
Detecting Cartoons: a

Case Study in Automatic

Video-Genre

Classification

Autor: Tzvetanka Ianeva Ianeva

Tutor: Juan José Mart́ınez Durá

Ph. D. Research Work

Valencia, 2003

ii

CONTENTS

1 Introduction 1
1.1 What is this research work about? 1
1.2 TREC Video Retrieval . 2

1.2.1 TREC Tracks . 3
1.2.2 Video Track . 4

1.3 Motivation, Task and Contributions 5
1.4 Related work . 5
1.5 What is a Cartoon? . 9
1.6 Outline . 11

2 Feature extraction 15
2.1 Color spaces . 16

2.1.1 Hardware-oriented models 16
2.1.2 User-oriented models 20

2.2 Saturation, Brightness, and Color Histogram 23
2.3 Edge Detection . 31

3 Novel descriptors 37
3.1 Compression . 37

3.1.1 Descriptive Complexity 37
3.1.2 Image Compression . 38
3.1.3 Compression Image Descriptors 39

3.2 Pattern Spectrum . 41
3.2.1 Introduction to morphological image analysis 41
3.2.2 Background notions . 41
3.2.3 Erosion and Dilation 44
3.2.4 Opening . 52

iii

3.2.5 Granulometries . 55

3.2.6 Structuring Elements Parabola and Disk 55

3.2.7 Pattern-Spectrum Image Descriptors 59

4 Support vector machines 79

4.1 Learning from data . 79

4.1.1 The empirical risk minimization principle 82

4.1.2 Structural risk minimization principle 84

4.2 Support Vector Machines . 87

4.2.1 Separating hyperplanes 87

4.2.2 Margins and VC dimension 87

4.2.3 Separable case . 88

4.2.4 Non-separable case. 92

4.3 Kernels functions . 93

4.4 Types of kernels . 93

5 Experiments 97

5.1 Overview . 97

5.2 The experimental setup . 98

5.2.1 Matlab and the OSU SVM classifier toolbox 98

5.2.2 Formulations . 99

5.3 The data . 100

5.3.1 The principal data set: TREC-2002 keyframes 100

5.3.2 For comparison: images from the web 100

5.3.3 Layout of the data . 101

5.3.4 Our programs . 101

5.4 Performance of the image descriptors 104

5.5 Combining image descriptors 105

5.5.1 Choice of the SVM kernel and parameters 105

5.5.2 Relative descriptor performance 106

5.6 Performance on images from the web 106

6 Conclusions 129

6.1 Application for TREC-2002 129

6.2 Discussion . 131

A Bibliography 133

B TREC-2002 Topics 137

iv

C Matlab Scripts 147
C.1 Computing Image Descriptors 147

C.1.1 computeCarAvgSatThrBrightness 147
C.1.2 computeCarCompression 148
C.1.3 computeCarColHist . 149
C.1.4 computeCarEdgeDir 151
C.1.5 computeCarGranulometry1 152
C.1.6 computeCarDim . 154
C.1.7 computeCarFileType 155

C.2 Learning and Classifying . 156
C.2.1 learnAndTest . 156
C.2.2 mergeAllCarDir . 159
C.2.3 loadAllCar . 159
C.2.4 mergeCar . 160
C.2.5 computeCarAll . 164

C.3 Classifying new data . 165
C.3.1 classifyDirectory . 165

v

vi

LIST OF FIGURES

1.1 TREC . 2
1.2 Example from TREC-2002 benchmark (1) 6
1.3 Example from TREC-2002 benchmark (2) 7
1.4 Example from TREC-2002 benchmark (3) 8
1.5 A typical ‘cartoon’ from TREC-2002 12
1.6 Clearly not a cartoon . 12
1.7 Another ‘clear’ cartoon image from TREC-2002 12
1.8 A misleading photographic image of a car 13
1.9 The difficulty of mixed images in TREC-2002 13
1.10 A photograph with all the cited properties of a cartoon 13
1.11 Movie credits count as a cartoon 14
1.12 Postprocessing . 14
1.13 Photography of artificial objects is hard 14

2.1 View of the shell of the color cube 17
2.2 Chromaticity diagram . 18
2.3 RGB color space . 19
2.4 Color representations of the CMY color space 20
2.5 Munsell system . 21
2.6 HIS color model . 22
2.7 HSV model . 23
2.8 HSV color model . 24
2.9 Saturation in cartoon and photo images 25
2.10 Brightness in cartoon and photo images 26
2.11 Part 1 of color-histogram example 27
2.12 Part 2 of color-histogram example 28
2.13 Part 3 of color-histogram example 29
2.14 Part 4 of color-histogram example 30

vii

2.15 Edge detection example: original images 32
2.16 The preceding images reduced to gray-scale 32
2.17 The horizontal Sobel filter applied to the gray-scale images . . 32
2.18 The vertical Sobel filter applied to the gray-scale images . . . 33
2.19 The edge angles presented by false colors 33
2.20 The edge magnitude . 33
2.21 Edge angles with the edge magnitude as brightness 34
2.22 The edge histogram . 34

3.1 JPEG Examples . 40
3.2 Binary Image Erosion . 46
3.3 Grayscale erosion . 46
3.4 Original image . 48
3.5 Two erosion passes . 48
3.6 The effect of five passes of the same erosion operator 48
3.7 Morphological Processing of a Binary Image 49
3.8 Binary Image Dilation . 49
3.9 Morphological Processing of grayscale Images 50
3.10 Grayscale dilation using a disk shaped structuring element . . 50
3.11 Original image . 51
3.12 Two flat-square dilation passes 51
3.13 Five passes of the same dilation operator 51
3.14 Binary Image Opening . 53
3.15 Original image. 53
3.16 Flat-square grayscale opening 54
3.17 Binary Granulometry . 56
3.18 Parabola and Disk SE have the same volume 58
3.19 Parabola decomposition (1) 60
3.20 Parabola decomposition (2) 61
3.21 Parabola decomposition (3) 62
3.22 Disk decomposition (1) . 63
3.23 Disk decomposition (2) . 64
3.24 Obtaining the 20 small-scale parabola p.s. descriptors (1) . . . 65
3.25 Obtaining the 20 small-scale parabola p.s. descriptors (2) . . . 66
3.26 Obtaining the 20 small-scale parabola p.s. descriptors (3) . . . 67
3.27 Obtaining the 20 small-scale parabola p.s. descriptors (4) . . . 68
3.28 Obtaining the 10 large-scale parabola p.s. descriptors (1) . . . 69
3.29 Obtaining the 10 large-scale parabola p.s. descriptors (2) . . . 70
3.30 Obtaining the 10 large-scale parabola p.s. descriptors (3) . . . 71
3.31 Obtaining the 20 small-scale disk p.s. descriptors (1) 72
3.32 Obtaining the 20 small-scale disk p.s. descriptors (2) 73

viii

3.33 Obtaining the 20 small-scale disk p.s. descriptors (3) 74
3.34 Obtaining the 10 large-scale disk p.s. descriptors (1) 75
3.35 Obtaining the 10 large-scale disk p.s. descriptors (2) 76
3.36 Obtaining the 10 large-scale disk p.s. descriptors (3) 77

4.1 The General Learning Machine 80
4.2 The consistency of the learning process 83
4.3 Illustration of the overfitting dilemma 83
4.4 The consistency of the learning process 85
4.5 The optimal separating hyperplane 89
4.6 Two dimensional classification example. 90
4.7 The optimal Hyperplane for the non-separable case. 92
4.8 Examples of local and a global kernels 94

5.1 Image-descriptor extraction 97
5.2 Thresholds for brightness . 108
5.3 Threshold-brightness descriptor with RBF kernel 109
5.4 Threshold-brightness descriptor with polynomial kernel 110
5.5 Average-saturation descriptor with RBF kernel 111
5.6 Average-saturation descriptor with polynomial kernel 112
5.7 Color-histogram descriptor with RBF kernel 113
5.8 Color-histogram descriptor with polynomial kernel 113
5.9 Edge-histogram descriptor with RBF kernel 114
5.10 Edge-histogram descriptor with polynomial kernel 115
5.11 Compression-ratio descriptor with RBF kernel 116
5.12 Compression-ratio descriptor with polynomial kernel 117
5.13 Large-scale disk descriptor with RBF kernel 118
5.14 Large-scale disk descriptor with polynomial kernel 119
5.15 Large-scale parabola descriptor with RBF kernel 120
5.16 Large-scale parabola descriptor with polynomial kernel 121
5.17 Small-scale disk descriptor with RBF kernel 122
5.18 Small-scale disk descriptor with polynomial kernel 123
5.19 Small-scale parabola descriptor with RBF kernel 123
5.20 Small-scale parabola descriptor with polynomial kernel 124
5.21 Combined performance (RBF kernel, σ2 = 1/12) 125
5.22 Combined performance (polynomial kernel, D = 7) 126
5.23 Size of learning set versus error 127

ix

x

LIST OF TABLES

2.1 Overview of Image Descriptors. 15

5.1 Overview of our all image descriptors 98
5.2 Computing Image Descriptors 103

6.1 Cartoon filtering TREC-2002 results 130

xi

xii

Chapter 1

INTRODUCTION

1.1 What is this research work about?

This research project presents a new approach for classifying individual video
frames as being a ‘cartoon’1 or a ‘photographic image’. It is an extension of
results published in [11].

The original motivation for this work arose from experiments performed
at the TREC-2002 video retrieval benchmark: ‘cartoons’ are returned un-
expectedly at high ranks even if the query gave only ‘photographic’ image
examples. The Text REtrival Conferences (TREC) is a series of workshops
for large scale evaluation of information retrieval technology (e.g., see [31])
sponsored by the National Institute of Standards and Technology (NIST)
with additional support from other U.S. government agencies. Distinguishing
between the two genres has proved difficult because of their large intra-class
variation. In addition to image descriptors used in prior cartoon-classification
work, this work introduces novel descriptors based on the pattern spectrum
of parabolic and disk size distributions derived from parabolic and disk gran-
ulometries and the complexity of the image signal approximated by its com-
pression ratio. The effectiveness of the proposed feature set for classification
(using Support Vector Machines) is evaluated on a large set of key-frames
from the TREC-2002 video track collection. The system is compared with
one that classifies Web images as photographs or graphics and its superior
performance is evident. Finally, we incorporated the cartoon filter into the
retrieval framework of [33] and measured the improvement of the search re-
sults.

1The class ‘cartoon’ is defined more precisely in Section 1.5.

2 1.2. TREC VIDEO RETRIEVAL

Figure 1.1: TREC

1.2 TREC Video Retrieval

The goal of the conference series is to encourage research in information
retrieval (Figure 1.1) by testing retrieval technology on realistic test collection
using uniform and appropriate scoring procedures. The general procedure is
as follows:

• A set of M statements of information need (topic) is created2;

• participants search the collection and return an ordered list of the top
N results for each topic;

2see Appendix B for the TREC-2002 topic descriptions

CHAPTER 1. INTRODUCTION 3

• returned shots (i.e., sequences of frames generated during a continuous
camera operation) are pooled and judged for relevance to the topic;

• systems are evaluated using the relevance judgments.

The measures used in evaluation are

precision :=
number of relevant shots retrieved

total number of shots retrieved

recall :=
number of relevant shots retrieved

total number of relevant shots in collection

In video retrieval, the total number of relevant shots in the collection is
unknown because the collection is extremely large and not fully annotated.
In this case, recall can only be approximated.

We can also compute the precision when 0, 10, . . . , 100 shots have been
retrieved. The average of these precision values is called the average preci-
sion; it is a more refined notion of precision in the sense that it penalizes
more heavily errors that occur early in the retrieval.

1.2.1 TREC Tracks

A TREC workshop consists of a series of ‘tracks’, a set of tasks each focused
on some facet of the retrieval problem. Examples of tracks include retrieval of
speech documents, cross-language retrieval, retrieval of web documents, and
question answering. The tracks support the retrieval research community by
creating the infrastructure such as test collections necessary for task-specific
research. The set of tracks that will be run in a given year of TREC is
determined by the TREC program committee with a limit of at most eight
tracks that can be run at one time. Some tracks that will be run in TREC
2003 are:

GENOME Track (GENOME is a new track for TREC 2003). The purpose
of the track is to study the retrieval of genomic data, where genomic
data is broadly interpreted to mean not just gene sequences but also
supporting documentation such as research papers, lab reports, etc.

HARD Track (HARD is a new track for TREC 2003). The goal of HARD
is to achieve High Accuracy Retrieval from Documents by leveraging
additional information about the searcher and/or the search context,
through techniques such as passage retrieval, and using very targeted
interaction with the searcher.

4 1.2. TREC VIDEO RETRIEVAL

NOVELTY Track A track to investigate systems’ abilities to locate new
(i.e., non-redundant) information.

QUESTION ANSWERING Track A track designed to take a step closer
to information retrieval rather than document retrieval.

ROBUST RETRIEVAL Track A new track for TREC 2003. The task in
the track will be a traditional ad hoc retrieval task, but with the focus
on individual topic effectiveness rather than average effectiveness.

VIDEO Track A track designed to investigate content-based retrieval of
digital video. 3

WEB Track A track featuring search tasks on a document set that is a
snapshot of the World Wide Web.

This research work is an attempt to improve the results on the search task
of the TREC-2002 video track.

1.2.2 Video Track

TREC-2001 has introduced a video retrieval task, on a collection of (copy-
right free) videos produced between the 1930s and the 1970s (including ad-
vertising, educational, industrial, and amateur films) by corporations, non-
profit organizations, trade associations, community and interest groups, ed-
ucational institutions, and individuals. The videos vary in their age, produc-
tional style, and quality. 16 teams representing 5 companies and 11 universi-
ties - 4 from Asia, 8 from Europe, and 4 from the US - participated in one or
more of three tasks: shot boundary determination, feature extraction, and
search (manual or interactive) [23].

The track defines three tasks: shot boundary detection, feature detection
and general information search. The goal of the shot boundary task is to
identify shot boundaries in a given video clip. In the feature detection task,
one has to assign a set of predefined features to a shot, e.g., indoor, outdoor,
people and speech. In the search task, the goal is to find relevant shots given
a description of an information need, expressed by a multimedia topic. Both
in the feature detection task and in the search task, a predefined set of video
clips and images is to be used. 4

3Beginning in 2003, this track will become an independent evaluation (TRECVID) with
a 2-day workshop taking place each year just before TREC.

4More information about the track is available from the track website at http://

www-nlpir.nist.gov/projects/t01v/

CHAPTER 1. INTRODUCTION 5

1.3 Motivation, Task and Contributions

Experiments at CWI (Centrum voor Wiskunde en Informatica) for the search
task at the video track studied a generic probabilistic retrieval model that
ranks shots based on the content of their keyframe image and speech tran-
script [33]. Evaluating the results, it was noticed that the model does not
distinguish sufficiently between ‘cartoons’ and other keyframe images. Fig-
ures 1.2, 1.3, and 1.4 are examples of such behavior. Of course, one generally
does not expect a ‘cartoon’ as query result unless explicitly asked for; conse-
quently, returning these ‘cartoons’ by mistake results in a lower precision of
the system.

The objective of this study is to implement a classifier that distinguishes
‘cartoon’ keyframes from ‘non-cartoons’. The problem can be viewed as a
case study of automatic video genre classification. The research work de-
scribes an approach which employs both grayscale and color image features.
The output from various feature extractions is combined in a Support Vec-
tor Machines (SVM) training process to produce a classification model. The
results demonstrate a small error rate on both the TREC-2002 video corpus
and a collection of images gathered from the WWW.

The main contributions of this research are a rigorous analysis of the clas-
sification results on a large corpus, the use of image morphology in the feature
set, as well as the good results achieved in spite of difficult, inhomogeneous
data: indeed, our cartoon detector turns out to be useful for improving the
TREC-2002 retrieval performance, not just for CWI’s entry [33] but also on
other contestants’ entries.

1.4 Related work

Roach et al. published an approach for the classification of video fragments
as cartoons using motion only [19]. Yet, their database consisted of only
8 cartoon and 20 non-cartoon sequences, so it is difficult to predict how
it would perform on the TREC corpus, and their data set is not publicly
available. Another recent effort addressed the classification of video into
seven categories (including cartoons) [26]. Two of our features are similar to
theirs, but our approach is different and the experiments are incomparable.

A closely related problem is the automatic classification of WWW im-
ages as photographs or graphics; examples are the WebSeek search engine
[24] and the systems described in [20, 1]. Unfortunately, the most discrim-
inative features used in these works take advantage of some characteristics
of web images that do not exist in video keyframes, notably the aspect ratio

6 1.4. RELATED WORK

Sample Images used in Query

Best Matches Returned

Figure 1.2: An example from CWI’s entry to the TREC-2002 benchmark.
The search algorithm is given the sample images and attempts to find similar
images in the video database. The map of the US is considered an undesirable
‘cartoon’.

CHAPTER 1. INTRODUCTION 7

Sample Images used in Query

Best Matches Returned

Figure 1.3: Another example from CWI’s entry to the TREC-2002 bench-
mark. Here a frame from an animated-picture cartoon is returned unexpect-
edly.

8 1.4. RELATED WORK

Sample Images used in Query

Best Matches Returned

Figure 1.4: Another example from CWI’s entry to the TREC-2002 bench-
mark. Here a frame from an animated-picture cartoon is returned unexpect-
edly.

CHAPTER 1. INTRODUCTION 9

and the word occurrence in the image URLs. We applied the farthest neigh-
bor histogram descriptor suggested by [1] to our data collection, but this
characteristic is expensive to compute without resulting in improved error
rates.

The photo/graphics classifier of [1] had been previously implemented in
INS1 (Data Mining and Knowledge Discovery) group as part of the Acoi

system [34]. A decision-rule classifier (C4.5, [18]) has been trained on the
features given in [1] on varying quantities of training data. However, as the
results in Chapter 5 show, the features do not provide enough (or even no)
discriminating power in the case of photo/cartoon classification on the TREC
video collection. Conversely, the same implementation has a classification
score of 0.9 on a data set of 14, 040 photos and 9, 512 graphics harvested
from the WWW.

1.5 What is a Cartoon?

Recall that the objective of this project was to investigate the possibilities
of filtering certain undesirable images from image lists generated by search
operations in an image database. In particular, only scenes from the real
world were of interest. This motivates the following definition:

We call images or parts of images photographic material or photos
if they have been obtained by means of a photographic camera.

We call images cartoons if they do not contain any photographic
material.

In this work we were only concerned with single frames. For this reason, our
definition and the discussion of the properties of cartoons below do not take
into account time-dependent properties of cartoons such as characteristic
patterns of motion and rate of change.

Since they do not contain photographic material, cartoons are artificial
images like animated cartoons for children (Figure 1.5), educational schemat-
ics, and movie credits (Figure 1.11). They are created by humans as pencil
sketches, by drawing and painting, or with various technical tools for type-
setting and computer animation. Some distinguishing features of cartoons
are:

Few, simple, and strong colors: The abstraction in transforming a real-
world scene into the cartoon world leads to a reduction of colors and
exaggeration in saturation.

10 1.5. WHAT IS A CARTOON?

Patches of uniform color: Textures are often simplified to uniform color.

Strong black edges: The large patches of uniform color are often sur-
rounded by strong black edges.

Text: Educational cartoons, charts, etc. often contain large text that is
aligned horizontally and not distorted by a perspective transformation.
Moreover, the fonts are chosen to be readable and the colors to give
good contrast on TV.

Given this list, it may appear easy to separate cartoons from other keyframes.
But in practice the problem is not as simple. Part of the problem lies in the
low quality of the video streams in the TREC-2002 collection:

• the analog NTSC signal discards high-frequency components and there-
fore blurs sharp edges;

• the color fidelity is poor, with frames tending towards washed-out colors
shifted towards blue or brown;

• photographic film transmitted over TV results in black speckles and
alignment problems, e.g., the trapezoid black sections at the left and
right of the image in Figure 1.5;

• the resolution of the digitized frames is low (352 × 240 pixels) and
occasionally the frame grabber mixed two consecutive frames into a
single digital image;

• the digitized frames were compressed using the lossy JPEG compression
scheme, leading to artifacts like noise around sharp edges and rectangu-
lar areas of uniform color where the original image had smooth subtle
color variations.

Another serious source of problems is that the possibly photographic origin
of a picture often cannot be inferred with precision:

• Artificial scenes recorded by a photographic camera (Figure 1.13) or
photography of abstract or technical objects (Figure 1.10) can have
strong resemblance to a cartoon.

• ‘Mixed’ pictures such as Figure 1.9 or people in an theatrical scene
mean that local and possibly very small features (see Figure 1.10) can
reverse strong evidence in favor of a classification as cartoon.

CHAPTER 1. INTRODUCTION 11

• Postprocessing may hide or obfuscate any use of photographic material
(e.g., Figure 1.12).

In fact, these problems often make it impossible even for humans to reach
consensus in classifying the video frames from the training and testing col-
lection. Consequently, the training sets are not very stable, which poses a
great challenge to any automated procedure.

1.6 Outline

This research work is organized as follows in a bottom-up manner, proceeding
from standard image descriptors to the construction of new descriptors, which
are then fed into machine-learning algorithms for our experiments:

• Chapter 2 discusses image descriptors and presents the ones used pre-
viously in other research.

• Chapter 3 proposes new image descriptors based on granulometry and
compression.

• Chapter 4 gives a short background about VC theory and kernel feature
spaces and then proceeds to kernel-based learning used in the classifi-
cation task.

• Chapter 5 reports on our experimental setup and results.

• Chapter 6 summarizes the contributions made with this research work
and discusses directions for further research.

• The TREC-2002 topics are described in Appendix B.

• Source code of Matlab routines are provided in Appendix C.

12 1.6. OUTLINE

Figure 1.5: A typical ‘cartoon’ from TREC-2002. Note the JPEG compres-
sion artifacts around the edges, the black cutoff at left and right, and the
vertical stripes from the original film material.

Figure 1.6: This image from TREC-2002 clearly is not a cartoon, hence a
‘photo’.

Figure 1.7: Another ‘clear’ cartoon image from TREC-2002, but the exag-
gerated light beams are the only distinguishing feature

CHAPTER 1. INTRODUCTION 13

Figure 1.8: From TREC-2002, a misleading photographic image of a car.

Figure 1.9: An illustration of the difficulty of mixed images in TREC-2002:
small (human) features reverse an otherwise clear classification as cartoon

Figure 1.10: A photograph from TREC-2002 with all the cited properties of
a cartoon; only the sparkle of the metallic parts and the shadows justify the
classification as ‘photograph.’

14 1.6. OUTLINE

Figure 1.11: Movie credits count as a cartoon.

Figure 1.12: Postprocessing can obfuscate the use of photographic material.

Figure 1.13: Photography of artificial objects such as the architectural model
here is hard to distinguish from ‘cartoons’.

Chapter 2

FEATURE EXTRACTION

The system extracts a number of descriptors for each ’key-frame’ image. In
a probabilistic multimedia retrieval model is used straightforward key frame
selection ı.e., the middle frame from each shot is representative for the shot
[33] and our full collection of images contains all these key-frames.

In this chapter we discuss our image descriptors similar to previously
used in other classification systems. Table 2.1 presents an overview of all our
image descriptors. Their individual ‘naive’ usefulness is given by the error on
photos E(p), error on cartoons E(c), and total error E(t), when performing
classification with machine learning (as outlined in Chapter 4) using the given
image descriptor alone.

More of the extracted descriptors are based on a HSV color space and
this is the reason why we start with a short presentation of the most popular
color spaces, emphasizing on a HSV color space.

Image Descriptors Dimension
average saturation 1
threshold brightness 1
color histogram 45
edge-direction histogram 40
compression ratio 1
multi-scale pat.spectrum 60

Table 2.1: Overview of Image Descriptors.

16 2.1. COLOR SPACES

2.1 Color spaces

When looking at an image color is a visual feature which is immediately per-
ceived. Models of color stimuli are used in retrieval by color similarity, such
that distances in the color space correspond to human perceptual distances
between colors. Ones of the most used color spaces in image analysis can be
divided in:

• Hardware-oriented models. Here belong RGB, CMY, and YIQ
color models. They are defined according to properties of optic devices
used to reproduce colors, such as the TV monitor, the computer screen,
the color printer, etc.

