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A double logistic function has been used to describe global inventory mapping

and monitoring studies (GIMMS) normalized difference vegetation index

(NDVI) yearly evolution for the 1981 to 2003 period, in order to estimate land

surface phenology parameter. A principal component analysis on the resulting

time series indicates that the first components explain 36, 53 and 37% of the

variance for the start, end and length of growing season, respectively, and shows

generally good spatial homogeneity. Mann–Kendall trend tests have been carried

out, and trends were estimated by linear regression. Maps of these trends show a

global advance in spring dates of 0.38 days per year, a global delay in autumn

dates of 0.45 days per year and a global increase of 0.8 days per year in the

growing seasons validated by comparison with previous works. Correlations

between retrieved phenological parameters and climate indices generally showed a

good spatial coherence.

1. Introduction

Vegetation phenology is the study of recurring patterns of vegetation growth and

development, as well as their connection to climate (White et al. 1997). It has become

of increasing interest to the scientific community with the focus on global change

research, since an accurate detection of phenological phases allows estimation of the

spatiotemporal dynamics of carbon and water cycles (Schwartz 1992). Numerous

ground phenological studies have been conducted, but the difficulty of unifying data

records over plant species and phenological events (Ahas et al. 2002, Schwartz et al.

2006) undermines the use of these data records for vegetation change detection at
global scale. With the increasing length of the available satellite data record, NASA

has singled out land surface phenology as a supplementary tool for vegetation

monitoring (Friedl et al. 2006). Land surface phenology is defined as the seasonal

pattern of variation in vegetated land surfaces observed from remote sensing (White

and Nemani 2006) and presents the advantage of a global coverage, which dispenses

tedious fieldwork that is unachievable at global scale. However, remotely sensed

data also present drawbacks, such as the influence of the atmosphere (cloud

contamination, atmospheric absorption), spatial averaging over species due to pixel
size and temporal frequency of data acquisition (from 15 minutes to more than 1

week, depending on the satellite orbits).

Land surface phenology is usually addressed through temporal monitoring of the

normalized difference vegetation index (NDVI) (Rouse et al. 1973) time series,

available since the launch of the first Earth observation satellites. The NDVI is

*Corresponding author. Email: yves.julien@uv.es

International Journal of Remote Sensing

Vol. 30, No. 13, 10 July 2009, 3495–3513

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2009 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/01431160802562255

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
V
a
l
e
n
c
i
a
]
 
A
t
:
 
1
4
:
2
7
 
2
3
 
J
u
l
y
 
2
0
0
9



calculated as the normalized difference between near-infrared and red bands, and

quantifies the photosynthetic capacity of plant canopies, thus indicating the amount

of vegetation present in one place. Monitoring NDVI time series provides

information on phenological phases, such as onset (green wave) or dormancy

(brown wave) of vegetation where these phases exist.

Various methods have been developed for retrieving phenological dates from

NDVI data. The first method (method 1) consists of the prescription of thresholds

(Lloyd 1990, Fischer 1994, Reed et al. 1994, Myneni et al. 1997, Zhou et al. 2001,

Shabanov et al. 2002, Zhou et al. 2003, Chen et al. 2005) corresponding to a given

percentage of NDVI amplitude, fixed arbitrarily or from additional pixel

information. This method, although easy to implement, suffers a major drawback,

which is the noise present in the temporal NDVI series, caused both by atmospheric

and sensor variations. The second method (method 2) consists of the identification of

phenological dates based on the mid-point in the annual range of NDVI values

(White et al. 1997, Delbart et al. 2005). This method suffers from the same

drawbacks as the first one. The third method (method 3) is based on the rate of

change in NDVI values to estimate the transition dates, and is also influenced by

atmospheric conditions (Moulin et al. 1997, Tateishi and Ebata 2004, Piao et al.

2006). The fourth method (method 4) allows the estimation of transition dates via

spectral or harmonic analysis (Moody and Johnson 2001, Stöckli and Vidale 2004,

Julien et al. 2006), which diminishes the influence of cloud-contaminated NDVI

values on the transition dates. Another method (method 5) consists of fitting NDVI

temporal series to a given function, which provides transition dates, among other

parameters (Badhwar 1984, Tucker et al. 2001, Jonsson and Eklundh 2002, Beck et al.

2006). This method also allows the screening of cloud-contaminated values during the

fitting procedure, by removing all negative outliers from the time series, since cloud or

snow contamination tend to diminish NDVI values. The last method (method 6)

consists of fitting NDVI time series to accumulated growing degree-days (de Beurs

and Henebry 2005a,b). This method needs additional information (climate data) to

estimate degree-days. The accuracy of all these methods rely on the compositing

period used when building the NDVI dataset used for phenology retrieval: a longer

compositing period lowers the probability of cloud-contaminated data, but also

diminishes the time resolution at which the growing cycle of a given land cover is

observed, which is problematic for some biomes (artic tundra and vegetation in

arid and semi-arid areas; Holben 1986).

