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A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH
NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS*

F. ANDREUT, J. M. MAZON?, J. D. ROSSI!, AND J. TOLEDO

Abstract. In this paper we study the nonlocal p-Laplacian-type diffusion equation w¢ (¢, ) =
IRN J(m_y)lu(tv y) _u(t7 m)lp_Q(u(t7 y) _u(ta l’)) dy: (t’ IE) 6]07 T[XQ’ with u(tz CE) = ﬁ’(m) for (tv x) €
10, T[x (RN \ Q). If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian
evolution equation u; = div(|Vu|P~2Vu) with Dirichlet boundary condition u(t, ) = ¥(z) on (¢,x) €
10, T[x0Q. If p = 1, this is the nonlocal analogous to the total variation flow. When p = +oo (this
has to be interpreted as the limit as p — +o0 in the previous model) we find an evolution problem
that can be seen as a nonlocal model for the formation of sandpiles (here u(t, z) stands for the height
of the sandpile) with prescribed height of sand outside of 2. We prove, as main results, existence,
uniqueness, a contraction property that gives well posedness of the problem, and the convergence of
the solutions to solutions of the local analogous problem when a rescaling parameter goes to zero.
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total variation flow, sandpiles
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1. Introduction. In this paper we study the nonlocal diffusion equation

u(t,x) = - J(z —y)|ut,y) — ut,z) [P~ (u(t,y) — u(t,z)) dy (t,x) €]0,T[x9Q,

where € is a bounded domain and u is prescribed in RY \ Q as u(t,z) = (x) for
(t,z) €]0, T[x (RN \ Q). We consider 1 < p < +0c0 as well as the extreme cases p = 1
and the limit p / +o0o. Throughout the paper, we assume that J : RY — R is
a nonnegative, radial, continuous function, strictly positive in B(0,1), vanishing in
RN\ B(0,1) and such that [,y J(z)dz = 1.

First, let us briefly introduce the prototype of nonlocal problem that will be
considered along this work. Nonlocal evolution equations of the form

(1.1) u(t,z) = (Jxu—u)(t,z) = /]RN J(x —y)u(t,y) dy — u(t, z),

and variations of it, have been recently widely used to model diffusion processes. More
precisely, as stated in [31], if u(t, z) is thought of as a density at the point z at time ¢
and J(z—y) is thought of as the probability distribution of jumping from location y to
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1816 F. ANDREU, J. M. MAZON, J. D. ROSSI, AND J. TOLEDO

location z, then [~ J(y—z)u(t,y) dy = (J+u)(t, x) is the rate at which individuals are
arriving at position x from all other places and —u(t,z) = — [pn J(y — z)u(t, z) dy
is the rate at which they are leaving location xz to travel to all other sites. This
consideration, in the absence of external or internal sources, leads immediately to the
fact that the density u satisfies (1.1). For recent references on nonlocal diffusion, see
), (51, [6], [9), [11], [12], [20], [21], [22], [23], [24], [25], [26], [27], [31], [33], [36] and
references therein.

The first goal of this paper is to study the following nonlocal nonlinear diffusion
problem:

ue(t, x) = /QJ(:U — ) |ult,y) —ult,z) P2 (u(t,y) — u(t,x)) dy

+/Q o J(x —y)(y) — ult,z)|P 2 (P (y) — u(t, x)) dy,
(t,x) €]0, T[x,

PISI(UO»UJ)

u(0,2) = up(x), x €.

Here Q7 = Q + supp(J) and 1 is a given function ¢ : 27\ Q — R. -
Observe that we can rewrite Py (ug, ), setting u(t,z) = ¢(z) in 7\ Q, as

ue(t, x) = /QJ(ac —|ult,y) —u(t,2)|P>(u(t,y) —u(t,z))dy, (t,z) €]0,T[xQ,

J

u(t,z) =¢(z), (t,z)€]0,T[x (s \Q),
U(O,ﬂf) = uO(x)v T €Q,

and we call it the nonlocal p-Laplacian problem with Dirichlet boundary condition.
Note that we are prescribing the values of u outside the domain €2 and not only on
its boundary. This is due to the nonlocal character of the problem.

Let us state the precise definition of solution. Solutions to PpJ (ug,v) will be
understood in the following sense.

DEFINITION 1.1. Let1 < p < +00. A solution ofPI;I(uo,w) in [0,T] is a function

uwe C([0,T); L' () nwh! (j0,T[; L' (),

which satisfies u(0,x) = up(x) a.e. x € Q and
u(t, x) = / J(@ = y)lult,y) — ult, )P (ult,y) — ult,z)) dy
Q
[l - ut P 2wl - o) dy,
Q\Q

for a.e. t €]0,T[ and a.e. x € Q.

Our first result shows existence and uniqueness of a global solution for this prob-
lem. Moreover, a contraction principle holds.

THEOREM 1.2. Assume p > 1 and let ug € LP(Q), ¥ € LP(Q; \ Q). Then,
there exists a unique solution to PZ;’(uo, ¥) in the sense of Definition 1.1. Moreover,
if uio € LY() and u; is a solution in [0,T] of PZ}](Uz’oﬂ/)); i = 1,2, respectively. Then

/(ul(t) —uy(t))T < /(Ulo —ugg)t for every t € [0, 7.
Q

Q
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A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION 1817
If ujg € LP(QY), i = 1,2, then

lui(t) = u2(t)||Lr (o) < lutg — 2ol Lr (o) for every t € [0,T].

Our next step is to rescale the kernel J appropriately and take the limit as the
scaling parameter goes to zero. To be more precise, for p > 1, we consider the local
p-Laplace evolution equation with Dirichlet boundary condition

u = Apu in )0, T[x 4,
Dy(uo, ) {u=1 on 0, T[x09Q,
u(0,2) = up(x) in Q,

where the boundary datum ¢ is assumed to be the trace of a function defined in a
larger domain and the operator in the equation, Ayu = div(|Vu[P~?Vu), is the usual
local p-Laplacian.

We prove that the solutions of this local problem can be approximated by solutions
of a sequence of nonlocal p-Laplacian problems of the form PpJ . Indeed, for given p > 1
and J we consider the rescaled kernels

Cy, T _ 1
(1.2) Ipe(x) := gp+§7J (g) , where C’J; =3 /]RN J(2)|zn|P dz
is a normalizing constant in order to obtain the p-Laplacian in the limit instead of a
multiple of it, and we obtain the following result. y
THEOREM 1.3. Let Q be a smooth bounded domain in RN and ¢ € Wi/p P(OQ)N
L*>®(09Q). Let v € WEP(Q;) N L>®(Qy) such that the trace |pq = . Assume

J(x) > J(y) if |x| <ly|. Let T > 0 and vy € LP(QQ). Let u. be the unique solution of
7,

Pp7 (ug,¥) and u the unique solution of Dp(uo,i)) (see section 2.2). Then
(1.3) hH(l) sup ||u(t,.) — u(t,.)||Lr() = 0.
e~Ytel0,T)

Note that the above result says that Pi)] is a nonlocal problem analogous to the
p-Laplacian with Dirichlet boundary condition.

The second goal of this paper is to study the Dirichlet problem for p = 1, called
the nonlocal total variation flow, which can be written formally as

( |

B (72/) u(t, )
*/QJ\Q"( y)w(,y) )
u(0,2) = uo(z), =z €.

PlJ(anq/})

We give the following definition of what we understand by a solution of Py (ug,1)).
DEFINITION 1.4. A solution of Py (ug,v) in [0,T] is a function

ue C([0,T]; L' () nwh (Jo,T[; L'(Q)),

which satisfies u(0,z) = up(x) a.e. x € Q and

ut(t,w):/ J(x—y)g(t,x,y)dy a.e. in ]0,T[xQ,
Qg
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1818 F. ANDREU, J. M. MAZON, J. D. ROSSI, AND J. TOLEDO

for some g € L>=(0,T; L>=(Q; x Q)) with ||g]lcc < 1 such that for almost every t €
]07T[7 g(t,x,y) = fg(t,y,$) and

J(x —y)g(t,z,y) € J(z — y)sign(u(t,y) — u(t, z)), (z,y) €A xQ,
J(x —y)g(t,z,y) € J(z —y)sign(P(y) —u(t,z)), () € 2x (W\Q).

Here, sign is the multivalued function defined by

1 if r>0
sign(r) :== ¢ [-1,1] if =0
-1 if r<0.

We use signg to denote the univalued function

1 if r>0
signg(r) :==40 if r=0
-1 if r<O.

To get the existence and uniqueness of these kinds of solutions, the idea is to take
the limit as p N\, 1 of solutions to P[)I with p > 1.

THEOREM 1.5. Let ug € L*(Q) and ¢ € LY(Q;\ Q). Then, there exists a unique
solution to P{(ug) in the sense of Definition 1.4. Moreover, if u;g € L*(Q) and u;
are solutions in [0, T) of P{ (uy), i = 1,2. Then

/(ul(t) —un ()t < /(um —ug9)t  for every t € [0,T].
Q Q
In this case we can rescale the kernel as in (1.2) in order to obtain convergence
of the solutions of the corresponding rescaled problem to the solution of the Dirichlet
problem for the total variational flow, that is,
w=div((BY) 0, T[x,
Di(uo, ) Su=1 on |0, T[x 09,

w(0,2) = up(x) in Q.

