \ S
with |O| > 0 where u may differ from f . So, the part where g = 0 plays
a role in the nonlocal problem. Nevertheless, in the next section we will
see that, under rescaling, solutions to the nonlocal problems converge to
solutions to the local one.

4. Convergence of the nonlocal problems to the local
problem. The case p > 1

Our main goal in this section is to show that the problem Ng
p (u0)

can be approximated by suitable nonlocal Neumann problems of the
form P J,gp (u0).

Let us now give the reescaling procedure. For given p > 1 and J , we
consider the rescaled kernels

Jp,ε(x) :=
CJ,p
εp+N

J
(x
ε

)
,

where C−1
J,p := 1

2

∫
RN J(z)|zN |p dz is a normalizing constant.

Associated to these kernels we solve P J,gp (u0) with Jp,ε instead of J
with the same initial condition u0 and we obtain a solution uε(t, x). Our
main concern in this section is to show that uε converge to u as ε→ 0,
being u a solution of Ng

p (u0).
First, let us perform a formal calculation in one space dimension just

to convince the reader that the convergence result is correct. Let g(x)
and u(x) be smooth functions and consider

Aε(u) =
1

εp+1

∫
R
J

(
x− y
ε

)
g

(
x+ y

2

)
|u(y)−u(x)|p−2(u(y)−u(x)) dy.

Changing variables, y = x− εz, we get

(4.1) Aε(u)=
1

εp

∫
R
J(z)g

(
x− εz

2

)
|u(x−εz)−u(x)|p−2(u(x−εz)−u(x)) dz.
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Now, we expand in powers of ε to obtain

|u(x− εz)− u(x)|p−2 = εp−2

∣∣∣∣u′(x)z − u′′(x)

2
εz2 +O(ε2)

∣∣∣∣p−2

= εp−2|u′(x)|p−2|z|p−2

− εp−1(p− 2)|u′(x)z|p−4u′(x)z
u′′(x)

2
z2+O(εp),

and

u(x− εz)− u(x) = −εu′(x)z +
u′′(x)

2
ε2z2 +O(ε3),

on the other hand, since g is smooth,

g
(
x− εz

2

)
= g(x)− g′(x)

εz

2
+O(ε2).

Hence, (4.1) becomes

Aε(u)= −1

ε

∫
R
J(z)|z|p−2z dz

[
g(x)|u′(x)|p−2u′(x)

]
+

1

2

∫
R
J(z)|z|p dz

[
g(x)

(
(p−2)|u′(x)|p−2u′′(x)+|u′(x)|p−2u′′(x)

)]
+

1

2

∫
R
J(z)|z|p dz

[
g′(x)

(
|u′(x)|p−2u′(x)

)]
+O(ε).

Using that J is radially symmetric, the first integral vanishes and there-
fore,

lim
ε→0

Aε(u) = C
(
g(x)|u′(x)|p−2u′(x)

)′
,

where the constant C is given by C = 1
2

∫
R J(z)|z|p dz.

To do this formal calculation rigorous we need to obtain the following
result which is a variant of [6, Proposition 3.2(1.i)]. From now on, we
denote by f the extension by zero outside Ω of a function f ∈ Lp(Ω).

Proposition 4.1. Let 1 < q < +∞. Let ρ : RN → R be a nonnegative
continuous radial function with compact support, non-identically zero,
and ρn(x) := nNρ(nx). Let S an open set, S ⊂ Ω, and let l ∈ L∞(RN )
such that

(4.2) l(x) =

{
l(x) > 0 a.e. in S,

0 a.e. in RN \ S.

Let us also assume that l satisfies

(4.3) l
1

1−q ∈ L1
loc(S).
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Let {fn} be a sequence of functions in Lq(Ω) such that

(4.4)

∫
Ω

∫
Ω

ρn(y − x)l

(
x+ y

2

)
|fn(y)− fn(x)|q dx dy ≤M 1

nq

and {fn} is weakly convergent in Lq(S) to f .
Then, l1/q|∇f | ∈ Lq(S), |∇f | ∈ L1

loc(S), and moreover

lim
n

[
(ρ(z))

1/q
(l(w))

1/q
χΩ

(
w +

1

2n

)
χΩ

(
w − 1

2n
z

)

×
fn
(
w + 1

2nz
)
− f

n

(
w − 1

2nz
)

1/n

]
= (ρ(z))

1/q
h(w, z)

weakly in Lq(RN )× Lq(RN ), with

(ρ(z))
1/q

h(w, z) = (ρ(z))
1/q

(l(w))
1/q

z · ∇f(w) in S × RN ,

and

(ρ(z))
1/q

h(w, z) = 0 in (RN \ Ω)× RN .

Proof: Making the change of variables y = x + 1
nz, x = w − 1

2nz, we
rewrite (4.4) as∫
RN

∫
RN

ρ(z)l(w)χ×Ω

(
w± 1

2n
z

)∣∣∣∣∣fn
(
w+ 1

2nz
)
−fn

(
w− 1

2nz
)

1/n

∣∣∣∣∣
q

dw dz≤M,

where we use the notation χ×Ω
(
w ± 1

2nz
)

= χΩ

(
w + 1

2nz
)
χΩ

(
w − 1

2nz
)
.

Therefore, up to a subsequence,

(4.5) (ρ(z))1/q(l(w))1/qχ×Ω

(
w ± 1

2n
z

)
fn
(
w + 1

2nz
)
− fn

(
w − 1

2nz
)

1/n

⇀ (ρ(z))
1/q

h(w, z)

weakly in Lq(RN )×Lq(RN ), and (ρ(z))
1/q

h(w, z) = 0 in (RN \Ω)×RN .
If ϕ ∈ C∞c (Ω), supp(ϕ) ⊂ S, taking

ϕ̂ =


ϕ

l1/q
in S,

0 otherwise,
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which is an Lq
′
-function since l

1
1−q ∈ L1

loc(S), and ψ ∈ C∞c (RN ), by (4.5),
we obtain∫

RN

∫
Ω

(ρ(z))1/q(l(w))1/qχ×Ω

(
w ± 1

2n
z

)

×
fn
(
w + 1

2nz
)
− fn

(
w − 1

2nz
)

1/n
ϕ̂(w) dwψ(z) dz

→
∫
RN

∫
Ω

(ρ(z))
1/q

h(w, z)ϕ̂(w) dwψ(z) dz.

That is,

(4.6)

∫
RN

∫
S

(ρ(z))1/qχ×Ω

(
w ± 1

2n
z

)

×
fn
(
w + 1

2nz
)
− fn

(
w − 1

2nz
)

1/n
ϕ(w) dwψ(z) dz

→
∫
RN

∫
S

(ρ(z))
1/q

(l(w))−1/qh(w, z)ϕ(w) dwψ(z) dz.

