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Mass transport problems obtained as limits of p-Laplacian
type problems with spatial dependence
Abstract:We consider the following problem: given a bounded convex domainØ ⊂ ℝN we consider the limit
as p → ∞ of solutions to

{{
{{
{

− div(b−pp |Du|p−2Du) = f+ − f− in Ø,

b−pp |Du|p−2 àu
àç

= 0 on àØ.

Under appropriate assumptions on the coe�cients bp that in particular verify that limp→∞ bp = b uni-
formly in Ø, we prove that there is a uniform limit of upj (along a sequence pj → ∞) and that this limit is
a Kantorovich potential for the optimal mass transport problem of f+ to f− with cost c(x, y) given by the
formula c(x, y) = infò(0)=x, ò(1)=y ∫ò b ds.
Keywords:Mass transport, Monge–Kantorovich problems, p-Laplacian equation

MSC 2010: 49J20, 49J45, 45G10

||
José M. Mazón, Julian Toledo: Departament d’Anàlisi Matemàtica, Universitat de València, Valencia, Spain,
e-mail: mazon@uv.es, toledojj@uv.es
Julio D. Rossi: Departamento de Análisis Matemático, Universidad de Alicante, Ap. correos 99, 03080, Alicante, Spain;
and Departamento de Matemática, FCEyN UBA, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina,
e-mail: julio.rossi@ua.es

1 Introduction
Taking limits as p → ∞ in p-Laplacian type problems to �nd solutions to optimal mass transport problems
(an idea from Evans and Gangbo [5]) has recently been used in [6, 8–10]. Our main goal in the present paper
is to see what are the optimal transport problems that can be approximated when one considers a spatially
dependent coe�cient in the p-Laplacian approximations. Namely, we consider the following p-Laplacian
type problem:

{{
{{
{

− div(b−pp |Du|p−2Du) = f in Ø,

b−pp |Du|p−2 àu
àç

= 0 on àØ.
(1.1)

HereØ is a bounded and convex C2 domain inℝN, p > N, f = f+ − f− ∈ L∞(Ø) has zero mean inØ, ∫Ø f = 0
(otherwise this problem does not have solutions), and the di�usion coe�cient bp is a continuous positive
function Ø such that

0 <
b(x)

(c2) 1p ≤ bp(x) ≤ B

(c1) 1p for all x ∈ Ø and all p > N, (1.2)

and
limp→∞ bp = b uniformly in Ø (1.3)

for some continuous positive function b in Ø and constants B, c1, c2 > 0.
The simplest example of positive bp that veri�es (1.3) is to consider bp independent of p, bp(x) = b(x), for

a �xed positive continuous function on Ø.
Existence and uniqueness (up to an additive constant) for this problem of a continuous weak solution in

the Sobolev space W1,p(Ø), p > N, can be easily obtained from variational arguments. It turns out that this
weak solution is also a viscosity solution, see [7].
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Limits as p → ∞ of similar type problems are related to optimal mass transport problems for the Euclid-
ean distance. In fact, this relation was the key to the �rst complete proof of the existence of an optimal trans-
port map for the classical Monge problem (here the transport cost of one unit of mass between x and y is the
Euclidean distance |x − y|) given by Evans and Gangbo in [5]. Note that the usual Euclidean distance is not
a strictly convex cost. This makes this optimal mass transport di�erent from the strictly convex cost case in
which there is existence of a convex function (solution to a Monge–Ampere type problem) whose gradient
provides an optimal transport map, see [11]. For notation and general results on Mass Transport Theory we
refer to [1, 2, 4, 5, 11, 12].

In our case, we can pass to the limit in (1.1) and obtain that, for a sequence pj → ∞, upj → u∞ uniformly
in Ø. It turns out that this limit u∞ is a Kantorovich potential for the optimal transport problem that we
describe below.