THEOREM 1.6. Let Q be a smooth bounded domain in RY. Assume J(x) > J(y)
if || < |y|l. Let T >0, ug € LY(Q), P € L®(dN), andp € WHH(Q;\Q)NL>(Q,\ Q)
such that the trace 1|pq = 1. Let ue be the unique solution of Pl‘h’s (ug, ). Then, if
u is the unique solution of D1 (ug, ) (see section 3.2),

lim sup ||uc(t,.) —u(t,.)|[L1Q) = 0.
EéOtE[O,T]

Finally, the third goal of this paper is to study the limit case p = 400, which has
to be understood as the limit of our nonlocal evolution problems as p — +oo (see
section 4). In this case we recover a nonlocal model for the evolution of sandpiles
which is the nonlocal version of the Prigozhin model [35]. Then, the nonlocal limit
problem with source for p = +o0 can be written as

flt, ) —u(t,-) € aG‘fn,w(u(t))a a.e. t€0,T7,

P’ (u U,
o (0, 9, f) {u(O,x) = ug(x),
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A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION 1819

where Ggo’w is the functional

0 if |u(z) —u(y)| <1, forz,y €
J and |[¢(y) —u(x)| <1, forz e QyeQs\Q,
Gl yp(u) = with 2 — y € supp(J)
400 in the other case,

that is, Ggo,w =Ips T the indicator function of the set

[u(@) - u(y)] < 1,2,y € O -
Ké]o,w =QuecL*Q) : and [¢¥(y) —u(z)| <1, forz e QyeQs\Q,
with  — y € supp(J)

More precisely, we obtain the following result.

THEOREM 1.7. Let ¢ € L>(Q;\ Q) such that K , # 0. Let T >0, f €
L2(0,T;Ng>2L9(82)), ug € Ny>2L4(Q) such that ug € Ké]o,w7 and up, p > 2, the unique
solution of the nonlocal p-Laplacian with a source term f, P,;](Uo, ¥, f) (see section 4).
Then, if us is the unique solution to P (ug,, f),

lim sup |jup(t,-) — too(t, )| £2() = 0.
P00 (0,7

Our next step is to rescale the kernel J appropriately and take the limit as the
scaling parameter goes to zero. We will suppose that 2 is convex and 1 verifies
[[VY]loo < 1. For € > 0, we rescale the functional G;)’O,w as follows:

0 if |u(z) —u(y)| <e, for z,y € Q
B and |¢(y) —u(z)] <e, forxze QyeQ;\Q,
Goop(u) = with |z —y| <e
+o0 in the other case,

that is, G5, = IKio,w’ where

u(@) - uly)| < .2,y € -
K= we LA(Q) : and [¢(y) —u(z)| <e, forzecQyecQs\Q,
with |z —y| < ¢

Consider the gradient flow associated to the functional G ,

f(t) —wuelt,-) € Ol (u(t)), a.e. t €]0,T7,

Fooluo, ¥, 1) {u(O,x) = ug(z), in Q,

and the limit problem

ft,-) = Uooy € Ok, (Uso), a.e. t €]0, T,

Uoo(07x) :’UJO(I)v in Qv

Poo(“vavf) {

where

Kw = {u S Wl’oo(Q) : ||Vu||oo <1, u‘ag = ¢|aQ}
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Now we state our result concerning the limit as ¢ — 0 for the sandpile model
(p = +00).

THEOREM 1.8. Assume € is a convexr bounded domain in RY. Let T > 0,
f € L?0,T;L3()), v € Whe(Q;\ Q) such that |[Vib|leo < 1, ug € WH*(Q) such
that |[Vuolleo < 1 and uploa = ¥|aq (this means ug € Ky ), and consider uo . the
unique solution of PS (uo,, f). Then, if ve is the unique solution of Ps(ug,, f),
we have

lim sup ||tooc(t, ") = Voolt,-)|lL2() = 0.
e—0 tE[O,T]

Closely related to the present work are [5] and [6] where the homogeneous Neu-
mann problem and its limit as p goes to infinity or to one are considered. The
difference here is that we are now considering Dirichlet boundary conditions, not only
the homogeneous case, but also the nonhomogeneous case, and this introduces new
difficulties specially when one tries to recover the local models when € — 0. Remark
that in our nonlocal formulation we are not imposing any continuity between the val-
ues of u inside €2 and outside it, ©¥. However, when dealing with local problems usually
the boundary datum is taken in the sense of traces, that is, u|spq = ¥. Recovering
this condition as € — 0 is one of the main contributions of the present work.

Note that, as it happens for the local p-Laplacian, the Dirichlet problem can be
written as a Neumann problem with a particular flux that depends on the solution
itself. Indeed, the problem P} (ug, ) can be written as

u(t, ) = /Q J(x = y)lult,y) — ult, )P~ (u(t,y) — u(t, z)) dy + ¢(z, u(z))
(t,x) €]0,T[x€,
u(0,z) = up(x), =€Q,

where
a@wm>=/’fJ@—yWMum—umeF%wnw—qu»@.
Qs\Q

In the homogeneous case, ¥ = 0,

ol u(z)) = - (/Q @ J(z—y) dy) Ju(t, )P~ 2ult, x).

This problem is a nonhomogeneous Neumann problem (see [5]) with a prescribed flux
given by ¢.

Let us finish the introduction by collecting some notations and results that will
be used in the sequel. Following [7] (see also [2]), let

(1.4) X(Q)={ze L*(QLR") : div(z) € L'()}.

If z € X(2) and w € BV (Q)NL>®(Q), we define the functional (z, Dw) : C§°(©2) — R
by the formula

wpdiv(z) de — / wz-Vodz.
Q

(1.5) «%&%@=—/

Q
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A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION 1821

Then (z, Dw) is a Radon measure in €,

(1.6) /(Z,Dw) = / z-Vwdz
Q Q
for all w € WH1(Q) N L>(2) and

(17) ] / <z,Dw>‘s [ (0wl < el [ 100l

for any Borel set B C ().

In [7], a weak trace on 0 of the normal component of z € X () is defined.
Concretely, it is proved that there exists a linear operator -+ : X(Q) — L*°(99Q) such
that

7(2)lleo < 2llo0s

and
v(2)(z) = 2(z) - v(z) forallz € 0N if 2€C' (QRY).

We shall denote 7(z)(x) by [z, v](z). Moreover, the following Green’s formula, relating
the function [z, v] and the measure (z, Dw), for z € X(Q) and w € BV (Q2)NL>®(Q),
is established:

(1.8) /Qw div(z) dx + /Q(z;Dw) = /m[z,z/]w dHN L

Organization of the paper. The rest of the paper is organized as follows. In
the second section we prove the existence and uniqueness of strong solutions for the
nonlocal p-Laplacian problem with Dirichlet boundary conditions for p > 1 and we
show that our model approaches local p-Laplacian evolution equation with Dirichlet
boundary condition. In section 3 we study the Dirichlet problem for the nonlocal total
variation flow, proving convergence to the local model when the problem is rescaled
appropriately as well. Finally, in section 4 we study the case p = oo, obtaining a
model for sandpiles with Dirichlet boundary conditions.

2. The case p > 1.

2.1. Existence of solutions for the nonlocal problems. We first study
Pl;l(uo,w) from the point of view of nonlinear semigroup theory ([15], [28]). For
that we introduce in L' (Q) the following operator associated with our problem.

DEFINITION 2.1. For 1 < p < +oo0 and ¥ : 27\ Q — R, such that |[¢|P~! €
LY (27 \ Q), we define in L!(Q) the operator Bziw by

By y(u)(z) = —/ I (@ = y)luly) — u(@)P~*(u(y) — u()) dy
Q

[ el - P ) - u@)dy, e,
Q,\Q

Remark 2.2. (i). We will set overall the section,

u(z) if x€Q,
up(z) = (x) if 2€Qs\Q,
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Therefore, we can rewrite

By y(u)(x) = —/Q J(@ = y)lug(y) — w@)P " (up(y) —u(@))dy, €.
(ii) If ¢ = 0, then

By o(u)(z) = —/ I (@ = y)luy) — u(@)P~*(uly) — u(z)) dy
Q

" </9J\Q T Wy) u(@)Pu(z),  zeQ

Remark 2.3. It is easy to see that

(i) Ify =0, BZ;{ o 1s positively homogeneous of degree p — 1,

(i) LP~Y(Q) C Dom(Bg_’w), if p>2.

(iii) For 1 < p < 2, Dom(B;)’ﬂp) = LY(Q) and BZ{J/J is closed in L'(Q) x LY(9).

We have the following monotonicity lemma, whose proof is straightforward.

LEMMA 2.4. Let1 < p < +o0, ¥ : Q;\Q — R, |[¢pP~t € L} (Q;\ Q), and
T :R — R a nondecreasing function. Then,

(i) for every u, v € LP(Q) such that T'(u —v) € LP(Q), it holds

/Q (B yu() — BY yo(x)) T(u(x) — v(x))dz

en =3 ) [ @) T - o) - Tlup(e) - oa))
(I () — o )Pt (1) — ()
~ Jou(y) — v (@0 () — vy (2))) dyda.

(i) Moreover, if T is bounded, (2.1) holds for u, v € Dom(B;) ).
We have the following Poincaré’s type inequality.
PROPOSITION 2.5. Given  a bounded domain in RY, J : RN — R a nonnegative,
radial, continuous function, such that f]RN J(2)dz >0, p>1and ¢ € LP(Q;\ Q),
there exists A = A(J,Q,p) > 0 such that

e2) A [ ) do < /Q /2 I lusly) (@) dyd + /Q']\Q|w<y>|pdy
for all uw € LP(£).

Proof. First, let us assume that there exist r,a > 0 such that J(z) > « in B(0,r).
Let

By={ze€Q,;\Q : d(z,Q) <r/2},
Blz{l‘EQ : d(l‘,BQ)ST/2},

Bj:{er\ug;in : d(x,Bj_l)Sr/Z}, j=2.3,...

