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[1] Land surface temperature (LST) is involved in many land surface processes such
as evapotranspiration, net radiation, or air temperature modeling. In this paper
we present an improved methodology to retrieve LST from Landsat 4 TM, Landsat 5 TM,
and Landsat 7 ETM+ using four atmospheric databases covering different water vapor
ranges (from 0 to 8 g cm�2) to build the LST retrieval models and using both water
vapor and air temperature as input variables. We also compare this with LST retrievals
using only water vapor or only air temperature, as well as with an existing LST retrieval
algorithm. In order to validate the results, we have selected 77 Landsat images taken
between 2002 and 2006 (Catalonia, northeast of the Iberian Peninsula) and two sources of
water vapor (radiosounding data and remote sensing estimations) and air temperature
(radiosounding data and air temperature modeling). The best results using radiosounding
data are obtained when both air temperature and water vapor are present in the LST
retrieval models with a mean RMSE of 0.9 K, followed by only water vapor models with a
mean RMSE of 1.5 K and only air temperature models with a mean RMSE of 5.6 K.
The results obtained using Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) Level 2 water vapor product and at-satellite-pass air temperature modeling as
input data also show that this kind of input data offers best results, with a mean RMSE of
0.9 K, followed by water vapor models with a mean RMSE of 2.1 K and only air
temperature models with a mean RMSE of 5.6 K. Similar errors when using
radiosounding or modeled water vapor and air temperature as input data suggest the
avoidance of radiosounding data to retrieve LST over extensive areas. Finally, when
comparing the presented methodology with another methodology also using water vapor
and air temperature as input data, the improvement is of more than 0.5 K.
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1. Introduction

[2] Land surface temperature (LST) is one of the most
important sources of input data in land surface processes
such as actual and potential evapotranspiration or net
radiation [Bastiaanssen et al., 1998; Cristóbal et al., 2005;
Dash et al., 2002; Hurtado and Sobrino, 2001; Jackson et
al., 1981; Kustas, 1996; Kustas et al., 2003; Quattrochi
and Luvall, 2000] and is involved in many important
ecological processes. Furthermore, LST is also used in the

development of several indexes such as Stress Degree Day
or Crop Water Stress Index, which are used to evaluate stress
over crops areas [Jackson et al., 1977;Moran et al., 1994] as
well as in air temperature modeling [Cristóbal et al., 2008;
Riddering and Queen, 2006].
[3] Nowadays, it is clear that thermal sensors aboard

satellite platforms used to monitor land surface processes
over ecosystems at a global and regional scale are the only
feasible way to obtain LST measurements owing to their
high sampling rate and repetitive basis over large and
heterogeneous regions. There are several platforms that
currently include in its sensor configuration one or more
thermal bands such as NOAA AVHRR, Terra/Aqua
MODIS, Terra ASTER, Meteosat or Envisat ATSR in their
sensor configuration. Most of them have been developed to
monitor meteorological parameters and are designed with a
coarse spatial resolution, often greater than 1000 m at nadir,
but with a good temporal resolution, for instance a twice-a-
day revisit period. Although these satellites offer a wide
swath that makes it possible to cover a very large area, part
of the image (beyond 25� off-nadir) displays a bow-tie
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effect being extreme pixels of low utility because of their
deformation [Yang and Di, 2004].
[4] Depending on the region where land surface processes

are monitored, higher spatial resolution is needed. An
example is the Mediterranean region, a heterogeneous
region with a high level of habitat fragmentation due to
human activity, climate and relief. If a better spatial resolu-
tion and continuous and global coverage are needed, only
Landsat missions can offer these possibilities because,
currently, Terra-ASTER does not offer them owing to its
image acquisition policy. Furthermore, there is also an
uncertainty related to the inclusion of a thermal band on
board the future NASA Landsat Data Continuity Mission
(LDCM), which could jeopardize well-developed water
irrigation plans [Anderson and Kustas, 2008] and many
other studies related with land surface processes. We hope
that future missions give an adequate continuity to the
Landsat thermal band legacy.
[5] Currently, there are only two satellite programs that

have given us more than 25 years of thermal information of
great value: TIROS/NOAA and Landsat, although only
Landsat program have taken thermal images at medium
spatial resolution. Landsat 4 TM, that was launched in
1982 and terminated its service in 1993, was the first sensor
of the series that present a thermal band in its configuration.
Landsat 5 TM, which was launched in 1984, and Landsat 7
ETM+, that was launched in 1999, continued including a
thermal band and are still operative, although experiencing a
number of problems, especially in the case of Landsat 7
ETM+. Landsat thermal data have been used in numerous
studies such as thermal plume analysis [Gibbons et al., 1989;
Shanmugam et al., 2006], volcano activity monitoring
[Kaneko and Wooster, 1999], coal fire detection [Mansor
and Cracknell, 1994; Saraf et al., 1995; Zhang and van
Genderen, 1997], evapotranspiration retrieval and water
irrigation planning and monitoring [Allen et al., 2007;
Bastiaanssen et al., 1998; Kustas et al., 2004; Yang et al.,
1997], air temperature modeling [Cristóbal et al., 2008],
urban heat analysis [Xian and Crane, 2006; Stathopoulou
and Cartalis, 2007], crop water stress index development
[Moran et al., 1989, 1994], among others.
[6] However, one of the main limitations of Landsat

thermal information is the presence of only one band in the
thermal spectral region. This makes it more difficult to
perform atmospheric correction compared with other satel-
lites, like NOAA-AVHRR or Terra-ASTER, which have two
or more thermal bands. There have been several attempts to
correct the Landsat thermal band atmospherically [Bartolucci
and Chang, 1988; Gibbons et al., 1989; Mansor and
Cracknell, 1994; Goetz et al., 1995; Schneider and Mauser,
1996; Hurtado et al., 1996]. Most of these methodologies
require information from atmospheric radiosoundings to
perform atmospheric correction. However, it should be
taken into account that a single atmospheric radiosounding
is not representative of the entire Landsat image atmospheric
conditions (about 180 by 185 km), especially in areas
with highly variable relief. In order to retrieve LST, but
avoiding dependence on radiosounding data as well as
obtaining LST over extensive areas, Qin et al. [2001] and
Jiménez-Muñoz and Sobrino [2003] developed a methodol-
ogy based on the radiative transfer equation using the
Landsat 5 TM thermal band. Qin et al. [2001] developed

a monowindow algorithm using water vapor and air tem-
perature as input data for the model in which two atmo-
spheric parameters are required for the algorithm:
transmittance and effective mean atmospheric temperature.
Method about determination of atmospheric transmittance
is given through the simulation of atmospheric conditions
with LOWTRAN 7 program. In the case of the estimation of
the effective mean atmospheric temperature a practicable
approach from local meteorological observation was also
proposed when the in situ atmospheric profile data is
unavailable at the satellite pass. However, one of the main
limitations of this model is the range of water vapor for
which it was designed, 0 to 3 g cm�2, which limits LST
retrieval beyond these values. Moreover, there is no refer-
ence to the source to be used to obtain air temperature, an
important practical issue when one wishes to retrieve LST
over large areas. The Jiménez-Muñoz and Sobrino [2003]
model is only water-vapor-dependent, which minimizes the
input data required and then provides an operational meth-
odology to retrieve LST from the Landsat 5 thermal band.
Since input data were minimized to only one atmospheric
parameter, an error in the water vapor source could increase
the error in LST retrieval, and also errors in LST are higher
when increasing the atmospheric water vapor content. In
fact, for water vapor contents higher than 3 g cm�2, the
single-channel algorithm is not accurate enough and it
should not be applied. This is due to the uncertainties
introduced when fitting atmospheric parameters only to the
water vapor, which are dramatically propagated to the LST
retrievals. This problem is common to any technique based
on a direct single-channel inversion of the radiative transfer
equation, in which the final retrievals are very sensitive to
uncertainties on the input parameters. The Jiménez-Muñoz
and Sobrino model has been updated and extended to
Landsat 4 and Landsat 7 thermal bands in work by Jiménez-
Muñoz et al. [2009]. In that work, the authors also analyze
the feasibility of using Look-Up Tables (LUTs) to avoid
the problem related to the uncertainties introduced in the
fitting between atmospheric parameters and water vapor.
[7] This problem can be also solved by incorporating to

the model the air temperature, at the expense of requiring
two atmospheric parameters as input data. In order to
analyze the importance of air temperature in LST retrieval,
this article aims to do the following.
[8] 1. We will improve LST retrievals by introducing also

the air temperature in the single-channel algorithm presented
by Jiménez-Muñoz and Sobrino [2003] and Jiménez-Muñoz
et al. [2009].
[9] 2. We will test the models obtained using a set of 77

Landsat images (58 Landsat 5 TM and 19 Landsat 7 ETM+)
taken between 2002 and 2006 and compare the results with
Qin et al. [2001] LST retrieval methodology (only in the case
of Landsat 5 TM). In addition, we will use as input data water
vapor and air temperature obtained from radiosoundings and
Terra MODIS water vapor product and an existing air tem-
perature regionalization methodology [Cristóbal et al., 2008].