An optimal mass transport problem with a non-standard cost. Assume that we have some production in
a domain Ø encoded in f+ and some consumption encoded in f−. To transport one unit of material from x
to ywe pay as transport cost c(x, y) (wemay take into account that the cost is not translation invariant in this
transport operation) that in our case is given in terms of b by the formula

c(x, y) = infò∈Ã(x,y)∫ò b ds, (1.4)

where Ã(x, y) := {ò ∈ C1([0, 1], Ø) : ò(0) = x, ò(1) = y}.
The Monge transport problem is to �nd a Borel map T such that the push-forward of f+ by T is f− and

minimizes
∫Ø c(x, T(x))f+(x) dx.

In its relaxed version (Monge–Kantorovich problem), this optimal transport problem reads as follows:
Let Ð(f+, f−) be the set of transport plans between f+ and f−, that is, the set of non-negative Radon mea-
sures ì in Ø × Ø such that projx(ì) = f+ dx and projy(ì) = f− dx; the aim is to �nd a measure ì∗ ∈ Ð(f+, f−)
which minimizes the cost functional

Kc(ì) := ∫Ø×Ø c(x, y) dì(x, y)

in the setÐ(f+, f−).
We prove the following result:

Theorem 1.1. Let up be the unique solution to (1.1) which satis�es ∫Ø up = 0 and assume (1.2) and (1.3). Then,
there is a sequence pj → ∞ such that the uniform limit u∞ of the solutions upj is a Kantorovich potential for the
optimal transport problem of f+ to f− with the cost given by c(x, y) in (1.4), that is,

min{Kc(ì) : ì ∈ Ð(f+, f−)} = sup{∫Ø vf : v ∈ Kc(Ø)} = ∫Ø u∞f,

where
Kc(Ø) := {v : Ø → ℝ : |v(x) − v(y)| ≤ c(x, y) for all x, y ∈ Ø}.

Note that we can approximate the total transport cost since we have that

limpj→∞∫Ø upjf = ∫Ø u∞f.

Let us end the introductionwith a brief description of themain techniques used in the proofs. Concerning
approximations using p-Laplacian type operators, we quote [3], from where the main idea to show the key
bounds for the Lp-norm of the gradient is taken. Once we have a uniform in p bound for the Lp-norm of
the gradients we can extract a subsequence that converge uniformly and show that this limit is a maximizer
of ∫Ø vf dx in Kc(Ø). From this the proof follows using the general duality argument that can be found, for
example, in [11].
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When bp is of the form bp = Be−ç, ç > 0, for the study of the limit equation (in the viscosity sense)
when p → ∞ we refer to [7]. Here we focus our attention on the mass transport problem obtained in this
limit procedure rather than in the equation that is veri�ed by the limit.

The paper is organized as follows: In Section 2 we prove that there is a sequence of solutions to (1.1) that
converges uniformly; in Section 3 we prove that the uniform limit is a solution (Kantorovich potential) to the
optimal mass transport problem.

2 A p-Laplacian limit
Recall that we are considering problem (1.1). First, we show existence and uniqueness to it. The proof is
standard, but we include the details for the sake of completeness.

Lemma 2.1. Let p > N be �xed. Then there exists a unique continuous solution to the variational problem

minSp {∫Ø 1
bpp |Du|p

p
− ∫Ø uf},

where
Sp = {u ∈ W1,p(Ø) : ∫Ø u = 0}.

This minimum is a weak solution of problem (1.1), that is, it veri�es

∫Ø 1
bpp |Du|p−2DuDõ = ∫Ø fõ for all õ ∈ C∞(Ø).