Observe that we can cover €2 by a finite number of nonnull sets {B; }57':1. Now

L, 2=l —w@p ez [ gl - @l s,
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j=1,...,l., and

/ [, el sy
> // J(z -yl |pdydx—// )l (o)1 dy da

- 5 ( /B j_lJ(a:—y)dy) |u<m>|’”d“"‘/3,_ (/B

J(z —y) dx) [uy () [P dy
1 . /

> — min
2p er B,

Ho =y [ pu@)lde=5 [ lusto)p v

where 3 = [, J(z)dz. Hence

/Q /ng J(z — y)|uy(y) — u(@) P dy dz > o /B]- |u(x)|r>cla:—ﬁ/3j_1 luy ()P dy,

where

1
o = —mm/ J(x —y)dy > 0.
2r z€B; JB,_,

Therefore, since uy(y) = ¥(y) if y € Bo, uy(y) = u(y) if y € Bj, j = 1,....1,
BN B; =0, for all i # j and |[Q\ UJ_, B;| = 0, it is easy to see that there exists
A = A(J,€,p) > 0 such that

[l < A// J(z = y)lu(y) —u<x>|pdydw+x/30 P

The proof is finished by taking A = A~
In the general case we have that there exist a > 0 and r, @« > 0 such that

(2.3) J(x) > a in the annulus A(0, a, ).

In this case we proceed as before with the same choice of the sets B; for j > 0 and
B_j= {a? €\ (Q U u-;;;})B,k) s d(z, B_jp1) < r/2} . j=1,2.3,...

Observe that for each B;, j > 1, there exists Bj;e. with j¢ < j and such that

(2.4) |(x + A(0,a,7)) N Bje| >0 Vz € By.

With this choice of B; and taking into account (2.3) and (2.4), as before, we obtain

//Q (= y)lely) ~ulz "’dyd”//P )|y (y) — u(x)|? dy de

zaj/ ju(z) |”dx—6/ i (9)IP dy.
B; Bje

j=1,...,1., where
1.
aj:—pmln/ J(x—y)dy >0

and 0 = fR ~ J(x)dx. And we conclude as before. ]
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Remark 2.6. Note that in [5] it is proved a Poincare’s type inequality for Neumann
boundary conditions, but assuming that J(0) > 0 (otherwise there is a counterexam-
ple). Surprisingly, for the Dirichlet problem we do not need positivity at the origin for
J. This is due to the fact that for the Dirichlet problem the outside values influence
the inside values.

In the next result we prove that By, is a completely accretive operator (see [14])
and verifies a range condition. In short this means that for any ¢ € LP(Q) there is
a unique solution of the problem u + Bqu = ¢ and the resolvent (I + BI‘)’,w)’1 is a
contraction in L4(£2) for all 1 < g < 4o00.

THEOREM 2.7. Let 1 < p < 4oo. For ¢ € LP(Q;\ Q), the operator B{iw is
completely accretive and verifies the range condition

(2.5) LP(Q) C Ran (I + B} ).

Proof. Given u; € Dom(BI;’)w)7 i = 1,2, by the monotonicity Lemma 2.4, for any
g€ C*(R), 0 <¢ <1, supp(q’) compact, 0 ¢ supp(q), we have that

/Q (B}‘,I,wul(x) - Bz‘idjug(x)) q(uq(z) — uz(z)) dz > 0,

from where it follows that B, is a completely accretive operator (see [14]).
To show that B o satlsﬁes the range condition we have to prove that for any

¢ € LP(Q) there exists u € Dom(BJw) such that ¢ = u + Bb],
Assume first p > 2. Let ¢ € LP(Q) and set

K={well(Qy) : w=1v¢inQ;\Q}.

We consider the continuous monotone operator A : K — LP' (Q;) defined by

Aw)(z) = w(z) - / J(@ = y)lw(y) — w(@)|">(w(y) — w(x)) dy.

Qs

A is coercive in LP(2;). In fact, by Proposition 2.5, for any w € K,

w/Qw /Q/Q (2 — Plwy) — w(@)P~(w(y) — w(z)) dyw(z)ds
s /Q J /| I = () — (o) dyd

1 1
! / / T = oy (y) ~ w@)? dyde > 2wl q) 2 / P,
2 Ja Qy 2 Q7\Q

Therefore,
/ A(w)w
lim CALT S

HwHLv(QJ) — 400 ||w||LP(QJ)
we K

| \/

v

= +o00.

Now, since p > 2, we have the function ¢y € L’ (€s). Then, applying [32, Corol-
lary II1.1.8] to the operator B(w) := A(w) — ¢y, we get there exists w € K, such
that

wlz) - / J(& —p)wly) — w(@)P2(w(y) — w() dy = dp(z)  forall e Q.
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Hence, u := w)q satisfies
u(z) — /Q I (@ = y)luy(y) — u(@) P~ (up(y) —u(z))dy = ¢(z)  forall zeQ,

and, consequently, ¢ = u + Bz{,w“'
Suppose now 1 < p < 2. By the results in [5], we know that the operator

Blu(e) =~ [ o~ y)luly) - u(@) *(u(y) - ula)) dy
Q

is m-accretive in L'(Q) and satisfies what is called property (My); that is, for any
g€ C*(R), 0 < ¢ <1, supp(q’) compact, 0 ¢ supp(q), and (u,v) € By,

/ q(u)v > 0.
Q
On the other hand,

pla,r) = / T - )() — PR () - 1) dy
Q\Q

is continuous and nondecreasing in r for almost every x € €, and an L' (Q) function for
all r. Therefore, by [3, Theorem 3.1], Bz‘iwu(x) = Bju(x) + o(x,u(x)) is m-accretive
in LY(9). d

Remark 2.8. If B;iw denotes the closure of Bi],w in L'(Q), by Theorem 2.7, we
have B}id} is m-completely accretive in L'() (see [14]). Therefore, by the nonlin-
ear semigroup theory (see [15] and [14]), there exists an unique mild-solution of the
abstract Cauchy problem

(2.6) {“'(t) + Bl ut)=0, te(0,T),

u(0) = ug,

given by the Crandall-Liggett exponential formula
e~ tBrvyy = lim (I + EBJ >" Ug.
poy n Y

Now, due to regularity results for mild solutions, under certain hypothesis, this mild
solution is a strong solution of the abstract Cauchy problem (2.6) (see [14]) which
means, for our problem PZ;] (up, ), a solution in the sense of Definition 1.1.

The following result states the existence and uniqueness results for Pz{ (ug, ).
From it, Theorem 1.2 can be derived.

THEOREM 2.9. Assume p > 1. Let T > 0, ¢ € LP(Q;\ ), and vy € L*(Q).
Then, there exists a unique mild-solution u of (2.6). Moreover,

(1) if up € LP(S2), the unique mild solution u of (2.6) is a solution of Py (ug, V)
in the sense of Definition 1.1. If 1 < p < 2, this is true for any ug € L*(R2) and any
¥ such that [P~ € L1(Q;\ Q).

(2) Let ujo € L*(Q) and u; a solution in [0,T] of B (uig), i = 1,2. Then

/(ul(t) —uy(t))T < /(Ulo —ugg)t  for every t €]0,T].
Q

Q
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Moreover, for q € [1,+00], if u;g € LY(Q), i = 1,2, then
[ur(t) —u2(®)llLe(e) < lluro — u2ollLa)  for every t €]0,T.

Proof. As a consequence of Theorem 2.7 we get the existence of mild solution of
(2.6) (see Remark 2.8). Now, due to the complete accretivity of Bﬁ],w and the range
condition (2.5), by regularity results for mild solutions (see [14]), u(t) is a strong
solution, that is, a solution of PpJ (ug,) in the sense of Definition 1.1. Moreover, in
the case 1 < p < 2, since Dom(B; ;) = L'(Q) and By , is closed in L'(Q) x L(9),
the result holds for L'-data. Finally, the contraction principle is a consequence of the
general nonlinear semigroup theory ([15], [28]). 0

2.2. Convergence to the p-Laplacian. Our main goal in this section is to
show that the solution to the Dirichlet problem for the p-Laplacian equation Dj,(uo, zz)
can be approximated by solutions to suitable nonlocal Dirichlet problems Pp‘] (up, ).

Let us first recall the following result from [5]. For a function g defined in a set

D, we define
_ glx) ifzxeD,
g(z) =

0 otherwise,

and we denote by Xp the characteristic function of D.

PROPOSITION 2.10 ([5]). Let 1 < q < 400, D a bounded domain in RY,
p:RY — R a nonnegative continuous radial function with compact support, noniden-
tically zero, and pn(x) = n™p(nxz). Let {fn} be a sequence of functions in L(D)
such that

1) | 18200 = 5@ty =) oy < M .

1. If {fn} is weakly convergent in L1(D) to f, then
(i) if ¢ > 1, f € WH4(D) and moreover

folz+52) = f.(2)

T = (p(e)" 2 V f(x)

(p(2)) Xp (x n i)

weakly in LY(D) x LI(RN);
(ii) if ¢ =1, f € BV(D) and moreover

()X ( N ;Z> Fu(t %/Zr)z ~£.0)

— p(z)z-Df

weakly as measures.
2. Assume D is a smooth bounded domain in RN and p(x) > p(y) if |z| < |y|. Then
{fn} is relatively compact in L1(D) and, consequently, there exists a subsequence
{fn.} such that
() f g > 1, fu, — [ in LI(D) with | € W"4(D);
(i) If g =1, fn, — f in LY(D) with f € BV(D).
Let us now recall some results about the p-Laplacian equation
u = Apu in |0, T[x 4,
Dy(uo, ) {u=1 on 0, T[x09Q,
u(0,2) = up(x) in Q.
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In the case 1[) ewl/ p/’p(ﬁQ), associated to the p-Laplacian with nonhomogeneous
Dirichlet boundary condition, in [2] it is defined the operator A, ., C L'(Q) x L*(Q)
as (u, ) € A if and only if 4 € LY(Q), u e Wq}’p(Q) = {u € WP(Q) : ulpg =

P HY=! —a.e. on 09} and
/Q |VulP2Vu - V(u —v) < /Qﬁ(u —wv) forevery ve€ Wi’p(ﬂ) N L=(Q).
This inequality is equivalent to
/Q |Vu|P~2Vu - Vw = /Qﬁw for every w € Wy *(Q) N L=(Q).

