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a  b  s  t  r  a  c  t

Several  previous  studies  have  shown  that the  inclusion  of  the  LST  (Land  Surface  Temperature)  param-
eter to  a NDVI  (Normalized  Difference  Vegetation  Index)  based  classification  procedure  is  beneficial  to
classification  accuracy.  In  this  work,  the  Yearly  Land  Cover  Dynamics  (YLCD)  approach,  which  is based
on  annual  behavior  of  LST  and  NDVI,  has  been  used  to classify  an agricultural  area  into  crop  types.  To
this  end,  a time  series  of  Landsat-5  images  for year  2009  of  the  Barrax  (Spain)  area  has  been processed:
georeferenciation,  destriping  and  atmospheric  correction  have  been  carried  out to  estimate  NDVI  and
LST time  series  for  year  2009,  from  which  YLCD  parameters  were  estimated.  Then,  a  maximum  likeli-
hood  classification  was  carried  out on  these  parameters  based  on a training  dataset  obtained  from  a  crop
census. This  classification  has  an  accuracy  of 87%  (kappa  =  0.85)  when  crops  are  subdivided  in  irrigated
and  non-irrigated  fields,  and  when  cereal  crops  are  aggregated  in  a single  crop,  and  performs  better  than
a  similar  classification  from  Landsat  bands  only.  These  results  show  that a good  crop  differentiation  can
be obtained  although  detailed  crop  separation  may  be  difficult  between  similar  crops  (barley,  wheat  and
oat) due  to similar  annual  NDVI  and  LST  behavior.  Therefore,  the  YLCD  approach  is  suited  for  vegetation
classification  at local  scale.  As  regards  the  assessment  of  the  YLCD  approach  for  classification  at  regional
and global  scale,  it will be carried  out  in  a further  study.

© 2011  Elsevier  B.V.  All rights  reserved.

1. Introduction

The vegetation of our planet is changing (IPCC, 2007), due to
both direct human action (land use change) and indirect human
pressure (greenhouse gases induced global warming). This change
is affecting directly food production, with severe consequences for
mankind. Therefore, local to global agencies need an adequate mon-
itoring of production, in order to anticipate food shortages, due to
droughts for example. To this end, agricultural areas must be clas-
sified into different crops, enabling the estimation of areas under
a given production. Additionally, monitoring water stress may  be
needed, to assess the health condition of these crops.

Traditionally, vegetation census has been carried out from veg-
etation indices, through single date or multitemporal classification
(Tucker et al., 1985; Loveland et al., 2000; Morales et al., 2004;
Wang and Tenhunen, 2004; Evans and Geerken, 2006; Sobrino
et al., 2006). The most widely used vegetation index for this task
is the Normalized Difference Vegetation Index (NDVI – Tucker,
1979), which is based on the absorption difference of photosynthet-
ically active tissues in the red and near-infrared wavelengths of the
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electromagnetical spectrum. Despite its numerous flaws (Holben,
1986), NDVI is the most widely used vegetation index, which is due
to its mathematical simplicity, and to the fact that most alternative
vegetation indices need additional information which is difficult to
obtain at regional and global scale.

As a consequence, several studies have investigated and con-
firmed the fact that land use assessment and classification as well
as vegetation changes could benefit from the addition of the sur-
face temperature to NDVI estimation. For example, Ehrlich and
Lambin (1996) used a principal component analysis of BT (Bright-
ness Temperature)/NDVI slopes to build a land cover classification
of Africa. Lambin and Ehrlich (1996) reviewed extensively the
drivers between NDVI and BT parameters, and described a gen-
eral spatial pattern of relationships between NDVI and BT, related
to land cover. They concluded that BT/NDVI slope could be used
to classify land cover and monitor land cover changes over time.
Nemani and Running (1997) used BT and NDVI annual variations
to build a classification over United States (later extended to the
whole globe), and presented an approach to characterize changes
in NDVI and BT parameters, which has been used in other studies
(Julien et al., 2006). Lambin and Ehrlich (1997) used the results of
Lambin and Ehrlich (1996) to build a change index based on NDVI
and BT to retrieve change patterns in sub-Saharan Africa. Sobrino
and Raissouni (2000) presented two methods for land cover change
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Fig. 1. Description of the study area: Barrax, Albacete, Spain.

detection in Morocco based on NDVI and Land Surface Temperature
(LST) temporal variations. Borak et al. (2000) confirmed that coarse
resolution estimates of change were best related to fine resolution
estimates when BT and NDVI evolutions were considered.