• User-oriented models. Here belong the HIC, HCV, HSV, HSB,
and MTM. These are based on human perception (through hue, sat-
uration, and brightness percepts) of colors. Hue describes the actual
wavelength of the color percept. Saturation indicates the amount of
white light which is present in a color. Highly saturated colors (pure
colors) have no white light component. Brightness represents the in-
tensity of a color.

2.1.1 Hardware-oriented models

RGB color space

RGB is the most commonly used hardware-oriented scheme for digital images
based on the physiology of human retina. Colors in RGB are obtained as
the addition of the three primaries Blue, Green and Red. The color space is
visualized by a unit cube where each color (red, green, blue) is assigned to
one of the three orthogonal coordinate axes in 3D space (Figure 2.1).

In this cube, as shown in (Figure 2.3):

• The RGB coordinates are related to tristimulus1 values, XYZ, accord-
ing to the following linear transformation [4]:

X = 0.490R + 0.310G + 0.200B
Y = 0.177R + 0.813G + 0.010B
Z = 0.000R + 0.010G + 0.990B

White is represented as X = 1, Y = 1, Z = 1

1Tristimulus values X, Y, Z are the corresponding amounts of red, green, and blue
necessary to form a particular color

CHAPTER 2. FEATURE EXTRACTION 17

Figure 2.1: View of the shell of the color cube.

There are many measures that can be derived from the tristimulus
values, these include chromaticity coordinates (x, y, z) and color spaces.
Thus a color is specified by its chromaticity coefficients, defined as:

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z

Chromaticity coordinates define color in relation to the Chromaticity
Diagram 2 (Figure 2.2), which has a white point at its center with more
saturated colors along the radii coming out from the center.

• Along each axis of the color cube, the colors range from no contribution
of that component to a fully saturated color.

• Maximally saturated colors are placed at the corners of the cube, Red
at (1,0,0), Green at (0,1,0), Blue at (0,1,1), Cyan at (0,1,1), Magenta
at (1,0,0), and Yellow at (1,1,0).

• The color cube is solid, any point (color) within the cube is specified
by three numbers, namely, an r,g,b triple.

• The diagonal line of the cube from black (0,0,0) to white (1,1,1) repre-
sents all the grays, that is, the red, green, and blue components have
the same values.

2The chromaticity diagram is a tool for color definition but does not correspond to the
operation of any hardware device, nor to the way in which human vision operates.

18 2.1. COLOR SPACES

Figure 2.2: Chromaticity diagram. If three points of the diagram, corre-
sponding to three primaries, are selected, all the colors obtainable by means
of them are included in the triangle having these three points as vertexes.

CHAPTER 2. FEATURE EXTRACTION 19

Figure 2.3: RGB color space.

• This RGB color space lies within our perceptual space, that is, the
RGB cube is smaller and represents fewer colors than we can see.

CMY color space

CMY color space is used for color printing and it uses as primary colors cyan,
magenta and yellow (CMY). Cyan, Magenta, Yellow are the complements of
Red, Green, and Blue obtained by subtracting light from white. Therefore,
white is at (0,0,0) and black is at (1,1,1) in the CMY color space as shown
in Figure 2.4.

Conversion from RGB to CMY can be done by converting RGB into
XYZ and hence converting XYZ into CMY. RGB colors are purer than the
corresponding colors in CMY (i.e., the color solid is smaller in CMY) and
this must be taken into account in order to print an image of a computer
monitor on a color printer.

YIQ color space

The NTSC format is used in televisions in the United States. One of the
main advantages of this format is that gray-scale information is separated
from color data, so the same signal can be used for both color and black and
white sets. In the NTSC format, image data consists of three components:
luminance (Y), hue (I), and saturation (Q). The first component, luminance,

20 2.1. COLOR SPACES

Figure 2.4: Color representations of the CMY color space.

represents gray-scale information, while the last two components make up
chrominance (color information).

Similar to the YIQ are the YUV, and YCrCb color spaces. Each of
these produces a linear transform of RGB which generates one luminance
channel and two chrominance channels. The transformations were designed
specifically to the parameters of the expected display devices: YIQ - NTSC
color television, YUV - PAL and SECAM color television, and YCrCb - color
computer display. The YCrCb color space is used in the JPEG digital image
standard. None of these color spaces is uniform.3 As such, the color distances
in these transform color spaces do not correspond to color dissimilarities.

2.1.2 User-oriented models

HIS (Hue, Intensity, and Saturation), HCV (Hue, Chroma, and Value), HSV
(Hue, Saturation, and Value), and HSB (Hue, Saturation, and Brightness)
color models are closely related to each other while they all are approxima-
tions of the Munsell system (Figure 2.5) and support an intuitive notion of
color since they separate luminance from the other components. Color com-
ponents can be derived from either RGB or XYZ through linear or non-linear
transformations. These spaces have been used extensively in computer vision

3Uniform color spaces are spaces such that a color difference perceived by a human
observer is approximated as the Euclidean distance between two points in the color space.

CHAPTER 2. FEATURE EXTRACTION 21

Figure 2.5: Munsell system.

and computer graphics. They all are device dependent 4 and non-linear.

MTM color space

Mathematical Transformation to Munsell system (MTM) space is a color
space which is obtained from RGB through a simple transformation. It is
perceptually uniform and very closely represents the human way of perceiving
colors. Transformation from RGB to MTM is reported in [17].

HIS color space

The HIS model is represented as a double cone as in (Figure 2.6). The axis
of the cone is the gray scale with White in the top cone vertex and Black in
the bottom cone vertex. Hue is represented by the angle around the vertical
axis. Primary colors are located on the maximum circle, equally spaced at
60 degrees (counterclockwise: Red, Yellow, Green, Cyan, Blue, Magenta).

HSB color space

The HSB color space derives from Hurvich and Jamenson’s opponent color
theory[10]. This theory is based on observation that opponent hues (Yellow
and Blue, Green and Red) cancel each other when superimposed. HSB is a
polar coordinate model. This model can represent with a certain fidelity a
great range of psychophysical phenomena. From RGB opponent colors can

4 Each color device has a particular set of colors that it can produce. This color set is
known as its gamut

22 2.1. COLOR SPACES

Figure 2.6: HIS color model.

be defined through the linear transformations:

rg = R−G

by = 2B −R−G

wb = R +G+B

The intensity axis wb can be more coarsely sampled than the other two.

HSV color space

The HSV (Hue, Saturation, Value) color model (Figure 2.7) is repre-
sented by a cone where the cone axis represents the line of grey. HSV can be
derived from the RGB space according to the following transformation:

V =
1

3
(R +G+B)

S = 1− 3

R +G+B
min(R,G,B)

H = 180
0.5(R−G) + (R−B)

((R−G) + (R−B)(G−B))1/2

H = undefined if S = 0

H = 360−H ifB/V > G/V

CHAPTER 2. FEATURE EXTRACTION 23

Figure 2.7: HSV model.

In our program we use the functions rgb2hsv and hsv2rgb from Matlab
Image Processing Toolbox that convert images between the RGB and HSV
color spaces.

As hue varies from 0 to 1.0, the corresponding colors vary from red,
through yellow, green, cyan, blue, and magenta, back to red, so that there
are actually red values both at 0 and 1.0. As saturation varies from 0 to 1.0,
the corresponding colors (hues) vary from unsaturated (shades of gray) to
fully saturated (no white component). As value, or brightness, varies from 0
to 1.0, the corresponding colors become increasingly brighter (see Figure 2.8).

2.2 Saturation, Brightness, and Color His-

togram

The HSV space provides two interesting descriptors. Figure 2.9 shows that
the average saturation of cartoons is much higher when compared against
photographic images. We compute our first descriptor as the average color
saturation using the S channel of the image in the HSV color space.

We call our second descriptor ‘threshold brightness’, that is, the percent-
age of pixels having brightness (the V channel of the image in the HSV color
space) above a certain threshold. The average brightness for cartoons (Fig-
ure 2.10) is much higher than photos and we obtained best results using a

24 2.2. SATURATION, BRIGHTNESS, AND COLOR HISTOGRAM

Figure 2.8: HSV color model.

threshold of 0.2, as explained in Chapter 5.
Similar descriptors were used in [26] and we also observed good correlation

with class membership.
The color histogram is the most traditional way of describing low-level

color properties of images. It can be represented as three independent color
distributions in each primary, as two independent distributions (for color
spaces which separate chromatic information from luminance) or, more fre-
quently, as one distribution over the three primaries, obtained by discretizing
image colors and counting how many pixels belong to each color. Following
the most frequent use of the color histogram to obtain our third descriptor,
we compute a 3×3×5 histogram of the image in the HSV color space and use
the 45 numbers (normalized by the number of pixels) as 45 image descrip-
tors. Figures 2.11–2.14 confirm the intuition that cartoons have few colors
and therefore few highly-filled bins in their color histogram.

CHAPTER 2. FEATURE EXTRACTION 25

(a) (b)

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

(e) (f)

Figure 2.9: Saturation in cartoon and photo images. An original (rgb) (a)
cartoon and (b) photographic image. Saturation of (c) cartoon and (d) pho-
tographic image (S channel of HSV color space). Histogram: (e) Computed
average saturation 0.6231 in cartoon. Note that the scale here goes to 1500.
(f) Computed average saturation 0.2880 in photographic image.

26 2.2. SATURATION, BRIGHTNESS, AND COLOR HISTOGRAM

(a) (b)

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

(e) (f)

Figure 2.10: Brightness in cartoon and photo images. An original (rgb)
(a) cartoon and (b) photographic image. Grayscale (c) cartoon and (d)
photographic image (HSV color space). Histogram. Computed threshold
(0.4) brightness 0.9775 in (e) cartoon and 0.6459 in (f).

CHAPTER 2. FEATURE EXTRACTION 27

(a) (b)

(c) (d)

Figure 2.11: Color histogram descriptors in cartoon and photo images based
on 45-bin HSV color space. An original (RGB) (a) cartoon and (b) photo-
graphic image. H channel of the (c) cartoon and (d) photographic image
quantized to 3 values.

28 2.2. SATURATION, BRIGHTNESS, AND COLOR HISTOGRAM

(e) (f)

(g) (h)

Figure 2.12: S channel of the (e) cartoon and (f) photographic image quan-
tized to 3 values. V channel of the (g) cartoon and (h) photographic image
quantized to 5 values.

CHAPTER 2. FEATURE EXTRACTION 29

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=1 S=1

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=1 S=2

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=1 S=3

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=2 S=1

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=2 S=2

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=2 S=3

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=3 S=1

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=3 S=2

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=3 S=3

Values of V

Fr
eq

ue
nc

y

Figure 2.13: (i) – color histogram for cartoon. The 3×3×5 histogram in the
HSV color space is given by one-dimensional histograms for the V channel
for each of the possible quantized values of the H and S channel.

30 2.2. SATURATION, BRIGHTNESS, AND COLOR HISTOGRAM

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=1 S=1

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=1 S=2

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=1 S=3

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=2 S=1

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=2 S=2

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=2 S=3

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=3 S=1

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=3 S=2

Values of V

Fr
eq

ue
nc

y

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

H=3 S=3

Values of V

Fr
eq

ue
nc

y

Figure 2.14: (j) – color histogram for photographic image. The 3 × 3 × 5
histogram in the HSV color space is given by one-dimensional histograms
for the V channel for each of the possible quantized values of the H and S
channel.

CHAPTER 2. FEATURE EXTRACTION 31

2.3 Edge Detection

Cartoons are expected to have strong black edges. See Figure 2.15 for an
example, where areas of uniform color are surrounded by black lines. To
derive an image descriptor for measuring this property, we reduce the image
to gray-scale (example in Figure 2.16) and interpret this gray-scale image
as a real function I(x, y) of two variables; this allows us to reason about
the local rate of change and the direction of the steepest ascent or descent.
Coordinates (x, y) where I(x, y) changes a lot are likely to be part of an edge
and therefore we classify local change.

Our edge-detection image descriptor will be based on the gradient of I.
The gradient of I in point (x, y) is

∇I(x, y) =
(
∂

∂x
I(x, y),

∂

∂y
I(x, y)

)

where the horizontal partial derivative ∂/∂xI(x, y) in point (x, y) is the rate
of change (derivative) of I when x is varied and y kept constant. (The same
holds vice versa for the vertical partial derivative.)

To approximate the horizontal and vertical derivatives, respectively, we
filter the image using the horizontal and vertical Sobel filters, respectively:

Shorizontal =



−1 0 1
−2 0 2
−1 0 1


 and Svertical =




1 2 1
0 0 0
−1 −2 −1


 .

For example, when filtering the image with Shorizontal,

(Shorizontal ∗ I)(x, y) =− I(x− 1, y − 1) + I(x+ 1, y − 1)

− 2I(x− 1, y) + 2I(x+ 1, y)

− I(x− 1, y + 1) + I(x+ 1, y + 1)

approximates the horizontal change by subtracting the values of neighboring
pixels at the left from the values of neighboring pixels at the right, giving
greater weight to closer neighbors. Figures 2.17 and 2.18 show the effect of
applying the horizontal and vertical Sobel filter to our example image.

The gradient ∇I(x, y) is a vector pointing in the direction of the greatest
ascent. Therefore, the angle θ(x, y) of the gradient at (x, y) is defined via

tan θ(x, y) =

∂
∂y
I(x, y)

∂
∂x
I(x, y)

.

32 2.3. EDGE DETECTION

Figure 2.15: A typical cartoon from TREC-2002 with clearly defined black
edges and a photographic image from TREC-2002 for comparison.

Figure 2.16: The preceding images reduced to gray-scale.

Figure 2.17: The horizontal Sobel filter applied to the gray-scale images.
Sharp increases in brightness when going from left to right are represented
by strong green pixels (these are the positive values in the filtered image);
sharp decreases by strong shades of red (negative values in the filtered image).

CHAPTER 2. FEATURE EXTRACTION 33

Figure 2.18: The vertical Sobel filter applied to the gray-scale images. Sharp
increases in brightness when going downwards are represented by strong green
pixels (these are the positive values in the filtered image); sharp decreases
by strong shades of red (negative values in the filtered image).

Figure 2.19: The edge angles presented by false saturated colors. For in-
stance, blue marks upward edges, green downward edges, and red horizontal
edges.

Figure 2.20: The edge magnitude.

34 2.3. EDGE DETECTION

Figure 2.21: The edge angles with the edge magnitude as brightness. Our
image descriptor is essentially a histogram of this image.

1
2

3
4

5
6

7
8

1

2

3

4

5

0

0.05

0.1

0.15

0.2

1
2

3
4

5
6

7
8

1

2

3

4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 2.22: The edge histogram of an image (the cartoon on the left, the
photographic image on the right) gives for each of five intervals of magni-
tudes and eight intervals of angles the fraction of pixels that fall into a given
magnitude interval and a given angle interval.

CHAPTER 2. FEATURE EXTRACTION 35

The length of the gradient vector, its norm m(x, y) = |∇I(x, y)|, is

m(x, y) =

√(
∂

∂x
I(x, y)

)2

+

(
∂

∂y
I(x, y)

)2

.

Our approximations of the partial horizontal and vertical derivatives permit
us to compute approximations of θ(x, y) and m(x, y). This is illustrated in
Figures 2.19 and 2.20.

The approximations of θ(x, y) and m(x, y) are gray-scale images them-
selves and we compute a histogram of the frequencies for tuples of particular
values (θ,m). Concretely, we divided the range of angles 0 . . . 2π into eight
uniform intervals and the range of magnitudes 0 . . .

√
20 into five uniform in-

tervals. This yields 8 ·5 = 40 frequencies normalized to values between 0 and
1, which are stored as a vector of 40 floating-point numbers. This approach
is inspired by [7] where a similar technique is outlined.

36 2.3. EDGE DETECTION

Chapter 3

NOVEL DESCRIPTORS

In this chapter we develop two new classes of image descriptors to supplement
the commonly used descriptors presented in the preceding chapter (color his-
togram and edge based descriptors, average saturation and threshold bright-
ness). The first class of descriptors attempts to recognize the simple com-
position of images by measuring the compression ratio, whereas the second
approach is to use pattern spectra to differentiate between cartoons and pho-
tographic images.

3.1 Compression

3.1.1 Descriptive Complexity

Cartoons are expected to have a more simple composition than photographic
images: they typically have few colors, simple geometric shapes, etc. Hence,
an image descriptor measuring the ‘complexity’ of an image should be useful
in distinguishing cartoons from photographic images.

There is an extensive theory about the descriptive complexity of data
objects [14]. Here (finite) data objects x and (finite) descriptions p are ab-
stracted to (finite) bit strings x, p ∈

⋃
n≥0{0, 1}n; description methods are

represented by partial functions T mapping descriptions p to outputs x (or no
output). We are only interested in description methods that can in principle
be implemented on a computer. Therefore we require that T is computable.
With these preliminaries, we can define the complexity of x with respect to
description method T as

CT (x) := min{|p| : given input p, method T produces x}

where |p| is the length of the bit string p. For example, T could be the LZ77

38 3.1. COMPRESSION

decompression algorithm [13] used by the GNU gunzip utility [15, 5], p the
compressed file and x the uncompressed file.

Surprisingly, there exists an effective description method U so that for any
other description method T , CU(x) ≤ CT (x) + c where c ∈ N is a constant
depending only on the choice of U and T but not on x. Therefore U is
called an universal description method; the theorem proving its existence is
called the ‘Invariance Theorem’ and given in [14]. C(x) := CU(x) is called
the Kolmogorov complexity of x. If we interpret CT (x) as the length of the
file x compressed so that it can be uncompressed with method T , then the
Invariance Theorem says that the compressed version of x with respect to U
is only a longer by a constant number of bits than the compressed version of
x with respect to T for any (de)compression method T .

Since the Kolmogorov complexity C(x) measures truly detects any algo-
rithmic regularity of x, it is the ideal formalization for the intuitive inherent
complexity of given image: there is no need to specify what kind of simplicity
we are looking for, because CU(x) will measures all regularity exploitable by
a computer. Hence, C(x) would be a very useful image descriptor. However,
the nice properties of C(x) come at a large price: finding the shortest com-
pressed version of x with respect to the universal method U is uncomputable
and, worse, essentially any approximation of C(x) with meaningful overall
guarantees other than C(x) ≤ |x| + c′ (for some constant c′) is also uncom-
putable. Consequently, we are forced to resort to approximation methods
that come without any guarantee of how much of the existing algorithmic
regularity they can find. Our approach was to take the size of the images
when compressed with commonly used image-compression techniques as an
approximation to C(x). Note, however, that for lossy compression, this ap-
proximation can even be smaller than the true C(x).

3.1.2 Image Compression

Image-compression algorithms fall into two categories: lossy and non-lossy
image compression. As the name suggests, non-lossy compression permits
the perfect reconstruction of the input image from the compressed data. On
the other hand, lossy compression aims at discarding irrelevant parts of the
image to reduce the size of its representation.

Lossless image compression is usually implemented by applying a re-
versible filter to the image and then compressing the result using a generic
compression algorithm. The compression algorithm is typically a method
such as run-length encoding, entropy coding (Huffman or arithmetic coding),
or techniques originally developed for text such as LZ77 [13]. Because these
algorithms operate on a bit string, which conceptually is one-dimensional

CHAPTER 3. NOVEL DESCRIPTORS 39

data, the preceding filtering stage can improve compression. For example, in
the PNG format [8], the image is compressed horizontal line by horizontal
line with the option of first applying a two-dimensional filter that attempts
to predict the value of a pixel given its surrounding pixels. A good predic-
tion leads to small output values, thus biasing the distribution toward small
values, which can then be compressed well.

Compared to lossless compression, lossy compression can achieve dra-
matically greater compression ratios. This is because the compressor can
discard information that the casual observer will not notice. The point of
depart for lossy compression algorithms are assumptions on the physiological
capabilities of the (human) observer. For instance, one of the design consid-
erations in the baseline JPEG format [32] was that the human eye is more
sensitive to rapid variations in brightness than to color and therefore the
image is transformed to the YCrCb color space and the different channels
quantized to different precision. Another assumption of baseline JPEG is
that high-frequency information is less important than low-frequency infor-
mation. Therefore the channels of the quantized image are transformed in
blocks of 8×8 pixels into a frequency representation using the discrete cosine
transform (DCT); the frequencies are scaled by hand-tuned coefficients and
further scaled linearly to accommodate varying quality settings. Finally, the
data resulting from the previous steps is compressed using Huffman compres-
sion, just as in lossless image compression. See Figure 3.1 for examples of
JPEG compression.

3.1.3 Compression Image Descriptors

The preceding discussion suggests that the compressed size of an image will
measure its local complexity of composition. Indeed, an image descriptor
computed by quantizing the input image to 256 colors, applying lossless
compression to the PNG format [8] and using the

compression ratio =
compressed size

original size

as a single real-valued image descriptor led to high predictive power for dis-
tinguishing cartoons from photographic images. Results of the experiments
are given in Chapter 5. We included the quantization step in order to avoid
problems with compressing the inherent noise in the source material from
TREC-2002.

Experiments with lossy compression with JPEG at various quality set-
tings gave little correlation. This is probably due to our source material,
which was captured from TV signals (blurring sharp edges and adding noise

40 3.1. COMPRESSION

(a)

(b)

(c)

Figure 3.1: JPEG image-compression examples: (a) original of a monitor test
image. (b) the same image compressed at a high quality setting—differences
are hardly visible. (c) the same image compressed with low quality and
high compression ratio—the deterioration in fidelity apparent: artifacts and
smearing are clearly visible.

CHAPTER 3. NOVEL DESCRIPTORS 41

to uniform colors) and already stored in the JPEG format—hence, the dis-
tinctive features of cartoons were smoothed out and lost.

3.2 Pattern Spectrum

3.2.1 Introduction to morphological image analysis

Mathematical morphology (MM) can be defined not only as a theory for the
analysis of spatial structures, but also as a powerful image analysis technique.
It is called morphology because it aims at analyzing the shape and form
of objects. It is mathematical in the sense that the analysis is based on
set theory, integral geometry and lattice algebra. MM has an increasing
success because of its simple mathematical description and the many powerful
image analysis tools it provides. Each object can be characterized using
morphological measurements. Image measurements aim at characterizing
the objects of an image by some numerical values. The measurement is
discriminant for a given criterion if the values obtained for objects satisfying
this criterion are very different from those obtained for all other objects.
These measurements define a vector of features that can be used as input to a
statistical or neuronal classification method and this morphological approach
is what we use. Our multi-scale pattern spectrum descriptors are the output
of morphological measurements of the image after applying granulometries.
Granulometries are explained later in Subsection 3.2.5 after giving a glossary
of terms necessary for their better understanding.

3.2.2 Background notions

Discrete images

Most image analysis technologies use digital image data. The discrete version
Z2 of the 2-dimensional (2−D) Euclidean space R2 is achieved by sampling
R2. A network of evenly distributed points (pixels) is usually considered.
The shape of the sampled object depends on the positioning of the sampling
grid and the size of the sampling window.

Images are defined over a rectangular frame called the definition domain
of the image.

A binary image f is a mapping of a subset Df of Zn called the definition
domain of f into the set {0, 1}:

f : Df ⊂ Zn −→ {0, 1}.

42 3.2. PATTERN SPECTRUM

The value of a pixel of a binary image is either 1 or 0 depending on whether
the pixel belongs to an object or to its background. In morphology, image
objects as considered as sets.

A grayscale image f is a mapping of a subsetDf of Z
n called the definition

domain of f into a bounded set of finite chain of nonnegative integers N0 :

f : Df ⊂ Zn −→ {0, 1, . . . , tmax},

where tmax is the maximum value of the data type used for storing the image
(i.e., 2n − 1 for pixels coded in n bits). More formally, grayscale images are
considered as sets through their graphs and subgraphs. The graph G of an
image f is the set of points (x, t) such that x belongs to the image plane of
f and t = f(x):

G(f) = {(x, t) ∈ Zn ×N0|t = f(x)}.

The subgraph, SG of an image, f is the set of points of Zn ×N0 lying below
the graph of the image and over the image plane:

SG(f) = {(x, t) ∈ Zn ×N0|0 ≤ t ≤ f(x)}.

Image to image transformations

Morphological image transformations are image to image transformations,
i.e., the transformed image has the some definition domain as the input
image and it is still a mapping (ψ) of this definition domain into the set
of nonnegative integers. The Identity transform (I), is a trivial example of
image to image transformation:

∀f, I(f) = f.