Moreover, for ¢ € W/?"(9Q) N L (09), A, ; is proved to be a completely accretive
operator in L'(Q), satisfying the range condition L>°(Q) C Ran([ + A, ;), and it is

1
easy to see that D(Am/;)L @ _ L'(Q). Therefore, its closure A, 7 in L'(Q) x L*(Q)
is an m-completely accretive operator in L'(Q2). Consequently, for any uy € L*(Q)
there exists a unique mild solution u(t) = e .0y of the abstract Cauchy problem
associated to Dy, (uo, 15), given by Crandall-Liggett’s exponential formula. Due to the
complete accretivity of the operator 'Ap,d?v in the case uy € D(-Ap,u?) this mild solution
is the unique strong solution of problem D, (ug, ).

In the homogeneous case ¢ = 0, due to the results in [13], we can say that for
any ug € L'(Q), the mild solution u(t) = e~ *Ar.0uy is the unique entropy solution of
problem D, (ug,0).

For given p > 1 and J, we consider the rescaled kernels

1

C T _
Tpe(@) = 3% J (g) . where  Cjli=c /RN J(2)|2n [P dz

is a normalizing constant in order to obtain the p-Laplacian in the limit instead of a
multiple of it.

PROPOSITION 2.11. Let Q be a smooth bounded domain in RN and let 1]) €
W/P'2(9Q) N L(R). Let o € WHP(Q) N L®(Qy) such that ¥)aoq = . Assume
J(x) > J(y) if |z| < |y|. Then, for any ¢ € L>=(£),

2.8 r+B%)" [+A4.) ¢ inLr® 0
(2.8) ( + p,w) (bﬂ( + p,df) ¢ in LP(Q) ase — 0.
Proof. We denote

QE ::QJ

P,

.= Q+supp(Jp.e).
7 —1
For ¢ > 0 small, let u, = (1 n Bz‘)j’;) ¢. Then,

(2.9) /ngv a gi’i, /Q/QEJ (x ; y) |(ue)y (y) — ue(z)|P~2

% ((us)y(y) — us(2)) dy v(z) dz = /Q ov

for every v € L™(12).
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Let M :=max{|[¢|| L (), [, }. Taking v = (u. — M)* in (2.9), we get

[ e uete) - 2yt - £ / / (22) lw)olo) - ucto)p

w(y) - ua(x)) dy(us( ) )+ dx
/ ¢ us - dx.

Now
C P p—2
piN L () 101600 welo)P (o) = o))
X (ue(x) — M)t dx
C P T — p—2
S [ () 10060 — o) (w)ol) — (o)
X ((ue)ole) — M)*do
C P T — p—2
= ot | () 10000 = @l s 0) = (o)
X ((w)oly) = MY* = () () — M)*) dyd
> 0.
Therefore,

/ e () (e () — M)z < / () (ue(x) — M)* da.
Q Q

Consequently, we have

[ (wela) = M (ucla) = M)t < [ (9a) = M) (uelo) — M) do <0,
Q Q

and ue(z) < M for almost all z € Q. Analogously, we can obtain —M < u.(z) for
almost all z € Q2. Thus

(2.10) llue| Loy <M for all e >0,
and, therefore, there exists a sequence ¢,, — 0 such that
u., —u weakly in L'(€).
Taking v = u. — ¢ in (2.9) we get

R T e

X ((ue)y(y) — (ue)y(x)) dy ((u s)w(w)*w(x))dfv:/cﬁ(ueflb)-

Q

Now, by (2.11) and (2.10),

Cop [ [ 7(222) Lot —tuutat

_ o / / ( ) w(y)—(ue)w(x)\p_l|¢(y);¢(x)|dydx—|—M1.

- ZSN gp—1
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Since ¢ € WHP(Q ), using Young’s inequality, we obtain

giN /QE /QE ; (a: ; y) [(ue)y (y) ;p(ue)w(”fﬂp dydx < M.

Moreover,
/Q / ;J(r;y) <u5>w<y>;<ua>w<x) "
- /Q /Q L (| (S ROEEHCT
e s K
et f o ([ e
_/Q/Q;VJ x;y> (Us)w(y);(ue)w(x)l’dwdy
B N CE TSR
/QJ\Q /QJ\Q % ($;y> ‘w(y);w) ’ dx dy < Ms.

Therefore, by Proposition 2.10, there exists a subsequence, denoted as above, and
w € WHP(Q) such that

(ue, )y — w strongly in LP(Q;).

Hence, w = u in © and, by [18, Proposition IX.18] and the properties of the trace,
u € Wé’p(ﬂ). Moreover, by Proposition 2.10,

(2.13)
1/p " T +en2) — (ue z » 1/p
(S25)) " Xalo+ oy Ml T2 = (el (G ) gt

En

weakly in LP(Q) x LP(RY) (observe that Xq(z + £,2)(ue, )y (x + €,2) = Xa(z +
EnZ)Ue, (x + £,2)). We can also assume that

p—2

(J(z))l/pl (Ugn)w(x + 57;2) — (usn)¢(x) Xan (Qj + EnZ)
x WenJu (@ ¥ ens) = (Wen)ol®) _ (j1 (s, 2)

En

weakly in LP' (Q) x LP (RY), for some function y € L? () x L¥' (RN).
Passing to the limit in (2.9) for € = ¢,,, we get

(2.14) /uv—i—/RN/ CJ’pJ x(z z)z-Vv(x)dxdz:/Qqﬁv

for every v smooth with support in 2 and by approximation for every v € WO1 P(Q).
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Finally, working as in Proposition 3.3. of [5], we can prove
CJp p—2
(2.15) —2J(z)x(z,2)z - Vv(x)dedz = | |Vu|"""Vu- Vo
Ry Jo 2 Q

and the proof is finished. 0
From the above Proposition, by the standard results of the nonlinear semigroup
theory (see [19] or [15]), we obtain Theorem 1.3.

3. The nonlocal total variation flow. The case p = 1.

3.1. Existence of solutions for the nonlocal problem. This section deals
with the existence and uniqueness of solutions for the nonlocal 1-Laplacian problem
with Dirichlet boundary condition,

- u(t,y) - U(t7x)
u(t,x) = /Q J(r — y)m @Y
_|_

PJ(U07'(/J> T — w(y) _UJ(tax) T
1 /QJ\Q J( y)—w( . dy, c Q.

(0, z) = up(x).

As in the case p > 1, to prove existence and uniqueness of solutions of Py (ug,))
we use the Nonlinear Semigroup Theory, so we start by introducing the following
operator in L'(Q).

DEFINITION 3.1. Given 1 € L'(Q;\ Q), we define the operator B{w in LY(Q) x
LY Q) by € Bi],¢u if and only if u,4 € L'(Q), there exists g € L®(Qy x Qy),
g(x,y) = —g(y,x) for almost all (x,y) € Qs Xy, |lgllec <1,

(3.1) a(z) = —/Q J(x—y)glx,y)dy ae x€Q,
and
(32)  J(@—y)g(z,y) € J(z —y)sign(u(y) —u(x)) a.e (z,y) € 2xQ,

(3.3)  J(z—y)g(x,y) € J(z—y)sign(P(y) —u(z)) a.e (x,y) € Qx (Q2;\Q).

Remark 3.2. Observe that
(i) we can rewrite (3.2) 4+ (3.3) as

(3.4) J(x—y)g(z,y) € J(x —y)sign(uy(y) —u(z)) ae. (z,y) € QxQy,
where we set as above, and overall the section,

u(z) if zeQ,
up(z) == P(x) if 2€Qs\Q,
0 it x ¢y

(i) It holds L'(Q) = Dom(BY ;) and By, is closed in L'(Q) x L'(9).
(iii) It is not difficult to see that, if g € L>(Q; x Q), g(x,y) = —g(y,x) for
almost all (z,y) € Qs x QJ, |9l <1,

J(x—y)g(z,y) € J(x —y) sign(z(y) — z(z)) ae. (x,y) € Uy x Qy
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is equivalent to

/Q,/Q, T = ygly)dy(z /ﬂz/m x—y)|2(y) — 2(z)| dy da.