Based on these results, Julien and Sobrino (2009) designed the
Yearly Land Cover Dynamics (YLCD) method, which consists in
the regression of LST yearly time series against NDVI time series
to retrieve three parameters associated with the annual vegeta-
tion cycle. These parameters allow distinguishing between broad
vegetation categories (Julien and Sobrino, 2009). However, since
vegetation species react differently to similar meteorological con-
ditions, mainly through stomata dilatation which in turn depends
on leaf characteristics and surface, this method should be able to
distinguish between plant species. This is the hypothesis tested in
this study, through the use of multitemporal data acquired over an
agricultural area in Spain.

2. Study area and data

2.1. Study area

The agricultural area of Barrax (39◦3′N, 2◦6′W,  700 m)  is located
in Albacete (Spain). The area has been selected in many other
experiments due to its flat terrain, minimizing the complications
introduced by variable lighting geometry, and the presence of large,
uniform land-use units. Barrax has a Mediterranean type climate,
with heavy rainfall in spring and autumn and lower in summer; it
presents a high level of continentality, with sudden changes from
cold months to warm months and high thermal oscillations in all
seasons between the maximum and the minimum daily temper-
atures (Moreno et al., 2001). The soils of the area are Inceptisols
in terms of soil taxonomy, belonging subgroup to Petrocalcic Cal-
cixerepts subgroup (Soil Survey and Staff, 1999). About 65% of
cultivated lands at Barrax are dry land (67% winter cereals; 33%
fallow) and 35% irrigated land (75% corn; 15% barley/sunflower; 5%

alfalfa; 5% onions and vegetables). More details about the test site
are presented in Moreno et al. (2001).  Fig. 1 presents the study area
and the crops used in this study.

2.2. Data

For this study, Landsat images have been provided by the
National Geographic Institute of Spain (Instituto Geográfico
Nacional – IGN), which has launched the National Plan on Remote
Sensing (Plan Nacional de Teledetección – PNT) initiative with the
aim of supporting the use of remote sensing in Spain. In the frame-
work of the PNT, Landsat imagery from 2008 to present has been
acquired over Spain by the IGN and provided for free to interested
users. The IGN also intends to acquire the complete Landsat his-
torical database over the Spanish territory (only some historical
Landsat images are currently available). A complete description of
the processing of these Landsat images by PNT (geometric, radio-
metric, atmospheric and topographic corrections) can be found in
Peces et al. (2010).

Data from Thematic Mapper (TM) sensor on board Landsat-5
platform have been used in this study. This sensor is widely known
by the scientific community, so a detailed description is not pro-
vided in this paper. Just as a reminder, TM sensor has four spectral
bands in the Visible and Near-InfraRed (VNIR) range (blue, green,
red and NIR, corresponding, respectively, to bands 1, 2, 3 and 4),
two bands in the Short-Wave InfraRed (SWIR) range (bands 5 and
7) and one band in the Thermal-InfraRed (TIR) range (band 6). Spa-
tial resolution is 30 m for VNIR and SWIR bands and 120 m for TIR
band. Bandwidths are around 0.1 �m for VNIR bands, 0.25 �m for
SWIR bands and 2 �m for the TIR band.

Since the Barrax site appears in 2 Landsat scenes (corresponding
to paths 199 and 200, row 33), a total of 31 images were available
from January to December 2009, although only 16 images could be
used for this study due to cloud contamination (see Table 1). Data
were labeled as cloud contaminated when at least one cloud could
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Table  1
Available Landsat images of the study site for year 2009.

Image date Quality Observation

13/01/2009 OK
20/01/2009 Cloudy Too cloudy to georeference
05/02/2009 Cloudy Too cloudy to georeference
14/02/2009 OK
02/03/2009 Cloudy Too cloudy to georeference
09/03/2009 OK
03/04/2009 OK
19/04/2009 Cloudy Too cloudy to georeference
26/04/2009 Part cloudy Not used
05/05/2009 OK
12/05/2009 OK
21/05/2009 OK
28/05/2009 Part cloudy Not used
06/06/2009 Cloudy Too cloudy to georeference
13/06/2009 OK
22/06/2009 Part cloudy Not used
29/06/2009 OK
15/07/2009 OK
24/07/2009 OK
31/07/2009 OK
09/08/2009 Part cloudy Not used
16/08/2009 OK
25/08/2009 Cloudy Too cloudy to georeference
01/09/2009 OK
10/09/2009 OK
17/09/2009 Cloudy Too cloudy to georeference
26/09/2009 Cloudy Too cloudy to georeference
13/11/2009 Cloudy Too cloudy to georeference
20/11/2009 OK
29/11/2009 Cloudy Too cloudy to georeference
15/12/2009 Cloudy Too cloudy to georeference

be identified visually in various RGB compositions of the data by an
expert user.