2. Land Surface Temperature Algorithm
Development

[10] This section is divided into four subsections. In the
first subsection we describe the LST retrieval algorithms. In
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the second subsection we fit and test the atmospheric
functions. Moreover, we present the final parameters to
compute the atmospheric functions for each Landsat satel-
lite. In the third subsection we present a sensitivity analysis
of the variables involved in the model. In the fourth
subsection we present a description of the atmospheric
databases used to compute the model.

2.1. Algorithm Theoretical Basis

[11] The most suitable procedure to retrieve LST from a
single-channel located in the thermal infrared region, as is
the case of the Landsat thermal band, is by the inversion of
the radiative transfer equation (RTE) based on the following
expression applied to a certain sensor channel (or wave-
length interval):

Lsensor;l ¼ elBl Tsð Þ þ 1� elð ÞL#atm;l
h i

tl þ L
"
atm;l; ð1Þ

where Lsensor is at-sensor radiance, e is the surface
emissivity, l is the wavelength, Ts is the land surface
temperature (LST), Latm,l # is the downwelling atmospheric
radiance (hemispherical flux divided by pi), Latm,l " is the
upwelling atmospheric radiance (path radiance at l
wavelength) and t is the atmospheric transmissivity.
Radiances are in W m�2 sr�1 mm�1 and wavelength in
mm. B term is Planck’s law, expressed as follows:

Bl Tsð Þ ¼ c1

l5 exp c2
lTs

� �
� 1

h i ; ð2Þ

where c1 and c2 are Planck’s radiation constants, with values
of 1.19104 � 108 W mm4 m�2 sr�1 and 1.43877 � 104 mm
K, respectively. Note that the above mentioned spectral
magnitudes should be integrated over a band pass (filter
response function) in the case of Landsat.
[12] In the work of Jiménez-Muñoz and Sobrino [2003] a

single-channel method based on the radiative transfer equa-
tion was developed and, according to these authors, LST
can be retrieved using this equation:

LST ¼ g e�1 y1Lsensor þ y2ð Þ þ y3

� �
þ d; ð3Þ

where

g ¼ c2Lsensor

T2
sensor

l4
eff

c1
Lsensor þ l�1

eff

" #( )�1

ð4Þ

d ¼ �gLsensor þ Tsensor; ð5Þ

where Tsensor is the apparent brightness temperature in K,
calculated according to equation (13), and y1, y2, y3 are
the atmospheric functions (y1 is dimensionless and y2 and
y3 have units of radiance, W m�2 sr�1 mm). The leff is the
effective wavelength and is defined as

leff ¼
R
lfldlR
fldl

; ð6Þ

where fl is obtained from the spectral responsivity of the
band of the Landsat thermal given by Irish [2003]. Once leff
is computed, its value is 11.154 for Landsat 4 TM, 11.457
for Landsat 5 TM and 11.270 for Landsat 7 ETM+.
[13] In the work of Jiménez-Muñoz and Sobrino [2003]

the atmospheric functions y1, y2, y3 (henceforth referred to
as AF1, AF2 and AF3, respectively) are obtained as a
function of the total atmospheric water vapor content (w),
owing to the fact that this component is the main absorber in
the thermal infrared region. However, in this work we have
also introduced air temperature (Ta) to compute the atmo-
spheric functions (AFs) because of its close relationship
with the atmospheric parameters used to retrieve LST.
Another attempt to introduce air temperature together with
w are given by Qin et al. [2001], who developed a mono-
window algorithm to retrieve LST.

2.2. Building New Atmospheric Functions:
Statistical Fit and Test

[14] As we have described in the previous section, in
order to retrieve LST, Jiménez-Muñoz and Sobrino [2003]
developed atmospheric functions which were only depen-
dent on w. However, in this work these functions will also
be dependent on both w and Ta or only on Ta. Therefore,
three sets of atmospheric functions will be defined for each
Landsat sensor using these equations:

AF1 w;Tað Þ 	
1

t w;Tað Þ
; ð7Þ

AF2 w;Tað Þ 	 �L
#
atm w;Tað Þ �

L
"
atm w;Tað Þ

t w;Tað Þ
; ð8Þ

AF3 w;Tað Þ 	 L
#
atm w;Tað Þ; ð9Þ

where w is the water vapor in g cm�2 and Ta is the near
surface air temperature in K. Although these functions are
also wavelength-dependent, in order to obtain a better
interpretation of the atmospheric functions this parameter
has not been included. Furthermore, in the case of Landsat
satellites, the thermal band is always designed with the same
wavelength width, from 10.5 to 12.5 mm.
[15] Before statistically fit the AFs, we need a source of

atmospheric parameters (L", L# and t) to compute them.
These atmospheric parameters have been extracted from
four world-wide-scale atmospheric radiosounding databases
which cover different water vapor ranges (see section 2.4).
Therefore, we have obtained different sets of AFs depend-
ing on the Landsat satellite mission and depending on the
atmospheric database used. Atmospheric parameters (L#,
L", t) have been obtained by a simulation procedure using
the MODTRAN 4.0 radiative transfer code [Kneisys et al.,
1995] and weighted depending on the thermal band filter
function configuration.. To predict the atmospheric param-
eters, MODTRAN 4.0 code has been executed in thermal
radiance with multiple scattering mode for a view angle of
nadir and for clear-sky conditions (see Figure 1).
[16] Once the atmospheric functions have been computed

we have statistically fitted these values with a second degree
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polynomial based on w (equation (10)), on w and Ta
(equation (11)) and on Ta (equation (12)),

AFn¼ iw2 þ hT2
a þ gwþ fTa þ eT2

awþ dTawþ cTaw
2

þ bT2
aw

2 þ a; ð10Þ

AFn ¼ iw2 þ gwþ a; ð11Þ

AFn¼ hT2
a þ fTa þ a; ð12Þ

where n = 1, 2, 3 and subscripts a, b, c, d, e, f, g, h and i are
the numerical coefficients of the statistical fit. Ta used to
adjust the AFs has been extracted from the first level of the
atmospheric radiosoundings, taking this temperature to be
near-surface temperature, and w was modeled using
MODTRAN 4.0. Tables 1 and 2 show the numerical
coefficients of the AFs using w and Ta and only Ta for each
atmospheric database used and for the different Landsat
missions. The coefficients of the AFs using only w is given
by Jiménez-Muñoz et al. [2009].
[17] In order to apply a test to the atmospheric functions

we have selected two sets of radiosoundings for each
atmospheric database by means of a stratified random
sampling according to the type of radiosounding (tropical,
midlatitude summer, midlatitude winter and subarctic sum-
mer or subarctic winter). We have selected 60% of the radio
soundings to fit the model and the remaining 40% to
perform the test. However, it is important to note that the

numerical coefficients in Tables 1 and 2 have been com-
puted using all atmospheric radiosoundings.
[18] Tables 3 and 4 show the total number of radio

soundings used to fit and test the models depending on
the atmospheric database and the coefficients of determina-
tion of the test over the models. In the case of AFs
developed using only w results is given by Jiménez-Muñoz
et al. [2009]. In the case of AFs modeled using only w or
w and Ta, the test coefficients of determination (R2) range
from 0.95 to nearly 1.00. In the case of AFs modeled using
only Ta, worse results have been obtained. This can be
explained by the fact that although air temperature corre-
lates well with L# and L" (mainly, AF2 and AF3), this is not
enough to obtain an optimal model.

