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Mass transport problems obtained as limits of p-Laplacian
type problems with spatial dependence

Abstract: We consider the following problem: given a bounded convex domain Q ¢ RY we consider the limit
as p — oo of solutions to
~ div(b,"|Dul"?Du) = f, - f. in0,

bI;P|Du|P*Za—” =0 on 0.
on

Under appropriate assumptions on the coefficients b, that in particular verify that lim, b, = b uni-
formly in Q, we prove that there is a uniform limit of u, (along a sequence p;— oo) and that this limit is
a Kantorovich potential for the optimal mass transport problem of f, to f_ with cost c(x, y) given by the

formula c(x, y) = inf;(g)y, o(1)=y _fa bds.
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1 Introduction

Taking limits as p — oo in p-Laplacian type problems to find solutions to optimal mass transport problems
(an idea from Evans and Gangbo [5]) has recently been used in [6, 8-10]. Our main goal in the present paper
is to see what are the optimal transport problems that can be approximated when one considers a spatially
dependent coefficient in the p-Laplacian approximations. Namely, we consider the following p-Laplacian
type problem:
~div(b,?|Dul’?Du) = f inQ,
b;PIDuIP_Zg—u =0 onoQ. .
n

Here Qis a bounded and convex C> domainin RN, p > N, f = f, - f_ € L*(Q) has zero mean in (, fQ f=0
(otherwise this problem does not have solutions), and the diffusion coefficient b, is a continuous positive
function O such that

0< b(x? <b,(x) < — forallx e Qandall p > N, (1.2)
(6)? (c)?
and
pli_}rgo b, =b uniformly in Q 1.3)

for some continuous positive function b in Q and constants B, ¢;, ¢, > 0.

The simplest example of positive bp that verifies (1.3) is to consider bp independent of p, bp(x) = b(x), for
a fixed positive continuous function on Q.

Existence and uniqueness (up to an additive constant) for this problem of a continuous weak solution in
the Sobolev space W*(Q), p > N, can be easily obtained from variational arguments. It turns out that this
weak solution is also a viscosity solution, see [7].
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Limits as p — oo of similar type problems are related to optimal mass transport problems for the Euclid-
ean distance. In fact, this relation was the key to the first complete proof of the existence of an optimal trans-
port map for the classical Monge problem (here the transport cost of one unit of mass between x and y is the
Euclidean distance |x — y|) given by Evans and Gangbo in [5]. Note that the usual Euclidean distance is not
a strictly convex cost. This makes this optimal mass transport different from the strictly convex cost case in
which there is existence of a convex function (solution to a Monge—Ampere type problem) whose gradient
provides an optimal transport map, see [11]. For notation and general results on Mass Transport Theory we
refer to [1, 2, 4, 5, 11, 12].

_In our case, we can pass to the limit in (1.1) and obtain that, for a sequence p j = 00, Uy = Uy uniformly
in Q. It turns out that this limit u, is a Kantorovich potential for the optimal transport problem that we
describe below.

An optimal mass transport problem with a non-standard cost. Assume that we have some production in
a domain Q encoded in f, and some consumption encoded in f_. To transport one unit of material from x
to y we pay as transport cost c(x, y) (we may take into account that the cost is not translation invariant in this
transport operation) that in our case is given in terms of b by the formula

c(x,y) = inf J bds, (1.4)

o€l'(x,y)
[

where I'(x, y) := {o € C'([0,1],Q) : 6(0) = x, o(1) = y}.
The Monge transport problem is to find a Borel map T such that the push-forward of f, by T is f_ and

minimizes

J c(x, T(x)) f,(x) dx.