These methods have been used for three purposes: studying temporal variations of

phenological dates (see, for example, Zhang et al. 2004, Sakamoto et al. 2005), real-

time monitoring and short-term forecasting of land surface phenology (White and

Nemani 2006) and retrieving trends for phenological dates (see, for example, Myneni

et al. 1997, Tucker et al. 2001, Zhou et al. 2001). Since the work presented in this

paper focuses on retrieved trends for phenology, studies dedicated to trend

estimation only are reviewed here. Myneni et al. (1997) carried out the first global

land surface phenology study using method 1, finding a general advance in spring

dates of 8 days between 1981 and 1991, and an increase in growing season (defined as

photosynthetic active period) around 12 days over the same period. Several works

have been carried out since (Tucker et al. 2001, Zhou et al. 2001, Stöckli and Vidale

2004, Chen et al. 2005, Delbart et al. 2005, Piao et al. 2006), which all found an

advance of the spring date, from 0.25 to 0.8 days per year during periods between

1981 and 2004, over areas ranging from national to global scale. Only one study
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(Delbart et al. 2005) found a delay in spring occurrence of 0.3 days per year over

boreal areas between 1993 and 2004. All the mentioned NDVI studies also evidenced

a lengthening of the growing season, ranging from 0.05 to 1.01 days per year. Other

studies have dealt with the determination of land surface phenology over smaller

areas (see, for example, Osborne et al. 2000, Tao et al. 2006, Høgda et al. 2007),

generally pointing at an advance in spring phases and a delay in autumn phases,

resulting in a lengthening of the growing season, similar to the global studies

reviewed above. As can be observed, few land surface phenology studies (Myneni et al.

1997) have been carried out at global scale, the other studies being centred on the

northern hemisphere, at local to continental scale. Moreover, phenological results have

been averaged over large areas before trend retrieval, with local trends being dissolved

into the main trend. Finally, studies with the largest geographical extension have been

conducted on datasets suffering from various flaws, such as orbital drift and volcanic

aerosol contamination after Mount Pinatubo’s eruption in 1991.

In addition to remotely sensed land surface phenology, numerous studies have

been carried out to compile phenological data from various ground stations. These

phenological studies have the advantage of the time extent (some datasets begin

before 1950) to compare with the earlier Earth observation satellite images (1980).

Regional phenological studies (Menzel and Fabian 1999, Beaubien and Freeland

2000, Ahas et al. 2002, Chmielewski and Rötzer 2002, Wolfe et al. 2005, Schwartz et al.

2006) have been concentrated on the northern hemisphere and restricted to determining

trends in spring phases, evidencing generally an earlier spring occurrence (defined as

budding, leafing or flowering dates) ranging from 0.125 to 0.8 days per year,

for periods ranging from 1951 to 2002. Only one study (Ahas et al. 2002) found a

later spring occurrence (0.218 days per year) over eastern Europe during this same

period.

To end this review of retrieved trends in global phenology, some authors (Keeling

et al. 1996, Carter 1998, Schwartz and Chen 2002, Linderholm et al. 2008) have also

used climate records to estimate phenological phases, the methodology being based

on temperature changes over the study period, or on degree-day models. Those

studies have been carried out at regional to global scale between 1890 and 2000,

evidencing an earlier occurrence of spring (from 0.075 to 0.171 days per year), and a

later occurrence of autumn (from 0.026 to 0.114 days per year), resulting in a

lengthening of the growing-season period (from 0.132 to 0.285 days per year). More

information on the NDVI, ground phenology and climate studies is summarized

later in table 1.

Trends in phenological phases are usually estimated using linear regression over

the study periods, though the use of the Mann–Kendall test (Hirsch and Slack 1984,

de Beurs and Henebry 2005a,b), which allows a rigorous determination of trend

presence, overcoming the usually neglected linear regression basic assumptions.

Among all the studies reviewed above, very few have been dedicated to the whole

globe, and most of them have focused on the northern hemisphere. The aim of the

study presented here is to retrieve local land surface phenology trends for the whole

globe. The study has been conducted on global inventory mapping and monitory

studies (GIMMS) NDVI retrieved between July 1981 and December 2003. These

data are fitted yearly to a double logistic function, which allows the retrieval of

spring and autumn dates, along with four other parameters for each one of the 22

years of data. A principal component analysis (PCA) is carried out on the time series

of phenological phases to assess procedure stability. Spring and autumn date time

Phenology trends from GIMMS database 3497
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series are then tested for trends, and those trends estimated by linear regression.

Finally, those trends are compared with climate indicators.

2. Data

The GIMMS dataset (Pinzon 2002, Pinzon et al. 2004, Tucker et al. 2005) compiles

NDVI images acquired by the advanced very high resolution radiometer (AVHRR)

sensor aboard National Oceanic and Atmospheric Administration (NOAA)

satellites. The database is composed of quasi 15 day composites from July 1981 to

December 2003. The composite images are obtained by the maximum value

compositing (MVC) technique (Holben 1986), which minimizes the influences of

atmospheric aerosols and clouds. More than 22 years of data have been covered by

five different satellites: NOAA-7, 9, 11, 14 and 16. The NDVI images are obtained

from AVHRR channel 1 and 2 images, which correspond respectively to red (0.58 to

0.68 mm) and infra-red wavelengths (0.73 to 1.1 mm).

This dataset, in spite of its limitation to NDVI data (no other channel information

is available), presents several improvements regarding its predecessor, the Pathfinder

AVHRR Land (PAL) dataset (Smith et al. 1997). The first improvement consists of a

better data process, including navigation, sensor calibration and atmospheric

correction for stratospheric aerosols. Another main improvement regards the

correction of NOAA’s orbital drift (Price 1991), through the empirical mode

decomposition (EMD) technique (Pinzon et al. 2004). The work presented here has

been carried out using GIMMS NDVI data only.