2.3. Sensitivity Analysis

[19] In order to analyze the impact of the error on LST
retrieval, we have performed a sensitivity analysis over
w and Ta. A typical RMSE obtained in Ta modeling is
about 1.7 K [Cristóbal et al., 2008] and in the case of w is
about 0.5 g cm�2 [Sobrino and El Kharraz, 2003] (also B.-C.
Gao and Y. J. Kaufman, MODIS Near-IR water vapor
algorithm: Total precipitable water, algorithm technical
background document, 1998, http://modis.gsfc.nasa.gov/
data/atbd/atmos_atbd.php) (hereinafter, Gao and Kaufman,
online document, 1998). We have carried out this analysis
for each one of the radiosoundings of the four atmospheric
databases used (TIGR-1, TIGR-2, TIGR-3 and STD) and
for the models developed using Ta (LSTT), w (LSTw) and
both w and Ta (LSTwT) for Landsat 4 TM, Landsat 5 TM
and Landsat 7 ETM+. When this analysis is performed, we

Figure 1. Flow chart for LST retrieval and test methodologies. RTE is the radiative transfer equation
(equation (1)), SMC is the Catalan Meteorological Service, Ta is the air temperature, w is the water vapor,
LSE is the land surface emissivity, AF are the atmospheric functions, LST is the land surface temperature,
t is the transmissivity, Latm, # is the downwelling atmospheric radiance, and Latm " is the upwelling
atmospheric radiance.
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see that, regarding w, 68% of the cases of computing LST
has an error lower than 1 K while, regarding Ta, 57% of the
cases of computing LST has an error lower than 1 K,
suggesting that an improvement in Ta estimation is an
important topic of future research.
[20] Emissivity and effective wavelength error analysis

have been developed by Jiménez-Muñoz and Sobrino
[2003, 2006] and, according to these authors, an error in
emissivity of 1% leads to an error of 0.6 K in LST retrieval,
while, in the case of effective wavelength, an error of 3%
results in an error of 0.5 K in LST retrieval.

2.4. Description of the Atmospheric Radio
Soundings Database

[21] Four atmospheric databases have been used to com-
pute the atmospheric functions. The first three databases are
the three versions of the Thermodynamic Initial Guess
Retrieval data tank [Scott and Chedin, 1981; Chédin et
al., 1985; Achard, 1991; Chevallier et al., 1998; Aires et al.,
2002] called TIGR-1, TIGR-2 and TIGR-3, respectively.
[22] The TIGR-1 is composed of 861 atmospheres. How-

ever, we have used a selection of 61 atmospheres from
TIGR1 (28 atmospheres assigned to the tropical model, 12
to the midlatitude summer model, 12 to the subarctic winter

and 9 to the U.S. Standard) created by Sobrino et al. [1993],
which have been used in several studies, including the
development of the Jiménez-Muñoz and Sobrino [2003]
model. Figure 2 shows the total water vapor content for
all atmospheres and ranges from 0.21 to 5.97 g cm�2 with a
mean of 2.94 g cm�2 and a s of 1.75 g cm�2.
[23] The TIGR-2 data set is a revision of TIGR1 and is

composed of 1761 atmospheres (assigned to the following
model atmospheres: 322 tropical, 388 midlatitude summer,
354 midlatitude winter, 104 subarctic summer and 593
subarctic winter). Figure 2 shows the total water vapor
content for all atmospheres and ranges from 0.05 to 7.68 g
cm�2 with a mean of 1.04 g cm�2 and a s of 1.14 g cm�2.
[24] The TIGR-3 data set includes 2311 atmospheres on a

world-wide scale and is useful for computing global atmo-
spheric functions (assigned to the following model atmos-
pheres: 872 tropical, 388 midlatitude summer, 354
midlatitude winter, 104 subarctic summer and 593 subarctic
winter). Figure 2 shows the total water vapor content for all
atmospheres, which range from 0.05 to 8.31 g cm�2 with a
mean of 1.83 g cm�2 and a s of 1.83 g cm�2. Figure 3
shows the spatial distribution of the TIGR-3 atmosphere
database.

Table 1. Numerical Coefficients for AFs Modeled With w and Ta Depending on the Atmospheric Database Used and the Landsat

Missiona

Mission AF i h g f e d c b a

TIGR-1 L4 AF1 2.3133 0.0001 �11.6383 �0.0460 �0.0002 0.0871 �0.01728 0.0001 7.0747
AF2 �25.6858 0.0003 170.3620 �0.1125 0.0020 �1.1829 0.18810 �0.0003 10.8481
AF3 9.4518 �0.0008 �64.3221 0.4001 �0.0006 0.4079 �0.06238 0.0001 �49.4918

L5 AF1 1.6374 0.0002 �22.1873 �0.1203 �0.0003 0.1668 �0.01457 0.0001 16.9590
AF2 �20.8105 �0.0007 254.5604 0.3888 0.0032 �1.8110 0.16857 �0.0003 �56.0719
AF3 8.7659 �0.0008 �74.9773 0.4164 �0.0007 0.4803 �0.05805 0.0001 �51.5311

L7 AF1 2.4096 0.0001 �12.1968 �0.0489 �0.0002 0.0914 �0.01803 0.0001 7.4514
AF2 �25.8763 0.0002 174.2737 �0.0753 0.0021 �1.2139 0.19022 �0.0003 6.1264
AF3 9.0725 �0.0007 �63.9035 0.3754 �0.0006 0.4073 �0.06007 0.0001 �46.4043

TIGR-2 L4 AF1 �2.1465 0.0001 �9.3417 �0.0382 �0.0001 0.0733 0.01216 �0.0001 5.9215
AF2 14.7239 �0.0002 85.1399 0.1180 0.0011 �0.6252 �0.08040 0.0001 �16.4527
AF3 �3.1879 �0.0002 �21.7049 0.0949 �0.0002 0.1364 0.02166 �0.0001 �11.1518

L5 AF1 �2.1465 0.0001 �9.3417 �0.0382 �0.0001 0.0733 0.01216 �0.0001 5.9215
AF2 14.7239 �0.0002 85.1399 0.1180 0.0011 �0.6252 �0.08040 0.0001 �16.4527
AF3 �3.1879 �0.0002 �21.7049 0.0949 �0.0002 0.1364 0.02166 �0.0001 �11.1518

L7 AF1 �1.9215 0.0001 �8.0103 �0.0291 �0.0001 0.0626 0.01102 �0.0001 4.7624
AF2 13.9594 �0.0001 72.9618 0.0557 0.0009 �0.5299 �0.07831 0.0001 �8.4889
AF3 �3.3697 �0.0002 �19.3512 0.0973 �0.0002 0.1194 0.02306 �0.0001 �11.4877

TIGR-3 L4 AF1 �0.3520 0.0001 �7.2789 �0.0394 �0.0001 0.0565 0.00119 0.0000 5.9913
AF2 �14.7195 �0.0001 94.2853 0.0306 0.0011 �0.6614 0.10819 �0.0002 �5.1866
AF3 7.4846 �0.0003 �32.3407 0.1650 �0.0003 0.2024 �0.04930 0.0001 �19.8025