Now, for n large enough, ρ(z)1/qχ×Ω
(
w ± 1

2nz
)

= ρ(z)1/q for all z ∈
RN and all w ∈ supp(ϕ), therefore∫
RN

∫
S

(ρ(z))1/qχ×Ω

(
w± 1

2n
z

)
fn
(
w+ 1

2nz
)
−fn

(
w− 1

2nz
)

1/n
ϕ(w) dwψ(z) dz

=

∫
RN

(ρ(z))
1/q
∫
S

fn
(
w + 1

2nz
)
− fn(w − 1

2nz)

1/n
ϕ(w) dwψ(z) dz

= −
∫
RN

(ρ(z))
1/q
∫
S

fn(w)
ϕ(w + 1

2nz)− ϕ
(
w − 1

2nz
)

1/n
dwψ(z) dz.

Then, passing to the limit, on account of (4.6), we get∫
RN

(ρ(z))
1/q
∫
S

(l(w))−1/qh(w, z)ϕ(w) dwψ(z) dz

= −
∫
RN

(ρ(z))
1/q
∫
S

f(w) z · ∇ϕ(w) dwψ(z) dz.
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Consequently,∫
S

(l(w))−1/qh(w, z)ϕ(w) dw=−
∫
S

f(w) z·∇ϕ(w) dw ∀ z∈ int(supp(J)).

From here, for s small,∫
S

(l(w))−1/qh(w, sei)ϕ(w) dw = −
∫
S

f(w) s
∂

∂wi
ϕ(w) dw,

which implies, since S is open, |∇f | ∈ L1
loc(S) (using that l

1
1−q ∈ L1

loc(S)

together with Hölder’s inequality), l1/q|∇f |∈Lq(S) and (ρ(z))1/qh(w,z)=
(ρ(z))1/q(l(w))1/qz · ∇f(w) in S × RN .

Proposition 4.2. Assume p > 1, J satisfies (HJ), and g satisfies (3.1)
and (3.3). Then, for any φ ∈ L∞(Ω), we have that

(4.7)
(
I +BJp,ε,gp

)−1
φ ⇀

(
I +Bgp

)−1
φ weakly in Lp(Ω) as ε→ 0.

Proof: For ε > 0, let uε =
(
I +B

Jp,ε,g
p

)−1

φ. Then, uε � φ, and, by

changing variables,

(4.8)

∫
Ω

φ(x)v(x) dx−
∫

Ω

uε(x)v(x) dx

=

∫
RN

∫
RN

CJ,p
2
J(z)g(w)χ×Ω

(
w± ε

2
z
)∣∣∣∣uε(w+ ε

2z)−uε(w−
ε
2z)

ε

∣∣∣∣p−2

×
uε(w + ε

2z)− uε(w −
ε
2z)

ε

v(w + ε
2z)− v(w − ε

2z)

ε
dw dz,

where χ×Ω
(
w ± ε

2z
)

= χΩ

(
w + ε

2z
)
χΩ

(
w − ε

2z
)
.

Let us see that there exists a sequence εn → 0 such that uεn ⇀ u
weakly in Lp(Ω), u ∈W 1,p

g (Ω) ∩ L∞(Ω), a solution of∫
Ω

uv +

∫
S

g |∇u|p−2∇u · ∇v =

∫
Ω

φv for every v ∈W 1,p(Ω) ∩ L∞(Ω),

that is, u =
(
I +Bgp

)−1
φ.

Since uε � φ, there exists a sequence εn → 0 such that

(4.9) uεn ⇀ u, weakly in Lp(Ω), u� φ.
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Observe that also ‖uεn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω). Taking ε = εn
and v = uεn in (4.8), we get

(4.10)

∫
Ω

∫
Ω

1

2

CJ,p
εnN

J

(
x− y
εn

)
g

(
x+ y

2

) ∣∣∣∣uεn(y)− uεn(x)

εn

∣∣∣∣p dx dy
=

∫
RN

∫
RN

CJ,p
2
J(z)g(w)χ×Ω

(
w ± εn

2
z
)

×
∣∣∣∣uεn(w + εn

2 z)− uε(w −
εn
2 z)

εn

∣∣∣∣p dw dz ≤M.

Therefore, by Proposition 4.1, u ∈W 1,p
g (Ω) and

(4.11)

(
CJ,p

2
J(z)

)1/p
(g(w))1/pχ×Ω

(
w± ε

2
z
)uεn(w+ εn

2 z)−uεn(w− εn
2 z)

εn

⇀

(
CJ,p

2
J(z)

)1/p

h(w, z)

weakly in Lp(RN )×Lp(RN ) with (J(z))1/ph(w, z)=(J(z))1/p(g(w))1/pz·
∇u(w) in S×RN and (J(z))1/ph(w, z) = 0 in (RN \Ω)×RN . Moreover,
we can also assume that

J(z)1/p′g(w)1/p′χ×Ω

(
w ± εn

2
z
) ∣∣∣∣uεn(w + εn

2 z)− uεn(w − εn
2 z)

εn

∣∣∣∣p−2

×
uεn(w + εn

2 z)− uεn(w − εn
2 z)

εn
⇀ J(z)1/p′χ(w, z)

weakly in Lp
′
(RN )×Lp′(RN ), with J(z)1/p′χ(w, z) = 0 in (RN \Ω)×RN .

Therefore, passing to the limit in (4.8) for ε = εn, we get

(4.12)

∫
Ω

uv+

∫
RN

∫
S

CJ,p
2
J(z)g(w)1/pχ(w, z) z ·∇v(w) dw dz =

∫
Ω

φv

for every v smooth and, by approximation, for every v ∈W 1,p
g,S(Ω). Pro-

ceeding now in a similar way to the proof of [6, Proposition 3.3] we get

that, for every v ∈W 1,p
g,S(Ω),

(4.13)

∫
RN

∫
S

CJ,p
2
J(z)g(w)1/pχ(w, z)z · ∇v(x) dw dz

=

∫
S

g |∇u|p−2∇u·∇v.
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Theorem 4.3. Assume p > 1, J satisfies (HJ) and J(x) ≥ J(y) if
|x| ≤ |y|, and g satisfies (3.1) and (3.3). Assume also g is lower semi-
continuous. Then, for any φ ∈ L∞(Ω), we have that

(4.14)
(
I +BJp,ε,gp

)−1
φ→

(
I +Bgp

)−1
φ in Lp(Ω) as ε→ 0.