The cross-section (CSt(f)) of a grayscale image f at level t is the set of
pixels of the image whose values are greater than or equal to t. Morphologi-
cal transformations are neighborhood image transformations, i.e., the output
value at a given pixel is a function of the values of the pixels falling within a
neighboring region centered on the considered pixel.

Basic set operators applied to images

The basic set operators used for defining morphological transformations are
the union ∪ and the intersection ∩. For grayscale images, the union becomes
the point-wise maximum operator and the intersection is replaced by the
point-wise minimum operator. The point-wise maximum ∨ and point-wise

CHAPTER 3. NOVEL DESCRIPTORS 43

minimum ∧ between two images f and g with identical definition domains
are defined for each point x as follows:

(f ∨ g)(x) = max [f(x), g(x)],

(f ∧ g)(x) = min [f(x), g(x)].

Another basic set operator is complementation, denoted by C: C(f) = f c.
The complementation f c of an image f is defined for each image x as the
maximum value of the data type used for storing the image minus the value
of the image f at position x:

f c(x) = tmax − f(x).

Ordering relations

Ordering is a key notion in mathematical morphology. An image f is less
than or equal to an image g with the same definition domain if the subgraph
of f is included in that of g:

f ≤ g ⇔ SG(f) ⊆ SG(g).

By analogy ordering on image transformations is defined as: a transformation
ψ1 is less than or equal to a transformation ψ2 if and only if, for all images
f , ψ1(f) is less than or equal to ψ2(f):

ψ1(f) ≤ ψ2(f)⇔ ∀f, ψ1(f) ≤ ψ2(f).

Convexity

A Euclidean set is convex if and only if it contains all line segments con-
necting any pair of its points. The convexity property is an important shape
descriptor. In the discrete case there may be more than one connected digital
line segment linking two points, hence, the definition becomes:

A set of grid nodes S is said to be convex if it is equivalent to the grid
nodes falling within the intersection of all Euclidean half-planes containing
S. The smallest convex set containing a given set is called the convex hull of
this set.

Image transformation properties

Some of the most fundamental problems in image analysis concern the choice
of which operators to use, when to apply them, and how large they should be.

44 3.2. PATTERN SPECTRUM

Knowing the properties of a transformation allows us to predict its behav-
ior and hence will help us to choose the appropriate transformations when
solving an image analysis problem. Key image transformation properties in
mathematical morphology are:

Idempotence: A transformation Ψ is idempotent if applying it twice to any
image f is equivalent to applying it only once:

ψ is idempotent ⇔ ψψ = ψ.

Extensivity: A transformation Ψ is extensive, if for all images f , the trans-
formed image is greater than or equal to the original image, i.e., if ψ is
greater than or equal to the identity transform I :

ψ is extensive ⇔ I ≤ ψ.

Anti-extensivity: A transformation Ψ is anti-extensive, if for all images f ,
the transformed image is less than or equal to the identity transform
I :

ψ is anti-extensive ⇔ I ≥ ψ.

Increasingness: A transformation Ψ is increasing, if it preserves the order-
ing relation between images:

ψ is increasing ⇔ ∀f, g ⇒ ψ(f) ≤ ψ(g).

Duality: Two transformations Ψ and Φ are dual with respect to comple-
mentation if applying Ψ to an image is equivalent to applying φ to the
complement of the image and taking the complement of the result:

ψ and φ are dual with respect to complementation C⇔ ψ = CφC.

De Morgan formula: X ∩ Y = (Xc ∪ Y c)c - the set intersection with
respect to the complementation is the set union, is an example of a
dual operator.

3.2.3 Erosion and Dilation

Morphological operators aim at extracting relevant structures of the image
through its subgraph representation. This is achieved by probing the image
with another set of known shape called structuring element (SE)- a movable
image mask within which the image values are evaluated. The shape of
the SE is usually chosen according to some a priori knowledge about the
geometry of the relevant and irrelevant (noise or objects we would like to
suppress) image structures.

CHAPTER 3. NOVEL DESCRIPTORS 45

Structuring element

A SE is a small set used to probe the image under study. One of the pixels in
the SE is the reference point, commonly, though not necessarily at the center.
The operations proceed by placing the reference point at every pixel in the
image. At each location the image value at the reference point is changed
(or not) depending on the image values within the SE. To investigate the
morphology of n-dimensional image objects, n-dimensional SEs (i.e., subsets
of the image definition domain) can be used, referred to as flat SEs, or n+1-
dimensional SEs called nonflat SEs. The shape of flat structuring elements
does not depend on the scaling of the image gray levels. The grayscale values
of nonflat SEs should have the same units and scalings as those of the input
image. The two dual morphological operators erosion and dilation are the
foundation of morphological analysis with structuring elements.

Erosion

The erosion of an image I by a flat structuring element B is denoted by εB
and the eroded value at a given pixel x is the minimum value of the image
in the window defined by the structuring element when its origin is at x:

[εB(f)] = min
b∈B

f(x+ b)

In binary morphology erosion shrinks the input image. The following figure
(Figure 3.2) illustrates the erosion of a binary image. The structuring element
in this case is a square (3 × 3 array of pixels) and the reference point is at
the center. The structuring element is moved across the source (left) image.
If at any location a ‘0’ appears within the structuring element, the value at
the reference point in the destination (right) image is zero. If the structuring
element is full of ‘1’s then the reference point in the destination image is set
to 1. Another way to look at it is to say that the reference point is set 1 if the
structuring element fits entirely within the object. Small-scale protrusions
and connections are removed by this process. A larger structuring element
would have stripped off a thicker skin (and in this particular case caused our
object to disappear).

Grayscale erosion with a flat disk shaped SE element will generally darken
the image. Bright regions surrounded by dark regions shrink in size, and
dark regions surrounded by bright regions grow in size. Small bright spots
in images will disappear as they are eroded away down to the surrounding
intensity value, and small dark spots will become larger spots. Figure 3.3
shows a vertical cross-section through a grayscale image and the effect of
erosion using a disk shaped SE. Figure 3.4 – Figure 3.6 illustrate grayscale

46 3.2. PATTERN SPECTRUM

Figure 3.2: Binary Image Erosion.

Figure 3.3: Grayscale erosion using a disk shaped structuring element. The
flat disk shaped structuring element causes small peaks in the image to dis-
appear and valleys to become wider.

CHAPTER 3. NOVEL DESCRIPTORS 47

erosion using a 3× 3 flat square structuring element.
Nonflat SEs have grayscale values for their domain of definition. The

erosion by a nonflat SE B is defined as follows:

[εB(f)] = min
b∈B
{f(x+ b)−B(b)}

Dilation

Dilation is the opposite of erosion. We now use

[δB(f)](x) = max
b∈B

f(x+ b).

In other words, the dilated value at a given pixel x is the maximum value of
the image in the window defined by the structuring element when its origin
is at x.

In the morphological dilation, the state of any given pixel in the output
image is determined by applying a rule to the corresponding pixel and its
neighbors in the input image.

Rule for Binary Dilation

The value of the output pixel is set to 1 if any of the pixels in the
input pixel’s neighborhood is set to 1.

Figure 3.7 illustrates the dilation of a binary image. It shows how the neigh-
borhood of the pixel of interest (the circled one) is defined by the structuring
element. The dilation function applies the appropriate rule to the pixels
in the neighborhood and assigns a value to the corresponding pixel in the
output image.

In binary morphology dilation grows the input image (Figure 3.8). In
this case, as the structuring element (3× 3) moves, if any pixel in the source
image has the value ‘1’, then the reference point in the destination image
is set to 1. The effect is to add a layer of pixels around the object. This
results in filling in ‘small’ (with size of the structuring element or less) holes
and gaps in the structure, and joining objects together that are separated by
small distances.

Rule for Grayscale Dilation

The value of the output pixel is the maximum value of all the pixels
in the input pixel’s neighborhood.

48 3.2. PATTERN SPECTRUM

Figure 3.4: Original image.

Figure 3.5: Produced image by two erosion passes using a 3×3 flat square
structuring element. Note that the highlights have disappeared, and that
many of the surfaces seem more uniform in appearance due to the elimination
of bright spots. The body of the cube has grown in size since it is darker
than its surroundings.

Figure 3.6: The effect of five passes of the same erosion operator on the
original image.

CHAPTER 3. NOVEL DESCRIPTORS 49

Figure 3.7: Morphological Processing of a Binary Image. The morphological
dilation function sets the value of the output pixel to 1 because of one of the
elements in the neighborhood defined by the structuring element is on.

Figure 3.8: Binary Image Dilation. The dilation with 3 × 3 SE fills most
holes and gaps, but the gap between the objects at the right hand side of the
image, where it is larger, is retained, but narrowed, in the destination image.

50 3.2. PATTERN SPECTRUM

Figure 3.9: Morphological Processing of grayscale Images.

Figure 3.9 illustrates morphological processing for a grayscale image. It shows
the processing of a particular pixel in the input image. The function applies
the rule to the input pixel’s neighborhood and uses the highest value of all
the pixels in the neighborhood as the value of the corresponding pixel in the
output image.

Grayscale dilation with a flat disk shaped structuring element will gen-
erally brighten the image. Bright regions surrounded by dark regions grow
in size, and dark regions surrounded by bright regions shrink in size. Small
dark spots in images will disappear as they are ‘filled in’ to the surrounding
intensity value. Small bright spots will become larger spots. Figure 3.10
shows a vertical cross-section through a grayscale image and the effect of
dilation using a disk shaped structuring element. Figure 3.11 – Figure 3.13

Figure 3.10: Grayscale dilation using a disk shaped structuring element.

illustrate grayscale dilation using a 3× 3 flat square structuring element.
Nonflat SEs have grayscale values for their domain of definition. The

dilation by a nonflat SE B is defined as follows:

[δB(f)] = max
b∈B

{f(x+ b) +B(b)}

CHAPTER 3. NOVEL DESCRIPTORS 51

Figure 3.11: Original image.

Figure 3.12: Produced image by two dilation passes using a 3× 3 flat square
structuring element. The highlights on the bulb surface have increased in size
and have also become squared off as an artifact of the structuring element
shape. The dark body of the cube has shrunk in size since it is darker than
its surroundings, while within the outlines of the cube itself, the darkest top
surface has shrunk the most. Many of the surfaces have a more uniform
intensity since dark spots have been filled in by the dilation.

Figure 3.13: The effect of five passes of the same dilation operator on the
original image.

52 3.2. PATTERN SPECTRUM

Some properties

• Duality: The dilation and erosion are dual transformations with re-
spect to complementation, i.e., any erosion of an image is equivalent
to a complementation of the dilation of the complemented image with
the same structuring element (and vice-versa):

εB = CδBC

The erosion shrinks the objects but expands their background and vice-
versa for the dilation.

• Ordering relations

εB ≤ δB ⇔ B contains its origin.

• Erosions and dilations are invariant to translations.

• Erosions and dilations are increasing transformations:

f ≤ g ⇒ ε(f) ≤ ε(g), δ(f) ≤ δ(g).

3.2.4 Opening

Morphological opening γ of an image f by a structuring element B is an
erosion of f by B followed by the dilation with the transposed SE B̂:

γB(f) = δB̂[εB(f)],

i.e., γB = δB̂εB.
The opening of an image is independent from the origin of the SE. Erosion

and dilation cause the removal of small-scale structures and gaps respectively,
but result in the remaining objects shrinking or growing. Opening results
in the same ‘cleaning’ effect on the images while retaining objects at their
original size and shape (approximately). Figure 3.14 shows a ‘smoothing’
effect of the opening process.

A grayscale opening consists simply of a grayscale erosion followed by a
grayscale dilation. The grayscale opening can similarly be used to select and
preserve particular intensity patterns while attenuating others. As a simple
example see Figures 3.15 – 3.16.

• Morphological opening is an increasing transformation:

f ≤ g ⇒ γ(f) ≤ γ(g).

• Morphological opening is an idempotent transformation:

γγ = γ.

CHAPTER 3. NOVEL DESCRIPTORS 53

Figure 3.14: Binary Image Opening. The opening with 3 × 3 SE ends up
with object of the same size as in the original case, and approximately the
same shape, with small scale structure removed.

Figure 3.15: Original image.

54 3.2. PATTERN SPECTRUM

Figure 3.16: Produced image by grayscale opening with a flat 5 × 5 square
structuring element. The effect of the opening is that bright features smaller
than the structuring element have been greatly reduced in intensity, while
larger features have remained more or less unchanged in intensity. Thus
the fine grained hair and whiskers in the image have been much reduced in
intensity, while the nose region is still at much the same intensity as before.
The image does have a more mat appearance than before since the opening
has eliminated small peculiarities and texture fluctuations.

CHAPTER 3. NOVEL DESCRIPTORS 55

3.2.5 Granulometries

Granulometry is a widely used tool in mathematical morphology for deter-
mining the size distribution of objects in an image without explicitly seg-
menting each object first. Intuitively, granulometry treats image objects as
particles whose sizes can be established by sifting them through sieves of
increasing mesh width, and collecting what remains in the sieve after each
pass. One pass of sifting and retaining the residue is analogous to the mor-
phological opening of an image using a structuring element of a certain size.
The areas of the images occupied at different scales can be determined by
successively opening the binary image with larger and larger structuring el-
ements. At each scale objects corresponding to the size of the structuring
element will be removed from the image and the detected area will decrease.
By measuring the loss of area at each scale we can obtain a graph which
shows the relative area as a function of scale (structuring-element size). Fig-
ure 3.17 shows a collection of objects of different sizes and the size of the
structuring element that causes different components to disappear due to an
opening operation. The graph at the bottom illustrates the form of output
resulting from such an operation.

In mathematical terms, a granulometry is defined by a transformation Φr

with size parameter r that satisfies the Anti-extensivity, Increasingness (as
defined in 3.2.2) and Absorption (ΦrΦυ = ΦυΦr = Φmax(r,υ)) axioms [25].

Of particular interest are granulometries generated by openings by scaled
versions of a single convex structuring element B, i.e., Φr(f) = f ◦rB, where
rB denotes the structuring element B at scale r. For values r1 < · · · < rk,
the normalized size distribution induced by the granulometry Φr is defined
as

s(i) = 1− 1∑
x,y f(x, y)

∑

x,y

[Φri(f)](x, y)

and the corresponding pattern spectrum (loss of surface area between Φr and
Φr+1) is

p(i) = s(i+ 1)− s(i).

3.2.6 Structuring Elements Parabola and Disk

There exist many applications that use flat structuring elements; e.g., rect-
angular size distributions are used in an effective way to characterize visual
similarity of document images [2]. However, in our case of different photo-
graphic and cartoon images the objects do not have a particular geometric
shape and therefore we need a generic and nonflat structuring element. Jack-
way [12] and van den Boomgaard et al. [30], and van den Boomgaard and

56 3.2. PATTERN SPECTRUM

Figure 3.17: Binary Granulometry.

CHAPTER 3. NOVEL DESCRIPTORS 57

Smeulders [30] have shown that the Gaussian function used in linear con-
volutions has as morphological analogue the parabola. We decided to use a
parabola (to be more precise, the volume delimited by the paraboloid which
is the surface of revolution of the parabola) as one of the structuring elements
because it is the unique structuring function that is both

• rotational symmetric, and

• dimensional decomposable [27].

The first property ensures that we have a generic structuring element that
does not favor any particular shape in the image. The second property as-
certains that we can compute precise openings quickly. Note that the flat
disk structuring element does not have exact and efficient decompositions
into smaller structuring elements. Even approximations to the disk do not
yield dimensional decompositions—the structuring elements of the radial de-
composition of the discrete disk are one–dimensional but not aligned with
one of the axes (see Figure 3.22).

Formally, the two-dimensional parabola (paraboloid) of scale λ is

Pλ(x, y) = −
x2 + y2

λ2

Recall that dilation with a non-flat structuring element B is defined as

[δB(f)] = max
b∈B

{f(x+ b) +B(b)} (3.1)

Since the domain of a parabola is infinite, the maximum ranges at first glance
over an infinite set. However, since our grayscale images have pixel values
between 0 and 1, we obtain the exact dilation with the (infinite) parabola
of scale λ considering only the finite domain {(x, y) : Pλ(x, y) > −1} for
computing the maximum in eq. (3.1). Of course, the same holds analogously
for erosion.

In the definition of Pλ, we choose the scale factor 1/(λ2) so that the
volume of the scale-λ paraboloid delimited by the plane z = −1,

VP =

∫ −1

0

π
∥∥P−1λ (z)

∥∥2 d z = πλ2
∫ −1

0

z d z =
πλ2

2
,

is the same as the the volume of the cylinder of radius-r and height 1 (which
is the same as the area of the disk of radius-r),

VB =

∫ −1

0

π
∥∥B−1r (z)

∥∥2 d z = 2πr2
∫ −1

0

z d z = πr2 ,

58 3.2. PATTERN SPECTRUM

Figure 3.18: Parabola and Disk SE have the same volume

therefore

VP = π
λ2

2
= πr2 = VB and λ = r

√
2 .

In this way, the parabola Pλ and the disk Br of radius r have comparable
size as structuring elements (Figure 3.18): when used in dilation of a single
white point on a black background, the increase in brightness is the same for
both structuring elements.

Dilation and erosion with a n-dimensional parabola can be decomposed
into the dilation (and erosion, respectively) with n one-dimensional parabo-
lae, reducing the complexity by a factor n [6]. This decomposition property
allows us to compute dilation with Pλ efficiently using one-dimensional struc-
turing elements (Figure 3.19–Figure 3.21).

We define the one-dimensional horizontal and vertical scale-λ parabolae,
respectively:

Hλ(x, y) =

{
−x2/(λ2) for y = 0

−∞ for y 6= 0

and

Vλ(x, y) =

{
−y2/(λ2) for x = 0

−∞ for x 6= 0

Then dilation with Pλ is the same as a dilation with Hλ followed by a dilation
with Vλ:

[δPλ(f)] = [δVλ(δHλ
(f))]

CHAPTER 3. NOVEL DESCRIPTORS 59

Again, it suffices to consider the finite domains in which Hλ > −1 and
Vλ > −1, and of course these considerations extend to erosion as well.

As disk approximations satisfying the absorption property lead to inter-
esting granulometries as well, we use radial decompositions of discrete disks
of increasing size from cascades of dilations with periodic lines along several
directions (Figure 3.22 - Figure 3.23) to generate a granulometric function
with size parameter given by the radius of the disk.

3.2.7 Pattern-Spectrum Image Descriptors

Based on the distinguishing features of cartoons like large patches of uniform
color we expect differences between cartoons and photographs in the pattern
spectrum: a peak in the pattern spectrum at a given size indicates that
there are many objects of that size in the image. Hence, we store as image
descriptors a ‘small-scale parabola’ pattern spectrum with λi = i

√
2, i =

1, . . . , 20 (Figure 3.24 - Figure 3.27), a ‘small-scale disk’ pattern spectrum
with ri = i (Figure 3.31 - Figure 3.33), i = 1, . . . , 20, a ‘large scale-parabola’
pattern spectrum (Figure 3.28 - Figure 3.30) with λi = i5

√
2, i = 1, . . . , 10

and a ‘large scale-disk’ (Figure 3.34 - Figure 3.36) pattern spectrum with
ri = 5i, i = 1, . . . 10.

60 3.2. PATTERN SPECTRUM

P2 = = ⊕

P8 = = ⊕

P18 = = ⊕

P32 = = ⊕

P50 = = ⊕

P72 = = ⊕

P98 = = ⊕

P128 = = ⊕

P162 = = ⊕

P200 = = ⊕

P242 = = ⊕

P288 = = ⊕

Figure 3.19: Examples of decomposition of the parabola structuring element

CHAPTER 3. NOVEL DESCRIPTORS 61

P338 = = ⊕

P392 = = ⊕

P450 = = ⊕

P512 = = ⊕

P578 = = ⊕

P648 = = ⊕

Figure 3.20: Examples of decomposition of the parabola structuring element

62 3.2. PATTERN SPECTRUM

P722 = = ⊕

P800 = = ⊕

Figure 3.21: Examples of decomposition of the parabola structuring element

CHAPTER 3. NOVEL DESCRIPTORS 63

B1 = =

B2 = =

B3 = = ⊕ ⊕ ⊕ ⊕ ⊕

B4 = = ⊕ ⊕ ⊕

B5 = = ⊕ ⊕ ⊕ ⊕ ⊕

B6 = = ⊕ ⊕ ⊕ ⊕ ⊕

B7 = = ⊕ ⊕ ⊕ ⊕ ⊕

B8 = = ⊕ ⊕ ⊕

B9 = = ⊕ ⊕ ⊕ ⊕ ⊕

B10 = = ⊕ ⊕ ⊕ ⊕ ⊕

B11 = = ⊕ ⊕ ⊕

B12 = = ⊕ ⊕ ⊕ ⊕ ⊕

B13 = = ⊕ ⊕ ⊕ ⊕ ⊕

Figure 3.22: Examples of decomposition of the disk structuring element

64 3.2. PATTERN SPECTRUM

B14 = = ⊕ ⊕ ⊕ ⊕ ⊕

B15 = = ⊕ ⊕ ⊕ ⊕ ⊕

B16 = = ⊕ ⊕ ⊕ ⊕ ⊕

B17 = = ⊕ ⊕ ⊕ ⊕ ⊕

B18 = = ⊕ ⊕ ⊕

B19 = = ⊕ ⊕ ⊕ ⊕ ⊕

B20 = = ⊕ ⊕ ⊕ ⊕ ⊕

Figure 3.23: Examples of decomposition of the disk structuring element

CHAPTER 3. NOVEL DESCRIPTORS 65

(a) (b)

(c) (d)

(e) (f)

Figure 3.24: Process of obtaining the 20 small-scale parabola pattern spec-
trum descriptors. An original (RGB) (a) cartoon and (b) photographic im-
age. Grayscale (c) cartoon and (d) photographic image. Eroded (e) cartoon
and (f) photographic image with SE parabola, λ5 = 5

√
2.

66 3.2. PATTERN SPECTRUM

(g) (h)

(i) (j)

(k) (l)

Figure 3.25: Continuation of small-scale parabola pattern spectrum descrip-
tors example. Opened (g) cartoon and (h) photographic image with SE
parabola, λ1 =

√
2. Opened (i) cartoon and (j) photographic image with SE

parabola, λ2 = 2
√
2. Opened (k) cartoon and (l) photographic image with

SE parabola, λ4 = 4
√
2.

CHAPTER 3. NOVEL DESCRIPTORS 67

(m) (n)

(p) (q)

(r) (s)

Figure 3.26: Continuation of small-scale parabola pattern spectrum descrip-
tors example. Opened (m) cartoon and (n) photographic image with SE
parabola, λ8 = 8

√
2. Opened (p) cartoon and (q) photographic image with

SE parabola, λ16 = 16
√
2. Opened (r) cartoon and (s) photographic image

with SE parabola, λ20 = 20
√
2.

68 3.2. PATTERN SPECTRUM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Normalized size distribution as a function of size of parabola (small parabola scale)

Size of opening (λ
i
)

N
or

m
al

iz
ed

 s
ur

fa
ce

 a
re

a
of

 o
pe

ne
d

ob
je

ct
s

(p
ix

el
s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Normalized size distribution as a function of size of parabola (small parabola scale)

Size of opening (λ
i
)

N
or

m
al

iz
ed

 s
ur

fa
ce

 a
re

a
of

 o
pe

ne
d

ob
je

ct
s

(p
ix

el
s)

(t) (u)

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
Normalized pattern spectrum (small parabola scale)

Size of Opening (λ
i
)

N
or

m
al

iz
ed

 lo
ss

 o
f p

ix
el

s
be

tw
ee

n
tw

o
su

cc
es

iv
e

op
en

in
gs

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Normalized pattern spectrum (small parabola scale)

Size of Opening (λ
i
)

N
or

m
al

iz
ed

 lo
ss

 o
f p

ix
el

s
be

tw
ee

n
tw

o
su

cc
es

iv
e

op
en

in
gs

(v) (w)

Figure 3.27: Continuation of small-scale parabola pattern spectrum descrip-
tors example. Size distribution of the (t) cartoon and (u) photographic image
with SE parabola, λi = i

√
2, i = 1, . . . , 20. Derivative (v) of (t). Derivative

(w) of (u).