Q
In its relaxed version (Monge-Kantorovich problem), this optimal transport problem reads as follows:
Let II(f,, f_) be the set of transport plans between f, and f_, that is, the set of non-negative Radon mea-
sures y in Q x Q such that proj, () = f, dx and proj () = f_ dx; the aim is to find a measure u* € I1(f,, f_)
which minimizes the cost functional

Kl = | v ) dutx )
0Ox0
in the set I1(f,, f.).
We prove the following result:

Theorem 1.1. Let u, be the unique solution to (1.1) which satisfies IQ u, =0 and assume (1.2) and (1.3). Then,
there is a sequence p; — oo such that the uniform limit u, of the solutions Uy, is a Kantorovich potential for the
optimal transport problem of f, to f_ with the cost given by c(x, y) in (1.4), that is,

min{K () : p € I(f,, f_)} = sup{J uf:ve KC(Q)} = Jumf,
Q Q

where
K. (Q):={v: Q- R:|v(x) -v(y) <clx,y) forallx, y € Q}.

Note that we can approximate the total transport cost since we have that

lim Jupjfzjuoof.

pj—00
O [0}

Let us end the introduction with a brief description of the main techniques used in the proofs. Concerning
approximations using p-Laplacian type operators, we quote [3], from where the main idea to show the key
bounds for the LP-norm of the gradient is taken. Once we have a uniform in p bound for the L?-norm of
the gradients we can extract a subsequence that converge uniformly and show that this limit is a maximizer
of fQ vf dx in K (Q). From this the proof follows using the general duality argument that can be found, for
example, in [11].
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When b, is of the form b, = Be™, # > 0, for the study of the limit equation (in the viscosity sense)
when p — co we refer to [7]. Here we focus our attention on the mass transport problem obtained in this
limit procedure rather than in the equation that is verified by the limit.

The paper is organized as follows: In Section 2 we prove that there is a sequence of solutions to (1.1) that
converges uniformly; in Section 3 we prove that the uniform limit is a solution (Kantorovich potential) to the
optimal mass transport problem.

2 A p-Laplacian limit

Recall that we are considering problem (1.1). First, we show existence and uniqueness to it. The proof is
standard, but we include the details for the sake of completeness.

Lemma 2.1. Let p > N be fixed. Then there exists a unique continuous solution to the variational problem

. { 1 |Dulf
min J — - Juf ,
Sk P

where

This minimum is a weak solution of problem (1.1), that is, it verifies
1 = (oe]
JQIDuI" *DuD¢ = j fé forallg e C(Q).
(o) 0

Proof. By our assumptions we have that b;" is bounded from below and above, 0 < ¢,B™? < b;P <G, <00
(note that even ¢, can depend on p here since p is fixed along this proof). Hence, we obtain that for
every u € WH?(Q) there holds

P P r
clB_pJ | Dyl SJ 1 |Du| < leul
P bt op P)op
0 Q P Q

and then the functional

0
is well defined in the set S,,, which is convex, weakly closed and non-empty.

On the other hand, since j u=0o0n Sp’ by the inequalities of Poincaré, Holder and Young, there exist
positive constant ¢, C, independent of u, such that

C"ullwl,p(ﬂ) < @(u) + C,

hence O is coercive and bounded from below, moreover it is weakly lower semicontinuous in Sy Therefore,
there is a minimizing sequence u, € S, ¢ WhP(Q) such that u, — u € S, and

irslf® = lierinf O(u,) = O(u).

Hence the minimum of ® in S, is attained. From the strict convexity of © in S, we obtain that u, is the unique
minimum of ® in Sp. Finally, u - the unique minimizer, is a weak solution of (1.1). The fact that u, is continuous
follows from the fact that W"?(Q) < C() since p > N. O

Remark 2.2. Note that we have imposed that f o U = 0 just to obtain uniqueness of the solution. As usually
happens for homogeneous Neumann problems there are infinitely many solutions to (1.1), but any two of them
differ by an additive constant.
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Remark 2.3. Following the ideas in [7] it can be proved that a continuous weak solution to (1.1) is a viscosity
solution to the same equation.

Our next step is to prove that we can extract a sequence of solutions to (1.1), Uy, with p; — oo, that converges
uniformly as j — oo.

Lemma 2.4. Let up, be a solution to (1.1), p > N. There exists a sequence pj — 00 such that Up = U uniformly
in Q. Moreover, the limit U, is Lipschitz continuous.