Validity of the GIMMS dataset has been discussed in previous studies (Zhou et

al. 2001, Tucker et al. 2005), so it is not assessed here. However, the GIMMS

group itself points out two problems with the data: the volcanic eruption of

Mount Pinatubo in mid-1991, which decreased NDVI values, particularly

affecting tropical regions; and the corrections made for extremely high solar

zenith angles during winter for areas north of 65uN. As a consequence, these

results have to be treated with caution. Additionally, the GIMMS group advises

not to draw local conclusions from the data, since its NDVI present generalized

patterns. For this study, the whole dataset has been used, with the exception of

the data between July and December 1981 for the northern hemisphere and

between July and December 2003 for the southern hemisphere. This selection had

to be made because the estimation of spring and autumn dates needs complete

years of information. GIMMS data were used indiscriminately of their flag

attribute, in order to dispose of the maximum number of pixels, to cover the

whole globe. This does not affect the results, since the GIMMS pixels issued from

a model to compensate for the lack of data (mainly in high latitudes and

mountain areas) have a constant value, which means that no trend can be

retrieved over the corresponding areas. Therefore, the eventual absence of trend in

those regions would be due to the characteristics of the database, and not to

phenological stability.

3. Methodology

Stöckli and Vidale (2004) have singled out three basic assumptions regarding land

surface phenology retrieval. These assumptions are that:

N vegetation phenology follows a repetitive seasonal cycle (Moulin et al. 1997)

and NDVI values vary smoothly with time (Sellers et al. 1996);

3498 Y. Julien and J. A. Sobrino

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
V
a
l
e
n
c
i
a
]
 
A
t
:
 
1
4
:
2
7
 
2
3
 
J
u
l
y
 
2
0
0
9



N during summer, outliers in NDVI time series are the result of either cloud cover

or atmospheric disturbances, both tending to decrease NDVI values (Holben

1986, Los 1998); and

N during winter, snow under or temporarily on the canopy may impose a negative

bias on the NDVI signal, since snow has a high visible reflectance and a low

near-infrared reflectance.

We must add to the second assumption that outliers in NDVI time series are the
result of either cloud cover or atmospheric disturbances also in winter. Therefore,

outliers in the data tend to under-estimate NDVI values for the whole globe.

Considering this, Stöckli and Vidale (2004) chose to apply a Fourier adjustment

algorithm (Sellers et al. 1996, Los 1998). Nevertheless, Beck et al. (2006) managed to
retrieve land surface phenology by fitting NDVI data to a double logistic function.

This method is also the one chosen for this study. The reason for this choice is the

ability of the double logistic function to describe plateaus in NDVI evolution,

corresponding to vegetation dormancy or extended photosynthesis peak period.

These plateaus would require many harmonics to be described adequately, which

would be too time demanding for a global analysis on a pixel-by-pixel basis. The

preference of method 5 over the three other methods is due to their sensitivity to the

noise resulting from atmospheric conditions. This approach has been partially
developed in Julien and Sobrino (2007), with the work presented here including a

major improvement in trend identification using Mann–Kendall trend tests,

corrected for temporal autocorrelation, as well as a detailed description of the

procedure carried out to estimate phenological parameters.

To study yearly NDVI evolutions, GIMMS data has been artificially divided into

1 year intervals, starting on 1 January and ending on 31 December for the northern

hemisphere and starting on 1 July and ending on 30 June for the southern

hemisphere. This distinction has been made in order to describe vegetation with the

same function (see equation (1)) for both hemispheres. These dates have been

selected as boundaries for yearly evolution because they correspond to dormancy for

most of the biomes. However, for biomes with peak chlorophyll activity at those

boundary dates, another fitting function has been implemented (equation (2)). Both
fitting functions are shown in figure 1. The choice between those two fitting functions

is made after a preliminary fit to the data, choosing the fitting function for which the

root mean square (RMS) error is lower. NDVI yearly evolutions are thus fitted to

the following double logistic function (Beck et al. 2006):

NDVI tð Þ~wNDVIz mNDVI{wNDVIð Þ| 1

1ze{mS t{Sð Þz
1

1zemA t{Að Þ{1

� �
, ð1Þ

where NDVI(t) is the remotely sensed NDVI evolution for a given year (t50 to 364,
in day of year), wNDVI is the winter NDVI value; mNDVI is the maximum NDVI

value; S is the increasing inflection point (spring date); A is the decreasing inflection

point (autumn date); mS is related to the rate of increase at the S inflection point;

and mA is related to the rate of decrease at the A inflection point. All these

parameters are retrieved iteratively on a pixel-by-pixel basis for each of the 22 years

available from the GIMMS database, using the Levenberg–Marquardt technique

(More 1977). Since GIMMS NDVI images are bi-weekly, acquisition dates for each

composite have been set to the day corresponding to the middle of the compositing
period. A preliminary fit is conducted in order to estimate the dormancy period as

the period before the spring date and after the autumn date. During this period, all
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eventual negative NDVI values are set to the highest positive value over the whole

dormancy period.

Biomes with photosynthetic activity at boundary dates (usually in arid or semi-

arid areas) are fitted to the following function:

NDVI tð Þ~mNDVI{ mNDVI{wNDVIð Þ| 1

1ze{mS t{Sð Þz
1

1zemA t{Að Þ{1

� �
,ð2Þ

where all parameters are the same as for equation (1). The preliminary fit carried out

over NDVI yearly data also helps to choose between equations (1) and (2), selecting

the equation closest to the data.

For those biomes with low NDVI amplitude variation throughout the year (lower

than 0.1 NDVI unit), no fitting procedure is carried out and the mNDVI and

wNDVI are fixed to the mean value of the NDVI over the considered year. These

biomes correspond to arid or frozen areas, as well as cloud-free evergreen vegetation.

Equation (1) describes most of the world biomes accurately, since it includes a period

of photosynthetic peak activity, with NDVI values close to the mNDVI, and a

period of lower photosynthetic activity, for which NDVI values are close to the

wNDVI. This lower photosynthetic activity period can correspond to vegetation

dormancy (higher latitudes and deciduous species), to higher rate of leaf fall in

evergreen forests (rainforests, see Huete et al. (2006)), to snow under or temporarily

on the canopy of evergreen forests at higher latitudes, or to vegetation under

enduring cloud cover.