Proof: For each m ∈ N, let the open sets Sm = {x ∈ Ω : dist(x, ∂S) >
1/m}. We have that S = ∪mSm, there exists αm > 0 such that g(x) ≥
αm > 0 for every x ∈ Sm, and there exists a finite number of balls Bi
covering Sm, with Bi ⊂ Sm+1.

Let εn a subsequence converging to 0. We can suppose that such
sequence, or a subsequence if necessary, satisfies (4.10), then, in each
ball Bi,∫

Bi

∫
Bi

1

2

CJ,p
εnN

J

(
x− y
εn

)
g

(
x+ y

2

) ∣∣∣∣uεn(y)− uεn(x)

εn

∣∣∣∣p dx dy ≤M,

and also∫
Bi

∫
Bi

1

2

CJ,p
εnN

J

(
x− y
εn

) ∣∣∣∣uεn(y)− uεn(x)

εn

∣∣∣∣p dx dy ≤M/αm+1.

Therefore, by [6, Proposition 3.2(2.i)] (see also [17, Theorem 4]),
taking into account (4.7),(

I +B
Jp,εn ,g
p

)−1

φ→
(
I +Bgp

)−1
φ a.e. in Ω.

Now, since in fact

{(
I +B

Jp,εn ,g
p

)−1

φ

}
is bounded in L∞(Ω) the result

follows.

From the above theorem, by standard results of the Nonlinear Semi-
group Theory (see [20] and [16]), we obtain the following result.

Theorem 4.4. Let p > 1. Assume J satisfies (HJ) and J(x) ≥ J(y) if
|x| ≤ |y|, and g satisfies (3.1) and (3.3). Let T > 0 and u0 ∈ Lp(Ω).

Let uε the unique solution of P
Jp,ε,g
p (u0) and u the unique entropy solu-

tion of Ng
p (u0). Then

lim
ε→0

sup
t∈[0,T ]

‖uε(t, ·)− u(t, ·)‖Lp(Ω) = 0.

Proof: Since BJ,gp and Bgp ∩ (Lp(Ω)×Lp(Ω)) are m-completely accretive

in Lp(Ω), to get the result it is enough to see that
(
I +B

Jp,ε,g
p

)−1

φ→(
I +Bgp

)−1
φ in Lp(Ω) as ε → 0 for any φ ∈ L∞(Ω), which follows by

Theorem 4.3.
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5. Existence and uniqueness of solutions for the
nonlocal problem. The case p = 1

This section deals with the existence and uniqueness of solutions for
the nonlocal problem

P J,g1 (u0)

ut(t, x) =

∫
Ω

J(x− y)g

(
x+ y

2

)
u(t, y)− u(t, x)

|u(t, y)− u(t, x)|
dy,

u(x, 0) = u0(x).

First, let us introduce what will be understood as a solution.

Definition 5.1. A solution of P J,g1 (u0) in [0, T ] is a function u ∈
W 1,1(0, T ;L1(Ω)) which satisfies u(0, x) = u0(x) a.e. x ∈ Ω and

ut(t, x) =

∫
Ω

J(x− y)g

(
x+ y

2

)
h(t, x, y) dy a.e. in ]0, T [×Ω,

for some h ∈ L∞(0, T ;L∞(Ω×Ω)) with ‖h‖∞ ≤ 1 such that h(t, x, y) =
−h(t, y, x) and

J(x− y)g

(
x+ y

2

)
h(t, x, y) ∈ J(x− y)g

(
x+ y

2

)
sign(u(t, y)− u(t, x)).

Here sign(·) is the multivalued function given by

sign(r) =


−1 if r < 0,

[−1, 1] if r = 0,

1 if r > 0.

As in the case p > 1, to prove the existence and uniqueness of so-
lutions of P J1 (u0) we use the Nonlinear Semigroup Theory, so we start
introducing the following operator in L1(Ω).

Definition 5.2. Let J satisfies (HJ), g ∈ L∞(RN ), g ≥ 0 a.e. We

define the operator BJ,g1 in L1(Ω) × L1(Ω) by û ∈ BJ,g1 u if and only if
u, û ∈ L1(Ω), there exists h ∈ L∞(Ω×Ω), h(x, y) = −h(y, x) for almost
all (x, y) ∈ Ω× Ω, ‖h‖∞ ≤ 1,

û(x) = −
∫

Ω

J(x− y)g

(
x+ y

2

)
h(x, y) dy, a.e. x ∈ Ω

and

(5.1) J(x−y)g

(
x+ y

2

)
h(x, y) ∈ J(x−y)g

(
x+ y

2

)
sign(u(y)−u(x)),

a.e. (x, y) ∈ Ω× Ω.
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Remark 5.3. (1) It is not difficult to see that (5.1) is equivalent to

−
∫

Ω

∫
Ω

J(x− y)g

(
x+ y

2

)
h(x, y) dyu(x) dx

=
1

2

∫
Ω

∫
Ω

J(x− y)g

(
x+ y

2

)
|u(y)− u(x)| dy dx.

(2) L1(Ω) = Dom(BJ,g1 ) and BJ,g1 is closed in L1(Ω)× L1(Ω).

(3) BJ,g1 is positively homogeneous of degree zero, that is, if û ∈ BJ,g1 u

and λ > 0 then λû ∈ BJ,g1 (λu).

Following the same ideas than in the proof of [6, Theorem 2.9] we
have the following result.

Theorem 5.4. The operator BJ,g1 is completely accretive and satisfies

L∞(Ω) ⊂ Ran(I +BJ,g1 ).

Theorem 5.5. For every initial datum u0 ∈ L1(Ω) and any T > 0

the problem P J,g1 (u0) has a unique solution in (0, T ) and, moreover, an
L1-contraction principle holds for such solutions.

Proof: As a consequence of the above results, we have that the abstract
Cauchy problem

(5.2)

{
u′(t) +BJ,g1 u(t) 3 0, t ∈]0, T [,

u(0) = u0

has a unique mild solution u for every initial datum u0 ∈ L1(Ω) and
T > 0 (see [16]). Moreover, due to the complete accretivity and the

homogeneity of the operator BJ,g1 , the mild solution of (5.2) is a strong

solution ([15]) and, so, a solution of P J,g1 (u0).

6. The local problem for p = 1

Let Ω ⊂ RN a bounded domain and 0 ≤ g ∈ L∞(Ω). In this section we
are interested in the following local diffusion equation with homogeneous
Neumann boundary condition,

Ng
1 (u0)


ut = div

(
g
Du

|Du|

)
in ]0, T [×Ω,

g
Du

|Du|
· η = 0 on ]0, T [×∂Ω,

u(x, 0) = u0(x) in Ω,

where η is the unit outward normal on ∂Ω.
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Due to the linear growth condition on the Lagrangian, the natural en-
ergy space to study problem Ng

1 (u0) is the space of functions of bounded
variation. Let us recall several facts concerning functions of bounded
variation (for further information concerning functions of bounded vari-
ation we refer to [38], [51] or [2]).