THEOREM 3.3. Let ¢ € L*(Q;\ Q). The operator B{ 1.y is completely accretive
and satisfies the range condition

L>() C Ran (I + By ;).
Proof. Let 4; € B i, @ = 1,2, and set u;(y) = ¥(y) in Q \ Q. Then, there

exist g; € L0 x ). gl < L :(w.) = —g:(v.), J(z — p)g(z,y) € Iz —
y)sign(u; (y) — u;(x)) for almost all (x,y) €  x Qj, such that

di(x) = — /Q I — gz, y)dy ae. z e
for i = 1,2. Given g € C®(R), 0 < ¢’ < 1, supp(¢’) compact, 0 ¢ supp(q), we have
| (3(0) = a0t @) ~ va(a) d
=5 | [ 7@ =)@ — 02(o.9) (s () = ) = a1 (2) = wa(a)) oy
-/ V@) ) () () dedy

> 5 [ 7@ = 0)0r(9) — 92(0.9) (alus () = va(a) = a0 (2) = wa(a)

Now, by the mean value theorem

J(@ —y)(g1(2,y) — g2(z,y)) [q(u1(y) —
= J(x —y)(91(2,9) — g2(x,9))d (€) [(u
= J(x = y)d' (&) [g1(z,y) (w1 (y) —ur(z

—J(z —y)q' (&) [g2(x, y) (u1(y)

u2(y)) — q(ur(z) — ug(x))]

1(y) = u2(y)) — (ur(z) — ug(2))]

) = g1 (2, y)(ua(y) — ua(2))]

—u1(z)) = g1(, y) (u2(y) — ua(z))] =0,

J(@ = y)gi(z,y)(ui(y) —wi(z)) = J(x = y)lui(y) —wi(z)|, =12,
and
—J(z = y)gi(z, y)(u;(y) — uj(2)) = =J(x — y)|u;(y) —u;(@)|, @ #].
Hence

/Q (i1 () — tia(2)) (s () — wa()) d > 0,

from which it follows that Bﬂ p isa completely accretive operator.
To show that Bi],w satisfies the range condition, let us see that for any ¢ € L™ (Q),

Jim. (I+B),) "¢=(+Bl,) ¢ weakly in L'(Q).

We prove this in several steps.
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Step 1. Let us first suppose that 1 € L>(Q;\ Q). For 1 < p < +00, by Theorem
2.7, there is u, such that u, = (I + B} ,)"'¢, that is,

(3.5)  up(w) - /Q I (@ = y) [(up)yp(y) — up(@) P72 ((up) 4 (y) — up(x)) dy = ¢(),

a.e. © € Q. It is easy to see that ||up|lcc < sup{||¢lleo, ||¥]|oc }- Therefore, there exists
a sequence p, — 1 such that

up, — u  weakly in L*(9).

n

On the other hand, we also have

i/ /Q T =) |(up,)p(y) = (up, )y (@)™ dydz < My, ¥neN.

Consequently, for any measurable subset F C 25 x Q;, we have

\ / /E J(@ = )|t ) (0) — (o @) P2 ((ttp, (9)) — (21 ) ()
</ /E J(& = )| (up ) () — (up, ) (@)~ < My |7

Hence, by the Dunford—Pettis theorem we may assume that there exists g(x,y) such
that

T(@ = )l (up, )y (y) = (up, (@) (up, )y (y) = (up, ) () = I (z = y)g(x,y),

weakly in L1(Q; x Qy), g(z,y) = —g(y,z) for almost all (z,y) € Q; x Q;, and

lglloe < 1.
Therefore, by (3.5),

(3.6) u(x) — ; J(x—y)g(z,y)dy = ¢(z) ae xz€.

Then, to finish the proof it is enough to show that

[ gt dyu (o) de
Qs JQy
=5 || @l vl dy e
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In fact, by (3.5) and (3.6),

5 [ [ =060 - (o )e@P dydo= [ u, = [,
Q5 JQy Q Q

[ I 0 )~ )o@ 60) ~ (un,)ol)) dyia) da
QN\QJQ;

_/¢u—/Quu—/¢ ) /2u(u—u,,n)—/ﬂ(u—um)(u—um)

- / B / (@ =) [@) — () (@)% () — (up, ) (@) dy () de
a)aJa,

s—/ﬁj /Q J(z—y)g(w)dyu(x)dw—/§2¢<u—upn>+/ﬂ2u<u—upn>
+ /Q . /Q I = ol ) dy(a) de
- / B / J(@ — 9 [0(y) — (up, ) @2 () — (up, (@) dy (x) da,
QJ\Q Qy
and so,

lim sup — / / (x —y) lup, (y) — up, (x)|"" dydz
n—-+00 Q;JQ;
- [ [ 3=t dyuiz) da.
aJa

Now, by the monotonicity Lemma 2.4, for all p € L>°(Q),
- /Q A J(x = y)lp(y) — p@)[P"~2(p(y) — p(x)) dy (up, () — pl(z)) dz
J J

- /Q A I (@ = y)lup, (y) = wp, ()7 72 (up, (y) = up, (2))dy(up, () — p(z))dz.
Taking limits,

- /Q [ = ) sna(o0) = pla) dy (u(e) = p(o) o
- / J(& — y)g(z,y) dy (u(z) — p(z)) de.
Q, Jo,

Taking now, p = u + Au, A > 0, and letting A\ — 0, we get (3.7), and the proof is
finished for this class of data.

Step 2. Let us now suppose that ¢~ is bounded. Let v,, = T}, (¢), n large enough
such that 1, =1 ~. Then, {¢,} is a nondecreasing sequence that converges in L' to
1. By Step 1, there exists u,, = (I—l—B‘]dj )~1¢, that is, there exists g, € L (2;xQy),
gn(T,y) = —gn(y, x) for almost all (z,y) € Q5 x Qy, ”gnHoo <1,

(3.8) Un(x) — /Q J(@x—y)gn(z,y)dy = d(x) ae x€

and

// (@ = 1)gn (2, 9) dy (un )y, (2) da
-2 / / (@ = )| (), (4) — (un) g, (2)]| dy .
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Therefore, by monotonicity,

/ / ((un)wn - (un+1)¢n+1) ((“n)wn - (“n+1)1¢)n+1)+ <0,
QyJQy

function u in L2. On the other hand, we can suppose that J(z — y)gn(x,y) converges
weakly in L? to J(z—y)g(x,y), g(x,y) = —g(y, z) for almost all (z,y) € Q5 xQs, and
l9lloc < 1. Hence, passing to the limit in (3.8) and (3.9) we obtain u = (I+B{w)_1¢.
Step 3. For a general v € L*(Q\ Q), apply Step 2 to ¥, = sup{t), —n} and use
monotonicity in a similar way to finish the proof. 0
Proof of Theorem 1.5. As a consequence of the above results, we have that the
abstract Cauchy problem

which implies u,, < 4p4+1. Since {u,} is bounded in L*> we have {u, } converges to a

(3.10) {“/(t) + B yu(t) 30, te(0,T),

u(0) = ug

has a unique mild solution u for every initial datum ug € L*(Q) and T > 0 (see [15]).
Moreover, due to the complete accretivity of the operator Bi], - the mild solution of
(3.10) is a strong solution ([14]). Consequently, the proof is concluded. 0

3.2. Convergence to the total variation flow. Let us start recalling some
results from [1] (see also [2]) about the Dirichlet problem for the total variational flow,
that is,

 (w=aiv(By) 0T,
D (ug,v) u = 1[1 on |0, T[x 01,

u(0,2) = up(x) inQ,

with 1 € L1(99Q).

THEOREM 3.4 ([1]). Let T > 0 and ¢ € L*(99). For any uo € L'(R) (L*(2))
there exists a unique entropy (strong) solution u(t) of Dy (ug,)).

Associated to —div(%) with Dirichlet boundary conditions, in [1] it is defined
the operator A; C LY(Q) x L1(2) as follows: (u,v) € Aj if and only if u,v € LY(Q),
q(u) € BV(Q) for all g € P :={qg € WH°(R) : ¢ > 0,supp(q’) is compact}, and
there exists ¢ € X () (where X (2) is defined by (1.4)), with ||{|lcc < 1, v = —div(()
in D'(Q) such that

1) [ =gy < [ (€ Dw =g+ [ jw=a(3)1= [ law-a ()

for every w € BV(Q2) N L>°(Q) and every ¢ € P. Also in [1] it is proved that the
following assertions are equivalent:

(a) (u,v) € Ay,

(b) u,v € LY(Q), q(u) € BV(Q) for all ¢ € P, and there exists ¢ € X(Q2), with
Illoo <1, v = —=div(¢) in D'(Q2) such that

(3.12) /Q (¢, Dq(w)) = |Da(w)] Y qeP,

(3.13) [¢,v] € sign (q (1&) — q(u)) HN! _qge. on 99, VqgeP.
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Moreover, it is shown that A; is an m-completely accretive operator in L!(Q2) with
dense domain and that for any ug € L'(2), the unique entropy solution u(t) of problem
D1 (ug, ¥) coincides with the unique mild solution e~ uq given by Crandall-Liggett’s
exponential formula.

Now, given J, we consider the rescaled kernels

C x : - 1
Jie(x) = gli’zle (g) , with CJ,} =g /RN J(2)|zn]| dz,

that is, a normalizing constant in order to obtain the 1-Laplacian in the limit instead
of a multiple of it.

PROPOSITION 3.5. Let  be a smooth bounded domain in RN and ¢ € L>(99).
Let p € WHH(Qy \ Q) N L®(Qs \ Q) such that plog = ©. Assume J(z) > J(y) if
|z| < y|. Then, for any ¢ € L>(Q),

(3.14) ([ + BJ1 E) ¢ — (I + .Aq;) ¢ strongly in L*(Q) as € — 0.

Proof. Given € > 0 small, we set u. = (I + B‘]1 v )~ 1¢ and denote
Qe :=Qy . =Q+supp(Jie).

Then, there exists g. € L*(Q x ), g-(z,y) = —gc(y, ) for almost all (z,y) €
Qs X Qs, ||gg||oo < 1, such that

7 (52 e € 7 (T2 ) sienucts) ) e o) €22

7 (B2 e € (T2 ) simn(i) - wele))  ae (o) € 2% (2\D)

and

C _
(3.15) ue () — Eli’}v/ﬂ J (x y) ge(x,y)dy = d(x) a.e. xz € Q.

