TRECVID-2005 Low-level (camera motion) feature task

Wessel Kraaij
TNO
&
Tzveta Ianeva
NIST
Task definition

TRECVID 2005 pilot task

Ability to detect camera movement features:

- Pan (left or right) or track
- Tilt (up or down) or boom
- Zoom (in or out) or dolly
Task definition ...

Camera movement features are usually combined
- Pan & Tilt
- Pan & Zoom
- Tilt & Zoom
Task definition ...

Pan & Tilt & Zoom

Submissions provide complete judgments for test set by specifying all shots identified as positive by the system.
No Training data provided by NIST.
Tool to create development data developed by Werner Bailer at Joanneum Research.
Ground truth creation at NIST

Watch randomly chosen subset of test data (~5000 shots)
Keep only shots with “clear” examples of (no) motion (~2226)
No-motion shots seem to more clearly exhibit no motion than shots with motion features exhibit motion
\[\text{#FP will tend to be small, #FN will tend to be high} \]
Define test subset for each feature by combining
 shots exhibiting the feature
 shots exhibiting no motion (same for all features)
No adjustments to subset sizes or true:false ratios
 Pan \ 587:1159
 Tilt \ 210:1159
 Zoom \ 511:1159
Truth data distribution (number of shots)

- Pan: 587 shots
- Tilt: 210 shots
- Zoom: 511 shots
- No motion: 1159 shots
Truth and evaluation issues

Why feature groups?

Perceptual limits in truth creation

Cost of creating truth data

Many shots with lots of small camera movement – not what’s wanted when user asks for a “pan”, etc.

Implications of test set construction on measures

Lack of randomness makes generalization hard

Varying true:false ratios make precision harder for tilt than pan and zoom

Greater clarity of no-motion shots would make false positive less likely then false negatives and higher precision easier to achieve than higher recall
No motion shots
Truth data costly to create – lot’s of shaky shots

Hard to judge

Not what a user wants
12 Participating Groups

- Carnegie Mellon University (CMU) - USA
- City University of Hong Kong (CUHK) - China
- Fudan University (FUDAN) - China
- Institute for Infocomm Research (IIR) - Singapore
- JOANNEUM RESEARCH (Joanneum) - Austria
- KDDI & R&D Laboratories, Inc. (KDDI) - Japan
- LaBRI (LaBRI) - France
- Tsinghua University (Tsinghua) - China
- University of Central Florida / University of Modena (UCF) – USA/Italy
- University of Iowa (Uiowa) - USA
- University of Marburg (MARBURG) - Germany
- Univ. of Amsterdam & TNO (UvA) - Netherlands
NIST baseline runs

All features true for all shots (TrueForAllShots)

Random run with true distribution of Pan, Tilt, Zoom as in truth data (TruthDataDistrib)

Features randomly true/false for each shot (Random)
Evaluation Measures

Precision = \frac{\# \text{ True positives}}{\# \text{ True positives} + \# \text{ False positives}}

Recall = \frac{\# \text{ True positives}}{\# \text{ True positives} + \# \text{ False negatives}}

Given the imbalance in class properties, it’s easier to achieve a high precision than a high recall. The use of $F_{\beta=1}$ seems not appropriate
Pan: recall and precision by system
Pan: recall and precision by system (zoomed)
Tilt: recall and precision by system
Tilt: recall and precision by system (zoomed)
Zoom: recall and precision by system
Zoom: recall and precision by system (zoomed)
Mean recall and precision over all 3 features by system.
Mean recall and precision over all 3 features by system (zoomed)
General points

- NIST did not provide training data: some training data was available from other sources and some training data was produced by participants

- Input:
 - MPEG motion vectors: optimal for compression, not optimal for modeling real motion
 - Frame to frame motion analysis

- Distinguish “jitter” from intended motion
CMU

- Approach
 1. Probabilistic model (fitted using EM) based on MPEG motion vectors
 2. Optical Flow model: extract the most consistent motion from the optical flows (frame to frame)
CUHK

- **Approach**
 - Motion features extracted from tracking image features in consecutive frames
 - Estimation of 6 parameter affine model, transformation in \(p, t, z \) vector for each set of adjacent frames
 - Rule based motion classification using empirical thresholds
 - Interesting failure analysis
Fudan

- **Approach**
 - Motion vectors from MPEG, SVM, motion accumulation method to filter out imperceptible movements
 - Filter method seems to decrease precision though…
Joanneum
- presentation follows -

- Approach
 - Developed a training set, problems with annotation..
 - Feature tracking, clustering trajectories, dominant cluster selection, camera motion detection, thresholding

```

```

```

```

```

```

```

```

```

```

```
IIR

- **Approach**
  - Annotated 24 video files
  - Estimated affine camera model based on MPEG motion vectors
  - Transformation of model parameters series of p,t,z values for each shot
  - Rule based classification of series using accumulation and thresholding

![Graph showing Precision vs Recall for various datasets](image-url)
LaBRI
- presentation follows -

- Approach
  - Mpeg motion vector input
  - Jitter suppression (statistical significance test)
  - Subshot segmentation (homogeneous motion)
  - Motion classification (using “a few annotated videos”)

![Graph showing precision-recall curve for various datasets and models]
Marburg

- **Approach**
  - 3D camera model estimated from MPEG motion vectors
  - Cleaning necessary, + exclusion of center, frame border
  - Optimal thresholds estimated on tv2005 training set
Approach

- Motion vector selection based spatial features, separating camera motion from object motion and accidental motion
- 4 parameter camera model (Iterative Least Squares) parameter estimation
Observations

This is clearly an easier task than the HLF task, though a high recall is hard to achieve.

Truth data costly to create – lot’s of shaky shots
  Many hard to judge
  Many not really what a user wants when s/he asks for a “pan” etc.

Hard to generalize from small, constructed test subset to larger, more realistic test set

Given the definition of our task and test set characteristics, F measure not appropriate

Concentrate on within-feature system comparisons