The fitting functions presented above (equations (1) and (2)) do not correctly

describe vegetation with more than one peak chlorophyllic activity. For example, in

some tropical and semi-arid areas, the vegetation can present a bi-modal NDVI

yearly curve. This bi-modal NDVI pattern corresponds to areas with two growing

seasons during the year such as agricultural areas under two plantation cycles per

Figure 1. Shape of the fitting functions. Original data have been divided into three
categories: snow contaminated (squares), clear (circles) and cloud contaminated (triangles).
The fitting function (solid line) used for these data is equation (1), with the following
parameters: wNDVI50.07, mNDVI50.68, S5119, A5282, mS50.19, and mA50.13. For
information, the same data has been fitted from Julian day 181 to 365 and then 1 to 180 using
equation (2) (dotted line). Outliers (squares and triangles) are rejected to obtain a smooth
curve from which phenological parameters are retrieved.
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year, and biomes where growth is constrained by both cold (winter) and drought

(summer). In that case, one of the low NDVI period would be considered as a

dormancy period while the other is considered as a plateau with cloud-contaminated

values. Nevertheless, the retrieved parameters are correct, even if half the

information is missing. An additional consequence of this fact can be a higher

temporal variability of spring and autumn dates for those areas. However, only a

low percentile (2.5%) of the analysed pixels corresponds to this type of vegetation,

those pixels being located mainly in tropical areas (see figure 2), where enduring

cloud cover is frequent, and thus undermines the fitting procedure. This is the reason

why no third function has been added to the first two, the costs in terms of

calculation time being too high.

The fitting procedure is carried out iteratively on a pixel-by-pixel basis for each of

the 22 years available from the GIMMS database, using the Levenberg–Marquardt

technique (More 1977). First, if yearly NDVI time series are below zero, or with an

amplitude lower than 0.1, corresponding to frozen or stable areas, respectively, the

pixel is flagged as such, and no fitting procedure is carried out. Otherwise, as

mentioned above, a preliminary fit is conducted in order to choose between

equations (1) and (2). From this preliminary fit, the dormancy period is estimated as

the period before the spring date and after the autumn date. During this period, all

eventual negative NDVI values are set to the highest positive value over the whole

dormancy period. A weighted fit is then carried out iteratively to the selected

function (equations (1) or (2)): all NDVI values below the fitting function are

considered to be cloud-contaminated values, therefore a lower weight is attributed to

them at each iteration. The procedure is stopped when the total difference between

the weighted data and the fitting function is lower than 0.05 NDVI units. Finally, the

fitting parameters are tested for consistency (wNDVI>0, mNDVI(1,

wNDVI(mNDVI, 0(S and A(365, S(A for equation (1) and A(S for

equation (2)). If these last tests are successful, the pixel is flagged as such, else it is

flagged as unsuccessful. Additionally, when the difference between the NDVI and

the fitting curve is higher than 0.05 NDVI units for any date where no cloud or snow

has been detected, the fitting procedure for the corresponding pixel is flagged as

unsuccessful. Therefore, one flag image is obtained for each year of data, indicating

Figure 2. Global representativity of the double logistic function. This image corresponds to
significant correlation (p,0.05) of the average NDVI yearly cycle (computed over the whole
GIMMS database) with a double logistic function. Grey corresponds to significant correlation
and black to the absence of significant correlation at 95% confidence level.

Phenology trends from GIMMS database 3501
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the quality of the fitting procedure. A schematic view of this fitting procedure can be

seen in figure 3. Finally, growing-season length is estimated as the difference between

the autumn and spring dates.

In the case of standard biomes (one chlorophyll peak activity per year), the main

source of inaccuracy of this procedure is due to the composite nature of the data. A

simulation has been conducted in order to estimate the accuracy in determining the

spring and autumn dates: a date of acquisition has been attributed randomly within

each 15 day compositing period of a standard yearly NDVI profile, which simulates

the error made when attributing acquisition date to the median day of the

compositing period. The standard NDVI profile was presented in figure 1. A total of

100 000 different simulations have been calculated, leading to standard deviations of

¡5.5 days uncertainty for spring and autumn dates and ¡7.8 days for growing-

season length.

Another source of inaccuracy of this procedure resides in the determination of the

winter NDVI value. If the highest positive NDVI value over the whole dormancy

Figure 3. Schematic view of the fitting procedure, leading to the determination of
phenological phases (spring and autumn dates and growing-season length) for each pixel
and each year of GIMMS data.
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period corresponds to a contaminated value (by cloud or snow presence), then all

retrieved parameters suffer from this contamination. For example, an error of 0.1

NDVI units in winter NDVI value leads to errors in retrieved spring and autumn

dates of the same magnitude as the uncertainty due to compositing. This means
that in cases of cloud contamination, for example, during the whole low-activity

period, as may be the case in tropical areas, phenological dates may show higher

variability.

Once the time series of spring, autumn and growing-season length have been

retrieved, a statistical analysis was conducted. First, in order to determine if trends

were present in the time series, a Mann–Kendall (Hirsch and Slack 1984) test is
performed. The Mann–Kendall statistic for a monotone trend in a time series {Zk,

k51, 2, …, n} of data is defined as:

T~
X
jvi

sgn Zi{Zj

� �
, ð3Þ

where

sgn xð Þ~
1, if xw0,

0, if x~0,

{1, if xv0:

8><
>: ð4Þ

If the values of Z1, Z2, …, Zn are randomly ordered, this statistic test has expectation

zero and variance:

Var Tð Þ~ n n{1ð Þ 2nz5ð Þ{
Xp

j~1

tj tj{1
� �

2tjz5
� �( ),

18, ð5Þ

where p is the number of tied groups in the dataset and tj is the number of data

points in the jth tied group. Furthermore, if n is large (n.10), T is approximately
normal (Kendall 1975).