CHAPTER 3. NOVEL DESCRIPTORS 69

(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Process of obtaining the 10 large-scale parabola pattern spec-
trum descriptors. An original (RGB) (a) cartoon and (b) photographic
image. Grayscale cartoon (c) and (d) photographic image (HSV color
space). Eroded (e) cartoon and (f) photographic image with SE parabola,
λ4 = 20

√
2.

70 3.2. PATTERN SPECTRUM

(g) (h)

(i) (j)

(k) (l)

Figure 3.29: Continuation of large-scale parabola pattern spectrum descrip-
tors example. Opened (g) cartoon and (h) photographic image with SE
parabola, λ1 = 5

√
2. Opened (i) cartoon and (j) photographic image with

SE parabola, λ2 = 10
√
2. Opened (k) cartoon and (l) photographic image

with SE parabola, λ3 = 15
√
2.

CHAPTER 3. NOVEL DESCRIPTORS 71

(m) (n)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Normalized size distribution as a function of size of parabola (big scale)

Size of opening (λ
i
)

N
or

m
al

iz
ed

 s
ur

fa
ce

 a
re

a
of

 o
pe

ne
d

ob
je

ct
s

(p
ix

el
s)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Normalized size distribution as a function of size of parabola (big scale)

Size of opening (λ
i
)

N
or

m
al

iz
ed

 s
ur

fa
ce

 a
re

a
of

 o
pe

ne
d

ob
je

ct
s

(p
ix

el
s)

(p) (q)

1 2 3 4 5 6 7 8 9 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08
Normalized pattern spectrum (big scale)

Size of Opening (λ
i
)

N
or

m
al

iz
ed

 lo
ss

 o
f p

ix
el

s
be

tw
ee

n
tw

o
su

cc
es

iv
e

op
en

in
gs

1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14
Normalized pattern spectrum (big scale)

Size of Opening (λ
i
)

N
or

m
al

iz
ed

 lo
ss

 o
f p

ix
el

s
be

tw
ee

n
tw

o
su

cc
es

iv
e

op
en

in
gs

(r) (s)

Figure 3.30: Continuation of large-scale parabola pattern spectrum descrip-
tors example. Opened (m) cartoon and (n) photographic image with SE
parabola, λ4 = 20

√
2. Size distribution of the (p) cartoon and (q) photo-

graphic image with SE parabola, λi = i5
√
2, i = 1, . . . , 10. Derivative (r) of

(p). Derivative (s) of (q).

72 3.2. PATTERN SPECTRUM

(a) (b)

(c) (d)

(e) (f)

Figure 3.31: Process of obtaining the 20 small-scale disk pattern spectrum
descriptors. An original (RGB) (a) cartoon and (b) photographic image.
Grayscale (c) cartoon and (d) photographic image (HSV color space). Eroded
(e) cartoon and (f) photographic image with SE disk, r5 = 5.

CHAPTER 3. NOVEL DESCRIPTORS 73

(g) (h)

(i) (j)

(k) (l)

Figure 3.32: Continuation of small-scale disk pattern spectrum descriptors
example. Opened (g) cartoon and (h) photographic image with SE disk,
r1 = 1. Opened (i) cartoon and (j) photographic image with SE disk, r2 = 2.
Opened (k) cartoon and (l) photographic image with SE disk, r4 = 4.

74 3.2. PATTERN SPECTRUM

(m) (n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Normalized size distribution as a function of size of disk (small disk scale)

Size of opening (r
i
)

N
or

m
al

iz
ed

 s
ur

fa
ce

 a
re

a
of

 o
pe

ne
d

ob
je

ct
s

(p
ix

el
s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Normalized size distribution as a function of size of disk (small disk scale)

Size of opening (r
i
)

N
or

m
al

iz
ed

 s
ur

fa
ce

 a
re

a
of

 o
pe

ne
d

ob
je

ct
s

(p
ix

el
s)

(p) (q)

0 2 4 6 8 10 12 14 16 18 20
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024
Normalized pattern spectrum (small disk scale)

Size of Opening (r
i
)

N
or

m
al

iz
ed

 lo
ss

 o
f p

ix
el

s
be

tw
ee

n
tw

o
su

cc
es

iv
e

op
en

in
gs

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Normalized pattern spectrum (small disk scale)

Size of Opening (r
i
)

N
or

m
al

iz
ed

 lo
ss

 o
f p

ix
el

s
be

tw
ee

n
tw

o
su

cc
es

iv
e

op
en

in
gs

(r) (s)

Figure 3.33: Continuation of small-scale disk pattern spectrum descriptors
example. Opened (m) cartoon and (n) photographic image with SE disk,
r8 = 8. Size distribution of the (p) cartoon and (q) photographic image with
SE disk, ri = i, i = 1, . . . , 20. Derivative (r) of (p). Derivative (s) of (q).

CHAPTER 3. NOVEL DESCRIPTORS 75

(a) (b)

(c) (d)

(e) (f)

Figure 3.34: Process of obtaining the 10 large-scale disk pattern spectrum
descriptors. An original (RGB) (a) cartoon and (b) photographic image.
Grayscale cartoon (c) and (d) photographic image (HSV color space). Eroded
(e) cartoon and (f) photographic image with SE disk, r1 = 5.

76 3.2. PATTERN SPECTRUM

(g) (h)

(i) (j)

(k) (l)

Figure 3.35: Continuation of large-scale disk pattern spectrum descriptors
example. Opened (g) cartoon and (h) photographic image with SE disk,
r1 = 5. Opened (i) cartoon and (j) photographic image with SE disk, r2 = 10.
Opened (k) cartoon and (l) photographic image with SE disk, r3 = 15.

CHAPTER 3. NOVEL DESCRIPTORS 77

(m) (n)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Normalized size distribution as a function of size of disk (big disk scale)

Size of opening (r
i
)

N
or

m
al

iz
ed

 s
ur

fa
ce

 a
re

a
of

 o
pe

ne
d

ob
je

ct
s

(p
ix

el
s)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Normalized size distribution as a function of size of disk (big disk scale)

Size of opening (r
i
)

N
or

m
al

iz
ed

 s
ur

fa
ce

 a
re

a
of

 o
pe

ne
d

ob
je

ct
s

(p
ix

el
s)

(p) (q)

1 2 3 4 5 6 7 8 9 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Normalized pattern spectrum (big disk scale)

Size of Opening (r
i
)

N
or

m
al

iz
ed

 lo
ss

 o
f p

ix
el

s
be

tw
ee

n
tw

o
su

cc
es

iv
e

op
en

in
gs

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25
Normalized pattern spectrum (big disk scale)

Size of Opening (r
i
)

N
or

m
al

iz
ed

 lo
ss

 o
f p

ix
el

s
be

tw
ee

n
tw

o
su

cc
es

iv
e

op
en

in
gs

(r) (s)

Figure 3.36: Continuation of large-scale disk pattern spectrum descriptors
example. Opened (m) cartoon and (n) photographic image with SE disk,
r4 = 20. Size distribution of the (p) cartoon and (q) photographic image
with SE disk, ri = i5, i = 1 . . . 10. Derivative (r) of (p). Derivative (s) of (q).

78 3.2. PATTERN SPECTRUM

Chapter 4

SUPPORT VECTOR MACHINES

For some of our one-dimensional image descriptors, we have a clear intu-
ition how they distinguish cartoons from photographs and ‘learning’ to use
such a descriptor reduces to determining a good threshold value. For others,
especially the various histograms, it is more convenient to classify automat-
ically the patterns that are typical for cartoons or photographs. For such
generic classification tasks, a popular and often successful technique is Sup-
port Vector Machine (SVM) learning [21], which has built-in guards against
overfitting and can be tailored to known or conjectured structure in the data
by the choice of the kernel function.

4.1 Learning from data

There are two ways to learn from data: supervised and unsupervised learning.
For supervised learning a supervisor is available in the form of observed
response data. Regression estimation and classification are typical problems
solved through supervised learning. In unsupervised learning, no supervisor
is available, thus no response data. Density estimation is a typical example
of unsupervised learning. Our compression ratio image descriptor is another
example of unsupervised learning.

The supervised learning problem is the problem of finding a desired de-
pendency using a limited number of observations. The general model of
learning from examples consists of three components:

1. A generator (G) generates vectors x ∈ Rn from a fixed, unknown prob-
ability distribution function P (x).

2. A supervisor (S) returns an output value y ∈ R to every input vector
x according to a conditional distribution function P (y|x), y ∈ Y , also

80 4.1. LEARNING FROM DATA

Generator -x
Supervisor

?
y

Learning
Machine

-̂y-

Figure 4.1: The General Learning Machine.

unknown.

3. A learning machine (LM) selects the best approximating function from
a set of functions f(x) ∈ F , on the basis of the given observations
(xi, yi) i = 1, . . . , l.

Figure 4.1 shows the relationships between the three components (G), (S) and
(LM). The learning machine has to choose from the set f(x) ∈ F , the func-
tion which best approximates the response y of the supervisor. All learning
machines basically map an input vector x into a higher dimensional feature
space F and then construct an approximation function in this feature space.
The best approximating function f is the function that has the lowest risk
of making errors. That is, when the difference between the response y of
the supervisor of a given input x and the response ŷ = f(x) of the learn-
ing machine is the lowest. This difference is determined by a so-called Loss
function, L(y, f(x)). The goal is to minimize the expected value of the loss,
given by the following (Risk functional) equation

R[f] =

∫

Rn×Y
L(y, f(x))dP (x, y). (4.1)

Note that the joint probability function P (x, y) = P (x)P (y|x) is unknown.
The only information available is the training set of l independent and iden-
tically distributed (i.i.d.) observations,

(x1, y1), . . . , (xl, yl), (4.2)

drawn according to P (x, y).
The difference between different types of learning machines is based on

two features: First, on which inductive principle is used; second, on which

CHAPTER 4. SUPPORT VECTOR MACHINES 81

type of loss function is used. For example, the Empirical Risk Minimiza-
tion (ERM) inductive principle is used by the least squares and maximum
likelihood methods, whereas the L2-loss function defines a regression learn-
ing machine. Next, we state the two main learning problems for supervised
learning: classification and regression estimation. Each learning problem
requires the use of a different loss function.

Classification

Classification is a main learning problem for supervised learning. The task
of classification is to find a rule that, based on external observations, assigns
an object to one of several classes. In our case there are only two different
classes, cartoon images and photographic images. One possible formalization
of this task is to estimate a function f : Rn → {−1,+1}, using input – output
training data pairs

(x1, y1), . . . , (xl, yl) ∈ Rn × Y, Y = {−1,+1}

generated i.i.d. according to an unknown probability distribution P (x, y) such
that f will correctly classify unseen examples (x, y) (a training pattern and
the label). An example is assigned to the class +1 if f(x) ≥ 0 and to the
class −1 otherwise. The test examples are assumed to be generated from the
same probability distribution P (x) as the training data. For classification
problems the response y of the supervisor takes only discrete values. Every
value identifies a certain class. In our case y takes only two values and we
consider the loss-function:

L(y, f(x)) =

{
0 if y = f(x)
1 if y 6= f(x)

(4.3)

The risk functional (4.1), using the loss-function in (4.3), determines the
probability that the indicator function f(x) gives a different answer than the
supervisor does, that is to make a classification error. The learning problem
for classification is therefore defined as finding the indicator function which
minimizes the probability of making classification errors when the probability
measure P (x, y) is unknown, but the learning data in (4.2) are given.

Regression estimation

In the problem of regression estimation, the response y of the supervisor can
be any real value. The functions f(x) are also real valued and represent

82 4.1. LEARNING FROM DATA

the potential regression function. A typical loss function that is used for
regression problems is given by

L(y, f(x)) = (y − f(x))2. (4.4)

The risk functional that uses (4.4) as loss function determines the prediction
error of the regression function f(x) with respect to the supervisor’s response.
Therefore, the learning problem for regression is that of finding the regression
function which minimizes the probability of making prediction errors when
the probability measure P (x, y) is unknown, but the learning data in (4.2)
are given.

4.1.1 The empirical risk minimization principle

Unfortunately, the expected error (risk) R[f] cannot be minimized directly,
since the underlying probability distribution P (x, y) is unknown. Therefore,
we have to try to estimate a function that is close to the optimal one based on
the available information. To this end, we need what is called an induction
principle. The ERM inductive principle is very important in learning theory.
It consists in approximating the minimum of the risk (4.1) by the minimum
of the empirical risk functional

Remp[f] =
1

l

l∑

i=1

L(yi, f(xi)), (4.5)

which is constructed on the basis of the given learning data set (xi, yi), i =
1, . . . , l.

Consistency of the ERM principle

It is possible to give conditions on the learning machine which ensures that
asymptotically (as l → ∞), the empirical risk will converge towards the ex-
pected risk (Figure 4.2). From the figure is quite clear why learning machines
based on the ERM principle have difficulties with small samples. The ERM
will only converge to the actual risk (inf R[f] – the infimum of the expected
risk), when the number of observations in the learning data tends to infinity.
In other words, for small sample size large deviations are possible and over-
fitting may occur (see Figure 4.3). Hence, a small generalization error cannot
be obtained by simply minimizing the training error (4.5). One way to avoid
the overfitting is to restrict the complexity of the function class F that one
chooses the function f from [28]. The intuition is that a “simple” (e.g., lin-
ear) function that explains most of the data is preferable to a complex one.

CHAPTER 4. SUPPORT VECTOR MACHINES 83

-

l −→∞

6

infR[f]

R[fl])

Remp[fl]

Figure 4.2: The consistency of the learning process

w
w w

w
w

w
w

g
g

g
g

g g

g
g
g

sss
ssssss

ssss s ssssss
s ssss sssssss ss

sss sss
s

ss
ss s
ss s s

s sss ss s
ss s ssss s

c c
cc
c
cc
c
ccc
cc

ccc
cccc

cc
ccccc cc

ccc
c

cc
cc

cc
cc cccccc c

ccccc
c
cc
ccccc
cc

cc
c
c

c
c
c
cc

c

c

cc
cc cccc c scs

ssscscs
ssss s ssssss

s ssss sssssss ss
c sss ssc

s
scc c
s ss s

ss s s
s sss ss s

sc c cccc c

c c
cc
c
cc
c
ccc
cc

ccc
cccc

css c
ccccc cc

ccc
c

cc
cc

cc
cc cccccc c

ccccc
c
cc
cssss
cc

ss
cs

c

c
c
c
cc

s

c

ss
cs csss s

(a) (b) (c)

Figure 4.3: Illustration of the overfitting dilemma: Given only a small sample
(a) either, the solid or the thin hypothesis might be true, the thin one being
more complex, but also having a smaller training error. Only with a large
sample we are able to see which decision reflects the true distribution more
closely. If the thin hypothesis is correct the solid would underfit (b); if the
solid were correct the thin hypothesis would overfit (c).

84 4.1. LEARNING FROM DATA

A specific way of controlling the complexity of a function class is given by
VC theory and the structural risk minimization (SRM) principle [28, 29].

4.1.2 Structural risk minimization principle

Recall that the ERM principle is only intended for large sample sizes; for
small samples the set of functions used in the learning process should have the
right level of complexity in order for the learning machine to be able to gen-
eralize well. The concept of complexity is captured by Vapnik-Chervonenkis
(VC) dimension h of the function class F from which the estimate f is chosen.
The VC dimension measures how many (training) points can be separated
for all possible labelings using functions of the class. Constructing a nested
family of function classes F1 ⊂ · · · ⊂ Fk with non-decreasing VC dimension
the SRM principle proceeds as follows: Let f1, . . . , fk be the solution of the
empirical risk minimization (4.5) in the functional classes Fi. SRM chooses
the function class Fi (and the function fi) such that an upper bound on the
generalization error is minimized which can be computed making use of the
following theorem (see also Figure 4.4):

Theorem 1 ([28, 29]) Let h denote the VC dimension of the function class
F and let Remp be defined by (4.5) using the 0/1-loss.

1 For all δ > 0 and f ∈
F the inequality bounding the risk

R[f] ≤ Remp[f] +

√
h(ln 2l

h
+ 1)− (ln δ

4
)

l
(4.6)

holds with probability of at least 1− δ for l > h.

The goal is to minimize the generalization error R[f] by obtaining a small
training error Remp[f] while keeping the function class as small as possible.
Avoiding the two extremes enforced by (4.6):

1. a very small function class (like F1) keeps a large training error, as
reflected by Remp[f], while

2. a huge function (like Fk) gives a large square root term.

We would like to obtain a function that explains the data quite well and to
have a small risk in obtaining that function. The best class is usually in
“the middle” (Figure 4.4). In Figure 4.4 it is clear that the SRM principle
is concerned with finding the right balance between the learning ability and

1L(y, f(x)) = Θ(−yf(x)), where Θ(z) = 0 for z < 0 and Θ(z) = 1 otherwise.

CHAPTER 4. SUPPORT VECTOR MACHINES 85

-

6

-Overfitting¾Underfitting

expected risk

risk

empirical riskconfidence

h(VC dimension)h∗h1 hk
Complexity of Function set

Figure 4.4: The consistency of the learning process. In practice the goal is
to find the best trade-off between empirical error and complexity.

86 4.1. LEARNING FROM DATA

the generalization ability of the learning machine. If a too high complexity
is used by the learning machine, the learning ability may be good but the
generalization ability not. The learning machine will overfit the data. In
Figure 4.4, we see that the right region of the complexity corresponds with
overfitting of the learning data. On the other hand, when the learning ma-
chine uses too little complexity, it may have a good generalization ability,
but not a good learning ability. This underfitting of the learning machine
corresponds with the left region of the complexity. The optimal complexity
of the learning machine is the set of approximating functions with lowest VC
dimension and lowest training error.

Constructing of learning machines using the SRM

The implementation of the SRM principle requires a priori specification of
the structure on the set of approximating (or loss) functions. For such a
given set, the optimal model estimation amounts to the following two steps.

1. Select an element of the structure which has optimal complexity.

2. Estimate the best model of this element.

Therefore, unlike classical methods, learning machines that implement the
SRM principle, provide analytical estimates for model selection based on the
bounds for generalization error. If δ = min(4√

l
, 1) [29], the bound in (4.6)

can be represented as

R[f] ≤ Remp[f] + Φ

(
l

h
,
− ln δ

4

)
, (4.7)

where Φ(·) is a scalar and called the VC confidence interval, because it esti-
mates the difference between the empirical error and the actual error. There
are two approaches of implementing the SRM inductive principle in learning
machines:

1. Keep the VC confidence interval Φ(·) fixed and minimize the empirical
risk Remp[f].

2. Keep the empirical risk Remp[f] fixed and minimize the VC confidence
interval Φ(·).

Neural networks (NN) algorithms implement the first approach, since the
number of hidden nodes is defined a priori and therefore the complexity of
the structure is kept fixed. The second approach is implemented by the
Support Vector Machines (SVM) method where the empirical risk is either
chosen to be zero or set to an a priori level and the complexity of the structure
is optimized.

CHAPTER 4. SUPPORT VECTOR MACHINES 87

4.2 Support Vector Machines

4.2.1 Separating hyperplanes

Suppose we are given a set of pattern vectors x1, . . . , xl ∈ Rn which we would
like to classify depending on which side of a “separating” hyperplane they
are. Any hyperplane in Rn can be written as

{x ∈ Rn|(w · x) + b = 0}, w ∈ Rn, b ∈ R, (4.8)

where (w · x) is the scalar product between w and x. In this formulation, w
is a vector orthogonal to the hyperplane: If w has unit length, then w · x is
the length of x along the direction of w.

By requiring the scaling of w and b to be such that the point(s) closest to
the hyperplane satisfy |(w · xi) + b| = 1, we obtain the canonical form (w, b)
of the hyperplane

Definition 1 (Canonical hyperplane) The pair (w, b) ∈ Rn×R is called
a canonical form of the hyperplane (4.2.1) with respect to x1, . . . xl ∈ Rn, if
it is scaled such that

min
i=1,...,l

|(w · xi) + b| = 1, (4.9)

which amounts to saying that the point closest to the hyperplane has a dis-
tance of 1/‖w‖.

4.2.2 Margins and VC dimension

Let us assume that the training sample is separable by a hyperplane, i.e., we
choose functions of the form

(w · x) + b = 0

Using ‖w‖ we define a structure on the set of approximating functions

f(x) = (w · x) + b,

for which the VC dimension is minimized, such that the elements of the set
FA are analyzed using ‖w‖ ≤ A. Then, if A1 ≤ A2 ≤ A3 ≤ . . . ≤ An, the set
FA can be nested such that FA1

⊂ FA2
⊂ FA3

⊂ . . . ⊂ FAn . Vapnik proved
in [29] that the VC dimension h of a set of canonical hyperplanes in Rn (4.9)
such that ‖w‖ ≤ A is

h = min(R2A2, n) + 1,

88 4.2. SUPPORT VECTOR MACHINES

where all the training data points (vectors) are enclosed by a sphere of the
smallest radius R.

Therefore, minimization of ‖w‖ is an implementation of the SRM princi-
ple because a small value of ‖w‖ will result in a small value of h and the VC
dimension h is consequently minimized.

In classification problems we want to find a decision rule D(x) = (w ·x)+b
that classifies without error learning data

(x1, y1), . . . , (xl, yl), xi ∈ Rn, yi ∈ {−1,+1}.

into two classes {x|D(x) > 0} and {x|D(x) < 0}. It is said that such a
decision rule (hyperplane), separates the data set without error. If we assume
that the data is separable into two classes (see Figure 4.5), i.e., we choose
functions of the form

f(x) = (w · x) + b, (4.10)

there exist many hyperplanes that separate the data, but we are looking for
the one that is optimal.

The optimal separating hyperplane not only separates the data without
error, it also has the largest distance between the closest vectors to either
side of the hyperplane as seen in Figure 4.5. This distance is called the
margin and can be measured by the length of the weight vector w in (4.10):
as we assumed that the training sample is separable we can rescale w and b
such that the points closest to the hyperplane satisfy |(w · xi) + b| = 1 (i.e.,
obtain the canonical hyperplane). If we consider two samples x1 and x2 from
different classes with (w·xi)+b = 1 and (w·xi)+b = −1 respectively; then the
margin is given by the distance of these two points, measured perpendicular

to the hyperplane, i.e.,
(

w
‖w‖ · (x1 − x2)

)
= 2

‖w‖ .

In other words, the maximum margin is achieved by choosing the hyper-
plane with the smallest norm of coefficients. This has the implication that
the smaller the value of ‖w‖ the larger is the value of the margin. Recall that
it was argued that minimizing ‖w‖ results in minimizing the VC dimension.
Therefore, the optimization problem which implements the SRM principle
can be stated as

min
w,b

‖w‖, (4.11)

subject to yi((w · xi) + b) ≥ 1, i = 1, . . . , l. (4.12)

4.2.3 Separable case

In the “support vector machine” method, the empirical risk is kept fixed
while the VC confidence interval is minimized. In general, the SVM maps

CHAPTER 4. SUPPORT VECTOR MACHINES 89

Figure 4.5: The optimal separating hyperplane. The margin of a linear
classifier is the minimal distance of any training point to the hyperplane.

the input data x1, . . . , xl ∈ Rn into a higher dimensional feature space F .
The mapping can be done nonlinearly and the transformation function φ(x)
is chosen a priori.

φ : Rn → F
x 7→ φ(x)

Now one works with the sample

(φ(x1), y1), . . . , (φ(xl), yl) ∈ F × Y.

in F instead of Rn. Statistical learning theory [28] tells us that not the
dimensionality but the complexity of the function class matters. This idea
can be understood from the example in Figure 4.6: in the feature space
of second order monomials (4.13) all one needs for separation is a linear
hyperplane, whereas in two dimensions

φ : R2 → R3

(x1, x2) 7→ (z1, z2, z3) := (x21,
√
2x1x2, x

2
2) (4.13)

a rather complicated nonlinear decision surface is necessary to separate
the classes.