Ancillary data used in this study included a land use map  of
the test area generated in the framework of the Sen3exp field cam-
paign (ESA, 2010), carried out over the Barrax area in June 2009 and
organized by the European Space Agency (ESA) as part of the devel-
opment process for Sentinel-3 Earth Observation mission, and also
MODIS atmospheric products for atmospheric correction purposes,
as will be explained below.

3. Methods

This section describes all the operations carried out on the data
in this work. These operations include pre-processing, processing
and post-processing of the data.

3.1. Pre-processing

First, Landsat images were resized to the Barrax site, destriped
(Horn and Woodham, 1979) and then georeferenced to a lat/lon
grid using a minimum of 16 ground points chosen from a GoogleTM

Earth image of the Barrax site, with the help of ENVI® software.
To this end, specific landscape features were identified in Land-
sat images by an expert user, and warped to a common lat/lon
grid. The resulting images have a dimension of 427 lines and
431 samples, corresponding to longitude and latitude steps of
0◦0′30.35′′ and 0◦0′23.34′′, respectively. Then, images were cali-
brated using radiometric coefficients provided by Chander et al.
(2009), and atmospherically corrected using SMAC radiative trans-
fer code (Rahman and Dedieu, 1994).

3.2. Processing

NDVI parameter was  estimated from Landsat red (band 3) and
infrared (band 4) wavelengths as presented in Eq. (1):

NDVI = (Band 4 − Band 3)
(Band 4 + Band 3)

(1)

As regards LST estimation, the Single-Channel (SC) algorithm
developed by Jiménez-Muñoz and Sobrino (2003) and updated to
Landsat series in Jiménez-Muñoz et al. (2009) has been applied.
Basically, the SC algorithm is based on the radiative transfer equa-
tion applied to the Thermal Infra-Red (TIR) band 6 of TM sensor
on-board Landsat-5. LST (TS) is estimated according to:

TS = �
[

1
ε

( 1Lsen +  2) +  3

]
+ ı (2)

where � and ı are two  parameters computed from at-sensor val-
ues (radiance or brightness temperature);  1,  2, and  3 are
the atmospheric functions obtained from total atmospheric water
vapor contents and � is the surface emissivity. Details are given in
Jiménez-Muñoz et al. (2009).  A complete sensitivity analysis of the
algorithm to different input data such as water vapor and emis-
sivity is also provided in Jiménez-Muñoz and Sobrino (2003). In
this study, water vapor values were extracted from MODIS atmo-
spheric products (MOD05) corresponding to Landsat acquisition
dates. Accuracy of MOD05 is better than 0.5 g/cm2 (or even better,
0.3 g/cm2 for moderate to low water vapor contents) (Albert et al.,
2005). Mean water vapor value provided by MOD05  for the cloud-
free dates considered in this study was 1.6 g/cm2 (with a standard
deviation of 0.6 g/cm2). The single-channel algorithm presented in
Eq. (2) provides LST errors between 1 and 2 K for water vapor val-
ues ranging between 0.5 and 2 g/cm2 (Jiménez-Muñoz et al., 2009).
Land surface emissivity was  estimated using the NDVI thresholds
method applied to Landsat5/TM band 6 (see Sobrino et al., 2004,
2008). This method provides errors on retrieved emissivities below
0.015 (Sobrino et al., 2004; Jiménez-Muñoz et al., 2006). Therefore,
it is expected that LST be retrieved for the study period with accu-
racy better than 2 K, even though a rigorous validation could not be
performed since in situ measurements were not available.

In order not to lose temporal resolution, the iterative Interpola-
tion Data Reconstruction (IDR – Julien and Sobrino, 2010) method
was applied to interpolate cloudy data. However, due to both the
concentration of cloudy images in autumn and winter, and the time
lapse between two  acquisitions (usually reaching one month in
autumn and winter months), no satisfactory reconstructed NDVI
and LST time series were obtained, and the time series reconstruc-
tion had to be discarded.