This test has been carried out only for pixels with a successful fitting procedure for

at least 15 out of the 22 years of data (15(n(22), in order to consider T as a normal

distribution. Then, confidence intervals at 90% were estimated to reject the null trend

hypothesis. This test indicates whether a trend exists for the considered pixel, giving

only information on the sign of this trend. However, to compare our results with
previous work, numerical trend values have to be retrieved. We have therefore

chosen to estimate trends by simple linear regression for those pixels passing the

Mann–Kendall trend tests at 90% confidence level (p,0.1, a50.9).

A PCA has been carried out on the spring, autumn and growing-season length

time series (22 years), in order to determine the stability of the approach. For this

PCA analysis, only pixels with retrieved phenology have been considered, leaving
out pixels corresponding to sea or stable areas. Therefore, the input matrix of the

PCA is a 2 492 954622 matrix, corresponding to the number of pixels showing

seasonal changes and the number of years covered in the GIMMS database. This

PCA has been conducted on both variance–covariance and correlation matrices,

leading to similar results. Thus, only results of the PCA conducted on the correlation

matrices are presented here.

In order to validate the retrieved time series of start, end and length of growing
season, correlations have been calculated with time series of climate indices, such as

the southern oscillation index (SOI) (http://www.bom.gov.au/climate/current/

Phenology trends from GIMMS database 3503
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soihtm1.shtml), North Atlantic oscillation (NAO) (http://www.cpc.noaa.gov/

products/precip/CWlink/pna/nao.shtml) and Pacific decadal oscillation (PDO)

(http://jizao.washington.edu/pdo/PDO.latest). The SOI corresponds to the Tahiti

minus Darwin normalized pressure index, which measures whether the climate

system is in the El Niño or La Niña state. One can observe that the SOI has a global

influence on growing-season parameters, and is not restricted to its geographical

area. This occurs as teleconnections as the atmosphere transmit anomalous heating

in the tropics to large-scale convection and thus to anomalous winds in the

atmosphere. The NAO index measures the large-scale alternation of atmospheric

pressure between the North Atlantic regions of the sub-tropical high (near the

Azores) and sub-polar low pressure (extending south and east of Greenland), which

determines the strength and orientation of the poleward pressure gradient over the

North Atlantic, and the mid-latitude westerlies in this area. The PDO (also called the

interdecadal Pacific oscillation (IPO)) index is derived as the leading principal

component of monthly Sea Surface Temperature (SST) anomalies in the North

Pacific Ocean, poleward of 20uN latitude. The monthly mean global average SST

anomalies are removed to separate this pattern of variability from any ‘global

warming’ signal that may be present. This index has been shown to be a significant

source of decadal climate variation throughout the South Pacific and Australia, and

also the North Pacific (Salinger 2005). Those global indices were retrieved as

monthly means, and have been averaged yearly, from 1 January to 31 December for

the northern hemisphere, and from 1 July to 30 June for the southern hemisphere.

Pearson correlations were calculated between these series of annual climate indices

and time series of growing-season start, end and length for each pixel and tested for

statistical significance at 95% confidence level (p,0.05, a50.95).

4. Results

The procedure presented above allows for retrieving yearly spring and autumn dates,

which give an estimation of growing-season length for the 22 years of data. The

resulting time series of growing-season parameters were analysed by PCA as

described in §3. For spring images, the first component explains 36% of the variance,

with the remaining variance being distributed homogeneously on the other

components. For autumn images, the first component explains 53% of the variance,

with the remaining variance also being distributed homogeneously on the other

components. Finally, for growing-season images, the first component explains 37%

of the variance, the remaining variance being also distributed homogeneously on the

other components. The variance explained by the first component is quite low. This

is due to the yearly variability of phenological phases, as well as to local instability of

the procedure (due to cloud or snow presence). Spatial heterogeneity can be observed

in PCA first components for all parameters locally around the Equator (not shown).

This is explained by the fact that, along the Equator, similar ecosystems are fitted

differently, on the northern side using data from 1 January to 31 December and on

the southern side using data from 1 July to 30 June (starting the previous year). This

heterogeneity is reinforced by the enduring cloud cover during part of the year for

the affected regions (Amazonia, central Africa), but also in the Indian subcontinent.

This is due to the fact that the fitting procedure interprets the enduring cloud cover

as a dormancy period (consistent with Huete et al. (2006)), which can be pixel

dependent, leading to local spatial heterogeneity. This spatial variability is reinforced

by the possible errors in the wNDVI parameter that are also due to the enduring
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cloud cover in these areas, which propagate in the spring and autumn dates, as stated

above.

In order to estimate the validity of the retrieved phenological time series, an

analysis of the flag time series has to be conducted. Figure 4 shows the number of

years for which each pixel has been flagged as (a) frozen, (b) stable, (c) unsuccessful

or (d) successful during the 22 years of the study. Figure 4(a) shows that the areas

frozen throughout the year are located near the North Pole, consisting mainly of

Greenland. In addition, a few areas are labelled as frozen, corresponding to inland

water, which are not flagged as water within the GIMMS database. Since these areas

do not correspond to land vegetation, this has no influence on the study. Regarding

stable pixels, figure 4(b) shows that arid areas are labelled as stable (Sahara,

Atacama, Namib and Taklimakan Deserts), as well as high mountains (Chilean

Andes, Himalaya). On the other hand, many other areas are labelled only

temporarily as stable, and correspond to rainforests (central America, Amazonia,

Equator and southern Asia) or to semi-arid areas (part of the Arabic peninsula,

central Australia, southern Spain, south western USA). Temporary presence of

clouds (for the first group of areas), or temporary presence of vegetation (for the