A function u ∈ L1(Ω) whose partial derivatives in the sense of dis-
tributions are measures with finite total variation in Ω is called a func-
tion of bounded variation. The class of such functions will be denoted
by BV (Ω). Thus u ∈ BV (Ω) if and only if there are Radon mea-
sures µ1, . . . , µN defined in Ω with finite total mass in Ω and∫

Ω

uDiϕdx = −
∫

Ω

ϕdµi

for all ϕ ∈ C∞0 (Ω), i = 1, . . . , N . Thus the gradient of u is a vector
valued measure with finite total variation

(6.1) |Du|=sup

{∫
Ω

udivϕdx : ϕ∈C∞0 (Ω,RN ), |ϕ(x)|≤1 for x∈Ω

}
.

The space BV (Ω) is endowed with the norm ‖u‖BV = ‖u‖L1(Ω) + |Du|.
For u ∈ BV (Ω), the gradient Du is a Radon measure that decomposes
into its absolutely continuous and singular parts Du = Dau + Dsu.
Then Dau = ∇uLN where ∇u is the Radon-Nikodym derivative of the
measure Du with respect to the Lebesgue measure LN .

We shall need several results from [10] (see also [4]). Following [10],
let

Xp(Ω) =
{
z ∈ L∞(Ω,RN ) : div(z) ∈ Lp(Ω)

}
, 1 ≤ p ≤ N.

If z ∈ Xp(Ω) and w ∈ BV (Ω)∩Lp′(Ω) we define the functional (z, Dw) :
C∞0 (Ω)→ R by the formula

〈(z, Dw), ϕ〉 = −
∫

Ω

wϕdiv(z) dx−
∫

Ω

w z · ∇ϕdx.

Then (z, Dw) is a Radon measure in Ω,∫
Ω

(z, Dw) =

∫
Ω

z · ∇w dx ∀ w ∈W 1,1(Ω) ∩ L∞(Ω)

and ∣∣∣∣∫
B

(z, Dw)

∣∣∣∣ ≤ ∫
B

|(z, Dw)| ≤ ‖z‖∞
∫
B

|Dw|

for any Borel set B ⊆ Ω.
In [10], a weak trace on ∂Ω of the normal component of z ∈ Xp(Ω)

is defined. Concretely, it is proved that there exists a linear opera-
tor γ : Xp(Ω) → L∞(∂Ω) such that ‖γ(z)‖∞ ≤ ‖z‖∞ and γ(z)(x) =
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z(x) · ν(x) for all x ∈ ∂Ω if z ∈ C1(Ω,RN ). We shall denote γ(z)(x)
by [z, ν](x). Moreover, the following Green’s formula, relating the func-
tion [z, ν] and the measure (z, Dw), for z ∈ Xp(Ω) and w ∈ BV (Ω) ∩
Lp
′
(Ω), is established:

(6.2)

∫
Ω

w div(z) dx+

∫
Ω

(z, Dw) =

∫
∂Ω

[z, ν]w dHN−1.

To define the differential operator div
(
g Du
|Du|

)
we need to recall the

concept of total variation with respect to an anisotropy (see [1], [14]
and [24]). We say that a function φ : Ω × RN → [0,∞) is a metric
integrand if φ is a Borel function satisfying the conditions

for a.e. x ∈ Ω, the map ξ ∈ RN → φ(x, ξ) is convex,(6.3)

φ(x, tξ) = |t|φ(x, ξ) ∀ x ∈ Ω, ∀ ξ ∈ RN , ∀ t ∈ R,(6.4)

and there exists a constant Γ > 0 such that

0 ≤ φ(x, ξ) ≤ Γ‖ξ‖ ∀ x ∈ Ω, ∀ ξ ∈ RN .
Recall that the polar function φ0 : Ω× RN → R of φ defined by

φ0(x, ξ∗) = sup{〈ξ∗, ξ〉 : ξ ∈ RN , φ(x, ξ) ≤ 1}.
Let

Kφ(Ω) :=
{
z ∈ X∞(Ω) : φ0(x, z(x)) ≤ 1 for a.e. x ∈ Ω, [z, ν] = 0

}
.

Definition 6.1 ([24]). Let u ∈ L1(Ω). We define the φ-total variation
of u in Ω as ∫

Ω

|Du|φ := sup

{∫
Ω

udiv z dx : z ∈ Kφ(Ω)

}
.

We set

BVφ(Ω) :=

{
u ∈ L1(Ω) :

∫
Ω

|Du|φ <∞
}
.

From the definition it follows that u ∈ L1(Ω) →
∫

Ω
|Du|φ is a lower-

semicontinuous functional with respect to the L1-convergence.
It is easy to see that if u ∈ BV (Ω), then∫

Ω

|Du|φ ≤ Γ

∫
Ω

|Du|.

Moreover, if φ is coercive in Ω, that is, there exist λ > 0 such that
λ‖ξ‖ ≤ φ(x, ξ) for all x ∈ Ω and for every ξ ∈ RN , and continuous in
second variable, in [1] it is proved that BVφ(Ω) = BV (Ω) and

λ

∫
Ω

|Du| ≤
∫

Ω

|Du|φ ≤ Γ

∫
Ω

|Du|.
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In [14] (see also [24]) the following result is proved.

Proposition 6.2. Given a metric integrand φ, let

Jφ(u) :=


∫

Ω

φ(x,∇u(x)) dx if u ∈W 1,1(Ω),

+∞ if u ∈ L1(Ω) \W 1,1(Ω).

Let Jφ be the relaxed functional, that is,

Jφ(u) := inf
{

lim inf
n→∞

Jφ(un) : un → u in L1(Ω), un ∈W 1,1(Ω)
}
.

Then, for every u ∈ BVφ(Ω), we have

Jφ(u) =

∫
Ω

|Du|φ.

Hence, for every u ∈ BVφ(Ω), there exists a sequence un ∈W 1,1(Ω) such
that un → u in L1(Ω) and∫

Ω

φ(x,∇un(x)) dx→
∫

Ω

|Du|φ.

In particular, BVφ(Ω) is the finiteness domain of Jφ.
Moreover, if u ∈ BVφ(Ω) ∩ Lq(Ω) (1 ≤ q < ∞), then we can find a

sequence un ∈W 1,1(Ω) ∩ Lq(Ω) such that un → u in Lq(Ω).