Proof. Along this proof we will denote by C a constant independent of p that may change from one line to
another.

Our first aim is to prove that the L?-norm of the gradient of u, is bounded independently of p. We already
proved in the previous Lemma 2.1 that u,, is a minimizer of ® in S,. Then,

1 1Du,|?
@(up) = J b_p - qup < 0(0) =0.
o P P 0
That is,
1 |Du,|?
Jb_f’ pp = qu"'
o P Q
Now,

qup < CIIDuPIILp(Q).

0
Indeed, since f o Up =0, there exists a point x, € Q such that up(xp) = 0. Then, since Q is a bounded
convex C? domain, for a fixed x € Q, there exist x = Xgs X15 e v er Xy = X and mballs Q; cQ (i=1,2,...,m)
of certain fixed diameter r > 0 such that x;, x;,, € Q;,; and m is bounded independently of x, x,. Then, the

local Morrey’s inequality (see, e.g., [4, Remark, p. 268]) implies
m LN
lu, ()] =l (x) =, ()| < Dy (x) =y (i)l < Cor' P ml|Va, |, < C[1Vaa,
i=1

being C; independent of p.
Then we get

1 |Du,|?
J — < C"DuP”Lp(Q). (2.1)

P
Q bp

Now we use that b,” > ¢, B to obtain

DuPP c CDuP

7 < _
” B | spEtp l| B
0

@)

From this inequality and using that ( pC)ﬁ — 1 (since C is independent of p), we obtain that

’
(j IDup|P> <Cy, 2.2)
0
with C, a constant independent of p.
Now, using this uniform bound, we prove uniform convergence of a sequence u by In fact, we take m such
that N < m < p and obtain the bound
p-m

L m pm 1
m P p Im —m
||Dup||Lm(Q)=(J|Dup|m-1> < [(JIDMPIP> <J1> ] <c ol <c,
0] 0

0

the constant C being independent of p. We have proved that the sequence {uplpsnis bounded in W"((2), and

we know that IQ u, = 0, so we can obtain a weakly convergent sequence Up — Uy, € W™ () with pj — +oo.
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Since WP (Q) — C**(Q) and Up, — Uy € WP (Q), we obtain Up, = U, I C%*(0), and in particular Up, = U
uniformly in Q. As u,,

;€ C(Q), it follows that u,, € C(). Using a diagonal procedure, we conclude the exis-
tence of a sequence Uy, that is weakly convergent in W""(0) for every m.
Finally, let us show that the limit function u, is Lipschitz. In fact, we proved that

m ; . . m ; L
(JlDuml) gl;jnlyg(ppupJ) <clo <C.
0 0

Now, we take m — oo to obtain | Du, [l ;(q) < C. So, we have proved u,, € wh®(Q), that is, ug, is a Lipschitz
function. O

3 Mass transport interpretation of the limit

The goal of this section is to show that u_, is a Kantorovich potential for the mass transport problem of f,
to f_ with the cost c(x, y) given by

ctey) = inf j bds,

that is,
1

ctxy)= inf Oj L(o(t),0' (1)) dt,

with L the Lagrangian given by L(z, &) = b(2)|¥|.
The key idea to identify the cost is as follows: if we have a Lipschitz continuous function u such that

|Du(x)| < b(x) a.e.inQ,

then choosing a path ¢ with ¢(0) = x, o(1) = y and
c(x,y) = J’ bds - ¢,
o

we have

[u(x) —u(y)| =

1
j<Du<a(t», o' () dt
0

1
< Jb(o(t))la'(t)l dt < c(x,y) +¢.
0

Hence, we conclude that
[u(x) — u(y)l < c(x, y).
Conversely, if we have
[u(x) - u(y)l < c(x, ),
then
|[Du(x)| < b(x) a.e.in Q. 31

In fact, for & € RY and h € R with || small enough, if we just consider the path o : [0,1] — Q given by
o(t) = x + t(hb " (x)&),

we have

-1 -1
(b7 ()Du(x), O] = [{Du(x), b™ ()8 = lim MUt b @y, ¢ b x + b7 (0)3)
h—0 |h| h—0 |h|

1
< lim inf - J bds = lim inf J b(x + thb™ ()b (X)|E| dt = |E],
h—0 |h| h—0
o 0

from where we get (3.1).



