TRECVID-2005: Search Task

Alan Smeaton
Dublin City University
&
Tzveta Ianeva
NIST
Search Task Definition

- Given a test collection, a multimedia statement of information need (topic) and a common shot boundary reference, return a ranked list of at most 1,000 shots which best satisfy the need;

- Goal: promote progress in content-based retrieval from digital video via open, metrics-based evaluation;

- Many thanks to
 - Christian Petersohn (Fraunhofer Institute) for master shot reference
 - DCU team for formatting and selecting keyframes
 - Jonathan Lasko for the shot boundary truth data creation
 - CMU & Randy Paul for getting a government contractor to provide MT/ASR
Search Task Definition

- NIST created topics based on a number of basic search types: \textit{generic/specific} and \textit{person/thing/event} where there are multiple relevant shots coming from more than one video;
- Videos were viewed by NIST personnel (with sound turned off), notes taken on content, and candidates emerged and were chosen;
- Interactive search participants were asked to have their subjects complete pre, post-topic and post-search questionnaires;
- Each result for a topic can come from only 1 user search; but the same searcher does not need to be used for all topics in a run.
Overarching Goals

- Previous TRECVids show huge benefit from using text (ASR, closed captions, video OCR);
- TREC Vid 2005 data is (deliberately) text-noisy with video from English language, Arabic & Chinese broadcasts;
- Text is derived from speech recognition and then machine translation, thus poorer quality than previously?

- Net outcome is that task is harder, more emphasis on visual and less on text?
2005: Search task participants (20, up from 16)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilkent University</td>
<td>Turkey</td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td>USA</td>
</tr>
<tr>
<td>Columbia University</td>
<td>USA</td>
</tr>
<tr>
<td>Dublin City University</td>
<td>Ireland</td>
</tr>
<tr>
<td>Fudan University</td>
<td>China</td>
</tr>
<tr>
<td>FX Palo Alto Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>Helsinki University of Technology</td>
<td>Finland</td>
</tr>
<tr>
<td>IBM</td>
<td>USA</td>
</tr>
<tr>
<td>Imperial College London</td>
<td>UK</td>
</tr>
<tr>
<td>Language Computer Corporation (LCC)</td>
<td>USA</td>
</tr>
<tr>
<td>Lowlands Team (CWI, Twente, U. of Amsterdam)</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Mediamill Team (Univ. of Amsterdam and TNO)</td>
<td>Netherlands</td>
</tr>
<tr>
<td>National University of Singapore (NUS)</td>
<td>Singapore</td>
</tr>
<tr>
<td>Queen Mary University of London</td>
<td>UK</td>
</tr>
<tr>
<td>SCHEMA-Univ. Bremen Team</td>
<td>EU</td>
</tr>
<tr>
<td>Tsinghua University</td>
<td>China</td>
</tr>
<tr>
<td>University of Central Florida / University of Modena</td>
<td>USA, Italy</td>
</tr>
<tr>
<td>University of Iowa</td>
<td>USA</td>
</tr>
<tr>
<td>University of North Carolina</td>
<td>USA</td>
</tr>
<tr>
<td>University of Oulu / MediaTeam</td>
<td>Finland</td>
</tr>
</tbody>
</table>
Search Types: Automatic, Manual and Interactive

AUTOMATIC:

System takes topic as input and produces result without any human intervention.

MANUAL:

Human formulates query based on topic and query interface, not on knowledge of collection or search results.

INTERACTIVE:

Human (re)formulates query based on topic, query, and/or results.

Number of runs:

- 42 automatic (up from 23)
- 26 manual (down from 52)
- 44 interactive (down from 61)
24 Topics

[number of image, video examples and relevant found]