3

Therefore, for v € L> (), we can write

fytamiaraa =5 [ ] (%5
z/Qcﬁ(a:)v(x)dx

Observe that we can extend g, to a function in L>(Q; x Qy), g-(z,y) = —g-(y, )
for almost all (z,y) € Qs x Qy, [|gellz(n,) < 1, such that

) ge(x,y)v(z) dy dx
(3.16)

7 (52Y) aetey € 7 (22 ) sienu)ulo) ~ (o)) e (o) €2 x 9

Let M := max{|[¢|| L= (@), [¥[ L~ @, \a)}- Taking v = (ue — M) in (3.16), we get

[ ety - anyras - S5 [ (2

= [ d(@)(uele) — M)* da.
Q

) ge(z,y) (us(x) — M) " dy dx

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1836 F. ANDREU, J. M. MAZON, J. D. ROSSI, AND J. TOLEDO

S_ﬁv/ [
—;ﬂv/ [ (=

Hence, we get

) (2 9)(u2) () — M)+ dy d

) 9e (2 ) (((ue )y (y) — M)* = ((ue)y(z) — M)*) dy da

/ e (@) (e () — M)*dz < / () (ue(z) — M)*da.
Q Q
Consequently,
0< [ (uela) = M)(uew) = M) < [ (9e) = M) () = M) < 0

and we deduce u.(z) < M for almost all z € 2. Analogously, we can obtain —M <
ue(x) for almost all € Q. Thus

(3.17) el poe () < M for all e > 0;
from here, we can assume there exists a sequence &, — 0 such that

u., —u weakly in L'(€).

n

Taking v = u, in (3.16), we have
(3.18)

[romanae- S [ [ 9(7
Q et Jo Qe

Observe that
Cy, T —y
81+zlv/9/9 J< >gs(z,y)dyus(x) dzx

[ (m = y) 0e (&, ) dy(ue )y (w) da

+ 51+’N/Q \Q/Q J (x;y) 9= (, y)dyy(x) dx

C _

Eli’}v/ / J (w . y) 9e(x,y)dy(z)dx
Cia -y

< Sn / . / ( )dmw )lda
Cia T—y

<[ (] 972w

C“Mm \ Q| < M.

) ge (v, y) dyuc(v) dr = A o(z)ue(x)dz.

Then

| /\
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On the other hand,

SR

€
- QS‘TN (1‘ y) )y (y) — (ue)y(z)| dy dz.
(

)ga< y)dy(us) (x)da

3

Consequently, from (3.17) and (3.18), it follows that

Cra1 -y
(319) ok /Q /Q J( \(u )y ()| dy dz < M.

Let us compute,

s 9 (S ot = (et dyts
i [ (F2Y) 1ot - ool ave
QS{:N/Q Q]\Ej(xa
v g [T () ) = oty
eaeie [ () ) ety
Now, since ¢ € Wh1(Q, \ 0), we get
foi’iv /w L7 () 100t = ety
.

On the other hand, we have

CJI/ /
A

CJl

™
<

N— "

| y) — (ue)y(x)| dy dx

s)w(
e)u(

(u
[(u

() uy) = () ()| dy do
=)
(x— JECETLIPY

Q\Q. JQ\Q €

<M4@/ —/ J (2= ay ) de < M.
2 QJ\ﬁs N Qs €

With similar arguments we obtain

2501‘11N /Q /QJ\QE J (w ; y) |(ue)y (y) — (ue)y ()| dy dw < M.

Therefore,

@) e [ () 1)t o) dydo <
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In particular, we get

fo 2w (2)

By Proposition 2.10, there exists a subsequence, denote equal, and w € BV () such
that

(ue)y (y) = (ue)y(x)

9

drdy < My Vn eN.

(Ue, )y — W strongly in L'(€)

and

Cia

Cia 1l + epz)Hendeltens) = (we)u() | Con

En 2

(3.21)

weakly as measures. Hence, it is easy to obtain that

u(z) in xe€Q,

wlz) = uy(@) = {w(x) i orey\0,

and u € BV (Q).
Moreover, we can also assume that

(3.22) J(2)Xa, (x4 €,2)7., (v, 2 + en2) — Az, 2)

weakly* in L>(€Q;) x L (RY) for some function A € L*°(2;) x L=¥(RY), A(x, z) <
J(z) almost everywhere in Q; x RY. Taking in (3.16) v € D(Q), we get for ¢ = ¢,

small enough
Cia xT—y
ue, (z)v(z)dx — TN J g, (x,y)v(z) dy dx
Q En QJO En

_ /Q é(z)o(z) da.

(3.23)

Changing variables and taking into account (3.23), we can write

O‘”/ / 2)Xa(r + €,2)7,, (7,2 + en2) dz Uz +en2) = vlz) dz
RN

En

Cia

(3.24) =- 2)Xq(r +€,2)7. (v,2 + enz) dzv(x) do

RNJQ

- / (6(2) — ue, (2))u(x) dr.
Q

By (3.22), passing to the limit in (3.24), we get

5 /RN /QM% 2)2- Vo(z) dedz = /Q ((z) — u(a))v(z) dv

for all v € D(R2). We set ¢ = ((1,...,(nN), the vector field defined by

(3.25)

Q(m)::%/ Az, 2)z;dz, i=1,...,N.
2 Jan
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Then, ¢ € L=(Q;,RY), and from (3.25),
—div(() =¢—u in D'(Q).
Let us see that

¢l (,y < 1.

Given £ € RN \ {0}, let R¢ be the rotation such that Rf(€) = e1|¢]. If we make the
change of variables z = R¢(y), we obtain

()6 = [ Awz)e-edz= S [ A Relw)Relo) ¢y

C
=52 [ ARl .
RN
On the other hand, since J is a radial function and A(z, z) < J(z) almost everywhere,
1
o 7/ J(2)|z1| dz
2 RN
and
C@) &l = == | JWlldylel = 1€ ae. zeQy.
RN

Therefore, ||C]|z~(q,) < 1.
To finish the proof, that is, to show that u = (I + A@)_l(b, since u € L () and

e L>(09), we need only to prove that

(3.26) (¢, Du) = |Du| as measures in )
and
(3.27) [¢,v] € sign (1; — u) HN"! —ae. on 0Q.

Given 0 < ¢ € D(Q), taking € = ¢, and v = gu,, in (3.16), we get

7551111\7// ( >gen(ﬂfay)usn($)<p(x)dyd:c

Cia // -
3.28 = d J
(3.28) prme g ) A

- y) 0o, (2.9) (e, (9)0y) — e, (2)p()) dy d
— [ 6@ - vz, @), () (a) d
Q

Now, we decompose the double integral as follows,

_ Ch
In = 2€n1+N
where
1 L CJl
T 2¢, 14N

C T n2) —
/1 // 2) Xa(x +enz )|u5"(36+E ?) us"‘(x”@(x—i—snz)dzdx

) e (2.9) (e, ()0 () — e, (2)p(a)) dy e = L + IZ,
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1= gt [ (S50 g, ()6t0) - (o)) o

En

- C;’l//J(Z)Xﬂ(x+snz)gsn(z,x+5nz)uen(x)¢(z+€T;Z)*@(x) d= de.
aJa -

Having in mind (3.21), it follows that

lim I} > C‘]l// x)|z - Du| = /@\Du|.
n—oo Q

On the other hand, since
Ue, — U strongly in L'(Q),

n

by (3.22), we get

lim 12 = O / /R u@)A,2)z - Vile) dz dr = / w(@)C(x) - Vop(a) da.

n—oo 9]

Therefore, taking n — 400 in (3.28), we obtain

(3.29) /Q o|Dul + /Q w(@)((z) - Vp(z) dz < /Q (6(x) — u(@))u(z)p(z) d.

By Green’s formula,

[ 6) = ateputrpteyie = - |

:/Q;z(g,Du)jt/Qu(x)C(x)-Vw(w) dx

Since |(¢, Du)| < |Dul, the last identity and (3.29) give (3.26).

Finally, we show that (3.27) holds. We take w,, € W11(Q) N C(92) such that
Wy, = 1 HN"-a.e. on 9, and w,, — win L'(2). Taking v = vy := (e, )y — (W )y
n (3.16), we get

/ (6(2) — t1e, (2)) (11, (&) — w0y ()

diV(C)ug@dxz/g(C,D(@u))

Cia / / ( )
— en (T, Y) U n () dy dx
(3:30) S o o )¢ (T, y)vm,n(z) dy
_ CJ71 r—1Y
ot [ [T o) = v o)y
_H1+H71nn’
where

(e, )o@+ £02) = (e, ) (@) |
En

H! = @/ / J(2)Xq, (z + enz)
2 QJ RN

C
Hvznn: Jl/ / XQJ($+€nZ)g€ (I :E+5n )
' Q,JRN

% (Win)y (T + en2) — (Wm)y (@ )dzdx.
En

and
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Arguing as before,

Jim H}Lz/ |Du¢|:/|Du|+/ |u71§|dHN’1+/ V.
n—o0 o Q 0 QN0

On the other hand, since (w,,)y € WH(Q;), by (3.22),

. 2 o C.I,l
lim H;, , =——"—
n—oo 2

/ Az, 2)z - V(wpm)y(x) dzde = —/ C(z) - V(wm)y(x)de.
QRN Q

J

Consequently, taking n — oo in (3.30), we get
| (0(2) — u@) (@) = @) da

(3.31) ]
> /Q|Du|+/89’u—w’dHN —I—/QJ\QVM —/QJC(J:)-V(wm)w(x)dm.