In the feature space the SVM finally constructs an optimal approximation
function which is linear in its parameters

fw,b(x) = (w · φ(x)) + b,

where w and b have to be determined. The notation (w · φ(x)) defines the
scalar product between w and φ(x). In the classification case, fw,b(x) = 0 is

90 4.2. SUPPORT VECTOR MACHINES

x2

x1

z3

z1

z2

(a) (b)

Figure 4.6: Two dimensional classification example. Using the second order
monomials x21,

√
2x1x2 and x21 as features a separation in feature space can

be found using a linear hyperplane (b). In input space this construction
corresponds to a non-linear ellipsoidal decision boundary (a)

called a decision function or hyperplane and the optimal function is called
the optimal separating hyperplane.

Since the square root function is a monotonic function, one can minimize
the squared norm in (4.12) and reach the same result.

The optimization problem becomes a quadratic programming (QP) prob-
lem with convex constraints:

min
w,b

1

2
‖w‖2, (4.14)

subject to yi((w · φ(xi)) + b) ≥ 1, i = 1, . . . , l. (4.15)

The QP problem is solved by forming the dual optimization problem. Intro-
ducing Lagrange multipliers αi ≥ 0, i = 1, . . . , l, one for each constraint in
(4.15), we get the following Lagrangian:

L(w, b, α) =
1

2
‖w‖2 −

l∑

i=1

αi(yi((w · φ(xi)) + b)− 1). (4.16)

The task is to minimize (4.16) with respect to w, b and to maximize it with
respect to αi. At the optimal point (w∗, b∗, α∗), we have the following saddle
point equations:

∂L(w∗, b∗, α∗)

∂b
= 0 and

∂L(w∗, b∗, α∗)

∂w
= 0,

CHAPTER 4. SUPPORT VECTOR MACHINES 91

which translate into

l∑

i=1

αiyi = 0 and w =
l∑

i=1

αiyiφ(xi). (4.17)

By substituting (4.17) into (4.16) and by replacing ((φ(xi)·φ(xj)) with kernel
functions k(xi, xj) (discussed in the next section), we get the dual quadratic
optimization problem:

max
α

l∑

i=1

αi −
1

2

l∑

i,j=1

αiαjyiyjk(xi, xj)

subject to αi ≥ 0, i = 1, . . . , l,
l∑

i=1

αiyi = 0, (4.18)

where k(·, ·) is a scalar product in feature space F .
By solving the dual optimization problem, we obtain the coefficients

αi, i = 1, . . . , l, which we need to express the w which solves (4.14). Let
α∗ = (α∗1, . . . , α

∗
l) be the solution of the QP problem above. The vectors for

which the corresponding Lagrange multipliers are positive are called support
vectors. The values of the Lagrange multipliers assign weights to the corre-
sponding vectors. These vectors and their weights are then used to define
the decision rule or model. Therefore the learning machine in (4.18) is called
the support vector machine. The decision rule for the classification problem
is then expressed in terms of the set of support vectors SV as

f(x̂) = sgn

(
∑

i∈SV
yiα

∗
i (φ(x̂) · (φ(xi)) + b∗

)
= sgn

(
∑

i∈SV
yiα

∗
i k(x̂, xi) + b∗

)
.

where b∗ is the constant threshold or bias determined by

b∗ =
1

2

[
(w∗ · x∗1) + (w∗ · x∗−1)

]
,

with x∗1 any support vector belonging to the class with output data 1, and
x∗−1 any support vector belonging to the class with output data −1. In
Figure 4.5 the support vectors are the vectors on the margin, indicated with
black markers. The support vectors are the vectors that lie on the margin
and they typically represent the input data that are the most difficult to
classify.

92 4.2. SUPPORT VECTOR MACHINES

Figure 4.7: The optimal Hyperplane for the non-separable case.

4.2.4 Non-separable case.

For noisy data, the data set is not separable. There are no hyperplanes
that can separate the data set without error and no maximal margin can be
constructed (Figure 4.7). The slack variables ξ are introduced to penalize for
those vectors lying within the margin:

yi((w · φ(xi)) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l.

The value of a stack variable is the distance of the corresponding vector to
the margin The SVM solution can then be found by keeping the upper bound
on the VC dimension small and by minimizing an upper bound

∑n
i=1 ξi on

the empirical risk i.e., the number of training errors. Thus, we minimize

min
w,b,ξ

1
2
‖w‖2 + C

∑l
i=1 ξi,

where the regularization constant C > 0 determines the trade-off between
the empirical error and the complexity term. From introducing the slack
variables ξi, we get the box constraints that limit the size of the Lagrange
multipliers:

αi ≤ C, i = 1, . . . , l,

in the corresponding dual problem:

max
α

l∑

i=1

αi −
1

2

l∑

i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,
l∑

i=1

αiyi = 0. (4.19)

CHAPTER 4. SUPPORT VECTOR MACHINES 93

4.3 Kernels functions

In many learning machines the learning data is mapped (nonlinearly) into a
higher dimensional feature space. The mathematics of the SVM expresses
these transformations as (linear) scalar products of the input data. However,
for large real world problems even if we could control the statistical com-
plexity of the functional class, it becomes not easy to control the algorithmic
complexity of the learning machine. For instance, if we have images of 16×16
pixels as patterns and 5th order monomials as mapping φ, then one would
map to a

(
5+256−1

5

)
≈ 1010-dimensional space.

Fortunately, for certain feature spaces F and corresponding mappings φ
there is a highly effective trick for computing scalar products in feature spaces
using kernel functions. In the example from Eq. (4.13), the computation of a
scalar product between two feature space vectors, can be readily reformulated
in terms of a kernel function k

(φ(x) · φ(y)) = (x21,
√
2x1x2, x

2
2)(y

2
1,
√
2y1x2, y

2
2)

T

= ((x1, x2)(y1, y2)
T)2

= (x · y)2
=: k(x, y).

The interesting point about kernel functions is that the scalar product can
be implicitly computed in F , without explicitly using or even knowing the
mapping φ. So, kernels allow to compute scalar products in spaces where we
could otherwise hardly perform any computations.

4.4 Types of kernels

Many different kernel functions can be constructed as long as they satisfy
Mercer’s conditions [28]:

∫ ∫
K(x, x̂)g(x)g(x̂)dxdx̂ > 0, for all g 6= 0,

∫
g2(x)dx <∞. (4.20)

For finite dimensional input spaces, the conditions (4.20) states that K(x, x̂)
is an admissible kernel function if it produces a kernel matrix that is symmet-
ric and positive semi-definite. However, there are two main types of kernels,
namely local and global kernels. In local kernels only the data that are close
or in the proximity of each other have a noticeable influence on the kernel
values. In contrast, a global kernel allows data points that are far away from
each other to have an influence on the kernel values as well. An example of

94 4.4. TYPES OF KERNELS

Figure 4.8: Examples of (a) a local kernel (RBF) and (b) a global kernel
(polynomial).

a typical local kernel is the radial basis function (RBF) kernel,

K(x, x̂) = exp

{
− ‖x− x̂‖2

2σ2

}
, (4.21)

where the kernel parameter, σ, is the width of the radial basis function. The
polynomial kernel, a typical example of a global kernel, is defined as

K(x, x̂) = [(x · x̂) + 1]q, (4.22)

where the kernel parameter q is the degree of the polynomial to be used. The
behavior of the two types of kernels is shown in Figure 4.8 where for linearly
distributed data over [−1, 1] the kernel values with respect to a specific test
point at 0.2 are determined. In Figure 4.8(a) the local effect of the RBF
kernel is shown for the chosen test input, for different values of the width
σ. One can clearly see that at some point, the kernel values essentially level
off to zero. A local kernel therefore only has an effect on the data points
in the neighborhood of the test point. In Figure 4.8(b), the global effect of
the polynomial kernel of various degrees can be seen. Consider the same test
data point as used in the case of the local kernel. For each degree of the
polynomial, all data points in the input domain have nonzero kernel values.
The test data point has a global effect on the other data points. This can be
explained by that in (4.22) every data point from the set x has an influence
on the kernel value of the test point x̂, irrespective of its the actual distance
from x̂.

CHAPTER 4. SUPPORT VECTOR MACHINES 95

The exact formulations that we use in our C-Support Vector Classification
case (cartoon and photographic images) in matrix notation and the algorith-
mic pseudocode for the SVM classification are given in Subsection 5.2.2 of
Chapter 5. Examples of how our two SVM classifiers perform (one with
polynomial and the other with radial kernel) can be found in Section 5.4 and
Section 5.5 of Chapter 5.

96 4.4. TYPES OF KERNELS

Chapter 5

EXPERIMENTS

5.1 Overview

For each input image (keyframe) we extract 148 descriptors as outlined in
Chapter 2 and Chapter 3. This process is depicted in Figure 5.1; our de-
scriptors are summarized in Table 5.1. Their individual ‘naive’ usefulness is

Figure 5.1: Image-descriptor extraction

given in Section 5.4 by the error on photos E(p), error on cartoons E(c), and
total error E(t), when performing classification with SVM machine learning
using the given image descriptor alone. Combined performance is discussed
in Section 5.5.

98 5.2. THE EXPERIMENTAL SETUP

Image Descriptors Dimension
average saturation 1
threshold brightness 1
color histogram 45
edge-direction histogram 40
compression ratio 1
multi-scale pat.spectrum 60

Table 5.1: Overview of our all image descriptors

5.2 The experimental setup

5.2.1 Matlab and the OSU SVM classifier toolbox

Matlab is a comprehensive technical computing software package by Math-
Works Inc. Matlab is oriented towards efficient numeric operations on floating-
point numbers; data is typically organized in matrices (hence the name Mat-
lab = ‘Matrix Laboratory’) or in arrays of higher dimension. The software
consists of a graphical user interface for writing and running scripts in the
Matlab programming language (‘.m files’), which access the underlying com-
puting kernel.

In addition to built-in functions, a wide variety of special-purpose li-
braries, called Toolboxes, exist from MathWorks and third-party software
vendors; we made use of the Matlab Image Processing Toolbox, which is
bundled with MathWorks Release 12 and 13, and the OSU SVM Classifier
Toolbox for Matlab [16]. The Matlab Image Processing Toolbox supplies
functions for

• reading, displaying, and writing bitmapped graphics files;

• color-space and image-depth conversion; and

• applying filters by convolution and other techniques.

The toolbox has functions for morphological operations. However, they are
limited to flat structuring elements and, hence, not sufficient for our purposes.
For the same reason, we opted not to use the SDC Morphology Toolbox for
Matlab [22].

The OSU SVM Classifier Toolbox for Matlab is a high-performance im-
plementation of state-of-the art algorithms for Support Vector Machines [16].
The Matlab interface uses as computational back end the LIBSVM library
[3]. Both packages are open-source software and available for download from
the Internet. The central functions that we use are PolySVC and RbfSVC for

CHAPTER 5. EXPERIMENTS 99

constructing SVM classifiers with polynomial and radial kernels, respectively,
SVMTest for cross-validation, and SVMClass for classifying new data.

5.2.2 Formulations

We have the following C-Support Vector Classification (C-SVC) binary case.
Given training vectors xi ∈ R148, i = 1, . . . , l, in two classes (cartoon im-
ages and photographic images) labeled by yi ∈ {1,−1}, C-SVC solves the
following primal problem:

min
w,b,ξ

1

2
wTw + C

l∑

i=1

ξi,

yi(w
Tφ(xi)) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , l.

Its dual is:

min
α

1

2
αTQα− eTα (5.1)

0 ≤ αi ≤ C, i = 1, . . . , l, (5.2)

yTα = 0, (5.3)

where e is the vector of all ones, C ≥ 0 is the upper bound, Q is an l×l positive
semidefinite matrix with Qij =: yiyjK(xi, xj) and K(xi, xj) := φ(xTi)φ(xj) is
the kernel. Here training vectors xi are mapped into a higher dimensional
space by the function φ. The decision function expressed in terms of the
support vectors (SV) is:

f(x̂) = sgn

(
∑

i∈SV
yiα

∗
iK(xi, xj) + b∗

)

where b∗ is the constant threshold or bias determined by

b∗ =
1

2

[
(w∗ · x∗1) + (w∗ · x∗−1)

]
, (5.4)

with x∗1 any support vector belonging to the class with output data 1, and
x∗−1 any support vector belonging to the class with output data −1.

The algorithmic pseudo code for the SVM for classification is:

100 5.3. THE DATA

Algorithm: SVM for Classification

1. Select the learning data (xi, yi), i = 1, . . . , l, kernel function K and C
(default 1).

2. Construct the matrices Q for the quadratic-programming problem.

3. Solve (5.1) subject to (5.2) and (5.3) for α.

4. Calculate the bias b using (5.4).

5. Calculate ‖w‖2 = αTQα.

6. Calculate size of margin γ = 2
‖w‖ .

7. Identify support vectors as {xi|αi > 0, i = 1, . . . , l}.

8. Construct the index set SV of the support vectors.

9. Construct the SVM classification model using the determined param-
eters

fα,b(x̂) = sgn

(
∑

i∈SV
yiαiK(xi, x̂) + b

)
.

5.3 The data

5.3.1 The principal data set: TREC-2002 keyframes

As mentioned in the introduction, we used keyframes extracted byWesterveld
et al. [33] from the TREC-2002 video track [23] collection. These keyframes
were selected by using the middle frame from each shot as representative of
the shot [33] and our full collection of images contains all these keyframes,
totalling 24, 264 JPEG images of dimension 340 × 252 and average file size
46 kBytes.

15, 000 of these images were classified manually into the categories ‘photo-
graph’ (13, 026), ‘cartoon’ (1, 620), and ‘borderline’ (354). From this data we
randomly selected subsets of 30% of the data for training and cross-validation
i.e., 3, 908 photographs and 486 cartoons.

5.3.2 For comparison: images from the web

Data set of 14, 039 photographic and 9, 512 graphical images harvested from
the WWW was used for comparison. Subsets of 30% of the data were used
for training, i.e., 4, 239 photographics and 2, 826 graphics, and the rest for
cross-validation.

CHAPTER 5. EXPERIMENTS 101

5.3.3 Layout of the data

Image files are stored in individual files located subdirectories:

image-corpus -+- xaa-images

|

+- xab-images

|

+- xac-images

:

+- xba-images

:

+- xzz-images

The directories x*-images contain the actual image files. The rationale
behind this two-level structure is

1. to better cope with large number of files: having substantially more
than 1,000 files in a directory make directory operations such as ls and
thumbnail generation very slow, especially when the files are accessed
over the network.

2. to cluster the data for parallel computation: one image directory rep-
resents in this case one chunk of data to be processed in a batch job.

The top-level directory name (here image-corpus) is arbitrary; we used
trec2002 for the TREC-2002 keyframes and windhouw-class for the web
data (provided by M. Windhouwer). The assumptions on file names are as
follows:

• recognized extensions are jpg for files in the JPEG format [32] and gif

for files in the Graphics Interchange Format [9];

• images that are to be used for training or checking automatic classifiers
start with 0 (for photos) or 1 (for cartoons).

• files with the extension mat are binary Matlab files storing variables
such as our precomputed image descriptors.

5.3.4 Our programs

Our most important Matlab scripts are listed in Appendix C. The whole code
is included on the CD-ROM accompanying this work. Overview of all files
together with some important notes can be found in the README.txt file.
Each file functionName.m contains the source code to the Matlab function
functionName. A typical cycle on new data is as follows:

102 5.3. THE DATA

1. Edit computeCarAll.m (see Section C.2.5) to decide which image de-
scriptors should be computed.

2. Run computeCarAll.m in all x*-images directories. This invokes the
selected computeCarDescriptorName.m functions (see Section C.1),
which write
car_descriptorName.mat files containing the image descriptors for
all images in the directory. For efficiency, some of these functions com-
pute more than one descriptor and, hence, produce more than one
car_descriptorName.mat file.

3. Edit loadAllCar.m (see Section C.2.3) to select descriptors for training
and testing.

4. Run mergeAllCarDir.m (see Section C.2.2) to collect the selected de-
scriptors from all x*-images directories.

5. Run learnAndTest.m (see Section C.2.1).

6. Run ClassifyDirectory.m (see Section C.3) to classify unseen (unla-
beled) data, using the classifier build in 5.

The rationale for separating the training and testing of the classifier from
computing descriptors is that the latter task can be very expensive computa-
tionally and we desired the freedom to experiment with different parameters
of the classifiers.

Table 5.2 gives an overview over our descriptor-computing functions.
Applying the functions individually on each subdirectory allows us to run
several instances of Matlab in parallel on different machines or processors on
multiprocessor systems. For example, with ca. 15,000 images in 15 directo-
ries, we could use 15 workstations each operating on 1,000 images. The time
to compute any of our descriptors is largely independent of the concrete in-
put data, hence this approach made good use of the computational resources
with minimal overhead; more fine-grained parallelization would have made
our code substantially more complicated. Indeed, the only ‘scheduler’ we
used were shell scripts (computeCarAll.sh and computeCar.sh) that log
in to every system from a fixed list of workstations and start an instance
of Matlab in a given xa*-images subdirectory. The first script computes all
the descriptors while the second one computes a given single descriptor. This
approach was also sufficiently flexible to accommodate the addition of new
image descriptors without recomputing all previous descriptors.

A Matlab .mat file stores one or several Matlab variables, i.e., typically
matrices. Our convention was that k-dimensional image descriptors for n

C
H
A
P
T
E
R
5
.
E
X
P
E
R
IM

E
N
T
S

1
0
3

Image Descriptor Function computeCar. . . Data File
average saturation AvgSatThrBrightness car_avg_bright

threshold brightness AvgSatThrBrightness car_avg_sat_thr

color histogram ColHist car_colorhist

edge-direction histogram EdgeDir car_edge_dir

compression ratio Compression car_compression

small-scale parabola pat.spect. CarGranulometry1 car_granulom1_parsmall

large-scale parabola pat.spect. CarGranulometry1 car_granulom1_parbig

small-scale disk pat.spectrum CarGranulometry1 car_granulom1_disksmall

large-scale disk pat.spectrum CarGranulometry1 car_granulom1_diskbig

scaled aspect ratio Dim car_dim_aspect

scaled min dimension Dim car_dim_min

file type FileType car_file_type

Table 5.2: Computing Image Descriptors

104 5.4. PERFORMANCE OF THE IMAGE DESCRIPTORS

images are stored in a n×k matrix cars with double-precision floating-point
entries. The file name of the image corresponding to the k descriptors in row
i is stored in row i of the n × ` matrix fileNames (Matlab treats character
strings as one-dimensional arrays with integer entries; accordingly, ` is the
maximum length of any file name in the directory, with shorter file names
padded by space characters). Each car_descriptorName.mat file contains
the two variables fileNames and car for the descriptor descriptorName .

After the the computeCar* functions have been run in all subdirectories,
the data from the individual car_descriptorName.mat files must be merged
for the currently selected subset of image descriptors and concatenated over
all the subdirectories. The loadAllCar function determines the subset of
descriptors to be used by calling the mergeCar function (see Section C.2.4),
which performs the per-directory merging of descriptors (in database termi-
nology, this is a join on the fileNames key). mergeCar is used as a subroutine
of mergeAllCarDir that iterates over all subdirectories and concatenates the
lists. The output of mergeAllCarDir is a file car_all.mat in the top-level
directory (image-corpus in the example above). As for an individual de-
scriptor, the car_all.mat contains two variables, fileNames and car, where
car is a n × k matrix for a total of n files and k real-valued descriptors or
descriptor components.

5.4 Performance of the image descriptors

We use the following formula to measure the individual performance of each
descriptor:

Et = Ep
|p|

|p|+ |c| + Ec
|c|

|p|+ |c|,
where |p| denotes the number of photos and |c| denotes the number of car-
toons. Ep is the error on photos, i.e., the fraction of all photos that is classified
incorrectly. Analogously Ec is the ratio of incorrectly classified cartoons and
Et is the total error.

The experimental setup is: we use 30% of the manually classified data for
training and the whole set of manually classified TREC2002 keyframes for
testing. In other words, we train on (random) 3, 908 photos and 486 cartoons
and test on 13, 026 photos and 1, 620 cartoons. We repeat these experiments
several times to smooth out the variance in the results and report here average
error values.

Note that we have many more photos than cartoons in our collection
and this is to be expected in new material as well as there are more “pho-
tographic” movies on TV than cartoons. Hence, a trivial classifier, which

CHAPTER 5. EXPERIMENTS 105

always classifies the input as photo will have rather small total error, namely

Et = 0 · 13, 026

13, 026 + 1, 620
+ 1 · 1, 620

13, 026 + 1, 620
≈ 0.1106 .

Since Et = 0.1106 can be achieved without looking at the test data at all,
a good classifier using our image descriptors should have much smaller total
error.

Recall that the threshold-brightness descriptor is a value between 0 and
1 that gives the percentage of pixels in an image that have brightness greater
than a predetermined threshold. To determine the best threshold, we ran
the following experiments. In Figure 5.2 we give for increasing thresholds
the error using a simple linear classifier1. As we see from Figure 5.2, the
smallest error is achieved using a threshold of 0.2 and this is the value we
used subsequently.

In Figures 5.3 to 5.20 we show the results of our experiments for probing
the power of the individual descriptors by themselves. For each descrip-
tor, we tried an RBF kernel and a polynomial kernel with a range of kernel
parameters. The different errors are plotted with respect to the kernel pa-
rameter σ2 or D, respectively. Average saturation improves the total error to
0.108, color histogram to 0.0914, pattern spectrum 0.911. The other descrip-
tors are useful by themselves as their error is larger than 0.1106; however,
as we show below, even threshold brightness, edge-direction histogram, and
the compression descriptors are useful when used in conjunction with other
descriptors.

5.5 Combining image descriptors

5.5.1 Choice of the SVM kernel and parameters

To use SVM learning, we need to fix the kernel (i.e., the inner product in
the higher-dimensional space) and the parameters applying to the particular
choice of kernel. The RBF kernel has the variance σ2 of the Gaussian as
parameter; the concrete polynomial kernel is determined by its degree D.
The smaller σ2 or the larger D, the more complex will the resulting model
be, hence the more training data is needed and the greater is the danger of
overfitting. On the other hand, decreasing σ2 or increasing D shows at first
great improvement and then levels off as the complexity of the model becomes
sufficient to model the data. This can be seen for example in Figure 5.7 where

1We did not use SVM learning in this case for simplicity because we have clear intuition
that cartoons should have greater brightness.

106 5.6. PERFORMANCE ON IMAGES FROM THE WEB

the total error flattens at σ2 = 1/14. Similar “convergence” can be seen in
experiments to validate the size of the training set: Figure 5.23 shows why we
are confident that our SVM classifiers are well-trained: with larger and larger
training sets, the error converges, showing that the accessible information in
the data has been found.

In all cases, the RBF kernel gave better results. This is why we concen-
trated on it in our paper [11]. For the combined descriptors, we determined
the optimal value of the variance as σ2 = 1/12.

5.5.2 Relative descriptor performance

In Section 5.4 we gave a first assessment of the utility of our different de-
scriptors by checking how useful they are individually for separating photos
and cartoons. To determine how crucial the descriptors are for the combined
result, we also conducted analogous experiments with all descriptors minus
each individual descriptor (Figures 5.21 and 5.22). Here a large increase in
error when removing a descriptor indicates great usefulness. This leads to
the following ranking (in order of decreasing utility): color histogram, pat-
tern spectrum, average saturation, edge-direction histogram, compression,
threshold brightness. Regarding pattern spectra, the individual performance
may suggest that small disk is most useful. However, the combined experi-
ments confirmed our intuition that parabola ranks slightly higher than disk
and large scale is more useful than small scale.

5.6 Performance on images from the web

For comparison with other classifying efforts, we also trained a classifier on
the previously mentioned Web data. Even without using image descriptor
depending on file type, dimension ratio, or smallest dimension (very good
indicators of logos, banners, etc.), we obtain a 93% correct classification
(slightly better than the decision tree classifier mentioned before [1] that
uses file type and image size). When adding these properties to the feature
vectors, our classification rate improves marginally (to 95.5%); unlike [1], we
have not noticed a significant difference in accuracy depending on the image
file type (JPEG or GIF).

Conversely, when training and testing the decision tree on our data, the
classification accuracy suffers severely from the fact that all keyframes are
of the same size; the error rate goes up to over 45% (Figure 5.23). We
believe that this comparison demonstrates that our approach is generic and
can be applied equally well to distinguish graphics from photos on the web

CHAPTER 5. EXPERIMENTS 107

— without using derived properties like image size: only the visual content
is modeled in our characteristics!