Proof. By our assumptions we have that b−pp is bounded from below and above, 0 < c1B−p ≤ b−pp ≤ c2,p < ∞
(note that even c1 can depend on p here since p is �xed along this proof). Hence, we obtain that for
every u ∈ W1,p(Ø) there holds

c1B−p ∫Ø |Du|p
p

≤ ∫Ø 1
bpp |Du|p

p
≤ c2,p ∫Ø |Du|p

p

and then the functional
È(u) = ∫Ø 1

bpp |Du|p
p

− ∫Ø uf

is well de�ned in the set Sp, which is convex, weakly closed and non-empty.
On the other hand, since ∫ u = 0 on Sp, by the inequalities of Poincaré, Hölder and Young, there exist

positive constant c, C, independent of u, such that

c‖u‖W1,p(Ø) ≤ È(u) + C,

hence È is coercive and bounded from below, moreover it is weakly lower semicontinuous in Sp. Therefore,
there is a minimizing sequence un ∈ Sp ⊂ W1,p(Ø) such that un ⇀ u ∈ Sp and

infS È = lim infn→+∞ È(un) ≥ È(u).

Hence the minimum ofÈ in Sp is attained. From the strict convexity ofÈ in Sp we obtain that up is the unique
minimumofÈ in Sp. Finally,up, theuniqueminimizer, is aweak solutionof (1.1). The fact thatup is continuous
follows from the fact thatW1,p(Ø) í→ C(Ø) since p > N.

Remark 2.2. Note that we have imposed that ∫Ø u = 0 just to obtain uniqueness of the solution. As usually
happens for homogeneousNeumannproblems there are in�nitelymany solutions to (1.1), but any twoof them
di�er by an additive constant.
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Remark 2.3. Following the ideas in [7] it can be proved that a continuous weak solution to (1.1) is a viscosity
solution to the same equation.

Our next step is to prove that we can extract a sequence of solutions to (1.1), upj with pj → ∞, that converges
uniformly as j → ∞.

Lemma 2.4. Let up be a solution to (1.1), p > N. There exists a sequence pj → ∞ such that upj → u∞ uniformly
in Ø. Moreover, the limit u∞ is Lipschitz continuous.

Proof. Along this proof we will denote by C a constant independent of p that may change from one line to
another.

Our �rst aim is to prove that the Lp-norm of the gradient of up is bounded independently of p. We already
proved in the previous Lemma 2.1 that up is a minimizer of È in Sp. Then,

È(up) = ∫Ø 1
bpp |Dup|

p

p
− ∫Ø fup ≤ È(0) = 0.

That is,

∫Ø 1
bpp |Dup|p

p
≤ ∫Ø fup.

Now,
∫Ø fup ≤ C‖Dup‖Lp(Ø).

Indeed, since ∫Ø up = 0, there exists a point xp ∈ Ø such that up(xp) = 0. Then, since Ø is a bounded
convex C2 domain, for a �xed x ∈ Ø, there exist x = x0, x1, . . . , xm = xp and m balls Qi ⊂ Ø (i = 1, 2, . . . , m)
of certain �xed diameter r > 0 such that xi, xi+1 ∈ Qi+1 and m is bounded independently of x, xp. Then, the
local Morrey’s inequality (see, e.g., [4, Remark, p. 268]) implies

|up(x)| = |up(x) − up(xp)| ≤ m
∑i=1 |up(xi) − up(xi+1)| ≤ C0r1−Np m‖∇up‖p ≤ C1‖∇up‖p,

being Ci independent of p.
Then we get

∫Ø 1
bpp |Dup|p

p
≤ C‖Dup‖Lp(Ø). (2.1)

Now we use that b−pp ≥ c1B−p to obtain

∫Ø
!!!!!!!
Dup
B

!!!!!!!

p
≤ pC + pC

"""""""
Dup
B

"""""""Lp(Ø).
From this inequality and using that (pC)

1p−1 → 1 (since C is independent of p), we obtain that

(∫Ø |Dup|p) 1p
≤ C1, (2.2)

with C1 a constant independent of p.
Now, using this uniform bound, we prove uniform convergence of a sequence upj . In fact, we takem such

thatN < m ≤ p and obtain the bound

‖Dup‖Lm(Ø) = (∫Ø |Dup|m ⋅ 1)

1m
≤ [(∫Ø |Dup|p) mp

(∫Ø 1)

p−mp
]