138 —— ].M. Mazén, J.D. Rossi and ). Toledo, Mass transport problems DE GRUYTER

Therefore, if c and b are related by
c(x,y) = inf ) des,

oel'(x,y
o

then the set of functions

K.(Q) = {u 10— R u(x) —u(y)l < c(x, y) and Ju = 0}
Q

coincides with the set
K,(Q) = {u : Q — R: |Du(x)| < b(x) and ju = 0}.
(0}

Hence, we have that

sup{jvf:veKC(Q)} :sup{Jvf:vEIfb(Q)}. (3.2)
0 0

Lemma 3.1. Any uniform limit u_, of a sequence u
of f, to f_ with the cost given by

»; is a Kantorovich potential for the optimal transport problem

c(x,y) = inf ) des,

o€el'(x,y
that is, it holds that
min{K () : p € II(f,, fO)} = sup{J uf:ve KC(Q)} = jumf.

Q Q
Proof. The equality
min{XK () : p € II(f,, f)} = sup{[ vf:ve KC(Q)}

0

follows by well-known duality arguments, using that c is a distance, see [11]. Therefore, due to (3.2), we just
need to show that

sup{Jvf: ve Kb(_())]» = Juoof.
0 Q
Now, we have that, for every Lipschitz function v with |Dv| < b a.e. in Q and In v =0,
O(u,) < O(v),

and then

—jf”pﬁJiplDuplp—ifupgié%p_lfvS(J;ﬁ_ifvs%m'_«"fv’

where we have used (1.2). Taking limits as p — co we obtain
quoo > sup{Jvf: veE Kb(())}.
0 0

Then we just need to show that u,, € K,(Q). From the uniform convergence of u, touy, we immediately
conclude that
J Uy, = 0.

(0}

Now, using again the computations of the proof of Lemma 2.4, (2.1) and (2.2), we have

Du,|f
ji| »l .C

P
.pr p
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with C independent of p. Hence,
Dl/lp P Il’ 1
Jl— < (pC)».
by
0

To finish, let us argue as in the final part of the proof of Lemma 2.4. Let N < m < p. We get

Du D
P g L"Q)
b, b
and X :
D m\ m Du, im\m
Jl& < liminf J| P’l .
b p}-—>00 bp
Q 0 j
Now,

j Pij pjmm €L
) <101 ™ (p,C)7.

([ )" <o ([ o
s b,

Hence, since C is independent of pj» we have ( ij)"T' — land
1
Du, |'" " L
—_— < |Q|m.
(I | b gl
0

-1
167 Dutgy l oy < 1,

s}

Taking now m — oo, we get

that is,
|Du, (x)| < b(x)

a.e. in Q and we conclude that u , € K,(Q).

Remark 3.2. In one space dimension, that is, Q = (a,b) C R, it is easy to see that
min{K (u) : p € II(f,, fO)} = sup«“ uf:ve KC(Q)} = jumf = sup{l vf:ve KE(Q)},
0 (0} (0]

where
[x=yl

&x, y) = Jlb((l—t)x+ty)dt|x—y|= J b<x+t y—x )dt,
0 0

|x = yl

— 139

being the last term 0 when x = y. Nevertheless, in general, for dimension greater than one, this total cost is

strictly less than
min{K:(y) : p € II(f,, f_)}.

In one dimension, both total costs coincide; indeed, if we set
d(r) = Jb(s) ds,
0

then
c(x, y) = &(x, y) = |d(x) = d(y)I.

In higher dimensions this is not true in general since with the cost ¢ we are using straight lines to go from x to y
and we can have functions b for which a straight line is not the optimal one when computing the cost c(x, y)

given by (1.4).
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