L5 AF1 �0.5106 0.0001 �8.6391 �0.0571 �0.0001 0.0680 0.00190 0.0000 8.2010
AF2 �15.2043 �0.0003 107.0078 0.1627 0.0013 �0.7646 0.11442 �0.0002 �21.7580
AF3 7.5944 �0.0003 �33.7379 0.1419 �0.0003 0.2146 �0.05035 0.0001 �16.9315

L7 AF1 �0.6714 0.0001 �6.3120 �0.0293 �0.0001 0.0490 0.00346 0.0000 4.6656
AF2 �9.7513 0.0002 79.3508 �0.0871 0.0009 �0.5488 0.07298 �0.0001 10.2461
AF3 6.9548 �0.0003 �30.3594 0.1708 �0.0003 0.1887 �0.04567 0.0001 �20.6465

STD L4 AF1 �2.0551 0.0002 �12.1648 �0.1166 �0.0002 0.0964 0.01157 �0.0000 16.3935
AF2 76.8511 �0.0001 �21.7522 0.0687 �0.0001 0.1081 �0.50670 0.0008 �7.5969
AF3 �29.9226 �0.0011 71.5054 0.5973 0.0010 �0.5380 0.21132 �0.0004 �79.4362

L5 AF1 �10.7274 0.0003 �11.8802 �0.1711 �0.0002 0.1010 0.06910 �0.0001 23.6178
AF2 142.9898 �0.0008 �25.3735 0.4416 �0.0001 0.0862 �0.94533 0.0015 �57.1427
AF3 �37.7736 �0.0011 69.2553 0.5709 0.0001 �0.5170 0.26283 �0.0005 �75.7081

L7 AF1 �2.2457 0.0002 �12.6518 �0.1224 �0.0002 0.1004 0.01273 �0.0000 17.1599
AF2 78.1645 �0.0002 �18.4200 0.1185 �0.0001 0.0802 �0.51446 0.0008 �14.0342
AF3 �28.6515 �0.0011 67.9536 0.5663 0.0010 �0.5113 0.20226 �0.0004 �75.3498

aNumerical coefficients are a, b, c, d, e, f, g, h, and i. Missions: L4, Landsat 4 TM; L5, Landsat 5 TM; L7, Landsat 7 ETM+. TIGR and STD are the
atmospheric databases.
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[25] Finally, we have constructed an additional database
by considering the 6 standard atmospheric profiles (tropical,
midlatitude summer, midlatitude winter, subarctic summer,
subarctic winter and U. S. Standard) included in the
MODTRAN code and a scaling water vapor factor from
0.5 to 1.5 in steps of 0.1. This leads to a total of 66
atmospheres; we have labeled this database STD. Figure 2
shows the total water vapor content for all atmospheres and
ranges from 0.21 to 6.17 g cm�2 with a mean of 1.97 g
cm�2 and a s of 1.47 g cm�2.
[26] Each atmosphere includes altitude, pressure, temper-

ature and humidity profiles from which we have computed
the t, the w, the L# and the L" used in the atmospheric
functions computation using MODTRAN 4.0. The remain-
ing atmospheric constituents were assigned to the appropriate
standard atmosphere included in the MODTRAN 4.0 code.

3. Model Test With Independent Data: Test
Areas and Data Processing

[27] This section is divided into two subsections. In the
first subsection we present the study area where the valida-

tion process was developed. The second subsection
describes the meteorological and remote sensing data pro-
cessing. Figure 1 shows a flow chart of the LST retrieval
and test methodologies.

3.1. Test Areas

[28] The geographical boundary of the study area is
located in Catalonia (in the northeast of the Iberian Penin-
sula) and is defined by the following UTM-31 N coordi-
nates (in km): 260 (minimum X), 528 (maximum X), 4489
(minimum Y) and 4749 (maximum Y) with a total area of
approximately 32000 km2 (see Figure 4).
[29] In order to validate the methodology we have

selected two sets (Barcelona and Sort) of test sites within
a 20 km buffer area from where the atmospheric radio
soundings are launched (see section 3.2). These test sites for
each set include vegetation with high coverage (>80%),
medium coverage (between 50 and 80%), low coverage
(between 20 and 50%) and bare soils (<20%). Vegetation
coverage has been computed using equation (17) and a land
cover map (J. J. Ibàñez and J. A. Burriel, MCSC: A high-
resolution thematic digital cartography, paper presented at
the 5th European Congress on Regional Geoscientific
Cartography and Information Systems, Institut Cartogràfic
de Catalunya, Barcelona, Spain, 2006) and a vegetation map
(Generalitat de Catalunya, Cartografia dels hàbitats a Cata-

Table 2. Numerical Coefficients for AFs Modeled for Only Ta
Depending on the Atmospheric Database Used and the Landsat

Missiona

Model AF h f a

TIGR-1 L4 AF1 0.0008 �0.4265 56.3130
AF2 �0.0096 4.9770 �642.6641
AF3 0.0023 �1.1818 148.2818

L5 AF1 0.0009 �0.4854 64.0614
AF2 �0.0104 5.3685 �693.9884
AF3 0.0023 �1.1465 143.3814

L7 AF1 0.0009 �0.4482 59.1220
AF2 �0.0098 5.0746 �655.0991
AF3 0.0023 �1.1335 141.8605

TIGR-2 L4 AF1 0.0005 �0.2670 35.0801
AF2 �0.0062 3.1456 �400.2054
AF3 0.0018 �0.9188 114.9932

L5 AF1 0.0005 �0.2731 35.8816
AF2 �0.0063 3.2355 �411.9907
AF3 0.0019 �0.9615 120.6194

L7 AF1 0.0005 �0.2455 32.3409
AF2 �0.0059 3.0203 �384.5072
AF3 0.0019 �0.9490 119.1746

TIGR-3 L4 AF1 0.0006 �0.3085 40.1687
AF2 �0.0073 3.6996 �468.4755
AF3 0.0020 �1.0028 124.4097

L5 AF1 0.0007 �0.3644 47.2779
AF2 �0.0080 4.0796 �516.6649
AF3 0.0020 �0.9769 120.7640

L7 AF1 0.0006 �0.3270 42.4381
AF2 �0.0075 3.7864 �478.3716
AF3 0.0019 �0.9265 113.9363

STD L4 AF1 0.0014 �0.7798 106.0954
AF2 �0.0168 9.0498 �1216.3357
AF3 0.0045 �2.3952 318.4317

L5 AF1 0.0016 �0.8452 114.9039
AF2 �0.0176 9.4979 �1276.5364
AF3 0.0045 �2.3776 315.8949

L7 AF1 0.0015 �0.8187 111.3313
AF2 �0.0171 9.2303 �1240.4405
AF3 0.0044 �2.3174 307.8070

aNumerical coefficients are a, f, and h. Missions: L4, Landsat 4 TM; L5,
Landsat 5 TM; L7, Landsat 7 ETM+. TIGR and STD are the atmospheric
databases.

Table 3. Determination Coefficients of the Atmospheric Function

Tests for Models That Include Water Vapor and Air Temperature,

Depending on the Atmospheric Database Used

Database

R2 Test (40%)

n Fita n TestaAF1 AF2 AF3

Landsat 4 STD 0.99 0.99 0.99 40 26
TIGR-1 0.98 0.98 0.97 37 24
TIGR-2 0.98 0.98 0.99 1073 688
TIGR-3 0.96 0.96 0.99 1370 941

Landsat 5 STD 0.99 0.99 0.99 40 26
TIGR-1 0.98 0.98 0.97 37 24
TIGR-2 0.98 0.98 0.99 1073 688
TIGR-3 0.96 0.96 0.99 1370 941

Landsat 7 STD 0.99 0.99 0.99 40 26
TIGR-1 0.98 0.98 0.97 37 24
TIGR-2 0.98 0.98 0.99 1073 688
TIGR-3 0.96 0.96 0.99 1370 941

aHere n denotes number of samples used.