Then, the YLCD (Julien and Sobrino, 2009) method was applied.
This method consists in plotting in the LST/NDVI space the LST and
NDVI estimations for all available dates for a given pixel, and then in
carrying out a linear regression to retrieve three parameters which
describe the yearly behavior of this pixel. Fig. 2 shows how the
YLCD parameters are retrieved for a given pixel. First, the pixel LST
is normalized between 240 K and 340 K (Normalized Land Surface
Temperature – NLST), in order to normalize the NDVI/LST space, as
well as to reduce noise levels in NDVI and NLST estimations to com-
parable levels (around 2% of the signal maximum amplitude). Then,
NDVI/NLST trajectory is plotted in this normalized space for the
chosen pixel (triangles), and NLST is linearly regressed against NDVI
(dotted line). The YLCD parameters are then retrieved: � is defined
as the angle of the regression line with the NDVI axis (related to
vegetation type); d as the length of the regression segment (related
to vegetation seasonality); and R2 as the regression coefficient,
assessing the adequacy of the linear model to describe vegetation.
� varies between −90◦ and +90◦, with ideal values of 0◦ for ever-
green vegetation, ±90◦ for bare soils with no vegetation, positive
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Fig. 2. Retrieval of YLCD parameters (�, d, R2) from NDVI and normalized LST for a
given pixel. See text for details.

values for temperature or radiation limited vegetation, and nega-
tive values for water limited vegetation. d values range between 0
and 1, with low values for vegetation presenting low seasonality
(constant NDVI or LST), and high values for high seasonal varia-
tions (from snow-covered to fully vegetated surface for example).
R2 values also range between 0 and 1, with low values for noisy
NDVI and LST time series (due for example to cloud or atmospheric
contamination), and high values for vegetation with highest sea-
sonality, and therefore lower noise. For example, errors of 0.02 for
NDVI and NLST for the pixel described in Fig. 2 lead to errors for �
parameter below 2◦, a maximum error for d of 0.02, and errors for
R2 around 0.01. More detail on this method can be found in Julien
and Sobrino (2009).  Since NDVI and LST have different spatial res-
olutions (30 m and 120 m,  respectively), the same LST value was
used for the corresponding NDVI pixels.

3.3. Post-processing

In a first step, average NDVI and LST were retrieved for each date
for all the nomenclature fields shown in Fig. 1. Since the crop census
map  is in UTM projection, referenced fields were identified in NDVI
and LST images by an expert user. Then, each of these nomenclature
fields were parted in two equal areas, one for classification training,
and the other for classification validation. Training and validation
sample sizes appear in Table 3. A maximum likelihood classification
was finally carried out on the three obtained YLCD parameters.

4. Results

This section describes the results obtained regarding both the
YLCD procedure and the classification built from the YLCD param-
eters.

4.1. YLCD approach

Fig. 3 shows the results of the YLCD procedure. The
false color image has been obtained through an IHS
(Intensity–Hue–Saturation) composition, as described in Julien
and Sobrino (2009).  When compared with Fig. 1, this figure shows
that the YLCD procedure allows a clear distinction between some

Fig. 3. Yearly Land Cover Dynamics (YLCD) image of the Barrax site. Color bar indi-
cates � values according to Intensity–Hue–Saturation color composition.

crops (Alfalfa, Bare Soil, Barley, Garlic, Onion), while some other
crops seem more difficult to differentiate (Wheat, Barley and
Onion; Sunflower and Corn). From a general point of view, one
can observe that the general patterns mentioned in Julien and
Sobrino (2009) can also be evidenced here: arid areas (bare soil)
appear in red and purple colors, due to the high LST and low NDVI
annual amplitudes; species with photosynthetic activity during
spring and summer (Sunflower, Corn, Potato) appear in light blue;
while species with photosynthetic activity during summer (Onion)
appear in dark blue. Semi-arid areas usually appear in yellow,
unfortunately the corresponding fields were not referenced dur-
ing the field campaign, although they probably correspond to
unploughed bare soils. All areas in grayish colors correspond to
areas for which the linear model fails to represent adequately the
NDVI and LST yearly cycle of the vegetation.