In [24], the generalized Green’s formula of Anzellotti (6.2) (see [10]) is
extended to the case in which the function belongs to BVφ(Ω). Given u∈
BVφ(Ω)∩Lp′(Ω) and z∈Xp(Ω), we define the functional (z, Du) : D(Ω)→
R as

〈(z, Du), ϕ〉 := −
∫

Ω

uϕdiv(z) dx−
∫

Ω

uz · ∇ϕdx.

For 1 ≤ p ≤ ∞, we denote,

Ap,φ(Ω) :=
{
z ∈ Xp(Ω) : ‖φ0(x, z(x))‖L∞(Ω) <∞

}
.

The following result can be proved as in [10] (see also [4]).

Proposition 6.3. Assume φ is a metric integrand. If u ∈ BVφ(Ω) ∩
Lp
′
(Ω) and z ∈ Ap,φ(Ω), then (z, Du) is a Radon measure in Ω and∣∣∣∣∫

Ω

(z, Du)

∣∣∣∣ ≤ ‖φ0
g(·, z(·))‖L∞(Ω)

∫
Ω

|Du|φ.

Moreover, if [z, ν] = 0 on ∂Ω, the following Green’s formula holds,

(6.5)

∫
Ω

udiv(z) dx+

∫
Ω

(z, Du) = 0.
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As a consequence of Green’s formula (6.5), we have∫
Ω

|Du|φ := sup

{∫
Ω

(z, Du) : z ∈ Kφ(Ω)

}
.

A particular case, interesting for our purposes, is when g : Ω→ [0,∞) is
a bounded Borel function and we consider the metric integrand φg : Ω×
RN → [0,+∞] defined by φg(x, ξ) := g(x)‖ξ‖. Then (see [1])

φ0
g(x, ξ

∗) =



0 if g(x) = 0, ξ∗ = 0,

+∞ if g(x) = 0, ξ∗ 6= 0,

‖ξ∗‖
g(x)

if g(x) > 0, ξ∗ ∈ RN .

Consequently,

Kg(Ω):=Kφg
(Ω)={z∈X∞(Ω) : ‖z(x)‖ ≤ g(x) for a.e. x ∈ Ω, [z, ν]=0}.

In this particular case we will use the notation

BVg(Ω) :=

{
u ∈ L1(Ω) :

∫
Ω

|Du|g <∞
}
,

where ∫
Ω

|Du|g := sup

{∫
Ω

udiv z dx : z ∈ Kg(Ω)

}

= sup

{∫
Ω

(z, Du) : z ∈ Kg(Ω)

}
.

We define the energy functional Φg : L2(Ω) → [0,+∞], associated with
the problem Ng

1 (u0), by

Φg(u) :=


∫

Ω

|Du|g if u ∈ BVg(Ω) ∩ L2(Ω)

+∞ if u ∈ L2(Ω) \BVg(Ω).

We have that Φg is convex and lower semi-continuous. Therefore, the
subdifferential ∂Φg of Φg, i.e. the operator in L2(Ω) defined by

(6.6) v ∈ ∂Φg(u) ⇐⇒ Φg(w)−Φg(u) ≥
∫

Ω

v(w−u) dx, ∀ w ∈ L2(Ω)
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is a maximal monotone operator in L2(Ω). Consequently, the existence
and uniqueness of a solution of the abstract Cauchy problem

(6.7)

{
u′(t) + ∂Φg(u(t)) 3 0 t ∈]0,∞[

u(0) = u0 u0 ∈ L2(Ω)

follows immediately from the Nonlinear Semigroup Theory (see [19]).
Now, to get the full strength of the abstract result derived from Semi-
group Theory we need to characterize ∂Φg.

Lemma 6.4. The following assertions are equivalent:

(a) (u, v) ∈ ∂Φg;

(b)

(6.8) u ∈ L2(Ω) ∩BVg(Ω), v ∈ L2(Ω),

(6.9) ∃ z ∈ X(Ω)2, ‖z(x)‖ ≤ g(x),

a.e. x ∈ Ω such that v = −div(z) in D′(Ω),

and ∫
Ω

(z,Du) =

∫
Ω

|Du|g,(6.10)

[z, ν] = 0 HN−1-a.e. on ∂Ω.;(6.11)

(c) (6.8) and (6.9) hold, and

(6.12)

∫
Ω

(w−u)v dx≤
∫

Ω

z·∇w dx−
∫

Ω

|Du|g, ∀ w ∈W 1,1(Ω)∩L2(Ω);

(d) (6.8) and (6.9) hold, and

(6.13)

∫
Ω

(w−u)v dx ≤
∫

Ω

(z, Dw)−
∫

Ω

|Du|g ∀ w ∈ L2(Ω)∩BVg(Ω).

Proof: First let us see the equivalence of (a) and (b). This follows work-
ing as in the proof of Proposition 1.10 in [4]. If we denote by

Φ̃g(v) := sup

{∫
Ω
wv dx

Φg(w)
: w ∈ L2(Ω)

}
,

since Φg is positive homogeneous of degree 1, by Theorem 1.8 in [4], we
have

(6.14) (u, v) ∈ ∂Φg ⇐⇒ Φ̃g(v) ≤ 1,

∫
Ω

vu dx = Φg(u).
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Let us define for v ∈ L2(Ω)

Ψg(v) :=

{
inf
{
‖φ0

g(·, z(·))‖L∞(Ω) : z ∈ C(v)
}

if C(v) 6= ∅

+∞ if C(v) = ∅,

where

C(v) := {z ∈ A2,φg (Ω) : v = −div(z) in D′(Ω),

[z, ν] = 0HN−1-a.e. on ∂Ω}.

We claim that

(6.15) Ψg = Φ̃g.

Let v ∈ L2(Ω). If Ψg(v) = +∞, then Φ̃g(v) ≤ Ψg(v). Then, we may
assume Ψg(v) <∞. Let z ∈ C(v) such that ‖φ0

g(·, z(·))‖L∞(Ω) <∞. By

Proposition 6.3, for any u ∈ BVg(Ω) ∩ L2(Ω) we have∫
Ω

uv dx =

∫
Ω

(z, Du) ≤ ‖φ0
g(·, z(·))‖L∞(Ω)

∫
Ω

|Du|φ.

Taking supremums in u we obtain Φ̃g(v) ≤ ‖φ0
g(·, z(·))‖L∞(Ω). Now,

taking infimums in z we obtain Φ̃g(v) ≤ Ψg(v). To prove the opposite
inequality, let D :=

{
−div(z) : z ∈ C(v), v ∈ L2(Ω)

}
. Then, for u ∈

BVg(Ω) ∩ L2(Ω), we have

Ψ̃g(u) := sup

{∫
Ω
uw dx

Ψg(w)
: w ∈ L2(Ω)

}
≥ sup

{∫
Ω
uw dx

Ψg(w)
: w ∈ D

}

≥ sup

{ − ∫
Ω
udiv(z) dx

‖φ0
g(·, z(·))‖L∞(Ω)

: z ∈ C(w), w ∈ L2(Ω)

}
= Φg(u).