second group) explains these changes from year to year, as evidenced by visual

inspection of the time series (not shown). Figure 4(c) shows pixels with errors in the

fitting procedure, corresponding to a fitting function that is inadequate with input

time series (see above). Pixels with unsuccessful fitting are located around the

Equator and in enduring cloud cover areas (Amazonia, South Asia, and Central

Africa), corresponding to the areas with spatial heterogeneity in the PCA, but also

semi-arid areas, like Australia, Sahel or Mexico. Finally, figure 4(d) shows the pixels

with successful fitting, which are logically complementary to the three previous flag

images (figures 4(a) to (c)). The areas with the lowest successful fit are thus located

around the Equator, in Amazonia, in Southern Asia and in Australia. Therefore,

Figure 4. Accumulated flags of the fitting procedure for the 22 years of the study: (a) frozen,
(b) stable, (c) unsuccessful and (d) successful. Areas flagged as frozen correspond mostly to
Greenland and inland water. Areas flagged as stable include deserts and rainforests. Areas
flagged as unsuccessful correspond to highly variable areas, whether due to natural
phenomena or noisy data. Results for grey areas in figure 4(d) are to be treated with caution.
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results for these areas are to be treated with caution, since the observed variability is

due to natural variability as well as outliers in the data.

Mann–Kendall trend tests have been carried out for each pixel time series, and

trends have been determined by linear regression for those pixels for which the no-

trend hypothesis could be rejected at 90% confidence level. The results are presented

in figure 5 for spring, autumn and growing-season time series. Retrieved spring dates

(figure 5(a)) have seen an advance on average of 0.38 days per year over the whole

globe (the average has been calculated over all the pixels for which a significant trend

was retrieved), the image being scaled between advances of 3.6 days per year and

delays of 2.8 days per year. Areas seeing the highest advances in spring dates are

located in western Europe, Sahel and patches of eastern Asia, while areas seeing the

highest delays are located in central North America, south eastern South America,

east sub-equatorial Africa and patches of eastern Asia. For autumn dates

(figure 5(b)), an average delay of 0.45 days per year can be evidenced, with the

image being scaled between advances of 4.8 days per year and delays of 5.7 days per

year. Areas seeing the highest delays in autumn dates are located in sub-Saharan

Africa and south eastern South America, while areas seeing the highest advances are

located in patches of western Europe, North America, eastern Asia and around the

Caspian Sea. Finally, for growing-season length (figure 5(c)), an average increase of

0.8 days per year can be evidenced at global scale, the image being scaled between

decreases of 3.5 days per year and increases of 5.1 days per year. Areas seeing the

highest increases are located in southernmost South America, southern Scandinavia,

westernmost USA and patches of central Asia, while areas seeing the highest

decreases are located at northernmost latitudes, in central USA, southern Amazonia,

South Africa and patches of eastern Asia. One can observe that the areas mentioned

in the previous paragraphs as unreliable, due to unsuccessful fit or high spatial

heterogeneity, do not exhibit statistically significant trends, although those trends

might exist. This lack of statistically significant trends is purely due to the fitting

procedure. Another observation is that some of the trends present extreme values,

which would correspond to changes in land surface phenology of 2 to 4 months

during the 22 years of the study. These extreme values could be explained by abrupt

changes in NDVI evolutions (due to deforestation or cloud cover), for example in

southern Amazonia.

5. Discussion

In order to compare the trends presented above with previous studies, averages have

been calculated for comparable areas and time extents when possible, and are

presented in table 1. Geographic locations have been downscaled to country sizes,

and study start years have been extended back to 1982 where previous years are

indicated. Previous NDVI studies are easier to compare with the results presented

above since land surface phenology phases were also retrieved from AVHRR data,

although from different datasets, while climate (C) and phenological (P) studies were

carried out from totally different data. Nevertheless, those results do provide an

estimation of the representativity of land surface phenology as to ground station

based phenology. In table 1, the results for the method presented here have been

obtained by spatial averaging over pixels within the corresponding countries with

successful fitting. This means that, in spite of similar geographical coverage, the

start, end and length of growing season can be estimated from smaller areas. For

NDVI studies, spring date trends are generally in agreement with previous ones
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(Tucker et al. 2001, Zhou et al. 2001, Stöckli and Vidale 2004, Delbart et al. 2006),

with the retrieved values being comparable. For growing-season length, only one

estimation (Stöckli and Vidale 2004) agrees. The differences between our results and

previous studies are probably due to the way the averages are obtained: in our case,

only pixels showing phenology have been considered, increasing the retrieved trends

since stable areas (therefore with smaller trends) have not been included in the

Figure 5. Trends (in days per year) in: (a) spring dates, (b) autumn dates and (c) growing-
season length for pixels exhibiting trends at 90% confidence level between 1981 and 2003, as
identified by Mann–Kendall trend tests carried out on time series of phenological parameters
retrieved by fitting yearly NDVI evolution to a double logistic function. Retrieved trends are
generally towards earlier onset of spring and later occurrence of autumn, resulting in an
increased growing-season length.
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average. For studies from phenological records, the results for spring date trends

compare well with the ones obtained by the methodology described above in the

cases of global studies (Ahas et al. 2002, Schwartz et al. 2006), probably due to the

high number of stations used for these studies. Trends in phenology retrieved from

climate data compare badly with the results of this study.