Fig. 4 displays the values of all 3 YLCD parameters for the Bar-
rax site. The repartition of � parameter is presented in Fig. 4(a).
This figure shows bare soils with low � values (� < −50◦), cereal
crops (wheat, oat, barley) with negative � values (−50 < � < −30◦),
although these � values are also found for “greener” crops (onion,
garlic), due to the fact that the pixel proportion of bare soil for these
latter crops is high. On another hand, green crops (corn, sun flower,
potato, alfalfa) have positive � values, with sometimes values close
to 0, which may  be surprising since NDVI is expected to vary from
sowing to harvest. This can be explained by the high proportion
of clouds during winter, during which these fields are bare, and
therefore eliminated from the analysis. Fig. 4(b) presents the distri-
bution for d parameter. This figure shows that d values range mainly
between 0.1 and 0.5. Once again, bare soils can be easily identified
(0.1 < d < 0.2), while most crops have superior values (0.2 < d < 0.5),
with generally higher d values for wheat and barley, slightly lower
for corn, sun flower and potato. Alfalfa crops show low d values
(0.1 < d < 0.2), which can be explained by the fact that these crops
are partially harvested several times a year, resulting in low NDVI
variations. Finally, Fig. 4(c) presents R2 values for the Barrax site.
These R2 values span the whole parameter range [0,1], with some
inhomogeneities within fields. Lowest R2 values are obtained for
potato crop (0 < R2 <0.1), followed by sun flower (0 < R2 < 0.3), alfalfa



Author's personal copy

Y. Julien et al. / International Journal of Applied Earth Observation and Geoinformation 13 (2011) 711–720 715

Fig. 4. Yearly land cover dynamics (YLCD) parameters as retrieved at Barrax site:
(a)  �, (b) d, and (c) R2.

Table 2
YLCD parameter characteristics for all referenced fields (see Fig. 1).

� d R2

E(X) �X E(X) �X E(X) �X

AL01 −12.3 4.1 0.54 0.04 0.09 0.06
AL02 −3.1 3.3 0.52 0.03 0.01 0.02
B01 −11.4  3.2 0.69 0.03 0.12 0.05
B03 −24.2  3.4 0.55 0.04 0.16 0.04
B07 −21.5  5.8 0.40 0.03 0.08 0.03
BS07 −69.8 4.1 0.51 0.01 0.50 0.10
BS10 −67.5 5.7 0.49 0.02 0.32 0.15
BS12 −67.4 5.4 0.48 0.03 0.28 0.12
C01 7.3 3.8 0.69 0.05 0.12 0.08
C02 12.0 3.9 0.71 0.03 0.38 0.13
C03 8.7 2.2 0.72 0.02 0.25 0.08
C04  14.2 3.8 0.69 0.03 0.43 0.11
FR01 −48.6  11.1 0.43 0.05 0.24 0.11
G01 −14.7 3.8 0.46 0.03 0.06 0.03
O01 41.1 5.2 0.49 0.05 0.62 0.15
O02 29.1 5.6 0.53 0.04 0.47 0.10
O03 30.2 6.6 0.49 0.04 0.42 0.12
OT02 −5.6 3.7 0.66 0.03 0.03 0.04
OT03 −7.0  2.0 0.70 0.04 0.04 0.02
OT04 −3.3 2.6 0.67 0.03 0.02 0.01
PT01 2.2 3.5 0.70 0.02 0.03 0.05
SF01 8.9 5.6 0.59 0.05 0.11 0.10
SF02 8.2 5.1 0.67 0.03 0.14 0.12
W01  −7.8 3.5 0.67 0.04 0.06 0.05
W02  −13.3 1.7 0.73 0.02 0.13 0.03
W03 −14.3  3.0 0.70 0.03 0.14 0.07

E(X) = average value.
�X = standard deviation.

(0 < R2 <0.4), corn (0 < R2 <0.5), garlic (0.4 < R2 <0.5), while cereals
(barley, wheat and oat), onion and bare soils present higher values
(0.8 < R2 <1).

In order to estimate if these differences are sufficient for build-
ing a land use classification from YLCD parameters, average and
standard deviations have been estimated for all YLCD parameters
and all referenced fields in Fig. 1. These statistics are presented
in Table 2. This table shows that statistics are similar within crops,
showing good crop homogeneity over different fields, except in the
case of Alfalfa, Barley, Onion and Wheat. These latter crops may
exhibit these differences to different irrigation schemes, resulting
in slightly different crop phenologies. Additionally, the Fruit Tree
field shows an abnormally high standard deviation in � parameter,
which is due to the fact that this field consisted in young pistachio
trees (separated by 3 m)  surrounded by bare soil, with an estimated
fractional vegetation cover lower than 10%. Therefore, at a 30 m
resolution, each pixel includes both pistachio trees and bare soil in
variable proportions. Table 2 also shows that some crops may  be
difficult to distinguish from others. For example, W02, W03, G01
and B01 present similar characteristics, while SF01 and SF02 YLCD
parameter range is included in the variability range of corn fields
(C01, C02, C03 and C04).