Hence, Ψg(u) ≤ Φ̃g(u), and (6.15) holds.
By (6.14) and (6.15), it follows the equivalence between (a) and (b).

To obtain (d) from (b) is sufficient to multiply both terms of the equation
v = −div(z) by w − u, for w ∈ L2(Ω) ∩ BVg(Ω) and to use Green’s
formula (6.5). It is clear that (d) implies (c). To prove that (b) follows
from (d), we chose w = u in (6.13) and having in mind Proposition 6.3
and (6.9), we obtain that∫

Ω

|Du|g ≤
∫

Ω

(z, Du) ≤ ‖φ0
g(·, z(·))‖L∞(Ω)

∫
Ω

|Du|φ ≤
∫

Ω

|Du|g,
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from where (6.10) follows. To obtain (6.11), we choose w = u±ϕ in (6.13)
with ϕ ∈ BV (Ω) ∩ C∞(Ω) ∩W 1,1(Ω) and we get

±
∫

Ω

ϕv dx ≤ ±
∫

Ω

z · ∇ϕdx,

from where it follows that∫
Ω

ϕdiv(z) dx+

∫
Ω

z · ∇ϕdx = 0.

Then, having in mind the definition of the weak trace on ∂Ω of the
normal component of z given in [10], we get

[z, ν] = 0 HN−1-a.e. on ∂Ω.

In order to prove that (c) implies (d), let w ∈ L2(Ω) ∩ BVg(Ω). By
Proposition 6.2, there exists a sequence wn ∈W 1,1(Ω)∩L2(Ω) such that

wn → w in L2(Ω) and

∫
Ω

g(x)|∇wn(x)| dx→
∫

Ω

|Dw|g.

Using wn as test function in (6.12), we have

(6.16)

∫
Ω

(wn − u)v dx ≤
∫

Ω

z · ∇wn dx−
∫

Ω

|Du|g.

Now, by Lemma 13.2 in [24], we have∫
Ω

z · ∇wn dx→
∫

Ω

(z, Dw).

Therefore, taking limit as n→ +∞ in (6.16), we get (6.13).

Definition 6.5. We say that u ∈ C([0, T ];L2(Ω)) is a solution of prob-

lem Ng
1 (u0) in [0, T ] × Ω if u ∈ W 1,2

loc (0, T ;L2(Ω)) u(t) ∈ BVg(Ω) for
almost all t ∈]0, T [, u(0) = u0, and there exists z ∈ L∞(]0, T [×Ω;RN ),
‖z(t, x)‖ ≤ g(x), a.e. (t, x) ∈]0, T [×Ω such that [z(t), ν] = 0 in ∂Ω a.e.
t ∈]0, T [, satisfying

ut = div(z) in D′(]0, T [×Ω)

and ∫
Ω

(u(t)− w)ut dx ≤
∫

Ω

(z, Dw)−
∫

Ω

|Du(t)|g

for all w ∈ L2(Ω) ∩BVg(Ω) an a.e. t ∈ [0, T ].

By Lemma 6.4, the concept of solution for problem Ng
1 (u0) coin-

cides with the concept of strong solution for the abstract Cauchy prob-
lem (6.7). Then, since we know that problem (6.7) has a unique strong
solution for any initial data in L2(Ω), we have the following existence
and uniqueness result.
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Theorem 6.6. Let g : Ω → [0,∞) is a bounded Borel function. For
any initial data u0 ∈ L2(Ω) there exists a unique solution u of the prob-
lem Ng

1 (u0) in [0, T ] × Ω for every T > 0. Moreover if u and v are so-
lutions of Ng

1 (u0) corresponding to the initial conditions u0, v0 ∈ L2(Ω),
then

‖u(t)− v(t)‖L2(Ω) ≤ ‖u0 − v0‖L2(Ω) for any t > 0.

7. Convergence of the nonlocal problems to the local
problem. The case p = 1

Similarly to the case p > 1, in order to do the rescaling, we need a
variant of [6, Proposition 3.2(1.ii)].

Proposition 7.1. Let ρ : RN → R be a nonnegative continuous ra-
dial function with compact support, non-identically zero, and ρn(x) :=
nNρ(nx). Let S an open set, S ⊂ Ω, and let l ∈ L∞(RN ) such that

l(x) =

{
l(x) > 0 in S,

0 in RN \ S.

Let us also assume that l satisfies

(7.1) l ∈ C(S).

Let {fn} be a sequence of functions in L1(Ω) such that

(7.2)

∫
Ω

∫
Ω

ρn(y − x)l

(
x+ y

2

)
|fn(y)− fn(x)| dx dy ≤M 1

n

and {fn} is weakly convergent in L1(S) to f .

Then, l ∂f∂wj
is a bounded Radon measure in S, j = 1, . . . , N , and

moreover

lim
n

[
ρ(z)l(w)χΩ

(
w +

1

2n

)
χΩ

(
w − 1

2n
z

)

×
fn
(
w + 1

2nz
)
− f

n

(
w − 1

2nz
)

1/n

]
= µ(w, z)

weakly as measures with

µ(w, z) = ρ(z)l(w)z · ∇f(w) in S × RN ,

and

µ(w, z) = 0 in (RN \ Ω)× RN .
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Proof: Making the change of variables y = x + 1
nz, x = w − 1

2nz, we
rewrite (7.2) as

∫
RN

∫
RN

ρ(z)l(w)χ×Ω

(
w± 1

2n
z

)∣∣∣∣∣fn
(
w+ 1

2nz
)
−fn

(
w− 1

2nz
)

1/n

∣∣∣∣∣ dw dz≤M,

where χ×Ω
(
w ± 1

2nz
)

= χΩ

(
w + 1

2nz
)
χΩ

(
w − 1

2nz
)
. Therefore, up to a

subsequence,

(7.3) ρ(z)l(w)χ×Ω

(
w± 1

2n
z

)
fn
(
w + 1

2nz
)
− fn

(
w − 1

2nz
)

1/n
⇀ µ(w, z)

as measures and µ(w, z) = 0 in (RN \Ω)×RN . If ϕ ∈ C∞c (Ω), supp(ϕ) ⊂
S, taking

ϕ̂ =


ϕ

l
in S,

0 otherwise,

and ψ ∈ C∞c (RN ), by (7.3) and [2, Proposition 1.62], we have

∫
RN

∫
Ω

ρ(z)l(w)χ×Ω

(
w ± 1

2n
z

)

×
fn
(
w + 1

2nz
)
− fn

(
w − 1

2nz
)

1/n
ϕ̂(w) dwψ(z) dz

→
∫
RN

∫
Ω

ϕ̂(w)ψ(z) dµ(w, z).