108 5.6. PERFORMANCE ON IMAGES FROM THE WEB

Threshold Error Photos Error Cartoons Total Error
0.1116

0.8177

0.1716

0.1

0.0991

0.8052

0.1672

0.2

0.1000

0.8050

0.1685

0.3

0.1012

0.8198

0.1706

0.4

0.1020

0.8420

0.1722

0.5

0.1017

0.8406

0.1718

0.6

0.1029

0.8481

0.1739

0.7

0.1075

0.8680

0.1812

0.8

0.1059

0.8654

0.1787

0.9

Figure 5.2: Performance of different thresholds for brightness (using a linear
classifier)

CHAPTER 5. EXPERIMENTS 109

σ2 Error Photos Error Cartoons Total Error
0

1

0.1106

1/2

0

1

0.1106

1/4

0

1

0.1106

1/6

0

1

0.1106

1/8

0

1

0.1106

1/10

0

1

0.1106

1/12

0

1

0.1106

1/14

0

1

0.1106

1/16

0

1

0.1106

1/18

0

1

0.1106

1/20

0

1

0.1106

1/22

Figure 5.3: Individual performance of the threshold-brightness descriptor
(RBF kernel)

110 5.6. PERFORMANCE ON IMAGES FROM THE WEB

D Error Photos Error Cartoons Total Error
0

1

0.1106

1

0

1

0.1106

2

0

1

0.1106

3

0

1

0.1106

4

0

1

0.1106

5

0

1

0.1106

6

0

1

0.1106

7

0

1

0.1106

8

Figure 5.4: Individual performance of the threshold-brightness descriptor
(polynomial kernel)

CHAPTER 5. EXPERIMENTS 111

σ2 Error Photos Error Cartoons Total Error
0

1

0.1106

1/2

0

0.9996

0.1106

1/4

0.0005

0.9881

0.1097

1/6

0.0007

0.9849

0.1096

1/8

0.0017

0.9687

0.1086

1/10

0.0020

0.9646

0.1085

1/12

0.0016

0.9653

0.1082

1/14

0.0024

0.9569

0.1080

1/16

0.0022

0.9591

0.1080

1/18

0.0026

0.9559

0.1080

1/20

0.0032

0.9516

0.1081

1/22

Figure 5.5: Individual performance of the average-saturation descriptor
(RBF kernel)

112 5.6. PERFORMANCE ON IMAGES FROM THE WEB

D Error Photos Error Cartoons Total Error
0

1

0.1106

1

0

1

0.1106

2

0

1

0.1106

3

0

1

0.1106

4

0

1

0.1106

5

0.0001

0.9971

0.1104

6

0.0001

0.9931

0.1100

7

0.0002

0.9954

0.1101

8

Figure 5.6: Individual performance of the average-saturation descriptor
(polynomial kernel)

CHAPTER 5. EXPERIMENTS 113

σ2 Error Photos Error Cartoons Total Error
0.0031

0.9268

0.1053

1/2

0.0053

0.8635

0.1002

1/4

0.0066

0.8376

0.0985

1/6

0.0090

0.7997

0.0965

1/8

0.0082

0.7994

0.0957

1/10

0.0097

0.7817

0.0951

1/12

0.0097

0.7695

0.0938

1/14

0.0100

0.7554

0.0924

1/16

0.0103

0.7437

0.0914

1/18

0.0112

0.7385

0.0916

1/20

Figure 5.7: Individual performance of the color-histogram descriptors (RBF
kernel)

D Error Photos Error Cartoons Total Error
0.0006

0.9841

0.1094

1

0.0018

0.9656

0.1084

2

0.0007

0.9774

0.1088

3

Figure 5.8: Individual performance of the color-histogram descriptors (poly-
nomial kernel)

114 5.6. PERFORMANCE ON IMAGES FROM THE WEB

σ2 Error Photos Error Cartoons Total Error
0

1

0.1106

1/2

0

1

0.1106

1/4

0

1

0.1106

1/6

0

1

0.1106

1/8

0

1

0.1106

1/10

0

1

0.1106

1/12

0

1

0.1106

1/14

0

1

0.1106

1/16

0

1

0.1106

1/18

0

1

0.1106

1/20

0

1

0.1106

1/22

Figure 5.9: Individual performance of the edge-histogram descriptors (RBF
kernel)

CHAPTER 5. EXPERIMENTS 115

D Error Photos Error Cartoons Total Error
0

1

0.1106

1

0

1

0.1106

2

0

1

0.1106

3

0

1

0.1106

4

0

1

0.1106

5

0

1

0.1106

6

0

1

0.1106

7

0

1

0.1106

8

Figure 5.10: Individual performance of the edge-histogram descriptors (poly-
nomial kernel)

116 5.6. PERFORMANCE ON IMAGES FROM THE WEB

σ2 Error Photos Error Cartoons Total Error
0

1

0.1106

1/2

0

1

0.1106

1/4

0

1

0.1106

1/6

0

1

0.1106

1/8

0

1

0.1106

1/10

0

1

0.1106

1/12

0

1

0.1106

1/14

0

1

0.1106

1/16

0

1

0.1106

1/18

0

1

0.1106

1/20

0

1

0.1106

1/22

Figure 5.11: Individual performance of the compression-ratio descriptor
(RBF kernel)

CHAPTER 5. EXPERIMENTS 117

D Error Photos Error Cartoons Total Error
0

1

0.1106

1

0

1

0.1106

2

0

1

0.1106

3

0

1

0.1106

4

0

1

0.1106

5

0

1

0.1106

6

0

1

0.1106

7

0

1

0.1106

8

Figure 5.12: Individual performance of the compression-ratio descriptor
(polynomial kernel)

118 5.6. PERFORMANCE ON IMAGES FROM THE WEB

σ2 Error Photos Error Cartoons Total Error
0

1

0.1106

1/2

0

1

0.1106

1/4

0

1

0.1106

1/6

0

0.9999

0.1106

1/8

0

0.9997

0.1106

1/10

0

0.9996

0.1106

1/12

0.0001

0.9966

0.1103

1/14

0.0001

0.9906

0.1097

1/16

0.0001

0.9899

0.1096

1/18

0.0001

0.9865

0.1092

1/20

0.0001

0.9863

0.1092

1/22

0.0003

0.9735

0.1079

1/24

0.0003

0.9768

0.1083

1/26

Figure 5.13: Individual performance of the large-scale disk pattern spectrum
descriptor (RBF kernel)

CHAPTER 5. EXPERIMENTS 119

D Error Photos Error Cartoons Total Error
0

1

0.1106

1

0

1

0.1106

2

0

1

0.1106

3

0

1

0.1106

4

0

1

0.1106

5

0

1

0.1106

6

0

1

0.1106

7

0

1

0.1106

8

Figure 5.14: Individual performance of the large-scale disk pattern spectrum
descriptor (polynomial kernel)

120 5.6. PERFORMANCE ON IMAGES FROM THE WEB

σ2 Error Photos Error Cartoons Total Error
0

1

0.1106

1/2

0

1

0.1106

1/4

0

1

0.1106

1/6

0

1

0.1106

1/8

0

1

0.1106

1/10

0

1

0.1106

1/12

0

1

0.1106

1/14

0

1

0.1106

1/16

0

1

0.1106

1/18

0

1

0.1106

1/20

0.0002

0.9778

0.1083

1/22

0.0002

0.9762

0.1082

1/24

0.0004

0.9671

0.1073

1/26

0.0003

0.9672

0.1073

1/28

0.0004

0.9600

0.1065

1/30

0.0003

0.9622

0.1067

1/32

Figure 5.15: Individual performance of the large-scale parabola pattern spec-
trum descriptor (RBF kernel)

CHAPTER 5. EXPERIMENTS 121

D Error Photos Error Cartoons Total Error
0

1

0.1106

1

0

1

0.1106

2

0

1

0.1106

3

0

1

0.1106

4

0

1

0.1106

5

0

1

0.1106

6

0

1

0.1106

7

0

1

0.1106

8

Figure 5.16: Individual performance of the large-scale parabola pattern spec-
trum descriptor (polynomial kernel)

122 5.6. PERFORMANCE ON IMAGES FROM THE WEB

σ2 Error Photos Error Cartoons Total Error
0

1

0.1106

1/2

0

1

0.1106

1/4

0

1

0.1106

1/6

0

1

0.1106

1/8

0

1

0.1106

1/10

0

1

0.1106

1/12

0

1

0.1106

1/14

0

1

0.1106

1/16

0

1

0.1106

1/18

0

1

0.1106

1/20

0.0099

0.7563

0.0925

1/22

0.0123

0.7325

0.0920

1/24

0.0104

0.7440

0.0916

1/26

0

1

0.1106

1/24

Figure 5.17: Individual performance of the small-scale disk pattern spectrum
descriptor (RBF kernel)

CHAPTER 5. EXPERIMENTS 123

D Error Photos Error Cartoons Total Error
0

1

0.1106

1

0

1

0.1106

2

0

1

0.1106

3

0

1

0.1106

4

0

1

0.1106

5

0

1

0.1106

6

0

1

0.1106

7

0

1

0.1106

8

Figure 5.18: Individual performance of the small-scale disk pattern spectrum
descriptor (polynomial kernel)

σ2 Error Photos Error Cartoons Total Error
0

1

0.1106

1/2

0

0.9982

0.1104

1/4

0.0004

0.9915

0.1100

1/6

0.0020

0.9669

0.1087

1/8

0.0012

0.9760

0.1091

1/10

Figure 5.19: Individual performance of the small-scale parabola pattern spec-
trum descriptor (RBF kernel)

124 5.6. PERFORMANCE ON IMAGES FROM THE WEB

D Error Photos Error Cartoons Total Error
0

1

0.1106

1

0

1

0.1106

2

0

1

0.1106

3

0

1

0.1106

4

0

1

0.1106

5

0

1

0.1106

6

0

1

0.1106

7

0

1

0.1106

8

Figure 5.20: Individual performance of the small-scale parabola pattern spec-
trum descriptor (polynomial kernel)

CHAPTER 5. EXPERIMENTS 125

all − . . . Error Photos Error Cartoons Total Error
0.0090

0.6834

0.0836

avg. sat.

0.0097

0.6683

0.0825

thres. bright.

0.0046

0.7979

0.0923

col. hist.

0.0111

0.6611

0.0830

edge hist.

0.0102

0.6661

0.0827

compr. ratio

0.0099

0.6634

0.0822

small disk p. s.

0.0092

0.6728

0.0826

large disk p. s.

0.0104

0.6646

0.0827

small par. p. s.

0.0099

0.6698

0.0829

large par. p. s.

0.0108

0.7121

0.0884

pattern spect.

0.0085

0.6437

0.0811

all

Figure 5.21: Combined performance (RBF kernel, σ2 = 1/12)

126 5.6. PERFORMANCE ON IMAGES FROM THE WEB

all − . . . Error Photos Error Cartoons Total Error
0.0089

0.7194

0.0875

avg. sat.

0.0035

0.8610

0.0984

thres. bright.

0.0015

0.8962

0.1005

col. hist.

0.0110

0.7037

0.0876

edge hist.

0.0127

0.6615

0.0845

compr. ratio

0.0141

0.6242

0.0816

small disk p. s.

0.0115

0.6733

0.0847

large disk p. s.

0.0133

0.6326

0.0818

small par. p. s.

0.0136

0.6481

0.0838

large par. p. s.

0.0128

0.7160

0.0906

pattern spect.

0.0139

0.6227

0.0813

all

Figure 5.22: Combined performance (polynomial kernel, D = 7)

CHAPTER 5. EXPERIMENTS 127

classifier from [1, 34]
our classifier

600500400300200100

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5.23: Size of learning set versus error. Test set constant size 1,000
photos and 1,000 cartoons. (From [11].)

128 5.6. PERFORMANCE ON IMAGES FROM THE WEB

Chapter 6

CONCLUSIONS

The objective of this work was to filter out cartoons from the returned re-
sults in the TREC-2002 in order to improve the retrieval performance of the
Probabilistic Gaussian Mixture Model. For this reason we built a classifier
used as cartoon detector.

We considered a wide range of image descriptors to capture texture, color,
edges, size distribution, and the complexity of the images.

We use SVM learning for training and cross validation. In the model
selection we spent considerable effort at tuning the parameters. It is a well-
known open research problem to do this automatically, so we had to de-
termine experimentally which type of kernel to use and fix the parameters
for the particular kernel, while avoiding overfitting by studying the data too
much. The RBF kernel with a variance of σ2 = 1/12 turned out to be the
most useful when we used all of our descriptors together.

6.1 Application for TREC-2002

How can our classifier be used in the video retrieval? The video-retrieval
part of the TREC competition proceeds roughly as follows (see Section 1.2
for definitions etc.): the organizer creates a list topics; each participating
group uses their software for retrieving a list of shots for each topic and
submits them to the referee. The referee manually classifies each shot from
each participant as relevant or irrelevant to the topic. These assessments
form the basis to compute recall and precision for all participants.

Our aim in this process was to improve the list of shots returned for a
given topic by using our classifier to remove cartoons from the list. We ran
our filter on 24 out of 25 topics from the TREC-2002 (see Appendix B; we
excluded Topic 088 because it asks for cartoons!) In Table 6.1 we only list

130 6.1. APPLICATION FOR TREC-2002

run topic # retrieved avg. prec. filtered avg. prec.

run1 76 1000 0.5443 0.5444
84 0.0054 0.0058
91 0.0146 0.0152
92 0.0006 0.0007

total 0.0331 0.0332

run2 76 1000 0.2171 0.2181
82 0.0222 0.0225
84 0.0057 0.0061
91 0.1488 0.1517

total 0.0225 0.0227

CMU 75 70 0.0793 0.0798
76 0.1997 0.2125
78 0.0064 0.0067
82 0.0021 0.0025
83 0.0586 0.0492
84 0.0769 0.0916
85 0.0032 0.0033
85 0.0032 0.0033
86 0.0000 0.0001
97 0.0088 0.0050

total 0.0240 0.0248

Table 6.1: Cartoon-filtering effect on TREC-2002 video track search results

CHAPTER 6. CONCLUSIONS 131

the runs and topics where the filtering made a difference. The “run” column
in the table indicates the retrieval method used:

run1 text + NIST images from [33]

run2 TEXT + selected components from NIST images from [33]

CMU CMU MANUAL2 results1 from [23]

6.2 Discussion

Recall our original question: can we automatically filter out cartoons from
the returned results in the TREC-2002 video-track search task? Yes, we can.
Can we do it sufficiently well to actually improve the search results? Yes:
as we show in Table 6.1, our filter does increase the average precision of the
search results. In fact, the small magnitude of the difference in the unfiltered
and filtered average precision is largely due to the scarcity of cartoons in the
full collection—in fact, the retrieval lists contain even fewer cartoons.

We have shown that a generic image classifier based on well-chosen visual
features can distinguish cartoons from photos on a difficult video corpus,
and identify the graphics in a collection of Web images. The results can
most likely be improved further only using higher-level, semantic descrip-
tions. Even for an anticipated easy problem like this one, our experience
shows that people use a significant amount of world knowledge (like shining
objects, shadows, human body parts, and so on). Low-level characteristics
that we have not used (like the spatio-temporal structure of the shot) may
help a little bit further, but it is unlikely that this can bridge the semantic
gap.

As our project was successful, we employed similar methods in the TREC-
2003 video-track search task: we implemented “anchor person,” “weather
map,” “people,” and “studio setting” filters and used them in some of the
submitted runs.

1http://www-nlpir.nist.gov/projects/t2002v/results/search/search.

submissions.without.holes.treceval/

132 6.2. DISCUSSION

Appendix A

BIBLIOGRAPHY

[1] V. Athitsos, M. J. Swain, and C. Frankel. Distinguishing photographs
and graphics on the world wide web. In Workshop on Content-Based
Access of Image and Video Libraries, Puerto Rico, June 1997.

[2] A. D. Bagdanov and M. Worring. Multi-scale document description
using rectangular granulometries. In D. Lopresti, J. Hu, and R. Kashi,
editors, Document Analysis Systems V, volume 2423 of LNCS, pages
445–456, Princeton, NJ, August 2002. Springer.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: Introduction and benchmarks.
Technical report, Department of Computer Science, National Taiwan
University, Taipei, Taiwan, 2000. See also http://www.csie.ntu.edu.

tw/~cjlin/libsvm.

[4] A. del Bimbo. Visual Information Retrieval. Morgan Kauffman Pub-
lisher, 1999.

[5] L. P. Deutsch. RFC 1952: GZIP file format specification version 4.3,
1996. ftp://ftp.internic.net/rfc/rfc1952.txt.

[6] E. A. Engbers, R. v. d. Boomgaard, and A. W. M. Smeulders. Decom-
position of separable concave structuring functions. Journal of Mathe-
matical Imaging and Vision, 15:181–195, 2001.

[7] B. Adams et al. IBM research TREC-2002 video retrieval system. In
Voorhees and Buckland [31], pages 289–298.

[8] M. Adler et al. PNG portable network graphics specification. Technical
report, W3C, 1996. http://www.w3.org/Graphics/PNG/.

134 BIBLIOGRAPHY

[9] Graphics interchange format version 89a. ftp://ftp.ncsa.uiuc.edu/
misc/file.formats/graphics.formats/gif89a.doc.

[10] L.M. Hurvich and D. Jameson. An oponent process theory of color
vision. Psychological Review, 45(6):384–404, 1957.

[11] T. I. Ianeva, A. P. de Vries, and H. Röhrig. Detecting cartoons: a case
study in automatic video-genre classification. In 2003 IEEE Interna-
tional Conference on Multimeda & Expo, 2003.

[12] P. Jackway and M. Deriche. Scale-space properties of the multiscale
morphological dilation-erosion. IEEE transactions on pattern analysis
and machine intelligence, 18:38–51, 1996.

[13] A. Lempel and J. Ziv. A universal algorithm for sequential data compres-
sion. IEEE Transactions of Information Theory, 23(3):337–343, 1977.

[14] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity
and its Applications. Springer, Berlin, second edition, 1997.

[15] Jean loup Gailly and Mark Adler. http://www.gzip.org/.

[16] J. Ma, Y. Zhao, and S. Ahalt. OSU SVM classifier Matlab toolbox.
http://eewww.eng.ohio-state.edu/~maj/osu_svm/.

[17] M. Miyahara and Y. Yoshida. Matematical transform of rgb color data
to muncell hvc color data. SPIE Visual Communication and Image
Processing, 88(1001):650–657, 1988.

[18] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, 1993.

[19] M. Roach, J. S. Mason, and M. Pawlewski. Motion-based classification
of cartoons. In Int. Symposium on Intelligent Multimedia, 2001.

[20] N. C. Rowe and B. Frew. Automatic caption localization for photographs
on word wide web pages. Technical report, Department of Computer
Science, Naval Postgraduate School, 1997.

[21] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[22] Morphology toolbox for matlab. SDC Information Systems. http://

www.mmorph.com/.

BIBLIOGRAPHY 135

[23] A.F. Smeaton and P. Over. The TREC-2002 video track report. In
Voorhees and Buckland [31], pages 69–85.

[24] J. R. Smith and S.-F. Chang. Searching for images and videos on the
world wide web. Technical Report 459-96-25, Center for Communica-
tions Research, Columbia University, 1996.

[25] P. Soille. Morphological Image Analysis Principles and Applications.
Springer-Verlag, Berlin,Heidelberg, 1999.

[26] B. T. Truong, C. Dorai, and S. Venkatesh. Automatic genre identifi-
cation for content-based video categorization. In Proc. 15th Interna-
tional Conference on Pattern Recognition, volume II, pages 230–233,
Barcelona, Spain, September 2000.

[27] R. v. d. Boomgaard. The morphological equivalent of the Gauss convo-
lution. Nieuw Archief voor Wiskunde, 38(3):219–236, 1992.

[28] V.N. Vapnik. The nature of statistical learning theory. Springer Verlag,
New York, 1995.

[29] V.N. Vapnik. Statistical Learning Theory. Wiley, New York, 1995.

[30] R. v.d. Boomgaard and A. W. M. Smeulders. The morphological
structure of images, the differential equations of morphological scale-
space. IEEE transactions on pattern analysis and machine intelligence,
16(4):1101–1113, 1994.

[31] E. M. Voorhees and L. P. Buckland, editors. The Eleventh Text Retrieval
Conference TREC 2002, number 500–251 in NIST Special Publication,
Washington, 2003.

[32] G. K. Wallace. The JPEG still picture compression standard. Commu-
nications of the ACM, 34(4):30–44, April 1991.

[33] T. Westerveld, A.P. de Vries, A. van Ballegooij, F.M. G. de Jong, and
D. Hiemstra. A probabilistic multimedia retrieval model and its evalu-
ation. EURASIP Journal on Applied Signal Processing, 2003.

[34] M. A. Windhouwer, A. R. Schmidt, and M. L. Kersten. Acoi: A System
for Indexing Multimedia Objects. In International Workshop on Infor-
mation Integration and Web-based Applications & Services, Yogyakarta,
Indonesia, November 1999.

136 BIBLIOGRAPHY

Appendix B

TREC-2002 TOPICS

Video Topic 075

Text Description: Find shots with Eddie Rickenbacker in them

Image Example: Rickenbacker behind desk

http://media.auburn.edu/media/952639326043.jpg

Image Example: Rickenbacker head and torso

http://media.auburn.edu/media/952639326731.jpg

Video Example: Rickenbacker on the left

file: 01870b.mpg start: 22m12.077s stop: 22m18.617s

Video Example: Rickenbacker at desk

file: 01870b.mpg start: 22m18.717s stop: 22m43.576s

Video Topic 076

Text Description: Find additional shots with James H. Chandler

Video Example: Chandler

file: 07087.mpg start: 08m02.820s stop: 08m08.359s

Video Example: Chandler on the right

file: 07087.mpg start: 08m14.599s stop: 08m29.614s

Video Example: Chandler behind a desk

file: 07087.mpg start: 09m06.318s stop: 09m12.424s

138

Video Topic 077

Text Description: Find pictures of George Washington

Image Example: face

http://www.cia.gov/csi/monograph/firstln/955pres2.gif

Video Example: face

file: 01681.mpg start: 09m25.938s stop: 09m29.308s

Video Topic 078

Text Description: Find shots with a depiction of Abraham Lincoln

Image Example: shoulders and head

http://www.americaslibrary.gov/assets/jb/jb_0304_lincoln_1_m.jpg

Video Example: shoulders and head

file: 01681.mpg start: 09m29.408s stop: 09m31.076s

Video Topic 079

Text Description: Find shots of people spending leisure time at the beach,

for example: walking, swimming, sunning, playing in the sand. Some part of the

beach or buildings on it should be visible.

Video Example: people on beach, 2 in foreground

file: 01681.mpg start: 08m08.226s stop: 08m10.895s

Video Example: crowds on beach

file: 08698.mpg start: 14m18.616s stop: 14m22.771s

Video Example: kids play in the sand

file: 07977a.mpg start: 08m00.652s stop: 08m08.359s

Video Example: people on the beach with palm trees

file: 06085b.mpg start: 01m44.839s stop: 01m48.209s

Video Topic 080

Text Description: Find shots of one or more musicians: a man or woman

playing a music instrument with instrumental music audible. Musician(s) and in-

strument(s) must be at least partly visible sometime during the shot.

APPENDIX B. TREC-2002 TOPICS 139

Video Example: Man on stage playing guitar and singing

file: 01880b.mpg start: 03m19.835s stop: 03m28.277s

Video Example: Man playing saxophone

file: 01880b.mpg start: 02m54.109s stop: 03m11.827s

Video Topic 081

Text Description: Find shots of football players

Video Example: two players and a coach

file: 00453.mpg start: 00m27.226s stop: 00m31.732s

Video Example: teams running down the football field

file: 00453.mpg start: 06m02.566s stop: 06m11.565s

Video Example: game close-up

file: 01681.mpg start: 08m00.852s stop: 08m04.849s

Video Example: view from above, then zooming in

file: 08698.mpg start: 16m46.215s stop: 16m52.855s

Video Topic 082

Text Description: Find shots of one or more women standing in long dresses.

Dress should be one piece and extend below knees. The entire dress from top to

end of dress below knees should be visible at some point.