Figure 6 shows the pixels for which correlations with climate indices were

significant at 95% confidence level (p,0.05), in black for negative correlations, and

in white for positive correlations. Large spatial patterns of statistically significant

correlations can be observed for spring over western and eastern Europe, southern

North America, and more locally over the rest of the globe (figure 6(a)). Regarding

correlation with autumn time series (figure 6(d)), positive correlations are located at

northernmost and southernmost latitudes, while negative correlations are mainly

located in western Europe and Amazonia. Regarding correlation with growing-

season length time series (figure 6(g)), negative correlations are observable around

the northern Atlantic Ocean, while positive correlations spread over the rest of the

globe, with greater spatial homogeneity over eastern and western Russia. Spring and

NAO time series show significant positive correlations mainly in the eastern north

Atlantic Ocean (namely in Iceland and the Great Lakes area), while negative

correlations can be observed in Lapland (figure 6(b)). Regarding autumn time series

(figure 6(e)), only eastern Europe shows a clear pattern of negative significant

correlation with NAO index, while small patches of significant correlation can be

observed locally all around the world. Regarding growing-season time series

(figure 6(h)), significant negative correlations with NAO index are located in the

Great Lakes region, in Amazonia and in southern Africa. Small patches of

significant positive correlation are visible over the whole globe, with a larger extent

Figure 6. Correlation between spring, autumn, growing season and SOI, NAO, PDO indices
between 1981 and 2003. White indicates statistically significant positive correlation at 95%
confidence level, black indicates statistically significant negative correlation at 95% confidence
level, while grey indicates statistically insignificant correlation at 95% confidence level. Large
contiguous patches of significant correlation show the validity of the approach.
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Table 1. Comparison of the results of this study (grey) with previous ones. ‘Type’ indicates on which kind of records the previous studies were carried out:
‘PAL’ for satellite images from the PAL database, ‘GIMMS’ for satellite images from the GIMMS database, ‘4 km’ for satellite images from a 4 km AVHRR
dataset, ‘VGT’ for satellite images from SPOT-VEGETATION instrument, ‘P’ for phenological ground stations and ‘C’ for climate data. ‘Start’, ‘End’ and
‘Length’ refer respectively to growing-season start, end and length in days per year. An ‘X’ indicates that the corresponding parameter has not been
estimated. Values in bold indicate statistically significant values at 95% confidence level. The results of this study agree with many previous works, especially

with the ones retrieved from satellite data and large phenological records.

Previous studies This study

Reference Type Period Location Start End Length Start End Length

Myneni et al. (1997)A, 1 PAL 1981–1991 Global 20.727 X 1.09 20.295 0.053 0.554
Tucker et al. (2001)A, 5 4 km 1982–1991 45uN–75uN 20.6 X 0.4 20.648 0.247 0.893
Tucker et al. (2001)A, 5 4 km 1992–1999 45uN–75uN 20.25 X 0.05 20.318 0.512 0.816
Zhou et al. (2001)A, 1 GIMMS 1981–1999 Eurasia 20.368 X 0.947 20.293 0.156 0.462
Zhou et al. (2001)A, 1 GIMMS 1981–1999 N America 20.421 X 0.631 20.121 0.363 0.461
Stöckli and Vidale (2004)B, 4 PAL 1982–2000 Europe 20.568 X 1.01 20.628 0.193 0.883
Chen et al. (2005)B, 1 PAL 1982–1993 China X X 1.083 20.653 20.319 0.359
de Beurs and Henebry (2005b)A, C, 6 PAL 1985–1999 N America 20.62 X X 20.245 0.28 0.491
de Beurs and Henebry (2005b) A, C, 6 PAL 1985–2000 Eurasia 20.42 X X 20.214 0.149 0.4
Delbart et al. (2005)B, 2 PAL–VGT 1982–1991 Boreal 20.8 X X 20.578 0.342 0.92
Delbart et al. (2005)B, 2 PAL–VGT 1993–2004 Boreal 0.3 X X 20.354 0.169 0.522
Piao et al. (2006)B, 3 GIMMS 1982–1999 N China 20.744 0.35 1.094 20.32 0.075 0.367

Menzel and Fabian (1999)B, C P 1951–1996 Europe 20.136 0.097 0.234 20.466 0.235 0.787
Beaubien and Freeland (2000)B P 1987–1996 Canada 20.8 X X 20.572 0.017 0.585
Ahas et al. (2002)B P 1951–1998 C & W Europe 20.583 X X 20.702 0.275 1.064
Ahas et al. (2002)B P 1951–1999 E Europe 0.218 X X 20.223 0.198 0.421
Chmielewski and Rötzer (2002)A P 1969–1998 Europe 20.266 X X 20.712 0.305 1.092
Wolfe et al. (2005)B P 1965–2001 NE USA 20.135 X X 20.025 0.358 0.395
Schwartz et al. (2006)B P 1955–2002 NH 20.125 X X 20.189 0.143 0.407

Keeling et al. (1996)A C 1964–1992 NH X X 0.241 20.329 0.054 0.424
Carter (1998)B C 1890–1995 Fennoscandia 20.075 0.047 0.132 20.509 0.423 0.933
Schwartz and Chen (2002)A C 1959–1993 China 20.171 0.114 0.285 20.653 20.319 0.359
Linderholm et al. (2007)A C 1951–2002 Great Baltic Area 20.126 0.026 0.148 20.263 0.189 0.456

Atrends obtained by differences between the beginning and end of the study period.
Btrends obtained by linear regression.
Ctrends identified with Mann–Kendall trend tests.
1phenological phases identified by setting thresholds to the annual NDVI time series.
2phenological phases obtained by identification of the mid-points of the annual NDVI time series.
3phenological phases obtained by analysis of the rate of change in the annual NDVI time series.
4phenological phases identified by spectral or harmonic analysis of the annual NDVI time series.
5phenological phases identified by application of a fitting procedure to the annual NDVI time series.
6phenological phases obtained by fitting the NDVI time-series to accumulated growing degree-days.
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in Lapland. Spring and PDO time series show significant positive correlation, mainly

over Asia, but also along the Equator (figure 6(c)). Small patterns of significant

negative correlations can be observed in South America and south east Africa.