That is,

(7.4)

∫
RN

∫
S

ρ(z)χ×Ω

(
w ± 1

2n
z

)

×
fn
(
w + 1

2nz
)
− fn

(
w − 1

2nz
)

1/n
ϕ(w) dwψ(z) dz

→
∫
RN

∫
S

1

l(w)
ϕ(w)ψ(z) dµ(w, z).



56 F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo

Now, for n large enough,∫
RN

∫
S

ρ(z)χ×Ω

(
w± 1

2n
z

)
fn
(
w + 1

2nz
)
− fn

(
w − 1

2nz
)

1/n
ϕ(w) dwψ(z) dz

=

∫
RN

ρ(z)

∫
S

fn
(
w + 1

2nz
)
− fn(w − 1

2nz)

1/n
ϕ(w) dwψ(z) dz

= −
∫
RN

ρ(z)

∫
S

fn(w)
ϕ(w + 1

2nz)− ϕ
(
w − 1

2nz
)

1/n
dwψ(z) dz.

Then, passing to the limit, on account of (7.4), we get

(7.5)

∫
RN

∫
S

1

l(w)
ϕ(w)ψ(z) dµ(w, z)

= −
∫
RN

∫
S

ρ(z)f(w) z · ∇ϕ(w)ψ(z) dw dz.

Now, applying the disintegration theorem (Theorem 2.28 in [2]) to
the measure µ, we get that if π : S ×RN → RN is the projection on the
first factor and ν = π#|µ|, then there exists a Radon measures µw in RN
such that w 7→ µw is ν-measurable, |µw|(RN ) ≤ 1 ν-a.e. in S and, for
any h ∈ L1(S × RN , |µ|),

h(w, ·) ∈ L1(RN , |µw|) ν-a.e. in w ∈ S,

w 7→
∫
RN

h(w, z)dµw(z) ∈ L1(S, ν)

and

(7.6)

∫
S×RN

h(w, z) dµ(w, z) =

∫
S

(∫
RN

h(w, z) dµw(z)

)
dν(w).

From (7.5) and (7.6), we get, for ϕ ∈ C∞c (S) and ψ ∈ C∞c (RN ),∫
S

(∫
RN

ψ(z) dµw(z)

)
1

l(w)
ϕ(w) dν(w)=

〈
N∑
i=1

∫
RN

ρ(z)ziψ(z) dz
∂f

∂wi
, ϕ

〉
.

Hence, as measures,

N∑
i=1

∫
RN

ρ(z)ziψ(z) dz
∂f

∂wi
=

∫
RN

ψ(z) dµw(z)
1

l
ν in S,
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and therefore
N∑
i=1

∫
RN

ρ(z)ziψ(z) dz l
∂f

∂wi
=

∫
RN

ψ(z) dµw(z) ν in S.

Let now ψ̃ ∈ C∞c (RN ) be a radial function such that ψ̃ = 1 in supp(ρ).

Taking ψ(z) = ψ̃(z)zj in the above expression and having in mind that∫
RN

ρ(z)zizjψ̃(z) dz = 0 if i 6= j,

we get ∫
RN

ρ(z)zj
2dz l

∂f

∂wj
=

∫
RN

ψ̃(z)zj dµw(z)ν in S.

Since ν ∈Mb(S) and w 7→
∫
RN ψ̃(z)zj dµw(z) ∈ L1(S, ν), we obtain that

l ∂f∂wj
is a bounded Radon measure in S. Going back to (7.6), we get

µ(w, z) = l(w)

N∑
i=1

∂f

∂wi
(x) · ρ(z)ziLN (z).

For the proof our next results we need the following assumptions: we
assume that g ∈ L∞(RN ) is such that

g(x) =

{
g(x) > 0 a.e. in S ⊂ Ω, S an open set,

0 a.e. in RN \ S,
(7.7)

g ∈ C(S).(7.8)

Let us now proceed with the rescaling. Set

J1,ε(x) :=
CJ,1
ε1+N

J
(x
ε

)
, with

1

CJ,1
:=

1

2

∫
RN

J(z)|zN | dz.

Theorem 7.2. Assume J satisfies (HJ) and J(x) ≥ J(y) if |x| ≤ |y|
and that g satisfies (7.7) and (7.8). For any φ ∈ L∞(Ω), we have(

I +B
J1,ε,g
1

)−1

φ→ (I + ∂Φg)
−1
φ in L1(Ω) as ε→ 0.

Proof: Given ε > 0, we set uε =
(
I +B

J1,ε,g
1

)−1

φ. Then, there exists

hε ∈ L∞(Ω×Ω), hε(x, y) = −hε(y, x) for almost all x, y ∈ Ω, ‖hε‖∞ ≤ 1,

J

(
x−y
ε

)
g

(
x+y

2

)
hε(x, y)∈J

(
x−y
ε

)
g

(
x+y

2

)
sign(uε(y)− uε(x))

a.e. x, y ∈ Ω
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and

(7.9) − CJ,1
ε1+N

∫
Ω

J

(
x− y
ε

)
g

(
x+ y

2

)
hε(x, y) dy = φ(x)− uε(x)

a.e. x ∈ Ω.

Observe that

(7.10) − CJ,1
ε1+N

∫
Ω

∫
Ω

J

(
x− y
ε

)
g

(
x+ y

2

)
hε(x, y) dyuε(x) dx

=
CJ,1
ε1+N

1

2

∫
Ω

∫
Ω

J

(
x− y
ε

)
g

(
x+ y

2

)
|uε(y)− uε(x)| dy dx.

By (7.9), we can write

CJ,1

2ε1+N

∫
Ω

∫
Ω

J

(
x− y
ε

)
g

(
x+ y

2

)
hε(x, y)(v(y)− v(x)) dx dy

= − CJ,1
ε1+N

∫
Ω

∫
Ω

J

(
x− y
ε

)
g

(
x+ y

2

)
hε(x, y) dyv(x) dx

=

∫
Ω

(φ(x)− uε(x))v(x) dx, ∀ v ∈ L∞(Ω).

(7.11)

Since uε � φ, there exists a sequence εn → 0 such that

uεn ⇀ u weakly in L1(Ω), u� φ.