Table 4. Determination Coefficients of the Atmospheric Function

Tests for Models That Only Include Air Temperature, Depending

on the Atmospheric Database Used

Database

R2 Test (40%)

n Fita n TestaAF1 AF2 AF3

Landsat 4 STD 0.56 0.63 0.72 40 26
TIGR-1 0.26 0.32 0.40 37 24
TIGR-2 0.45 0.56 0.77 1073 688
TIGR-3 0.54 0.63 0.80 1370 941

Landsat 5 STD 0.56 0.63 0.71 40 26
TIGR-1 0.26 0.31 0.40 37 24
TIGR-2 0.45 0.56 0.77 1073 688
TIGR-3 0.53 0.62 0.80 1370 941

Landsat 7 STD 0.56 0.63 0.72 40 26
TIGR-1 0.26 0.32 0.40 37 24
TIGR-2 0.46 0.57 0.76 1073 688
TIGR-3 0.54 0.64 0.80 1370 941

aHere n denotes number of samples used.
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lunya, 1:50.00, per fulls de tall 1:50.000, 2007, http://
mediambient.gencat.net/cat/el_departament/cartografia/
fitxes/habitats.jsp?ComponentID = 5523&SourcePageID =
6463#1).
[30] As mentioned in section 2.3, an error of 1% in

emissivity results in an error of 0.6 K in LST retrieval.
Owing to the absence of e direct measurements, we have

tried to select validation areas with low se (standard
deviation of e). Table 5 shows the e and the se for all
validation areas. In addition, we have chosen areas which
are at least 3 by 3 thermal band pixels.
[31] In the case of the Barcelona radiosounding area

(BCN), we have selected 3 test sites of high coverage
(numbers 1, 2 and 3 in Figure 4), 2 test sites of medium

Figure 2. Water vapor content of the TIGR-1, TIGR-2, TIGR-3, and STD atmospheric databases.

Figure 3. Spatial distribution of the TIGR-2 and TIGR-3 databases.
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coverage (numbers 4 and 5), 1 test site of low coverage
(number 6) and 3 sites of bare soils (numbers 7, 8 and 9). In
the case of the Sort radiosounding area (SORT), we have
selected 3 test sites of high coverage (numbers 10, 11 and 12),
3 test sites of medium coverage (numbers 13, 14 and 15) and
3 sites of low coverage (numbers 16, 17 and 17).

3.2. Meteorological and Remote Sensing Data
Processing

[32] We have processed 154 meteorological ground sta-
tions and an atmospheric radiosounding database (see
Figure 4) from the Catalan Meteorological Service, SMC,
(data available at http://www.meteocat.com). These radio
soundings are launched at 0000 and at 1200 UTC and
include altitude, pressure, air temperature and humidity

profiles. BCN radiosounding point, at 72 m a.s.l., presents
a mean w of 1.79 and a s of 0.81 g cm�2 with a minimum of
0.16 and a maximum of 5.00 g cm�2. SORT radiosounding
point is launched in the pre-Pyrenees at 680 m a.s.l. and
presents a mean w of 1.01 and a s of 0.54 g cm�2 with a
minimum of 0.25 and a maximum of 2.37 g cm�2.
[33] A set of 77 Landsat images (58 Landsat 5 TM and

19 Landsat 7 ETM+ from path/row 197/031 and 198/031–
032) from 2002 and 2006 were selected to carry out the
model validation. Dates were selected with the aim of
covering all months of the year to take into account different
daily situations.
[34] Finally, Terra MODIS Level 2 water vapor images

(MOD05_L2) were downloaded from the Level 1 and

Figure 4. General view of Catalonia and the validation sites, in Universal Transversal Mercator (UTM)
projection (UTM coordinates are expressed in kilometers). Numbers from 1 to 18 are the validation sites.
Image A is the SORT study area (background image is a 4 + 5 + 3 composite from a Landsat 5 TM of
18 August 2003) and image B is the BCN study area (background image is a 4 + 5 + 3 composite from a
Landsat 7 ETM+ of 13 June 2002).
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Atmosphere Archive and Distribution System (data avail-
able at http://ladsweb.nascom.nasa.gov/).
[35] The computation of Landsat 5 TM and Landsat 7

ETM+ images was carried out using the following
methodologies.
3.2.1. Geometric Correction
[36] Images have been corrected using conventional

techniques based on first-order polynomials taking into
account the effect of the relief of the land surface using a
Digital Elevation Model [Palà and Pons, 1995] obtaining a
RMSE of less than 30 m even in the most extreme altitudes.
The spatial resolution of all Landsat 7 ETM+ and Landsat
5 TM bands has been resampled to Landsat 5 TM thermal
band spatial resolution, 120 m.
3.2.2. Radiometric Correction (Nonthermal Bands)
[37] Radiometric correction to obtain at-surface reflectan-

ces has been carried out using the methodology proposed by
Pons and Solé-Sugrañes [1994]. This allows us to reduce
the number of undesired artifacts that are due to the effects

of the atmosphere or to differential illumination which is, in
turn, due to the time of day, location on the Earth and relief
(some zones are more illuminated than others, cast shadows,
etc.). Conversion from digital numbers to TOA radiances
has been carried out using image header parameters taking
into account the comments of Cristóbal et al. [2004].
3.2.3. Apparent Brightness Temperature
[38] Apparent brightness temperature or at-sensor bright-

ness temperature, Tsensor, is usually computed by means of
Planck’s law inversion and in the case of Landsat series,
Schott and Volchok [1985], Markham and Barker [1986]
and Irish [2003] proposed a simplified methodology,

Tsensor ¼
K2

ln K1=Ll þ 1ð Þ ; ð13Þ

where K1 (W m�2 sr�1 mm�1) and K2 (K) are calibration
constants based on the Landsat thermal band configuration
and Ll is the spectral radiance (W m�2 sr�1 mm�1). In the
case of Landsat 4 TM, K1 and K2 are 671.62 and 1284.3,
respectively. In the case of Landsat 5 TM, K1 and K2 are
607.76 and 1260.6, respectively. Finally, in the case of
Landsat 7 ETM+ K1 and K2 are 666.09 and 1282.7,
respectively.
[39] Ll is calculated using the conversion parameters

from DN to radiance included in the original image meta-
data using this equation:

Ll ¼ a DNþ b; ð14Þ

where Lsensorl is the at-sensor radiance, DN is the digital
number and a and b are the conversion coefficients. Table 6
shows these coefficients in the case of TM and ETM+
sensors [Barsi et al., 2003, 2007; Schott et al., 2001]. It is
important to note that if these conversion coefficients are
not available in the image metadata, certain facts should be
taken into account [Cristóbal et al., 2004].
3.2.3.1. Image Processing Format
[40] Images delivered by USGS (NLAPS format) or by

ESA (LPGS format) are processed differently. NLAPS
format considers the 0 value as NODATA as well as a
radiometric value. LPGS format considers the 0 value
only as NODATA and the radiances are rescaled from
1 to 255 DN. Table 6 shows the different values of a and

Table 6. Conversion Parameters From DN to Radiances of Landsat Sensors Depending on the Image Processing Date and the Processing

Formata

Sensor Parameter Mode Image Acquisition Image Processing Date
NASA NLAPS

Format
ESA LPGS
Format Min Rad Max Rad

ETM+ a Low gain Before 1 July 2002 0.066823 0.067087 0.00 17.04
b Low gain Before 1 July 2002 0.000000 �0.067087 0.00 17.04

ETM+ a High gain After 1 July 2002 0.037059 0.037205 3.20 12.65
b High gain After 1 July 2002 3.200000 3.16279 3.20 12.65

TM a From 1 March 1984
to 4 May 2003

0.055158 0.055512 1.24 15.25

b From 1 March 1984
to 4 May 2003

1.237800 1.144488 1.24 15.25

TM a After 4 May 2003 0.055158 0.055512 1.20 15.30
b After 4 May 2003 1.237800 1.144489 1.20 15.30

aRad, radiance; min, minimum; max, maximum; ESA, European Space Agency; NASA, National Aeronautics and Space Administration; NLAPS,
National Landsat Archive Processing System; LPGS, Level 1 Product Generation Systems. Radiance units in W m�2 sr�1 mm�1.