149. Find shots of Condoleeza Rice [3, 6, 116]
150. Find shots of Iyad Allawi, the former prime minister of Iraq [3, 6, 13]
151. Find shots of Omar Karami, the former prime minister of Lebanon [2, 5, 301]
152. Find shots of Hu Jintao, president of the People’s Republic of China [2, 9, 498]
153. Find shots of Tony Blair. [2, 4, 42]
154. Find shots of Mahmoud Abbas, also known as Abu Mazen, prime minister of the Palestinian Authority. [2, 9, 93]
155. Find shots of a graphic map of Iraq, location of Baghdad marked – not a weather map [4, 10, 54]
156. Find shots of tennis players on the court – both players visible at the same time [2, 4, 55]
157. Find shots of people shaking hands [4, 10, 470]
158. Find shots of a helicopter in flight [2, 8, 63]
159. Find shots of George Bush entering or leaving a vehicle (e.g., car, van, airplane, helicopter, etc), he and vehicle both visible at the same time [2, 7, 29]
160. Find shots of something (e.g., vehicle, aircraft, building, etc.) on fire with flames and smoke visible [2, 9, 169]
24 Topics [number of image, video examples and relevant found]

161. Find shots of people with banners or signs [2, 6,1245]
162. Find shots of one or more people entering or leaving a building [5, 8, 385]
163. Find shots of a meeting with a large table and more than two people [2, 5, 1160]
164. Find shots of a ship or boat [3, 7, 214]
165. Find shots of basketball players on the court [2, 8, 254]
166. Find shots of one or more palm trees [2, 6, 253]
167. Find shots of an airplane taking off [2, 5, 19]
168. Find shots of a road with one or more cars [2, 5, 1087]
169. Find shots of one or more tanks or other military vehicles [3, 8, 493]
170. Find shots of tall building (with more than 5 floors above the ground) [3, 6, 543]
171. Find shots of a goal being made in a soccer match [1, 7, 49]
172. Find shots of an office setting, i.e., one or more desks/tables and one or more computers and one or more people [3, 8, 790]
Some statistics

- **2005:**
 - Number of shots in test collection: 45,765
 - ~18.3% relevant shots found: 8,395

- **2004**
 - Number of shots in test collection: 33,367
 - ~5.4% relevant shots found: 1,800

- **2003**
 - Number of shots in test collection: 32,318
 - ~6.5% relevant shots found: 2,114
2005: 16 sites contributed one or more unique, relevant shots (8 last year)
2005: Rel shots contrib. uniquely per topic by team

161, 163, 168 have 1000+
170, 172 have 500+
2005: Interactive runs - top 10 MAP (of 49)
(mean elapsed time for all == ~15 mins/topic)
2004: Interactive runs - top 10 MAP (of 62)
(mean elapsed time for all == ~15 mins/topic)

DATA IS DIFFERENT
SYSTEMS ARE DIFFERENT
ONLY THE METRICS ARE THE SAME
2005: Manual runs - top 10 MAP (of 26) (mean human effort (mins) / topic)

![Graph showing Precision vs Recall for top 10 MAP models]
2004: Manual runs - top 10 MAP (of 52)
(mean human effort (mins) / topic)

DATA IS DIFFERENT
SYSTEMS ARE DIFFERENT
ONLY THE METRICS ARE THE SAME

TRECVID 2005
2005: Automatic runs (pilot) - top 10 MAP (of 23)
(mean elapsed time (mins) / topic)
2004: Automatic runs (pilot) - top 10 MAP (of 23) (mean elapsed time (mins) / topic)

DATA IS DIFFERENT
SYSTEMS ARE DIFFERENT
ONLY THE METRICS ARE THE SAME
2005: Text-only versus Text-plus searches by group (using only common training data)

Automatic searches

Manual searches
2005: Mean avg. precision by topic
2005: Interactive runs’ median average precision by topic

156: Tennis players on the court – both players visible at the same time
153: Tony Blair
171: Goal being made in a soccer match
149: Condoleezza Rice
151: Omar Karami
2005: Manual runs’ median average precision by topic

151: Omar Karami, the former PM of Iraq
152: Hu Jintao, President of the People’s Republic of China
153: Tony Blair
171: tall building
164: ship or boat
2005: Automatic runs’ median average precision by topic

- 171: Goal being made in a soccer match
- 151: Omar Karami, the former PM of Iraq
- 153: Tony Blair
- 152: Hu Jintao
- 164: ship or boat

TRECVID 2005
2005: Mean average precision (interactive max) vs total number relevant
Who did what?