1m
≤ C1|Ø|

p−mpm ≤ C,

the constantC being independent ofp.We have proved that the sequence {up}p>N is bounded inW1,m(Ø), and
we know that ∫Ø up = 0, so we can obtain a weakly convergent sequence upj ⇀ u∞ ∈ W1,m(Ø)with pj → +∞.
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SinceW1,p(Ø) í→ C0,á(Ø̄) and upj ⇀ u∞ ∈W1,p(Ø), we obtain upj → u∞ in C0,á(Ø), and in particular upj → u∞
uniformly in Ø. As upj ∈ C(Ø), it follows that u∞ ∈ C(Ø). Using a diagonal procedure, we conclude the exis-
tence of a sequence upj that is weakly convergent inW1,m(Ø) for everym.

Finally, let us show that the limit function u∞ is Lipschitz. In fact, we proved that

(∫Ø |Du∞|m) 1m
≤ lim infpj→+∞(∫Ø |Dupj |m) 1m

≤ C1|Ø|
1m ≤ C.

Now, we takem → ∞ to obtain ‖Du∞‖L∞(Ø) ≤ C. So, we have proved u∞ ∈ W1,∞(Ø), that is, u∞ is a Lipschitz
function.

3 Mass transport interpretation of the limit
The goal of this section is to show that u∞ is a Kantorovich potential for the mass transport problem of f+
to f− with the cost c(x, y) given by

c(x, y) = infò∈Ã(x,y)∫ò b ds,

that is,

c(x, y) = infò∈Ã(x,y) 1
∫0 L(ò(t), ò�(t)) dt,

with L the Lagrangian given by L(z, î) = b(z)|î|.
The key idea to identify the cost is as follows: if we have a Lipschitz continuous function u such that

|Du(x)| ≤ b(x) a.e. in Ø,

then choosing a path ò with ò(0) = x, ò(1) = y and

c(x, y) ≥ ∫ò b ds − ù,

we have

|u(x) − u(y)| =
!!!!!!!!!

l
∫0 ⟨Du(ò(t)), ò�(t)⟩ dt!!!!!!!!! ≤

l
∫0 b(ò(t))|ò�(t)| dt ≤ c(x, y) + ù.

Hence, we conclude that
|u(x) − u(y)| ≤ c(x, y).

Conversely, if we have
|u(x) − u(y)| ≤ c(x, y),

then
|Du(x)| ≤ b(x) a.e. in Ø. (3.1)

In fact, for î ∈ ℝN and ℎ ∈ ℝ with |ℎ| small enough, if we just consider the path ò : [0, 1] → Ø given by

ò(t) = x + t(ℎb−1(x)î),
we have

|⟨b−1(x)Du(x), î⟩| = |⟨Du(x), b−1(x)î⟩| = limℎ→0 |u(x) − u(x + ℎb−1(x)î)|
|ℎ|

≤ lim infℎ→0 c(x, x + ℎb−1(x)î)
|ℎ|

≤ lim infℎ→0 1
|ℎ|
∫ò b ds = lim infℎ→0 1

∫0 b(x + tℎb−1(x)î)b−1(x)|î| dt = |î|,

from where we get (3.1).
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Therefore, if c and b are related by
c(x, y) = infò∈Ã(x,y)∫ò b ds,

then the set of functions

Kc(Ø) = {u : Ø → ℝ : |u(x) − u(y)| ≤ c(x, y) and ∫Ø u = 0}

coincides with the set
̃Kb(Ø) := {u : Ø → ℝ : |Du(x)| ≤ b(x) and ∫Ø u = 0}.

Hence, we have that

sup{∫Ø vf : v ∈ Kc(Ø)} = sup{∫Ø vf : v ∈ ̃Kb(Ø)}. (3.2)

Lemma 3.1. Any uniform limit u∞ of a sequence upj is a Kantorovich potential for the optimal transport problem
of f+ to f− with the cost given by

c(x, y) = infò∈Ã(x,y)∫ò b ds,

that is, it holds that

min{Kc(ì) : ì ∈ Ð(f+, f−)} = sup{∫Ø vf : v ∈ Kc(Ø)} = ∫Ø u∞f.