Video Example: woman on the right in long white dress

file: 00488.mpg start: 10m47.387s stop: 10m48.554s

Video Example: 2 women in long dresses (one blue, one white) walking from

left to right

file: 00488.mpg start: 16m17.987s stop: 16m29.332s

Video Example: woman on the left in long yellow dress

file: 19029.mpg start: 07m32.457s stop: 07m38.463s

Video Topic 083

Text Description: Find shots of the Golden Gate Bridge

Image Example: clear side view

http://www.nonprofitcenters.org/documents/images/golden-gate-view.jpg

140

Image Example: red tower and part of span from side

http://www.onroute.com/guides/sanfrancisco/images/golden-gate-sun.gif

Image Example: tower and span from underneath

http://caswww.colorado.edu/courses.d/NFEM.d/NFEM.Images.d/Golden.Gate.gif

Image Example: on bridge

http://www.windscreen.tv/images/San%20Francisco%20Golden%20Gate%20Bridge%2006.12.00.jpg

Image Example: tower and span in fog

http://www.wetterschau.de/wecke/Nebel/golden%20gate.jpg

Video Topic 084

Text Description: Find shots of Price Tower, designed by Frank Lloyd Wright

and built in Bartlesville, Oklahoma

Image Example:

http://www.bartlesville.com/images/market/full/price-tower.jpg

Video Topic 085

Text Description: Find shots containing Washington Square Park’s arch in

New York City. The entire arch should be visible at some point

Video Example: the arch in middle distance

file: 19567b.mpg start: 04m51.394s stop: 04m53.029s

Video Topic 086

Text Description: Find overhead views of cities - downtown and suburbs. The

viewpoint should be higher than the highest building visible

Video Example: panoramic view of a city

file: 02103.mpg start: 01m12.006s stop: 01m21.048s

Video Example: aerial view of Detroit by night

file: 08698.mpg start: 01m11.539s stop: 01m30.958s

Video Example: view of city

file: 36539.mpg start: 03m57.373s stop: 03m59.842s

Video Example: aerial view of suburbs

file: 08276d.mpg start: 02m31.353s stop: 02m33.722s

APPENDIX B. TREC-2002 TOPICS 141

Video Topic 087

Text Description: Find shots of oil fields, rigs, derricks, oil drilling/pumping

equipment. Shots just of refineries are not desired

Video Example: pumping equipment, derricks

file: 15965.mpg start: 01m14.976s stop: 01m20.581s

Video Topic 088

Text Description: Find shots with a map (sketch or graphic) of the continental

US.

Video Example: flat outline map with graphics superimposed

file: 02103.mpg start: 06m57.621s stop: 07m18.442s

Video Example: flat outline map with graphics superimposed

file: 08829.mpg start: 07m43.334s stop: 08m48.467s

Video Example: US as part of North America - on a curved surface

file: 19304.mpg start: 16m38.007s stop: 16m37.974s

Video Example: flat outline map with graphics superimposed

file: 19400.mpg start: 02m44.466s stop: 03m15.798s

Video Topic 089

Text Description: Find shots of a living butterfly

Image Example:

http://pt-lobos.parks.state.ca.us/nathis/Monarch.jpg

Image Example:

http://insects.ummz.lsa.umich.edu/Images/Lepidoptera/monarch.JPG

Video Topic 090

Text Description: Find more shots with one or more snow-covered moutain

peaks or ridges. Some sky must be visible them behind

Video Example:

file: 01681.mpg start: 02m28.650s stop: 02m31.653s

142

Video Example:

file: 01681.mpg start: 02m31.686s stop: 02m35.857s

Video Example:

file: 11842.mpg start: 01m07.735s stop: 01m13.941s

Video Topic 091

Text Description: Find shots with one or more parrots

Image Example: close-up of upper half

http://www.papageienstammtisch-stuttgart.de/LOLA_3.jpg

Video Example: whole body

file: 15965.mpg start: 01m26.187s stop: 01m33.895s

Video Topic 092

Text Description: Find shots with one or more sailboats, sailing ships, clipper

ships, or tall ships - with some sail(s) unfurled

Image Example: clipper ship

http://tinyurl.com/oy4q

Image Example: tallship

http://www.ospreysguide.com/Gallery/Greenport/tall-ship-4.jpg

Image Example: tallship

http://www.aweisbecker.com/images/eagle01a.jpg

Image Example: sailboat

http://topex-www.jpl.nasa.gov/science/images/sailboat-racing.jpg

Video Example: multiple sailboats

file: 08261.mpg start: 03m29.511s stop: 03m34.149s

Video Example: multiple sailboats

file: 36539.mpg start: 07m58.883s stop: 08m01.419s

Video Topic 093

Text Description: Find shots about live beef or dairy cattle, individual cows

or bulls, herds of cattle.

APPENDIX B. TREC-2002 TOPICS 143

Video Example: isolated groups in field, audio:’cattle’

file: 00535.mpg start: 01m59.454s stop: 02m05.627s

Video Example: large group

file: 00535.mpg start: 02m05.760s stop: 02m11.933s

Video Example: a few grazing in the foreground

file: 00535.mpg start: 09m59.605s stop: 10m05.878s

Video Example: a few grazing in middle of scene

file: 07980.mpg start: 12m12.239s stop: 12m19.279s

Video Example: horsemen driving a couple head of cattle

file: 06085a.mpg start: 00m43.310s stop: 00m56.624s

Video Topic 094

Text Description: Find more shots of one or more groups of people, a crowd,

walking in an urban environment (for example with streets, traffic, and/or build-

ings).

Video Example: crowd crossing street.

file: 08698.mpg start: 11m09.843s stop: 11m15.915s

Video Example: aerial view of crowd crossing street, light pole, cars passing.

file: 11240a.mpg start: 00m49.884s stop: 01m06.300s

Video Example: urban environment: car, building, sky. Moving people.

file: 19632.mpg start: 01m32.060s stop: 01m36.764s

Video Topic 095

Text Description: Find shots of a nuclear explosion with a mushroom cloud

Video Example:

file: 08829.mpg start: 05m17.954s stop: 05m37.974s

Video Example:

file: 08829.mpg start: 19m52.036s stop: 19m58.709s

Video Example: mushroom cloud against dark background

file: 14104.mpg start: 09m16.995s stop: 09m17.696s

144

Video Topic 096

Text Description: Find additional shots with one or more US flags flapping

Video Example: closeup

file: 01681.mpg start: 09m52.498s stop: 10m04.176s

Video Example: flag in front of building

file: 38848a.mpg start: 10m21.694s stop: 10m29.435s

Video Topic 097

Text Description: Find more shots with microscopic views of living cells

Video Example:

file: 01356a.mpg start: 10m10.649s stop: 10m16.389s

Video Example:

file: trchns.mpg start: 13m19.373s stop: 13m28.950s

Video Topic 098

Text Description: Find shots with a locomotive (and attached railroad cars if

any) approaching the viewer

Video Example: from right

file: 36539.mpg start: 01m31.659s stop: 01m39.934s

Video Example: steam locomtive and train from left

file: 36539.mpg start: 03m22.004s stop: 03m26.141s

Video Example: from left

file: 36539.mpg start: 05m04.374s stop: 05m09.345s

Video Example: from right

file: 36539.mpg start: 06m54.718s stop: 06m59.457s

Video Example: steam locomotive from right

file: 10150.mpg start: 00m01.335s stop: 00m33.300s

Video Topic 099

Text Description: Find shots of a rocket or missile taking off. Simulations are

acceptible

APPENDIX B. TREC-2002 TOPICS 145

Video Example: leaving launching pad

file: 01681.mpg start: 07m38.496s stop: 07m41.966s

Video Example: continues to climb

file: 01681.mpg start: 07m42.800s stop: 07m47.672s

146

Appendix C

MATLAB SCRIPTS

Here we provide the source code to the central Matlab functions that we
wrote in the course of our research.

C.1 Computing Image Descriptors

C.1.1 computeCarAvgSatThrBrightness

function computeCarAvgSatThrBrightness (directoryName , th r e sho ld)

%%

% Use : computeCarAvgSatThrBrightness (directoryName , th r e sho ld) %

% %

% This func t i on computes average s a tu r a t i on and thre sho ld %

% br i gh tne s s o f each image in d i r e c t o r y directoryName . Resu l t s %

% are saved in the cor re spond ing ’ c a r avg b r i gh t . mat ’ and %

% ’ c a r a v g s a t t h r . mat ’ f i l e s . %

% %

% Parameters : %

% directoryName −−> a f u l l path o f image l o c a t i o n %

% thre sho ld −−> a number between (0 . 1 : 0 . 1 : 1) %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%

disp (’ computeCarAvgSatThrBrightness ’) ;

cd (directoryName) ;

D=[dir (’ ∗ . jpg ’) ; dir (’ ∗ . g i f ’) ;] ;

numImages=length (D) ;

for i =1:numImages

disp (D(i) . name) ;

I=imageLoad (D(i) . name) ;

148 C.1. COMPUTING IMAGE DESCRIPTORS

Y=rgb2hsv (I) ;

V=Y(: , : , 3) ;

[h ,w]= s ize (V) ;

[Vcount ,Vx]= imhis t (V) ;

VcountTr=Vcount (Vx(: ,1)>= thre sho ld) ;

percentBr=sum(VcountTr)/ (h∗w) ;

% f i g u r e , imshow(V) , t i t l e ([’ o r i g i n a l g r ay s c a l e image ’ D(i) . name]) ;

% f i g u r e , imhi s t (V) , t i t l e ([’ g r ay s c a l e histogram ’ D(i) . name]) ;

S=Y (: , : , 2) ;

% f i g u r e , imhi s t (S) , t i t l e ([’ s a tu r a t i on ’ D(i) . name]) ;

[Scount , Sx]= imhi s t (S) ;

%%

% avgS i s the average s a tu r a t i on %

%%

avgS = Scount ’∗ Sx/(h∗w) ;

xName(i , 1 : length (D(i) . name))=D(i) . name ;

imageCarsBr (i , :) = [percentBr] ;

imageCarsSat (i , :) = [avgS] ;

end ;

saveCar (’ c a r avg b r i gh t ’ , xName , imageCarsBr) ;

saveCar (’ c a r a v g s a t t h r ’ , xName , imageCarsSat) ;

C.1.2 computeCarCompression

function computeCarCompression (directoryName)

%%%

% Use : computeCarCompression (directoryName) %

% %

% This func t i on computes the compress ion d e s c r i p t o r o f each image in %

% d i r e c t o r y directoryName . Resu l t s are saved in the cor re spond ing %

% ’ car compres s ion .mat ’ f i l e . %

% %

% Parameters : %

% directoryName −−> a f u l l path o f image l o c a t i o n %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%%

disp (’ computeCarCompression ’) ;

cd (directoryName) ;

D=[dir (’ ∗ . jpg ’) ; dir (’ ∗ . g i f ’) ;] ;

%D=d i r (’ ∗ . g i f ’) ;
numImages=length (D) ;

for i =1:numImages

imageName=D(i) . name ;

disp (imageName) ;

APPENDIX C. MATLAB SCRIPTS 149

I=imread (imageName) ;

[he ight , width , channe l s]= s ize (I) ;

imageSize=he ight ∗width∗ channe l s ;
i f 0 ˜= regexp i (imageName , ’ \ . jpg$ ’ , ’ once ’)

decompress = ’ djpeg ’ ’%s ’ ’ ’ ;

e l s e i f 0 ˜= regexp i (imageName , ’ \ . g i f $ ’ , ’ once ’)

decompress = ’ giftopnm ’ ’%s ’ ’ ’ ;

else

error (’ don ’ ’ t know how to convert to pnm’) ;

end

shellCmd=sprintf ([decompress ,

’ | ppmquant 256 2>/dev/ nu l l | pnmtopng |wc −c ’] , . . .
imageName) ;

[s , r]=system (shellCmd) ;

[va lue , count] = sscanf (r , ’%d ’) ;

i f count ˜= 1

quantCompression (i) = 0 ;

else

quantCompression (i)=value / imageSize ;

end

xName(i , 1 : length (D(i) . name))=D(i) . name ;

imageCars (i , :) = [quantCompression (i)] ;

end ;

saveCar (’ ca r compres s ion ’ , xName , imageCars) ;

C.1.3 computeCarColHist

function computeCarColHist (directoryName , hBins , sBins , vBins)

%%

% Use : computeCarColHist (directoryName , 3 , 3 , 5) , 3 x3x5 comes from 45 %

% bins c o l o r histogram . %

% %

% This func t i on computes the c o l o r histogram de s c r i p t o r o f each %

% image in d i r e c t o r y directoryName . Resu l t s are saved in the %

% correspond ing ’ c a r c o l o r h i s t . mat ’ f i l e . %

% %

% Parameters : %

% directoryName −−> a f u l l path o f image l o c a t i o n %

% hBins −−> a number o f b ins in the h (hue) chane l o f HSV %

% sBins −−> a number o f b ins in the s (s a tu r a t i on) chane l %

% vBins −−> a number o f b ins in the v (g r ay s c a l e) chane l %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%

disp (’ computeCarColHist ’) ;

150 C.1. COMPUTING IMAGE DESCRIPTORS

cd (directoryName) ;

D=[dir (’ ∗ . jpg ’) ; dir (’ ∗ . g i f ’) ;] ;

%D=d i r (’ ∗ . g i f ’) ;
%D=d i r (’ ∗ . jpg ’) ;
numImages=length (D) ;

for i =1:numImages

disp (D(i) . name) ;

I=imageLoad (D(i) . name) ;

% f i g u r e , imshow(I) , t i t l e (’ o r i g i n a l image ’) ;

HSV=rgb2hsv (I) ;

%V=HSV (: , : , 3) ;

[he ight , width]= s ize (HSV (: , : , 3)) ;

% f i g u r e , imshow(V) , t i t l e ([’ o r i g i n a l g r ay s c a l e image ’ D(i) . name]) ;

% Y=rgb2ycbcr (I) ;

% S=HSV (: , : , 2) ;

% H=HSV (: , : , 1) ;

ch = round(HSV(: , : , 1) ∗ (hBins−1))+1;

sh = round(HSV(: , : , 2) ∗ (sBins−1))+1;

vh = round(HSV(: , : , 3) ∗ (vBins−1))+1;

f l a t = ch + hBins ∗(sh−1) + hBins∗ sBins ∗(vh−1);
c o l d i s t r i b = h i s t c (f l a t (:) ’ , 1 : hBins∗ sBins ∗vBins)/ (he ight ∗width) ;
% count=ze ro s (hBins , sBins , vBins) ;

% [h , s , v]= s i z e (count) ;

%f o r x=1: he ight

% f o r y=1:width

% %ch=round (H(x , y)∗ (hBins−1))+1;

% %sh=round (S(x , y)∗ (sBins−1))+1;

% %vh=round (V(x , y)∗ (vBins−1))+1;

% %count (ch (x , y) , sh , vh)=count (ch , sh , vh)+1;

% % count (ch , sh , vh)

% end ;

% end ;

%c o l d i s t r i b =[count (:) / (he ight ∗width)] ;

imageCars (i , :) = c o l d i s t r i b ;

xName(i , 1 : length (D(i) . name))=D(i) . name ;

%car s (1 , i)={ c o l d i s t r i b }
%%FOR VISUALIZATION UNCOMMENT THE FOLLOWING

%f i g u r e ;

%phandles = c on t o u r s l i c e (count , [] , [] , 1 : vBins , 5) ;

%view (3) ; ax i s t i g h t

%se t (phandles , ’ LineWidth ’ , 2)

xName(i , 1 : length (D(i) . name))=D(i) . name ;

end ;

saveCar (’ c a r c o l o r h i s t ’ , xName , imageCars) ;

APPENDIX C. MATLAB SCRIPTS 151

C.1.4 computeCarEdgeDir

function computeCarEdgeDir (directoryName)

%%%

% Use : computeCarEdgeDir (directoryName) %

% %

% This func t i on computes the edge d e s c r i p t o r o f each image in %

% d i r e c t o r y directoryName . Resu l t s are saved in the cor re spond ing %

% ’ c a r e d g e d i r . mat ’ f i l e . %

% %

% Parameters : %

% directoryName −−> a f u l l path o f image l o c a t i o n %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%%

disp (’ computeCarEdgeDir ’) ;

cd (directoryName) ;

D=[dir (’ ∗ . jpg ’) ; dir (’ ∗ . g i f ’) ;] ;

% D=d i r (’ ∗ . g i f ’) ;
% D=d i r (’ ∗ . jpg ’) ;
numImages=length (D) ;

h o r i z s o b e l=f s p e c i a l (’ s obe l ’) ;

v e r t s o b e l=ho r i z s o b e l ’ ;

nAngle=8;

nMagnitude=5;

maxMagnitude=sqrt (2 0) ;

for i =1:numImages

disp (D(i) . name) ;

xName(i , 1 : length (D(i) . name))=D(i) . name ;

I=imageLoad (D(i) . name) ;

% f i g u r e , imshow(I) ;

V=im2double (rgb2gray (I)) ;

% f i g u r e , imshow(V) ;

X=conv2 (V, h o r i z s o b e l , ’ v a l i d ’) ;

% f i g u r e , imshow(abs (X) , 2 5 6) ;

Y=conv2 (V, v e r t s o b e l , ’ v a l i d ’) ;

i f min(s ize (X)) > 0 && min(s ize (Y)) > 0

% f i g u r e , imshow(abs (Y) , 2 5 6) ;

% f i g u r e , imshow(abs (X)+abs (Y) , 2 5 6) ;

Angle=atan2 (Y,X) ;

Magnitude=sqrt (X.∗X+Y.∗Y) ;

AngleQuant = 1+round ((Angle+pi)/(2∗ pi)∗ (nAngle−1)) ;

MagnitudeQuant = 1+round(Magnitude / . . .

maxMagnitude ∗(nMagnitude−1)) ;

Quant = (AngleQuant−1)∗nMagnitude + MagnitudeQuant ;

152 C.1. COMPUTING IMAGE DESCRIPTORS

[he ight , width] = s ize (Angle) ;

histogram = h i s t c (Quant (:) ’ , 1 : (nMagnitude∗nAngle)) / . . .

(he ight ∗width) ;
imageCars (i , :) = histogram ;

else

imageCars (i , :) = zeros (1 , nAngle∗nMagnitude) ;

end

end ;

saveCar (’ c a r e d g e d i r ’ , xName , imageCars) ;

C.1.5 computeCarGranulometry1

function computeCarGranulometry1 (directoryName)

%%

% Use : computeCarGranulometry1 (directoryName) %

% %

% This func t i on computes the mult i−s c a l e pat . spectrum de s c r i p t o r o f %

% each image in d i r e c t o r y directoryName . %

% %

% Resu l t s are saved in the cor re spond ing ’ car granulom1 parb ig . mat ’ , %

% ’ car g ranu lom1 d i sksma l l . mat ’ , ’ ca r g ranu lom1 d i skb ig . mat ’ , and %

% ’ car granu lom1 d i sksma l l . mat ’ f i l e s . %

% %

% Parameters : directoryName −−> a f u l l path o f image l o c a t i o n , %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%

disp (’ computeCarGranulometry1 ’) ;

cd (directoryName) ;

D=[dir (’ ∗ . jpg ’) ; dir (’ ∗ . g i f ’)] ;

numImages=length (D) ;

%element=’ Parabola ’ ;

for i =1:numImages

disp (D(i) . name) ;

I=imageLoad (D(i) . name) ;

% f i g u r e , imshow(I) , t i t l e (’ o r i g i n a l image ’) ;

Y=rgb2hsv (I) ;

V=Y(: , : , 3) ;

% f i g u r e , imshow(V) , t i t l e ([’ o r i g i n a l g r ay s c a l e image ’ D(i) . name]) ;

% f i g u r e , imhi s t (V) , t i t l e ([’ g r ay s c a l e histogram ’ D(i) . name]) ;

%%%

% sDi s r i b1 i s a func t i on that r e tu rn s the remaining ob j e c t %

% su r f a c e area a f t e r each opening with SE parabola %

%%%

% sur f a r eaS=sD i s t r i b 1 (V, 2 0 , 0 . 0 1) ; % old ve r s i on with sma l l e s t

APPENDIX C. MATLAB SCRIPTS 153

% s c a l e parabola

% sur fareaB=sD i s t r i b 1 (V, 1 0 , 5) ; % old ve r s i on with SE parabola

sur fa reaParSmal l=sD i s t r i b 1 (V, 2 0 , 1) ;

su r fa r eaDi skSmal l=Di skDi s t r ib (V, 2 0 , 1) ;

%%%

% DiskDi s t r ib i s a func t i on that r e tu rn s the remaining ob j e c t %

% su r f a c e area a f t e r each opening with SE d i sk %

%%%

sur fareaParBig=sD i s t r i b 1 (V, 1 0 , 5) ;

su r fa r eaDi skBig=Di skDi s t r ib (V, 1 0 , 5) ;

sur fParSmal l (1 , i)={ sur fa reaParSmal l } ;
sur fDi skSmal l (1 , i)={ sur fa r eaDi skSmal l } ;
sur fParBig (1 , i)={ sur fa reaParBig } ;
su r fDi skBig (1 , i)={ su r fa r eaDi skBig } ;
%sur fS (1 , i)={ su r f a r eaS } ; % old ve r s i on

%surfB (1 , i)={ sur fareaB } ; % old ve r s i on

%%%

% d i f f −−> F i r s t d e r i v a t i v e o f the su r f a c e area array , which %

% conta in s the s i z e d i s t r i b u t i o n s o f the ob j e c t s in the image %

%%%

der iv su r f a r eaParSma l l=d i f f (sur fa reaParSmal l) ;

d e r i v su r f a r eaD i skSma l l=d i f f (sur fa r eaDi skSmal l) ;

d e r i v su r f a r eaParB ig=d i f f (sur fa reaParBig) ;

d e r i v su r f a r eaD i skB ig=d i f f (su r fa r eaDi skBig) ;

% de r i v su r f a r e aS =d i f f (su r f a r eaS) ;

% der ivsur fareaM =d i f f (surfareaM) ;

de r iv sur fParSma l l (1 , i)={ der iv su r f a r eaParSma l l } ;
d e r i v su r fD i skSma l l (1 , i)={ de r i v su r f a r eaD i skSma l l } ;
d e r i v su r fParB ig (1 , i)={ de r i v su r f a r eaParB ig } ;
d e r i v su r fD i skB ig (1 , i)={ de r i v su r f a r eaD i skB ig } ;
% de r i v su r fB i g (1 , i)={ de r i v su r f a r e aB i g } ;
xName(i , 1 : length (D(i) . name))=D(i) . name ;

%%%

% imageCars conta in s measurements o f the image %

%%%

imageCarsParSmall (i , :) = [de r i v su r f a r eaParSma l l (:)] ’ ;

imageCarsDiskSmall (i , :) = [de r i v su r f a r eaD i skSma l l (:)] ’ ;

imageCarsParBig (i , :) = [de r i v su r f a r eaParB ig (:)] ’ ;

imageCarsDiskBig (i , :) = [de r i v su r f a r eaD i skB ig (:)] ’ ;

% imageCarsS (i , :) = [d e r i v su r f a r e aS (:)] ’ ;

% imageCarsB (i , :) = [de r i v su r f a r eaB (:)] ’ ;

end ;

% saveCar (’ car granu lom1 smal l ’ , xName , imageCarsS) ; % old ve r s i on

% saveCar (’ car granu lom1 big ’ , xName , imageCarsB) ; % old ve r s i on

154 C.1. COMPUTING IMAGE DESCRIPTORS

saveCar (’ car granu lom1 parsmal l ’ , xName , imageCarsParSmall) ;

saveCar (’ car granulom1 parb ig ’ , xName , imageCarsParBig) ;

saveCar (’ ca r g ranu lom1 d i sksma l l ’ , xName , imageCarsDiskSmall) ;

saveCar (’ ca r g ranu lom1 d i skb ig ’ , xName , imageCarsDiskBig) ;

% x=0:numOpenings ;

%%%

% PLOT OF THE SIZE DISTRIBUTION %

%%%

%UNCOMMENT THE FOLLOWING LINES FOR VISUALIZATION

% plo tSur f 1 (2 0 , numImages , sur fParSmal l (1 , :) , xName , ’ smal l parabola ’) ;

% p lo tSu r f 1 (2 0 , numImages , sur fDi skSmal l (1 , :) , xName , ’ smal l d i sk ’) ;