Table 5. Emissivity and Its Standard Deviation at the Validation

Sitesa

Category Mean e se n

BCN
Veg (h Pv) 1 0.986 0.006 61
Veg (h Pv) 2 0.984 0.005 44
Veg (h Pv) 3 0.985 0.004 61
Veg (m Pv) 1 0.979 0.008 61
Veg (m Pv) 2 0.979 0.006 62
Veg (l Pv) 1 0.972 0.007 61
Soil 1 0.963 0.008 62
Soil 2 0.967 0.006 61
Soil 3 0.970 0.004 61

SORT
Veg (h Pv) 1 0.991 0.007 4
Veg (h Pv) 2 0.987 0.004 4
Veg (h Pv) 3 0.985 0.000 4
Veg (m Pv) 1 0.985 0.000 4
Veg (m Pv) 2 0.985 0.000 4
Veg (m Pv) 3 0.987 0.008 4
Veg (l Pv) 1 0.968 0.007 4
Veg (l Pv) 2 0.978 0.009 4
Veg (l Pv) 3 0.971 0.007 4

aEmissivity, e; its standard deviation, se; h Pv indicates a high proportion
of vegetation, m Pv is a medium proportion of vegetation, and l Pv indicates
a low proportion of vegetation. Veg is natural vegetation, soil is bare soil,
and n is the number of samples.
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b (see columns 6 and 7, respectively) depending on the
processing image format.
3.2.3.2. Image Processing Date
[41] This case only occurs in the ETM+ sensor and

depending on the processing date, different a and b coef-
ficients should be applied (see column 5 of Table 6).
3.2.4. Land Surface Emissivity (LSE)
[42] There are several methodologies to compute LSE

[Rubio et al., 1997; Sobrino and Raissouni, 2000; Valor and
Caselles, 2005; Sobrino et al., 2008]. To compute LSE we
have used the NDVI Thresholds Method proposed by
Sobrino and Raissouni [2000] and Sobrino et al. [2008].
This methodology uses certain NDVI thresholds to distin-
guish between soil pixels (NDVI < NDVIs), pixels of full
vegetation (NDVI > NDVIv) and pixels composed of soil
and vegetation (mixed pixels, NDVIs 
 NDVI 
 NDVIv)
following this algorithm:

LSE ¼

aþ brred

evPV þ es 1� PVð Þ þ C

ev þ C

8>>>><
>>>>:

NDVI < NDVIs

NDVIs 
 NDVI 
 NDVIv

NDVI > NDVIv

;

ð15Þ

where ev and es are respectively the soil and vegetation
emissivities, PV is the proportion of vegetation, C is a term
which takes into account the cavity effect due to surface
roughness and a and b are spectra statistical fit coefficients.
[43] Values of ev and es can be taken from the bibliog-

raphy [Rubio et al., 1997] or spectral libraries such as the
ASTER spectral library (http://speclib.jpl.nasa.gov). In this
case, the methodology estimates the surface emissivity of
bare soil pixels (NDVI < NDVIs case) from reflectivity
values (rred) obtained with a sensor band located in the red
region (in the case of Landsat 5 TM and Landsat 7 ETM+,
band 3), in order to retrieve soil emissivity from image-
based data. The relationship between emissivities and red
reflectivities is assumed to be linear, and coefficients a and
b are obtained from laboratory spectra of soils and statistical
fits. However, in the case of Landsat this is not a critical
question, since its thermal band is located in the region
10�12 mm, where the emissivity correction is minimized.
The analysis of the soil spectra included in the ASTER
library shows a emissivity range between 0.96 and 0.98, so
a value a fixed value of 0.97 could be chosen as a first
approximation. When the pixel is considered as fully vege-
tated (PV = 1), NDVI > NDVIv case in equation (15),
typical constant values of ev = 0.985 and C = 0.005 are
considered and, therefore, a value of 0.99 for fully vegetated
pixels is finally set. It is important to note that equation (15)
is only valid for a mixed area, so this expression does not
reflect the cavity effects produced in a rough but homoge-
neous area.
[44] Using the geometrical model proposed by Sobrino et

al. [1990], the cavity term (C) for a mixed area and near
nadir view is given by

C ¼ 1� esð ÞevF 0 1� PVð Þ; ð16Þ

where F0 is a geometrical factor ranging between 0 and 1
depending on the geometrical distribution of the surface.
Since F0 cannot be estimated from VNIR/TIR remote
sensing data, a mean value is generally chosen [Sobrino and
Raissouni, 2000].
[45] According to Carlson and Ripley [1997], PV is

computed as follows:

PV ¼ NDVI� NDVIs

NDVIV � NDVIs

� �2

: ð17Þ

[46] Over particular areas, NDVIv and NDVIs values can
be extracted from the NDVI histogram. Values of NDVIv =
0.5 and NDVIs = 0.2 were proposed by Sobrino and
Raissouni [2000] to apply the method in global conditions.
In order to obtain consistent values of PV, it must be set to
zero for pixels with NDVI < NDVIs and set to one for pixels
with NDVI > NDVIv.
[47] Although we have no direct estimates of LSE, the

LSE methodology used in this work gives an error of 1%
between modeled and field measurements of LSE [Sobrino
et al., 2008].
[48] The computation of the atmospheric and meteoro-

logical variables has been carried out using the following
methodologies.
3.2.5. Water Vapor
[49] There are two main sources of water vapor that are

usually employed in LST retrieval models: local point data
and remote sensing estimations. One of the most frequently
used local point data is the atmospheric radiosounding from
which water vapor is retrieved by means of a radiative
transfer code such as MODTRAN 4.0, as mentioned in
section 2.2. In the case of Landsat, there is also a web site
from which a user can obtain water vapor and atmospheric
radiances. This web site is based on MODTRAN computa-
tions and weather simulation [Barsi et al., 2005] on a global
scale. However, both of them are local point data and cannot
be applied over an entire Landsat scene with heterogeneous
and/or mountainous landscape.
[50] For large areas, remote sensing offers estimations of

water vapor mainly developed using coarse resolution
remote sensing data like NOAA AVHRR [Sobrino et al.,
2002], Terra/Aqua MODIS data [Sobrino and El Kharraz,
2003] and ERS-2 ATSR-2 [Li et al., 2003], with an RMSE
of about 0.5 g cm�2 making them useful in LST retrieval
algorithms. In this work we have used Terra MODIS Level
2 water vapor product (Gao and Kaufman, online document,
1998) (MOD05_L2, and henceforth referred to as MODISw)
because this satellite passes over our study area more or less
at the same time as Landsat does, between 1000 and 1100
local solar time.
3.2.6. Air Temperature Modeling
[51] Air temperature data introduced in LST retrieval

models are usually taken from meteorological ground sta-
tions at satellite overpass or, if available, from the first layer
of atmospheric radiosoundings. However, in these studies
there is no mention of how to spatially extend this variable
to atmospherically correct all pixels in one or more Landsat
scenes (180 by 185 km).
[52] To regionalize air temperature, we have applied a

multiple regression analysis combined with spatial interpo-
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lation techniques [Cristóbal et al., 2008; Ninyerola et al.,
2000, 2007]. Air temperature models (henceforth referred to
as Tam) have been fitted using 60% of the meteorological
ground stations and cross-validated with the remaining
40%. In these works, air temperature at the time of Landsat
pass has been modeled obtaining a RMSE of 1.8 K
(independent test) making it useful as an input variable
to retrieve LST.
3.2.7. Atmospheric Parameters
[53] L#, L" and t have been obtained by a simulation

procedure using MODTRAN 4.0 radiative transfer code as
explained in section 2.2.