Observe that ‖uεn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω). Hence taking ε = εn
and v = uεn in (7.11), changing variables and having in mind (7.10), we
get∫
RN

∫
RN

CJ,1
2
J(z)g(w)χ×Ω

(
x± εn

2
z
)∣∣∣∣∣uεn

(
w+ εn

2 z
)
−uεn

(
w− εn

2 z
)

εn

∣∣∣∣∣ dw dz
=

∫
Ω

∫
Ω

1

2

CJ,1
εnN

J

(
x− y
εn

)
g

(
x+ y

2

) ∣∣∣∣uεn(y)− uεn(x)

εn

∣∣∣∣ dx dy
=

∫
Ω

(φ(x)− uεn(x))uεn(x) dx ≤M ∀ n ∈ N.

Therefore, by Proposition 7.1, g ∂u
∂wj

is a bounded Radon measure in S,

j = 1, . . . , N ,

(7.12)
CJ,1

2
J(z)g(w)χ×Ω

(
w± εn

2
z
)uεn(w+ εn

2 z
)
−uεn

(
w− εn

2 z
)

εn
⇀µ(w, z)
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weakly as measures with

µ(w, z) =
CJ,1

2
J(z)g(w)z ·Du(w) in S × RN ,

and

µ(w, z) = 0 in (RN \ Ω)× RN .

And by [6, Proposition 3.2(2.ii)] (see also [17, Theorem 4]) uεn → u
strongly in L1(Ω).

Moreover, we can also assume that

(7.13) J(z)χ×Ω

(
w ± εn

2
z
)
g(w)hεn

(
w − εn

2
z, w +

εn
2
z
)
⇀ Λ(w, z)

weakly∗ in L∞(RN )×L∞(RN ), and |Λ(w, z)| ≤ g(w)J(z) almost every-
where in RN × RN . Changing variables and having in mind (7.11), we
can write

(7.14)
CJ,1

2

∫
RN

∫
RN

J(z)χ×Ω

(
w ± εn

2
z
)
g(w)hεn

(
w − ε

2
z, w +

εn
2
z
)

×
v(w + εn

2 z)− v(w − εn
2 z)

εn
dz dw=

∫
Ω

(φ(x)−uεn(x))v(x) dx

∀ v ∈ L∞(Ω).

By (7.13), passing to the limit in (7.14), we get

(7.15)
CJ,1

2

∫
RN

∫
S

Λ(w, z)z · ∇v(w) dw dz =

∫
Ω

(φ− u)v ∀ v smooth,

and, by approximation, ∀ v ∈ L∞(Ω)∩W 1,1(Ω). We set ζ = (ζ1, . . . , ζN ),
the vector field defined by

ζj(w) :=
CJ,1

2

∫
RN

Λ(w, z)zj dz, j = 1, . . . , N.

Then, ζ ∈ L∞(Ω,RN ), and from (7.15), −div(ζ) = φ− u in D′(Ω).
Given ξ ∈ RN \ {0}, let Rξ be the rotation such that Rtξ(ξ) = e1|ξ|.

If we make the change of variables z = Rξ(y), we obtain

ζ(x) · ξ =
CJ,1

2

∫
RN

Λ(x, z)z · ξ dz =
CJ,1

2

∫
RN

Λ(x,Rξ(y))Rξ(y) · ξ dy

=
CJ,1

2

∫
RN

Λ(x,Rξ(y))y1|ξ| dy.
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On the other hand, since J is a radial function and Λ(w, z) ≤ g(w)J(z)
almost everywhere, we obtain, CJ,1

−1 = 1
2

∫
RN J(z)|z1| dz and

|ζ(w) · ξ| ≤ CJ,1
2

∫
RN

g(w)J(y)|y1| dy|ξ| = g(w)|ξ| a.e. w ∈ RN .

Therefore, ‖ζ(w)‖l2(N) ≤ g(w) a.e. w ∈ RN .

Since u ∈ L∞(Ω), u ∈ BVg(Ω) and
∫

Ω
|Du|g ≤ |gDu|(S), by Lem-

ma 6.4, to finish the proof we only need to show that

(7.16)

∫
Ω

(ρ− u)(φ− u) ≤
∫
S

ζ · ∇ρ− |gDu|(S) ∀ ρ ∈W 1,1(Ω).

Given ρ ∈W 1,1(Ω), taking v = ρ− uεn in (7.14), we get

∫
Ω

(φ(x)− uεn(x))(ρ(x)− uεn(x)) dx

=
CJ,1

2

∫
RN

∫
RN

J(z)g(w)χ×Ω

(
w ± εn

2
z
)
hεn

(
w − εn

2
z, w +

εn
2
z
)
×

×

(
ρ
(
w+ εn

2 z
)
−ρ
(
w− εn

2 z
)

εn
−
uεn
(
w+ εn

2 z
)
−uεn

(
w− εn

2 z
)

εn

)
dz dw.

(7.17)

Having in mind (7.12) and (7.13) and taking limit in (7.17) as n → ∞,
we obtain that∫

Ω

(ρ− u)(φ− u) dx ≤ CJ,1
2

∫
S

∫
RN

Λ(w, z)z · ∇ρ(w) dz dw

− CJ,1
2

∫
S

∫
RN

|g(w)J(z)z ·Du| dz dw

=

∫
S

ζ · ∇ρ− CJ,1
2

∫
S

∫
RN

|g(w)J(z)z ·Du| dz dw.

Now, for every w∈S such that the Radon-Nikodym derivative gDu
|gDu| (w) 6=

0, let Rw be the rotation such that Rtw

(
gDu
|gDu| (w)

)
= e1

∣∣∣ gDu|gDu| (w)
∣∣∣.

Then, since J is a radial function and
∣∣∣ gDu|gDu| (w)

∣∣∣ = 1|gDu|-a.e. in S, if
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we make the change of variables y = Rw(z), we have

CJ,1
2

∫
S

∫
RN

|g(w)J(z)z ·Du| dz dw

=
CJ,1

2

∫
S

∫
RN

J(z)

∣∣∣∣z · gDu|gDu|
(w)

∣∣∣∣ dz d|gDu|(w)

=
CJ,1

2

∫
S

∫
RN

J(y) |y1| dy d|gDu|(w) =

∫
S

|gDu|.

Therefore (7.16) holds.

As a consequence of Theorem 7.2 and the Nonlinear Semigroup The-
ory (see [20]), we have the following convergence result.

Theorem 7.3. Assume J satisfies (HJ) and J(x) ≥ J(y) if |x| ≤ |y|,
and g satisfies (7.7) and (7.8). Let T > 0 and u0 ∈ L2(Ω). Let uε
the unique solution of P

J1,ε,g
1 (u0) and u the unique solution of Ng

1 (u0).
Then

(7.18) lim
ε→0

sup
t∈[0,T ]

‖uε(t, ·)− u(t, ·)‖L1(Ω) = 0.
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