- Speaker slots to follow:
 - Carnegie Mellon University
 - IBM Research
 - MediaMill (University of Amsterdam and TNO)
 - National University of Singapore
 - University of Oulu/MediaTeam

- No papers from:
 - Bilkent University
 - QMUL
 - SCHEMA - University of Bremen

- Demos?
- Posters?
Columbia University

- Interactive search tool developed with
 - Text search, CBIR search, Story segmentation and story-level browsing, 39 visual concepts from LSCOM-Lite, near-duplicate detection, query-class dependent weights and cue-X re-ranking;

- Manual run with
 - Text, CBIR and visual concepts;

- Automatic runs with
 - Query-class dependent weights of some of the above;
Interactive search used a DiamondTouch collaborative tabletop interface from MERL, to text and image-based video searching;

2 versions
- Increase user’s awareness of other user thus forcing the collaboration;
- More like “leave me alone” searching support for efficient solo searching;

Aim was to explore user-user collaborative search;

Findings are that group awareness benefits retrieval;

Also did manual and automatic runs - exploring text-only vs. text+image searching;
Fudan University

- Submitted manual runs and explored multi-modal fusion;
- Found that relation expression fusion fusion better than linear fusion using a variety of retrieval modalities:
 - Text;
 - 14 x visual concepts;
 - Pseudo relevance feedback;
 - Logistic regression
- Also explored training weights online vs. training weights offline
FX Palo Alto Laboratory

- Participated in interactive search;
- Enhanced the 2004 system for efficient browsing and enhanced visualisation, by adding 29 concepts/semantic features;
- Story-level browsing, keyframe thumbnails, text dialogue overlays, story timelines;
- Query is text a/o image;
- Text-only search is as good as text+others (because the browser and visualisation is very strong ?);
Helsinki University of Technology

- Automatic, manual and interactive runs;
- Addressed text-only vs. text+mult-imodal querying;
- Multi-modal better than text-only!
- Interactive search used relevance feedback only with no “search” or shot browsing so very dynamic user control;
Imperial College London

- Content-based search + NNk browsing in a 2D GUI map browser;
- Enhanced 2004 system with new kind of relevance feedback;
- Text-based search, content-based search with relevance feedback and temporal browsing integrated into a unified interface;
- Emphasis on supporting user task;
Language Computer Corporation (LCC)

- Participated in automatic search;
- Used combinations of ASR text search (language modelling), image features, high-level features, alone and in combination;
- Image features used blobs;
- Text search alone was best-performing
Lowlands (CWI, Twente, U. of Amsterdam)

- Manual and automatic search runs;
- Visual and text searching
- Weibull models and Gaussian mixture models for visual features, language modeling for text;
- No clear results differentiation;
- First steps towards developing parameterised search engines for each;
Tsinghua University

- Three search modes - text, image match based on region matching, and concept matching in a concept;
- Concept/feature recognition approach based on their HLF submissions;
- Explore latent relationship (LSA) between (ASR) text and visual features and concepts;
- Tried each of these alone and in combinations using score fusion and query type-specific (2) weighting;
- Conclusion is that combinations work best;
University of Central Florida

- UCF first time in search task;
- PEGASUS system, web-based, interactive, used ASR, OCR, keyframe global histograms and high level features;
- Submitted ASR-only & multi-modal runs;
- Multi-modal better than ASR-only;
Automatic search runs;

Text-only vs. text+image features;
- Keyframe-keyframe pixel distances;
- Text + colour information;
- Text + texture information;
- Text + edge information;

Text-only was best - could have combined visual features?
University of North Carolina

○ Investigate the effects of providing context and interactivity in a retrieval system, supporting the browsing of search result sets;
 n Basic Google-like video search
 n Enhanced with shot context browsing;
 n Further enhanced with interactive feedback, eg mouseover gives enlarged keyframes;

○ For both performance and user perceptions, the Context+Interactive system was superior - higher recall, precision the same;
Observations

- We’re still getting “Lots of variation, interesting shot browsing interfaces, mixture of interactive & manual”, and additionally automatic runs;
- Top performances on all 3 search types are up, even with more difficult data, but data is different, systems are different … anybody run 2004 system on 2005 data?
- Some leveraged the structured nature of B/News;
- Many did automatic search & fewer did interactive search - because its easier (no users)?
- Most common issue explored was the best combination of text vs. image search vs. concept/features;
- Search participants are the “regulars” plus new groups, some bigger, some smaller;