4. Model Test With Independent Data: Results

[54] In this section, we present the results obtained in the
testing of the methods explained in section 2. Although the
proposed methodology has also been developed by Landsat
4 TM, in the SCM atmospheric radiosoundings database
there is only information after 1997 and, therefore, we
cannot test Landsat 4 TM images. However, we expect
Landsat 4 TM LST models to show similar results to the
Landsat 5 TM and Landsat 7 ETM+ cases.
[55] In order to test the LST retrieval models and the

variables it involves (emissivity, water vapor and air tem-
perature) in situ measured values are needed. In our case, air
temperature is the only variable that has been tested with a
test set but, unfortunately, the rest of the data required to
perform the test are not available at satellite pass. However,
in the case of water vapor we have a set of atmospheric
radiosoundings launched at 12:00 UTC from which we have
computed L#, L", t and w using the MODTRAN 4.0 code.
With these variables and emissivity, we have calculated LST
using the RTE (equation (1)) from all test sites. This LST
was established as the reference LST (LSTr) and used to
compare the LST obtained by the models.
[56] Finally, in this section we also compare our proposed

model with another existing LST retrieval operative meth-
odology developed by Qin et al. [2001].

4.1. Air Temperature Test

[57] As mentioned in section 3.2, Tams have been tested
using 40% of the ground meteorological stations. We have
obtained a mean RMSE of 1.8 and a s of 0.4 K with a
minimum value of 0.9 and a maximum value of 2.7 K.
These values coincide with previous articles [Cristóbal et
al., 2008; Ninyerola et al. 2000, 2007].

4.2. Water Vapor Test

[58] The w obtained by the radiosoundings displays a
mean of 1.59 and a s of 0.84 g cm�2 with a minimum of
0.28 and a maximum of 3.73 g cm�2. Figure 5 shows that
Landsat 7 images are mainly located in the low w range
(autumn and winter dates). On the other hand, Landsat 5
images are well balanced over the year covering different
w situations.
[59] MODISw displays a mean of 1.80 and a s of 0.92 g

cm�2 with a minimum of 0.30 and a maximum of 4.15 g
cm�2. The RMSE obtained with these two sources of water
vapor, taking as reference the w of the radiosoundings, is
0.37 g cm�2 with a mean bias of 0.27 and a s bias of 0.25.
The results obtained coincide with the Terra MODIS water
vapor error [Sobrino and El Kharraz, 2003] and demon-
strate that remote sensing sources of water vapor are optimal
for use as input variables in LST retrieval.

4.3. Land Surface Temperature Test

[60] The test of LST retrieval methodologies has been
carried out using test sites (see Figure 4). As mentioned
above, we have chosen the LST obtained by equation (1) as
the reference LST.
[61] This test was performed using w and Ta from the

radiosoundings and w and Ta from remote sensing and air
temperature modeling (MODISw and Tam, respectively) as
input data for the LST models (see Figure 1). Table 7 shows
the mean test results for all the test sites (see Figure 4 and
Table 5) using w and Ta from the radiosoundings and
MODISw and Tam.

Figure 5. Histogram of the w obtained by the radiosoundings in the case of Landsat 5 and Landsat 7
images used to validate the LST models.
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[62] In the case of using w and Ta from the radio
soundings, columns 3–5 of Table 7 show that, of all the
atmospheric databases analyzed, the best LST retrieval
models are those that include w and Ta (LSTwT). LSTwT
models developed using TIGR-2, TIGR-1 and TIGR-3
display the best RMSE, 0.92, 0.96 and 0.99 K, respectively,
followed by STD, 1.97. LSTw models developed using
TIGR-3 and TIGR-1 also offer good RMSE, 1.53 and 1.64K
respectively, followed by STD and TIGR-2, 1.97 and
2.26 K, respectively. LSTT models display the worst results
while TIGR-2 and TIGR-1 are better than STD and TIGR-3
(5.67, 6.91, 7.32, and 9.76 K, respectively) and the worst
coefficients of determination, R2 (see Table 4). This model
is unable to retrieve LST with enough accuracy. Finally, in
the case of Qin et al. [2001] methodology (LSTQin) the
results show an RMSE of 1.64 K close to LSTwT models. It
should be pointed out that LSTwT models show that the
inclusion of Ta improves LST RMSE by more than 0.5 K
compared with LSTw models and the LSTQin model.
[63] Results obtained using MODISw and Tam as input

data in LST retrieval (columns 6–8 of Table 7) display more
or less the same pattern as the results obtained using w and
Ta from radiosoundings, except in the case of LSTw models,
in which the RMSE is higher. These results also suggest that
LSTw models are more sensitive to an error in the source of
w than LSTwT models, when it seems that the error is
compensated by the inclusion of Ta in LST retrieval models.
It is worth noting that LSTwT models show that the
inclusion of Ta improves LST RMSE by more than 1 K
compared with LSTw models. Furthermore, it should be
noted that TIGR-1 offers lower RMSE results (0.90 K) than
TIGR-2 (0.96 K) in the case of LSTwT models.
[64] In addition and in the case of LSTwT models, results

obtained using w and Ta from radiosoundings and those
obtained from MODISw and Tam offer similar RMSE,
approximately 0.9 K. These results are in agreement with
one of the goals of this methodology that is the avoidance in
the dependence on radiosounding data and show that the
inclusion of MODISw and Tam as input data is as useful as
radiosounding data but being MODISw and Tam the best
option to retrieve LST over extensive areas.

[65] Table 7 also shows that LSTwT models offer the
lowest bias (close to 0) for all TIGR atmospheric databases
except STD. LSTw models show higher bias than LSTwT
but lower than LSTT models, which display the worst
results. In the case of LSTwT models, bias is always
negative, which implies that these models tend to overesti-
mate LST. On the other hand, LSTw and LSTT models tend
to underestimate LST (except in the case of TIGR-3).
[66] To illustrate this fact, in Figure 6 we have selected

models, using w and Ta from radiosoundings, that were
developed using TIGR-1 and the LSTQin model. In Figure 7,
we have used MODISw and Tam, instead. We have excluded
models developed using only Ta owing to the high RMSE
obtained, which makes them inoperative. In both Figures 6 and
7 the behavior of the models is similar. In the w interval
established between 0 to 2 g cm�2 the difference between LSTr
and LSTwT remains mainly between �1 and 1 K (Figures 6
and 7). However, in LSTw and LSTQin models this difference
increases over this interval by an increment of w (Figure 6). In
the case of MODISw and Tam, this increment is higher, going
from �2 to 2 K (Figure 7). In the w interval region between 2
and 3 g cm�2 all models experience dispersion on the LST
difference. However, the dispersion of the LSTwT model is
lower, mainly between�1 and 2 K (Figures 6 and 7), than for
the LSTw model, which is between �2 and �4 K. In the
case of LSTQin models this dispersion is between 1 and
3.5 K. Beyond 3 g cm�2, LSTwT mainly behaves in the
same way as the 2�3 g cm�2 interval and LSTw increases
steadily. It should be taken into account that LSTQin was
only developed for a w interval from 0 to 3 g cm�2 and
there is no comparison of this method beyond this point.
[67] Finally, Table 8 shows the RMSE obtained depend-

ing on the Landsat mission and on the source of data used as
an input for the model. In all cases, the LSTwT models offer
betters results than the LSTw models. When using radio-
sounding w and Ta as an input in LSTwT models (columns
3–5 of Table 8), best results with Landsat 5 models are
obtained using TIGR-3, with an RMSE of approximately
1 K, and with Landsat 7, using TIGR-1, with an RMSE of
about 0.4 K. When using MODISw and Tam as an input in
LSTwT models (columns 6–8 of Table 8), best results in

Table 7. Mean LST Validation Results Using Radiosoundings Data and MODISw and Tam as Input Data for the LST Retrieval Developed

Using TIGR-1, TIGR-2, TIGR-3, STD Atmospheric Databases, and Qin et al. [2001] Methodologya

Atmospheric Database Accuracy Estimator

Radiosounding Data MODISw and Tam

nLSTw LSTwT LSTT LSTw LSTwT LSTT

TIGR-1 b �1.18 0.35 �3.34 �1.44 0.22 �3.75 570
sb 1.14 0.89 6.05 1.48 0.88 5.70
RMSE 1.64 0.96 6.91 2.07 0.90 6.82