Now,

— C(z) - V(wm)y(z)de = */QC(JC) - Vwpy,(x) de — /Q \ﬁ((x) -Vi(x) de

Qr
— [dvc@un(yde - [ Gian - [ @) Vi) e
Q oQ Q\Q
Since

[ ovel= [ @) Vewdszo,
Qs\Q QJ\Q
from (3.31), we have

/ (6(2) — (@) (u(z) — win()) de
Q

— | dHN T di m(2) dz — V) dHN L
z/Q|Du\+/m|u 7| dn +/Q VC (@) wm () de /mk VI dH

Letting m — oo, and using Green’s formula, we deduce

0> /Q|Du| +/89 lu — ] aHN +/Qdiv((:c)u(x) dx—/aﬂ[c, V] dHN 1

_ A N=1 N-1
= [+ [ ju=dla = [+ [ Couan
- / [¢, V] dHN
o0

By (3.26), we obtain

/ lu— | dHN ! < / (¢ v)( —u) dHN g/ lu — | dHN L
a0 a0 a0
Therefore,

[¢,v] € sign(ﬂ; —u) HN"L —ae on 09,

and the proof is finished. 0
From the above Proposition, by standard results of the Nonlinear Semigroup
Theory (see, [19] or [15]), we obtain Theorem 1.6.
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4. Limit as p — +o00. A model for sandpiles.

4.1. A model for sandpiles. Let sand be poured out onto a rigid surface,
y = uo(z), given in a bounded open subset © of R? with Lipschitz boundary 9. If
the support boundary is open and we assume that the angle of stability is equal to
7, a model for pile surface evolution was proposed by Prigozhin [35] as
(4.1) Owu+divg=f, uli=0 =uo, uloa = uolaa,

where u(t,z) is the unknown pile surface, f(¢,2) > 0 is the given source density,
and q(¢,x) is the unknown horizontal projection of the flux of sand pouring down
the pile surface. If the support has no slopes steeper than the sand angle of repose,
[IVuglloo < 1, Prigozhin ([35], see also [10], [29], and the references therein) proposed
to take @ = —mVu, where m > 0 is the Lagrange multiplier related to the constraint
[Vulw < 1 and satisfies m(||Vul|> — 1) = 0 and reformulated this model as the

following variational inequality:

(4.2)

{f(t, ) = ug(t) € Al ge(uey (u(t)),  ae. t €]0,T],
u(0, ) = ug(z),

where

K(ug) := {v e Wh>(Q) : [|[Vu|leo <1, v]oq = u0|39}.

Our aim is to approximate the Prigozhin model for the sandpile by a nonlocal
model (Theorem 1.8) obtained as the limit as p — 400 of the nonlocal p-Laplacian
problem with Dirichlet boundary condition (Theorem 1.7).

To identify the limit as p — 400 of the solutions u, of problem Pp‘] (ug, ) we
will use the methods of convex analysis, and so we first recall some terminology (see
[30], [17], and [8]). If H is a real Hilbert space with inner product ( , ) and ¥ :
H — (—o00,+o0] is convex, then the subdifferential of ¥ is defined as the multivalued
operator OV given by

ve ¥ (u) = Y(w)—TY(u) > @w,w—u) YweH.

The epigraph of ¥ is defined by Epi(¥) = {(u,A\) € H xR : A > ¥(u)}.
Given K a closed convex subset of H, the indicator function of K is defined by

0 if uwelkK,
+00 if u¢gK.
Then it is easy to see that the subdifferential is characterized as follows:

v€E€Ik(u) <= ueK and (v,w—u)<0 VweK.

In case the convex functional ¥ : H — (—o0, +00] is proper, lower-semicontinuous,
and min ¥ = 0 , it is well known (see [17]) that the abstract Cauchy problem

u'(t) + 0¥ (u(t)) > (1), a.e. t €]0,T7,
u(0) = uyp,

has a unique strong solution for any f € L?(0,T; H) and uy € D(0W).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION 1843

The following convergence was studied by Mosco in [34] (see [8]). Suppose X is
a metric space and A,, C X. We define
liminf A, ={z € X : 3z, € A,, x, — z}

n—o0

and

limsup A4, ={x € X : Jz,, € 4A,,, Tn, — T}
n—oo
In the case X is a normed space, we note by s — lim and w — lim the above limits
associated, respectively, to the strong and to the weak topology of X.
Given a sequence ¥,,, U : H — (—o0, +00] of convex lower-semicontinuous func-
tionals, we say that W,, converges to W in the sense of Mosco if
(4.3) w — limsup Epi(¥,,) C Epi(¥) C s — liminf Epi(¥,,).

n—oo n—0o0
It is easy to see that (4.3) is equivalent to the two following conditions:

(4.4) Vue D(P) Ju, € D(V,) : up, —u and ¥(u) > limsup U, (uy);

n—o0

(4.5)  for every subsequence ny, when up — u, it holds ¥(u) < limkinf U, (ug).

As a consequence of the results in [19] and [8] we can write the following result.
THEOREM 4.1. Let ¥,,, ¥ : H — (—00,400] convez lower-semicontinuous func-
tionals. Then the following statements are equivalent.
(i) W,, converges to W in the sense of Mosco.
(ii) (L +200,) tu — (I4+X0¥) 'y, VA>0, ueH.
Moreover, any of these two conditions (i) or (ii) imply that
(iii) for every ug € D(OY¥) and ug, € D(0¥,) such that ug ., — ug, and every
fns [ € L2(0,T; H) with f,, — f, if un(t), u(t) are the strong solutions of the abstract
Cauchy problems

ul (£) + 00Uy, (un(t)) > fn, a.e. t€]0,T],
un(0) = g,
and

' (t) + 0¥ (u(t)) 2 f, a.e. t€]0,T],
u(0) = uyo,

respectively, then

Up — U in C([0,T]: H).

4.2. Limit as p — 400. Let us consider the nonlocal p-Laplacian evolution
problem with source

unlt, x>=/ﬂ J(& = p)lult,y) — ult,2) P2 (ult,y) — ult,2))dy + F(t,2),

PZ;](Uo,”(/},f) (t,l’) G}OaT[XQ7

u(t,z) = ¥(z), (t,2) €]0,T[x (s \ Q),
u(0,z) = uo(x), x= €.
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This problem is associated to the energy functional
J 1 P
Ghp(u) = o= J(x —y)lu(y) — w(z)]” dy dx
2p Jo Ja
1
b [ gl - u@P dyda,
pJaJa\a

With a formal calculation, taking limit as p — 400, we arrive to the functional

0 if |u(z) —u(y)| <1, forz,y € Q
J and [ (y) —u(z)| <1, forz e Qye;\Q,
Goop(u) = with x — y € supp(J)
+00 in the other case.

Hence, if we define
KoJo,¢ =ue L*Q) : and [¢(y) —u(x)| <1, forz e QyeQ\Q, 7,
with  — y € supp(J)

we have that the functional Ggo,w is given by the indicator function of K é]o,w that is,
Ggo,w =1Ips R Then, the nonlocal limit problem can be written as

F(t) = u(t) € OLics  (u(t), ae. t €]0,T],

P (ug, v,

Proof of Theorem 1.7. Let T > 0. By Theorem 4.1, to prove the result it is
enough to show that the functionals

1 P
Gl =5 / / J (& — y)luly) — u(@)P dy dx

1 p
+2 /Q /Q ) @ dyde

converge to

0 if |Ju(z) —u(y)| <1, for z,y € Q
J and |[¢(y) —u(x)| <1, forz e QyeQs\Q,
Giop(u) = with 2 — y € supp(J)
+00 in the other case

as p — +00, in the sense of Mosco. First, let us check that

(4.6) Epi (Ggo’w) C s — liminf Epi (G;ﬂp) .

p—+o0

To this end let (u, ) € Epi(Ggoﬂp). We can assume that u € Ké]o,w and A > 0 (as
G, ,(u) = 0). Now take

(4.7) vp =1 and Ap = Giw (u) + A
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Then, as A > 0 we have (v, A,) € Epi(Gy ). Obviously, v, = u — u in L*(Q), and
as u € KOJ<> e

a7 (u 2p// 2 — y)luly) — u(@)|P dydz
1 / /Q D) e dyds

< // x —y)dydx + - // J(x —y)dydx — 0
2p Q\Q

as p — +o0o. Therefore, we get (4.6). Finally, let us prove that
(4.8) — lim sup Epi (G ») C Epi (G;’o,w) .

p—+too

To this end, let us consider a sequence (uy,,Ap;) € Epl(G ); that is, G w(up;) <
Ap,, with

Up, — U, and Ap; — A

Since, 0 < Gp »(Wp;) < Ap; — A, 0 < A On the other hand, we have that there
exists a constant C > 0 such that

. 1/1’7 .
(ij)l/’”Z(ij;.f,w(up] <// (@ = y)|up, (y) — up, (2) [P dy da

1/p;
[T n) -, @ dydx> .
QJa,\Q
Then, by the above inequality,

(/ / T (@ — ) [up, (4) — up, ()] dydx) 1a
x (/ﬂ /ﬂ T (@ =) [up, (v) =, (@) dy dsc) "
- </Q /Q J(@—y) dy dq;) i,

Hence, we can extract a subsequence (if necessary) and let p; — +oo to obtain

(/Q /Q I (@ = y) luly) = u(@)[" dy dx)l/q = (/Q /Q J(z—y) dy dm)l/q .

Now, just taking g — 400, we get
lu(z) —u(y)| <1 a.e. (z,y) € A xQ, x—y € supp(J).
With a similar argument we obtain
lu(z) —(y)| <1 ae. x€Q, ye s\ Q, with x —y € supp(J).