% p lo tSu r f 1 (1 0 , numImages , sur fParBig (1 , :) , xName , ’ b ig parabola ’) ;

% p lo tSu r f 1 (1 0 , numImages , sur fDi skBig (1 , :) , xName , ’ b ig d i sk ’) ;

%%

% PLOT OF THE PATTERN SPECTRUM %

%%

%UNCOMMENT THE FOLLOWING LINES FOR VISUALIZATION

% plotDer ivSur f1 (numImages , de r iv sur fParSma l l (1 , :) , xName , ’ smal l parabola ’) ;

% p lo tDer ivSur f1 (numImages , de r i v su r fD i skSma l l (1 , :) , xName , ’ smal l d i sk ’) ;

% p lo tDer ivSur f1 (numImages , de r i v su r fParB ig (1 , :) , xName , ’ b ig parabola ’) ;

% p lo tDer ivSur f1 (numImages , d e r i v su r fD i skB ig (1 , :) , xName , ’ b ig d i sk ’) ;

C.1.6 computeCarDim

function computeCarDim(directoryName)

%%%

% Use : computeCarDim(directoryName) %

% %

% This func t i on computes the dimension r a t i o d e s c r i p t o r s o f each %

% image in d i r e c t o r y directoryName . U s e f u l l j u s t f o r WWW images . %

% Resu l t s are saved in the cor re spond ing ’ ca r d im aspec t . mat ’ and %

% ’ car dim min .mat ’ f i l e s . %

% %

% Parameters : %

% directoryName −−> a f u l l path o f image l o c a t i o n %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%%

disp (’ computeCarDim ’) ;

cd (directoryName) ;

D=[dir (’ ∗ . jpg ’) ; dir (’ ∗ . g i f ’) ;] ;

%D=d i r (’ ∗ . g i f ’) ;
numImages=length (D) ;

for i =1:numImages

disp (D(i) . name) ;

APPENDIX C. MATLAB SCRIPTS 155

I=imageLoad (D(i) . name) ;

he ight = s ize (I , 1) ;

width = s ize (I , 2) ;

a spect = he ight / width ;

i f aspect < 1

aspectAdjusted = [aspect / 2] ;

else

aspectAdjusted = [1 − 1/ (2∗ aspect)] ;

end

minDimAdjusted = min(he ight , width) / 2 0 0 0 ;

i f minDimAdjusted > 1

error (’ minDimAdjusted g r e a t e r 1 ’)

end

% aspectAdjusted

% minDimAdjusted

imageCarAspect (i , :) = [aspectAdjusted] ;

imageCarMinDim(i , :) = [minDimAdjusted] ;

xName(i , 1 : length (D(i) . name))=D(i) . name ;

end ;

saveCar (’ ca r d im aspec t ’ , xName , imageCarAspect) ;

saveCar (’ car dim min ’ , xName , imageCarMinDim) ;

C.1.7 computeCarFileType

function computeCarFileType (directoryName)

%%

% Use : computeCarFileType (directoryName) %

% %

% This func t i on computes the f i l e type d e s c r i p t o r o f each %

% image in d i r e c t o r y directoryName . U s e f u l l j u s t f o r WWW images . %

% Resu l t s are saved in the cor re spond ing ’ c a r f y l e t y p e .mat ’ f i l e . %

% %

% Parameters : %

% directoryName −−> a f u l l path o f image l o c a t i o n %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%

disp (’ computeCarCompression ’) ;

cd (directoryName) ;

D=[dir (’ ∗ . jpg ’) ; dir (’ ∗ . g i f ’) ;] ;

% D=d i r (’ ∗ . g i f ’) ;
numImages=length (D) ;

for i =1:numImages

imageName=D(i) . name ;

disp (imageName) ;

156 C.2. LEARNING AND CLASSIFYING

i f 0 ˜= regexp i (imageName , ’ \ . jpg$ ’ , ’ once ’)

i sG i f = 0 ;

e l s e i f 0 ˜= regexp i (imageName , ’ \ . g i f $ ’ , ’ once ’)

i sG i f = 1 ;

else

error (’ don ’ ’ t know f i l e type ’) ;

end

xName(i , 1 : length (D(i) . name))=D(i) . name ;

imageCars (i , :) = [i sG i f] ;

end ;

saveCar (’ c a r f i l e t y p e ’ , xName , imageCars) ;

C.2 Learning and Classifying

C.2.1 learnAndTest
function learnAndTest (topDirec tory , l e a rnD i r e c t o ry , numLearn0 , . . .

numLearn1 , numTest0 , numTest1 , k e rne l , degree)

%%

% Use : learnAndTest (topDirec tory , l e a rnD i r e c t o ry , numLearn0 , %

% numLearn1 , numTest0 , numTest1 , k e rne l , degree) %

% %

% This func t i on loads a l l c h a r a c t e r i s t i c s from %

% topDirec tory /xa?−images and performs t r a i n i n g and c r o s s v a l i d a t i o n . %

% %

% Parameters : %

% topDirec tory −−> top d i r e c t o r y o f xa?−images d i r e c t o r i e s . %

% kerne l −−> use ’ r ’ f o r RBF and ’ p ’ f o r Po l inomia l k e rne l %

% degree −−> po l inomia l k e rne l , (<X(: , i) ,X (: , j)+1)ˆ degree %

% RBF kerne l , exp(−degree ∗ |X(: , i)−X(: , j) | ˆ 2 %

% %

% For l e a rn i ng : %

% I f l e a rnD i r e c t o ry == ’ ’ then randomly s e l e c t from xa?−images %

% numLearn0 photos f o r l e a rn i ng and numLearn1 car toons f o r l e a rn i ng . %

% Otherwise use a l l photos and car toons from l ea rnD i r e c t o ry . %

% %

% For t e s t i n g : %

% Load numTest0 photos and numTest1 car toons . I f numTest0 == 0 a l l %

% remaining photos w i l l be used f o r t e s t i n g and i f numTest1 == 0 %

% a l l remaining car toons w i l l be used f o r t e s t i n g . %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%

[f i l eNames , car] = loadAl lCarDir (topDirec tory) ;

% to get more random s e l e c t i o n s :

APPENDIX C. MATLAB SCRIPTS 157

rand (’ s t a t e ’ ,sum(100∗ clock)) ;

% to output the s t a t e o f the random number genera to r

% (f o r r e p e a t a b i l i t y :) randomState=rand (’ s t a t e ’)

[numFiles , s t rLength] = s ize (f i l eNames) ;

perm = randperm(numFiles) ;

f i l eNames = f i l eNames (perm , :) ;

car = car (perm , :) ;

i nd i c a t o r 0 = f i l eNames (: , 1) == ’ 0 ’ ;

i nd i c a t o r 1 = f i l eNames (: , 1) == ’ 1 ’ ;

num0 = sum(i nd i c a t o r 0)

num1 = sum(i nd i c a t o r 1)

i f numTest0 == 0

numTest0 = num0 − numLearn0 ;

end

i f numTest1 == 0

numTest1 = num1 − numLearn1 ;

end

i f numLearn0 + numTest0 > num0

error (’ not enough photos ’) ;

end

i f numLearn1 + numTest1 > num1

error (’ not enough car toons ’) ;

end

car0 = car (i nd i c a t o r 0 , :) ;

car1 = car (i nd i c a t o r 1 , :) ;

TestLabels = [zeros (1 , numTest0) , ones (1 , numTest1)] ;

TestSamples = [car0 ((numLearn0+1):(numLearn0+numTest0) , :) ;

car1 ((numLearn1+1):(numLearn1+numTest1) , :)] ’ ;

i f strcmp (l e a rnD i r e c t o ry , ’ ’)

LearnSamples = [car0 (1 : numLearn0 , :) ;

car1 (1 : numLearn1 , :)] ’ ;

else

i f numLearn0 ˜= 0 | | numLearn1 ˜=0

error (’ numLearn0 and numLearn1 must be zero ’) ;

end ;

[l earnFi leNames , learnCar] = loadAl lCar (l e a rnD i r e c t o ry) ;

l e a r n I nd i c a t o r 0 = learnFi leNames (: , 1) == ’ 0 ’ ;

l e a r n I nd i c a t o r 1 = learnFi leNames (: , 1) == ’ 1 ’ ;

numLearn0 = sum(l e a r n I nd i c a t o r 0)

numLearn1 = sum(l e a r n I nd i c a t o r 1)

LearnSamples = [learnCar (l e a r n I nd i c a t o r 0 , :) ;

l earnCar (l e a r n I nd i c a t o r 1 , :)] ’ ;

end

LearnLabels = [zeros (1 , numLearn0) , ones (1 , numLearn1)] ;

158 C.2. LEARNING AND CLASSIFYING

% numLearn0

% numLearn1

% numTest0

% numTest1

% used f o r c l a s s i f y i n g input pat t e rn s us ing the non l in ea r

% SVM C l a s s i f i e r that w i l l be cons t ruc ted

TrueLabelsTrain=LearnLabels ;

SamplesTrain=LearnSamples ;

save DemoData SamplesTrain TrueLabelsTrain

% save debug LearnLabels LearnSamples learnFi leNames TestLabels

% TestSamples ;

i f strcmp (k e rne l , ’ r ’)

% RBF ke rne l

degree

[AlphaY , SVs , Bias , Parameters , nSV , nLabel] = . . .

RbfSVC(LearnSamples , LearnLabels , degree) ;

nSV

save SVMClass i f ierRbf AlphaY SVs Bias Parameters nSV nLabel ;

e l s e i f strcmp (k e rne l , ’ p ’)

% Polynomial k e rne l

degree

[AlphaY , SVs , Bias , Parameters , nSV , nLabel] = . . .

PolySVC(LearnSamples , LearnLabels , degree) ;

nSV

save SVMClass i f i erPol AlphaY SVs Bias Parameters nSV nLabel ;

else

error (’ P lease use ’ ’ r ’ ’ f o r RBF or ’ ’ p ’ ’ f o r po l inomia l k e rne l ! ’) ;

end

[ClassRate , Dec i s ionValue , Ns , ConfMatrix , PreLabels] = . . .

SVMTest(TestSamples , TestLabels , AlphaY , SVs , Bias , Parameters , . . .

nSV , nLabel) ;

ClassRate ;

ErrorRate = 1 − ClassRate

ConfMatrix ;

ErrorMatrix = 1 − ConfMatrix

cartoonDec i s ionValue = Decis ionValue (PreLabels == 1) ’ ;

car toonLabe l s = TestLabels (PreLabels == 1) ’ ;

[sortedCartoonDec i s ionValue , permutation] = . . .

APPENDIX C. MATLAB SCRIPTS 159

sor t rows (cartoonDec i s ionValue) ;

sortedCartoonLabe l s = cartoonLabe l s (permutation) ;

C.2.2 mergeAllCarDir
function [f i l eNames , car] = mergeAllCarDir (topDirec tory)

%%

% Use : mergeAllCarDir (topDirec tory) %

% %

% This func t i on loads and merges a l l c h a r a c t e r i s t i c s from xa?−images %

% below topDirec tory . %

% %

% Parameters : %

% topDirec tory −−> a f u l l path o f image l o c a t i o n top d i r e c t o r y %

% %

% Output : %

% FileNames −−> a (n−by−m) matrix with n f i l e names as l ength−m %

% s t r i n g s %

% %

% car −−> a (n−by−k) matrix f o r a t o t a l o f n f i l e s and k %

% r e a l−valued d e s c r i p t o r s or d e s c r i p t o r s components %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%

cd (topDirec tory) ;

delete (’ c a r a l l . mat ’) ;

d i r s=dir (’ x∗−images ’) ;

f i l eNames = [] ;

car = [] ;

for d=1: length (d i r s)

disp (d i r s (d) . name) ;

fu l lDirectoryName = [topDirec tory , ’ / ’ , d i r s (d) . name] ;

[newFileNames , newCar] = loadAl lCar (fu l lDirectoryName) ;

l = max(s ize (f i l eNames , 2) , s ize (newFileNames , 2)) ;

f i l eNames = [padStr ings (f i l eNames , l) ; padStr ings (newFileNames , l)] ;

car = [car ; newCar] ;

end

cd (topDirec tory) ;

save (’ c a r a l l ’ , ’ f i l eNames ’ , ’ car ’) ;

C.2.3 loadAllCar
function [f i l eNames , car] = loadAl lCar (directoryName)

%%

% Use : loadAl lCar (directoryName) %

% %

% This func t i on s e l e c t s d e s c r i p t o r s f o r t r a i n i n g and c r o s s v a l i d a t i o n . %

160 C.2. LEARNING AND CLASSIFYING

% %

% Parameters : %

% directoryName −−> a f u l l path o f image l o c a t i o n %

% %

% Output : %

% FileNames −−> a (n−by−m) matrix with n f i l e names as l ength−m %

% s t r i n g s %

% %

% car −−> a (n−by−k) matrix f o r a t o t a l o f n f i l e s and k %

% r e a l−valued d e s c r i p t o r s or d e s c r i p t o r s components %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%

cd (directoryName) ;

f i l eNames = [’ i n v a l i d ’] ;

car = [] ;

[f i l eNames , car] = mergeCar (’ ca r g ranu lom1 d i sksma l l ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ ca r g ranu lom1 d i skb ig ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ car granu lom1 parsmal l ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ car granulom1 parb ig ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ c a r avg b r i gh t ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ c a r a v g s a t t h r ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ ca r compres s ion ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ c a r c o l o r h i s t ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ c a r e d g e d i r ’ , f i l eNames , car) ;

% Addi t iona l d e s c r i p t o r s on WWW images

[f i l eNames , car] = mergeCar (’ ca r d im aspec t ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ car dim min ’ , f i l eNames , car) ;

[f i l eNames , car] = mergeCar (’ c a r f i l e t y p e ’ , f i l eNames , car) ;

% OTHER IMAGE DESCRIPTORS THAT WE DO NOT USE IN OUR FINAL VERSION:

%[f i l eNames , car] = mergeCar (’ c a r a v g b r i g h t r e c i p ’ , f i l eNames , car) ;

%[f i l eNames , car] = mergeCar (’ c a r a v g s a t t h r r e c i p ’ , f i l eNames , car) ;

%[f i l eNames , car] = mergeCar (’ car granulom 10 ’ , f i l eNames , car) ;

%[f i l eNames , car] = mergeCar (’ c a r g ranu lom 10 re c ip ’ , f i l eNames , car) ;

%[f i l eNames , car] = mergeCar (’ car granulom var ’ , f i l eNames , car) ;

%[f i l eNames , car] = mergeCar (’ c a r g ranu l om var r e c i p ’ , f i l eNames , car) ;

%[f i l eNames , car] = mergeCar (’ c a r c ompr e s s i on r e c i p ’ , f i l eNames , car) ;

%[f i l eNames , car] = mergeCar (’ car granu lom1 big ’ , f i l eNames , car) ;

%[f i l eNames , car] = mergeCar (’ car granu lom1 smal l ’ , f i l eNames , car) ;

C.2.4 mergeCar

function [newFileNames , newSamples] = mergeCar (carName , . . .

APPENDIX C. MATLAB SCRIPTS 161

oldFileNames , oldSamples)

%%%

% Use : mergeCar (carName , oldFileNames , oldSamples %

% %

% This func t i on merges (i . e . , j o i n) c h a r a c t e r i s t i c s by f i l eNames %

% %

% Parameters : %

% oldFileNames −−> a (n−by−m) matrix with n f i l e names %

% as length−m s t r i n g s %

% oldSamples −−> a (n−by−k) matrix with k c h a r a c t e r i s t i c s f o r each %

% f i l e %

% carName −−> the name f o r the c h a r a c t e r i s t i c s to be added %

% %

% Output : %

% newFileNames −−> a (p−by−q) matrix with p<=n and q>=m with l ength−q %

% names o f the f i l e s f o r which the re e x i s t o ld and %

% new c h a r a c t e r i s t i c s %

% %

% newSamples −−> a (p−by−r) matrix with r=k+s conta in ing f o r each %

% of the p f i l e s the k o ld and the s new %

% ch a r a c t e r i s t i c s %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%%

% jo i n with empty s e t g i v e s empty s e t

i f length (oldFileNames) == 0

newFileNames = [] ;

newSamples = [] ;

return ;

end

% i f the c h a r a c t e r i s t i c doesn ’ t e x i s t r e turn empty f i l e names and

% c h a r c e t e r i s t i c s

carFileName = [carName , ’ . mat ’] ;

i f exist (carFileName , ’ f i l e ’) ˜= 2

warning (sprintf (’%s/%s does not e x i s t ’ , pwd , carFileName)) ;

newFileNames = [] ;

newSamples = [] ;

return ;

end

% i f t h i s i s the f i r s t c h a r a c t e r i s t i c load in s t ead o f j o i n

i f length (oldSamples) == 0

load (carName , ’ f i l eNames ’ , ’ car ’) ;

162 C.2. LEARNING AND CLASSIFYING

% newFileNames we use when there was mistake in the manual

% c l a s s i f i c a t i o n and we change the f i l e name (to avoid

% recomputing o f the c a r a c t e r i s t i c s)

% newFileNames = f ixFi leNames (f i l eNames) ;

newFileNames = f i l eNames ;

newSamples = car ;

return ;

end ;

% now we have handled a l l boudary ca s e s and can do the r e a l work

[n , m] = s ize (oldFileNames) ;

[nn , k] = s ize (oldSamples) ;

i f n ˜= nn

error (’ need the same number o f o ld f i l e s and old c h a r a c t e r i s t i c s ’) ;

end

% load c h a r a c t e r i s t i c s

load (carName , ’ f i l eNames ’ , ’ car ’) ;

% f i l eNames = f ixFi leNames (f i l eNames) ;

[t , l] = s ize (f i l eNames) ;

[t t , s] = s ize (car) ;

i f t ˜= t t

error (’ need the same number o f new f i l e s and new c h a r a c t e r i s t i c s ’) ;

end

% compute output s i z e s

r = k+s ;

q = max(m, l) ;

% br ing f i l eNames and oldFileNames to the same length

i f m<q

spaces=’ ’ ;

for i =2:q−m
spaces =[spaces , ’ ’] ;

end

for i =1:n

oldFileNames (i , :) = [oldFileNames (i , :) , spaces] ;

end

end

i f l<q

spaces=’ ’ ;

for i =2:q−l
spaces =[spaces , ’ ’] ;

APPENDIX C. MATLAB SCRIPTS 163

end

for i =1: t

f i l eNames (i , :) = [f i l eNames (i , :) , spaces] ;

end

end

% so r t everyth ing a l p h ab e t i c a l l y by f i l e name

[sortedOldFileNames , oldPerm] = sort rows (oldFileNames) ;

oldFileNames=sortedOldFileNames ;

oldSamples=oldSamples (oldPerm , :) ;

[sortedFi leNames , perm] = sort rows (f i l eNames) ;

f i l eNames=sortedFi leNames ;

car=car (perm , :) ;

% merge the ar rays and keep only f i l e s that are in the o ld and the

% new chars

done = f a l s e ;

o ldIndex = 1 ;

index = 1 ;

newIndex = 1 ;

% oldFileNames

% f i l eNames

% the next l i n e pre−a l l o c a t e s the newSamples array f o r performance

% reasons

newSamples = zeros ([min(s ize (oldSamples , 1) , s ize (car , 1)) , . . .

s ize (oldSamples , 2) + s ize (car , 2)]) ;

while ˜ done

i f i sLessOrEqualLexi (f i l eNames (index) , oldFileNames (o ldIndex))

while index <= t && . . .

˜ i sLessOrEqualLexi (oldFileNames (o ldIndex) , . . .

f i l eNames (index))

index = index + 1 ;

end

else

while oldIndex <= n && ˜ isLessOrEqualLexi (f i l eNames (index) , . . .

OldFileNames (o ldIndex))

o ldIndex = oldIndex + 1 ;

end

end

i f index > t

done = true ;

e l s e i f oldIndex > n

done = true ;

164 C.2. LEARNING AND CLASSIFYING

end

i f ˜ done

i f ˜ strcmp (f i l eNames (index) , oldFileNames (o ldIndex))

error (’ something went wrong ’) ;

end

newFileNames (newIndex , :) = f i l eNames (index , :) ;

newSamples (newIndex , :) = . . .

[oldSamples (o ldIndex , :) , car (index , :)] ;

newIndex = newIndex + 1 ;

o ldIndex = oldIndex + 1 ;

index = index + 1 ;

i f index > t

done = true ;

e l s e i f oldIndex > n

done = true ;

end

end

end

% throw away what we pre−a l l o c a t e d too much

newSamples = newSamples (1 : newIndex − 1 , :) ;

% (l e x i c o g r a p h i c a l l y) compare str ingA and st r ingB

function r e s u l t = isLessOrEqualLexi (s t r ingA , s t r ingB)

i = 1 ;

l = min(length (s t r ingA) , length (s t r ingB)) ;

while i <= l && str ingA (i) == str ingB (i)

i = i +1;

end

i f i <= l

r e s u l t = (str ingA (i) <= str ingB (i)) ;

else

r e s u l t = (length (s t r ingA) == l) ;

end

C.2.5 computeCarAll

function computeCarAll (directoryName)

%%

% Use : computeCarAll (directoryName) %

% %

% This func t i on f i r s t d e l e t e s a l l ’ c a r ∗ .mat ’ f i l e s and %

% c a l l s a l l o ther f unc t i on s that compute image d e s c r i p t o r s %

% %

% Parameters : %

% directoryName −−> a f u l l path o f image l o c a t i o n %

APPENDIX C. MATLAB SCRIPTS 165

% %

% Tzveta Ianeva , 2 0 0 3 %

%%

cd (directoryName) ;

delete (’ c a r ∗ .mat ’) ;

computeCarAvgSatThrBrightness (d i r e c t o r y) ;

computeCarCompression (d i r e c t o r y) ;

computeCarColHist (d i r e c t o r y , 3 , 3 , 5) ;

computeCarEdgeDir (d i r e c t o r y) ;

computeCarGranulometry1 (d i r e c t o r y) ;

computeCarDim(d i r e c t o r y) ; % to use j u s t on WWW images

computeCarFileType (d i r e c t o r y) ; % to use j u s t on WWW images

C.3 Classifying new data

C.3.1 classifyDirectory

function c l a s s i f yD i r e c t o r y (c l a s s i f i e r , d i r e c t o r y)

%%%

% Use : c l a s s i f yD i r e c t o r y (c l a s s i f i e r , d i r e c t o r y) %

% %

% This func t i on c l a s s i f i e s new (un labe l ed) data in ’ d i r e c t o r y ’ as %

% cartoon (1) or photo (0) . %

% %

% Parameters : %

% c l a s s i f i e r −−> a f u l l path o f the c l a s s i f i e r l o c a t i o n %

% d i r e c t o r y −−> a f u l l path o f new (un labe l ed) data to be c l a s s i f i e d %

% %

% Tzveta Ianeva , 2 0 0 3 %

%%%

load (c l a s s i f i e r) ;

[f i l eNames , car] = loadAl lCar (d i r e c t o r y) ;

[num , l en] = s ize (f i l eNames) ;

Samples = car ’ ;

[Labe ls , Dec i s ionValue] = . . .

SVMClass (Samples , AlphaY , SVs , Bias , Parameters , nSV , nLabel) ;

f i leNamesPhoto (: , :) = f i l eNames (Labels ’ == 0 , :) ;

[numPhoto , lenPhoto] = s ize (f i leNamesPhoto) ;

numPhoto

f i leNamesCartoon (: , :) = f i l eNames (Labels ’ == 1 , :) ;

[numCartoon , lenCartoon] = s ize (f i leNamesCartoon) ;

numCartoon

cd (d i r e c t o r y) ;

fd=fopen (’ c l a s s i f i c a t i o n . txt ’ , ’W’) ;

fpr intf (fd , ’%s \n\n ’ , d i r e c t o r y) ;

166 C.3. CLASSIFYING NEW DATA

for i =1:num

i f (Labe ls (1 , i) == 1)

disp (sprintf (’%d %f %s ’ , Labe ls (1 , i) , Dec i s ionValue (1 , i) , . . .

f i l eNames (i , :))) ;

fpr intf (fd , ’%d %s \n ’ , Labe ls (1 , i) , f i l eNames (i , :)) ;

end

end

fclose (fd) ;