Proof. The equality

min{Kc(ì) : ì ∈ Ð(f+, f−)} = sup{∫Ø vf : v ∈ Kc(Ø)}

follows by well-known duality arguments, using that c is a distance, see [11]. Therefore, due to (3.2), we just
need to show that

sup{∫Ø vf : v ∈ ̃Kb(Ø)} = ∫Ø u∞f.

Now, we have that, for every Lipschitz function v with |Dv| ≤ b a.e. in Ø and ∫Ø v = 0,

È(up) ≤ È(v),

and then

−∫Ø fup ≤ ∫Ø 1
bpp |Dup|

p

p
− ∫Ø fup ≤ ∫Ø 1

bpp |Dv|
p

p
− ∫Ø fv ≤ ∫Ø bp

pbpp − ∫Ø fv ≤
c2
p
|Ø| − ∫Ø fv,

where we have used (1.2). Taking limits as p → ∞ we obtain

∫Ø fu∞ ≥ sup{∫Ø vf : v ∈ ̃Kb(Ø)}.

Then we just need to show that u∞ ∈ ̃Kb(Ø). From the uniform convergence of upj to u∞, we immediately
conclude that

∫Ø u∞ = 0.

Now, using again the computations of the proof of Lemma 2.4, (2.1) and (2.2), we have

∫Ø 1
bpp |Dup|p

p
≤ C,
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with C independent of p. Hence,

(∫Ø
!!!!!!!
Dup
bp !!!!!!!p)

1p
≤ (pC)

1p .
To �nish, let us argue as in the �nal part of the proof of Lemma 2.4. LetN < m < p. We get

Dup
bp ⇀

Du∞
b

in Lm(Ø)

and

(∫Ø
!!!!!!!
Du∞
b

!!!!!!!

m
)

1m
≤ lim infpj→∞ (∫Ø

!!!!!!!

Dupj
bpj
!!!!!!!

m
)

1m
.

Now,

(∫Ø
!!!!!!!

Dupj
bpj
!!!!!!!

m
)

1m
≤ |Ø|

pj−mmpj (∫Ø
!!!!!!!

Dupj
bpj
!!!!!!!

pj
)

1pj
≤ |Ø|

pj−mmpj (pjC) 1pj .
Hence, since C is independent of pj, we have (pjC) 1pj → 1 and

(∫Ø
!!!!!!!
Du∞
b

!!!!!!!

m
)

1m
≤ |Ø|

1m .
Taking nowm → ∞, we get

‖b−1Du∞‖L∞(Ø) ≤ 1,

that is,
|Du∞(x)| ≤ b(x)

a.e. in Ø and we conclude that u∞ ∈ ̃Kb(Ø).

Remark 3.2. In one space dimension, that is, Ø = (a, b) ⊂ ℝ, it is easy to see that

min{Kc(ì) : ì ∈ Ð(f+, f−)} = sup{∫Ø vf : v ∈ Kc(Ø)} = ∫Ø u∞f = sup{∫Ø vf : v ∈ K ̃c(Ø)},

where

̃c(x, y) :=
1
∫0 b((1 − t)x + ty) dt |x − y| =

|x−y|
∫0 b(x + t

y − x
|x − y|
) dt,

being the last term 0 when x = y. Nevertheless, in general, for dimension greater than one, this total cost is
strictly less than

min{K ̃c(ì) : ì ∈ Ð(f+, f−)}.
In one dimension, both total costs coincide; indeed, if we set

d(r) =
r
∫0 b(s) ds,

then
c(x, y) = ̃c(x, y) = |d(x) − d(y)|.

In higher dimensions this is not true in general sincewith the cost ̃cweare using straight lines to go fromx toy
and we can have functions b for which a straight line is not the optimal one when computing the cost c(x, y)
given by (1.4).
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