Regarding autumn time series (figure 6(f)), significant negative correlations with

PDO index can be observed north of 40uN, while significant positive correlations are

distributed more locally over the rest of the globe. Regarding growing-season time

series (figure 6(i)), the distribution of significant correlation is similar to that of

autumn time series.

These correlations between climate indices and growing-season parameters show,

in general, a good spatial homogeneity: small patches of spatially contiguous pixels

exhibit similar correlations, which is opposite to the heterogeneity that can be

observed in India or in the Sahara, where correlations do not show spatial coherence.

This validates the approach developed above for most of the globe.

6. Conclusions

This study presents a method for inferring growing-season parameters (start, end

and length) from the whole GIMMS database, including 22 years of NDVI images.

This method consists of a yearly fit of the data to a double logistic function, after

screening dormancy period (if any) for snow contamination, and the rest of the year

for cloud contamination. This method determines the start and end of the growing

season, with an uncertainty of 5.5 days, and growing-season length, with an

uncertainty of 7.8 days. This approach shows good stability for most of the globe,

with the exception of Amazonia, central Africa and south Asia, where enduring

cloud cover decreases the accuracy of the fitting procedure, due to an erroneous

estimation of dormancy period NDVI values. The trends retrieved from these results

are generally in agreement with trends estimated from similar methods used in

previous studies. Finally, the correlations between growing-season parameters and

climate indices such as SOI, NAO and PDO show some spatial coherence, validating

the approach.

The method presented above could be improved by taking into account the

inherent variability of certain geographic areas, such as areas with enduring cloud

cover, like equatorial or monsoon affected areas, or high interannual NDVI

variability, like semi-arid areas. The use of an average year variation of the NDVI

over the 22 years of the study for classifying the whole globe could help determine

which fitting function (equations (1) and (2), stable or frozen) is more suitable for

each pixel. The authors will focus further research in this direction.

More studies are needed to explain the reason behind the retrieved trends, to

discriminate between climate and the influence of man. This could be done by

carrying out a classification process for each year of the NDVI data, and registering

abrupt changes that are not correlated with climate indicators. However, this

approach could be hindered by the size pixel of the database, which is too extended

to identify local change. Therefore, changes would have to be carried out over large

areas (10610 km) to be evidenced clearly using this database.
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STÖCKLI, R. and VIDALE, P.L., 2004, European plant phenology and climate as seen in a 20-

year AVHRR land-surface parameter dataset. International Journal of Remote

Sensing, 25, pp. 3303–3330.

TAO, F., YOKOZAWA, M., XU, Y., HAYASHI, Y. and ZHANG, Z., 2006, Climate changes and

trends in phenology and yields of field crops in China 1981–2000. Agricultural and

Forest Meteorology, 138, pp. 82–92.

TATEISHI, R. and EBATA, M., 2004, Analysis of phenological change patterns using 1982–2000

advanced very high resolution radiometer (AVHRR) data. International Journal of

Remote Sensing, 25, pp. 2287–2300.

TUCKER, C.J., SLAYBACK, D.A., PINZON, J.E., LOS, S.O., MYNENI, R.B. and TAYLOR, M.G.,

2001, Higher northern latitude NDVI and growing season trends from 1982 to 1999.

International Journal of Biometeorology, 45, pp. 184–190.

TUCKER, C.J., PINZON, J.E., BROWN, M.E., SLAYBACK, D., PAK, E.W., MAHONEY, R.,

VERMOTE, E. and EL SALEOUS, N., 2005, An extended AVHRR 8-km NDVI data set

compatible with MODIS and SPOT vegetation NDVI data. International Journal of

Remote Sensing, 26, pp. 4485–4498.

WHITE, M.A. and NEMANI, R.R., 2006, Real-time monitoring and short-term forecasting of

land surface phenology. Remote Sensing of Environment, 104, pp. 43–49.

WHITE, M.A., THORNTON, P.E. and RUNNING, S.W., 1997, A continental phenology model for

monitoring vegetation responses to interannual climatic variability. Global

Biogeochemical Cycles, 11, pp. 217–234.

WOLFE, D.W., SCHWARTZ, M.D., LAKSO, A.N., OTSUKI, Y., POOL, R.M. and SHAULIS, N.J.,

2005, Climate change and shifts in phenology of three horticultural woody perennials

in northeastern USA. International Journal of Biometeorology, 49, pp. 303–309.

ZHANG, X., FRIEDL, M.A., SCHAAF, C.B. and STRAHLER, A.H., 2004, Climate controls on

vegetation phenological patterns in northern mid- and high latitudes inferred from

MODIS data. Global Change Biology, 10, pp. 1133–1145.

ZHOU, L., TUCKER, C.J., KAUFMANN, R.K., SLAYBACK, D., SHABANOV, N.V. and

MYNENI, R.B., 2001, Variations in northern vegetation activity inferred from satellite

data of vegetation index during 1981 to 1999. Journal of Geophysical Research, 106,

pp. 20 069–20 083.

ZHOU, L., KAUFMANN, R.K., TIAN, Y., MYNENI, R.B. and TUCKER, C.J., 2003, Relation

between interannual variations in satellite measures of northern forest greenness and

climate between 1982 and 1999. Journal of Geophysical Research, 108, p. 4004.

Phenology trends from GIMMS database 3513

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
V
a
l
e
n
c
i
a
]
 
A
t
:
 
1
4
:
2
7
 
2
3
 
J
u
l
y
 
2
0
0
9