TIGR-2 b �1.69 0.18 �2.62 �1.98 �0.02 �2.86
sb 1.51 0.90 5.03 1.92 0.96 4.79
RMSE 2.26 0.92 5.67 2.76 0.96 5.58

TIGR-3 b �1.01 �0.25 �3.78 �1.28 �0.33 �4.16
sb 1.15 0.96 7.60 1.58 1.02 7.26
RMSE 1.53 0.99 9.76 2.03 0.98 9.60

STD b �1.50 0.91 �4.39 �1.81 0.76 �4.77
sb 1.37 1.75 5.86 1.83 1.71 5.60
RMSE 2.03 1.97 7.32 2.57 1.87 7.35

LSTQin b �1.17 �1.27 363*/379
sb 1.09 1.28
RMSE 1.64 1.56

aLSTQin, Qin et al. [2001] methodology; w, water vapor; T, air temperature. RMSE (Kelvins), b (bias in Kelvins), and sb (bias standard deviation
computed from the ‘‘n’’ number of samples, in Kelvins) have been computed using all test areas in Table 5 and Figure 4. The asterisk denotes the number of
samples in the case of using radiosounding data.
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Figure 6. Differences between reference LST (LSTr) and modeled (in Kelvins) LST using TIGR-1 as
atmospheric database and radiosounding w and Ta as input data. LSTw is the model developed using only
w, LSTwT is the model developed using both w and Ta and LSTQin is the model developed by Qin et al.
[2001].

Figure 7. Differences between reference LST (LSTr) and modeled LST (in Kelvins) using TIGR-1 as
atmospheric database and modeled w and Ta as input data. LSTw is the model developed using only w,
LSTwT is the model developed using both w and Ta and LSTQin is the model developed by Qin et al.
[2001].
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Landsat 5 and Landsat 7 models have been obtained using
TIGR-1 with an RMSE of 1.03 and 0.51, respectively. Note
that in the case of Landsat 7, LSTwT and LSTw models
provide closer results, with differences lower than 1 K. This
fact can be explained because of the low atmospheric water
vapor content for Landsat 7 scenes in comparison with
Landsat 5 ones.
[68] In addition, except in the case of models developed

using an STD atmospheric database, LSTwT models also
offer better results than LSTQin, which is also developed
using w and Ta. We should stress that the differences in
RMSE between Landsat 5 and Landsat 7 are due to the
number of images used (58 in Landsat 5 and 19 in Landsat 7)
and the date. Most of the Landsat 7 images that were
available from our study area were from autumn and winter,
when w is low (see Figure 5) and, therefore, the correction is
better as shown in Figures 6 and 7 (see range from 0 to 2 g
cm�2). With these results we cannot conclude that models
developed for Landsat 7 are better than those developed for
Landsat 5.

4.4. Atmospheric Database Selection

[69] The selection of the atmospheric database depends
mainly on the range of w in the study area. As mentioned in
section 3.2, our study area is located within a mean w value
of 1.79 and a s of 0.81 g cm�2 with a minimum of 0.16 and
a maximum of 5.00 g cm�2, if we take BCN as our
reference point. The point located in Sort displays lower
values of mean and sw. As mentioned in section 3.3.3, we
obtained good results using all TIGR databases. However, it
is worth noting that TIGR-1 offers the best results when
using MODISw and Tam as input data since it has a well-
balanced w distribution. Moreover, this atmospheric data-
base is a good option in the absence of radiosounding
information to evaluate the w range (see Figure 2).
[70] In the case of the STD atmospheric database, and

although it also has a well-balanced w range, results are
worse than in the case of TIGR atmospheric databases and
this fact suggests that this new radiosounding database has
not worked properly in our study area.

5. Conclusions

[71] To sum up, the results show that the inclusion of Ta
together with w in the single-channel LST models improves
LST retrieval. The best RMSE, 0.9 K, was obtained using
the TIGR-1 database, and shows lower error dispersion in

intermediate and high atmospheric water vapor content.
However, if Ta is not available, LST retrieval using only
w is a good choice when the atmospheric water vapor
content is low or intermediate. On the other hand, models
that only include Ta have proven to be unable to retrieve
LST and display the worst RMSE.
[72] When using w and Ta data from the radiosoundings,

LSTwT models displayed an RMSE which is less than 0.5 K
compared with LSTw. Moreover, when using MODISw and
Tam as input data, the improvement is greater than 1 K
compared with LSTw models. This means that LSTw
models are more sensitive to w obtained by remote sensing
models than LSTwT in which the inclusion of Ta in the
model helps to reduce the error. It is worth pointing out that
LSTw and LSTT models tend to underestimate LST while
LSTwT models tend to overestimate it. Moreover, in the
case of LSTwT models, results obtained from radiosounding
data and modeled data (MODISw and Tam) offer similar
results, being this fact in agreement with the aims of the
presented LST retrieval methodology that is the avoidance
in the dependence on radiosounding data to retrieve LST
over extensive areas.
[73] In the case of the comparison between algorithms

developed using both w and Ta, LSTwT also displays an
RMSE that is less than 0.5 K compared with LSTQin.
Moreover, it should be taken into account that LSTwT
models are developed for w ranges that cover more than
3 g cm�2.
[74] The best Landsat 5 TM and Landsat 7 ETM+ LST

results have been obtained using TIGR-1 atmospheric data-
bases and their RMSE are 1.03 and 0.51, respectively.
However, a comparison between both satellites in LST
retrieval models is not possible because of the different
w range of the Landsat 5 and Landsat 7 series studied. In
addition, it has been observed lower differences between
LSTwT and LSTw models for the Landsat 7 scenes than the
ones obtained for the Landsat 5 scenes, these last acquired
with higher atmospheric water vapor content. This fact
indicates, as is expected, that the improvement of the
LSTwT models is more apparent for high water vapor
contents (typically w > 3 g cm�2).
[75] All TIGR databases have proven to be a powerful

input data to develop models on a world-wide scale and for
a wide range of w. Moreover, the best LST retrieval results
have been obtained using TIGR-1, which is the most well-
balanced w database, and in the case of nonavailability of

Table 8. Mean RMSE Computed Using Radiosounding Data and MODISw and Tam as LST Model Input for Each Landsat Missiona

Atm. Base. Satellite

Radiosounding Data MODISw and Tam

nLSTw LSTwT LSTT LSTw LSTwT LSTT

TIGR-1 L5 1.87 1.11 7.91 2.35 1.03 7.83 399
L7 0.88 0.39 3.56 1.17 0.51 3.41 171

TIGR-2 L5 2.61 1.04 6.53 3.15 1.04 6.44 399
L7 1.10 0.51 2.75 1.47 0.73 2.58 171

TIGR-3 L5 1.76 1.02 9.76 2.33 1.12 9.66 399
L7 0.72 0.91 4.10 1.03 0.95 3.86 171

STD L5 2.33 2.32 8.42 2.93 2.19 8.47 399
L7 1.02 0.61 3.54 1.37 0.66 3.51 171

Qin et al. [2001] L5 1.64 1.56 363*/379
aMean RMSE unit: Kelvins. Atm. Base is the model used to develop the LST retrieval method, L5 and L7 are Landsat 5 TM and Landsat 7 ETM+,

respectively, w is water vapor, T is air temperature, and n is the number of samples. The asterisk denotes the number of samples in the case of using
radiosounding data only in LSTQ in case.
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atmospheric water vapor information for a study area, using
this database is the best option.
[76] Finally, at-satellite Ta models and the Terra MODIS

w product have proven to be a good option for inclusion in a
LST model to retrieve LST for large areas. This fact
suggests that the use of radiosoundings as input data in
LST retrieval models is not of primary importance, being Ta
models and remote sensing estimations of w useful approx-
imations to atmospherically correct Landsat series thermal
band within a reasonable performance limit.
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