Hence, we conclude that u € K J - This ends the proof. ]
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4.3. Rescaling. We will assume now that €2 is convex and 1 verifies | V)| oo < 1.
For € > 0, we rescale the functional G{.o,w as follows:

0 if |u(z) —u(y)| <e, for z,y € Q B
. and |[¢(y) —u(z)| <e, forxe QyeQy\Q,
Gl () = with [z —y| < e
400 in the other case.

In other words, G¢, ,, = Iz, " where

u(@) — uly)| < £,2,y € 0 -
K5 = uwe L2(Q) : and [¢(y) —u(z)| <e, forzeQyeQ;\Q,
with |z —y| < e

Consider the gradient flow associated to the functional G¢_

Ft,) —wlt,”) € OIxe (ut)),  ae. t €0,T],

Fooluo, % 1) {u(O,x) = up(x), in Q,

and the problem

ft, ) = Uooy € Ok, (Uso), a.e. t €0, 77,

Poo(u07/(/}7f) {Uoo(OJJ) :Uo(l‘), in Q,

where
K¢ = {U, € Wl’oo(Q) : ||Vu||oo <1, 'U,‘BQ = ’(/)|BQ}.

Observe that if u € Ky, ||Vullso < 1. Then, since |[V¢||o < 1 and € is convex,
we have |u(z) —u(y)| < |z —y| and |u(z) — P (y)| < |z —yl, from where it follows that
u e K, that is, Ky C KT,

Wlth all these definitions and notations, we can proceed with the limit as ¢ — 0
for the sandpile model (p = +00).

Proof of Theorem 1.8. Since ug € Ky, up € K, for all ¢ > 0. Again we
are using that [|[V| s < 1. Consequently, there exists uoo -« the unique solution of

P (U07¢»f)

By Theorem 4.1, to prove the result it is enough to show that I , converges to
I, in the sense of Mosco. Using that [|V¢|lo < 1 it is easy to obtain that

(49) KEIIZJCKoodﬂ if €1 SEQ.

Since Ky C K5, for all € > 0, we have

Ky C () K-

e>0

On the other hand, if

u € ﬂKoow,
e>0
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we have
lu(y) —u(x)| <ly —z|, ae z,ye,
and moreover
u(y) = v(@)| < ly—=z|, ae z€Q;\Q yeq,

from where it follows that u € K. Therefore, we have

(4.10) Ky = () K
e>0
Note that
(4.11) Epi(Ix,) = Ky x [0,00], Epi (IK;W> — K%, % [0,00[ V&> 0.

By (4.10) and (4.11),
(4.12) Epi (Ik,) C s — liminf Epi (Ix:_, ).

On the other hand, given (u,\) € w — limsup__,o Epi(/k:_,) there exists (ue,, Ax) €
K., 4 % [0,00[, such that ¢, — 0 and

ue, —u in L*(Q), M\ — A inR.

By (4.9), given € > 0, there exists ko, such that u., € K, for all k& > ko. Then,
since Kgo,w is a closed convex set, we get u € Kio,d;’ and, by (4.10), we obtain that
u € Ky. Consequently,

(4.13) w—limsup Epi Iz, )  Bpi (I, ) -

n—00

Finally, by (4.12), (4.13), and having in mind (4.3), we obtain that Ix: , converges
to I, in the sense of Mosco. |

4.4. Explicit solutions. Our goal now is to show some explicit examples that
illustrate the behavior of the solutions when p = +o0.

Remark 4.2. There is a natural upper bound (and of course also a natural lower
bound) for the solutions with boundary datum ) outside 2 (regardless the source
term f). Indeed, given a bounded domain 2 C R¥ let us define inductively

D ={ze€Q : [z—y| <1 forsomeyecQ,\Q}
and, for j > 2,
Qj:{xeﬂ\u{jm : |:v—y\<1f0rsomeyer,1}.
Then, since u(t) € Ké’c,w we must have
u(t,z) <(y) +1 if [x—yl <1, 2e, ye;\Q,
and for any j > 2

u(t,z) <u(t,y) +1 if lv—y| <1, 2€Q;, yeQ;_1\9Q,.
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Therefore we have an upper bound for u(t,z) in the whole Q,
u(t,z) < Uy (z),
where U, is defined by the inductive formula,
Uy(z) =max {(y) +1 : yeQ\Q, |z —y| <1}, for z € Qy,
and
Uy(z) =max{¥1(y)+1 : y € Qj_1, |z —y| <1}, forz e Q,, if j > 2.
Analogously, we can obtain a lower bound for wu(t, ),
u(t,x) > P1(x),
where @1 is defined by the inductive formula,
®y(z) =min{¢(y) =1 : y€ Q\Q, |z —y| <1}, for z € Q,
and
Qi(z) =min{®i(y) -1 : ye€Q,_1, [z —y| <1}, forzeQ,;, if j >2.
With this remark in mind we show some explicit examples of solutions to

PI (w0 f) {f(t,w)—ut(t,x)EaGgo,w(u(t)), ace. t €]0, 7],

U(O,J?) = UO(l‘)a in Qa
where
0 ifue L2(Q), Ju(z) —u(y)| <1, form,y € Q, |z —y| <1,
Gl p(u) = and |u(z) —(y)| < Lforz € Q, ye Qs \Q, |z —y| <1,
+00 in the other case.

In order to verify that a function u(t,z) is a solution to P (ug, v, f), we need to
check that

(4.14) Ggo’w(v) > Ggo’w(u) +(f —u, v—u), for all v € L*(Q).

To this end we can assume that v € K;’o’w (otherwise Gé]o,«p (v) = 400 and then (4.14)
becomes trivial). Therefore, we need to check that

J
(4.15) ult,) € K2,
and, by (4.14), that

(4.16) /Q(f(t, 2) — w(t, 2)(w(@) — ult, ) dz < 0

for every v € K;)]o’w.
Example 1. Let us consider a nonnegative source f and as initial condition the
upper bound defined in the previous remark, ug(z) = ¥y(z). Then the solution to

P (uo, 1, f) is given by
u(t,z) = Uy (z)
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for every ¢ > 0. Indeed, ¥q(z) € KoJo,'L/; and for every v € KoJo,w we have that
v(z) < Uy(x), and therefore

/ (F(t,2) = ur(t,2))(v(x) - u(t, 2)) do = / F(t2)(v(x) - Ui (2) de <0,
Q Q

as we have to show.

In general, given a nonnegative source f supported in D C €, any initial condition
ug € Ké’o,w that verifies ug(z) = ¥ (z) in D produces a stationary solution u(t,x) =
uo ().

Analogously, it can be shown that u(t,z) = ®1(z) when ug(z) = ®1(z) and
flt,z) <0.

Ezample 2. Now, let us assume that we are in an interval Q = (=L, L), ¢ = 0,
e =L/n,n €N, ug = 0 which belongs to K, o, and the source f is an approximation
of a delta function,

1
flt,x) = fn(t,x) = 5)([_%7%](.%), 0<n< 2e.

Using the same ideas of [6], it is easy to verify the following general formula that
describes the solution of P2 (ug,, f) for every ¢t > 0. For any given integer [ > 0 we
have

le + ki (t — 1), rel[—1, 4],
(l_1)€+kl(t_tl)a xe[_g_57g+5]\[_g7g]7
u(t,x)=
ki(t —tp), ve[—2 —le,d +1le]\[-4 — (I =1)g, 5 + (I = 1)e],
0, r¢ (-3 —le, 2+ le],
for t € [t;,t141), where
1 €
k; = d ¢ =t — to = 0.
1 2 + 1 an 1+1 1+ Ty’ 0

This general formula is valid until the time at which the solution verifies u(t,z) =
V. (x) for x € [-3, 2] (the support of f), that is, until T = ¢« 1, where

I* is the first [ such that le + ki(ti41 — t1) = U(0)
and
P, is the natural upper bound defined in Remark 4.2

for the corresponding rescaled kernel. Observe that for this [*, 2 + I*¢ < L. From
that time on the solution is stationary, that is, u(t,z) = u(T,z) for all ¢ > T
From the above formula, taking limits as n — 0, we get that the expected solution

to PZ (uo,,8p) is given, for any given integer [ > 1, by

(I—De+kt—1t), z€l-ec¢e,

(I=2e+k(t—t), ze€]-2¢2]\][¢,¢],
(4.17) u(t,x) =< ...
kit —t), x € [=le,le] \ [-(l — De, (I — 1)e],
0, x ¢ [—le, le],
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1

for t € [t;,t141), where k; = 5

st =1+ k%? ty =0, until T = ¢;« 41, where
I* is the first [ such that le 4+ k;(t; 41 — t;) = ¥.(0).

And from that time on the solution is stationary, that is, u(¢t,z) = u(7T,x) for all
t>T.

Remark that, since the space of functions K7, , is not contained into C(R), the
formulation (4.16) with f = 69 does not make sense. Hence the function wu(t,x)
described by (4.17) is to be understood as a generalized solution to PS (ug, 1, 6o) (it
is obtained as a limit of solutions to approximating problems).

Note that the function u(T,x) is a “regular and symmetric pyramid” composed
by squares of side € which is one step below the upper profile ¥..

Recovering the sandpile model as e — 0. Now, to recover the sandpile
model, take the limit as ¢ — 0 in the previous example to get that u(t,z) — v(¢, x),
where

v(t,z) = (I —|z|)* for t = 2,

until the time at which ¢+ = L2, and from that time the solution is stationary.
A similar argument shows that, for any a € (0, L), the generalized solution to
P: (0,0, 6,) converges as € — 0 to v(t, z), where

v(t,x) =(— |z —a|)*t for t = 12,

until the time at which ¢ = (L — a)?, and from that time the solution is stationary.
These concrete examples illustrate the general convergence result in Theorem 1.8.
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