4.2. Classification

The study area has been classified from YLCD parameters
through a maximum likelihood classification, using all labeled
fields in Fig. 1 to generate crop statistics. In order to increase the
accuracy of the classification, two  additional classes were created,
corresponding to non-irrigated barley (B03 and B07) and non-
irrigated wheat (blue rectangular fields, not referenced in Fig. 1).
Only half of the pixels of each labeled field has been used for the
classification, the other half being spared for validation purposes.
The obtained classification is presented in Fig. 5. This classification
shows that, as expected, some crops are misclassified, for example
Corn and Potato; Barley and Wheat; or Bare Soil and Fruit Trees. The
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Table 3
Confusion matrix for the classification obtained from YLCD parameters.

Class Alfalfa Barley Bare Soil Corn Fruit Tree Garlic Onion Oat Potato Sunflower Wheat Wheat NI Barley NI Total

Alfalfa 174 3 0 0 0 0 0 3 0 1 3 0 0 184
Barley 0 511  0 0 0 0 0 2 0 0 124 95 0 732
Bare  Soil 0 0 475 0 2 0 0 0 0 0 0 0 0 477
Corn  0 0 0 336 0 0 0 0 15 83 0 0 0 434
Fruit  Tree 0 0 5 0 12 0 0 0 0 0 0 0 0 17
Garlic 0 0 0 0 0 134 0 0 0 0 0 0 52 186
Onion 0 0 0 0 0 0 178 0 0 1 0 0 0 179
Oat 2 118 0 1 0 0  0 104 3 2 104 9 0 343
Potato 0 6 0 107 0 0 0 10 283 115 0 0 0 521
Sunflower 8 0 0 44 0 0 5 1 12 416 0 0 0 486
Wheat 1 113 0 0 0 0 0 5 0 0 149 29 0 297
Wheat NI 0 109 0 0 0 0 0 0 0 0 12 123 0 244
Barley NI 1 6 0 0 6 4 0 1 0 0 0 0 254 272
Total 186 866 480 488 20 138 183 126 313 618 392 256 306 4372

NI = non-irrigated.

confusion between Bare Soil and Fruit Tree is easy to understand,
since, as explained above, Fruit Tree fields consist of isolated trees
on a bare soil. From the YLCD parameter statistical analysis carried
above, the misclassification of Barley and Wheat is not surprising
either. As regards the confusion between Corn and Potato, it is due
to their similarity in d and R2 parameters, combined with a small
difference in � parameter. For example, W01  field appears wrongly
as a juxtaposition of Wheat, Onion and Barley crops. Excepting
these few exceptions, the classification shows a good homogeneity
within field units.

Table 3 shows the confusion matrix corresponding to the classi-
fication. This confusion matrix was obtained by comparison of the
YLCD parameter classification with the validation data mentioned
above. For this confusion matrix, two types of crops were added
to the ones presented above, in order to differentiate between irri-
gated and non-irrigated barley and wheat fields. For example, B01
is an irrigated barley field, while B03 and B07 are not irrigated.
This difference explains the difference shown in Table 2 as regards
YLCD parameter statistics by field. The kappa coefficient for this
classification is 0.69, and the classification accuracy is 72%.

5. Discussion

The kappa coefficient obtained by this classification shows that
some crops are not identified correctly. Fig. 6 shows NDVI and LST
evolutions for year 2009 for all the referenced fields. Fig. 6a1 shows
that alfalfa fields are harvested several times a year, which explains

Fig. 5. Classification of the Barrax site based on the YLCD parameters.

the low R2 value obtained from the YLCD procedure for this crop.
Moreover, this same graph shows that harvesting dates can dif-
fer (last harvest day of year 228 for AL01 and 244 for AL02), and
therefore diminishes the intra-class coherence of the training and
validation data. As observed above, some crops have almost iden-
tical NDVI and LST annual evolution (W01, W02, W03  and B01 on
one hand; SF01, SF02, C01, C02, C03 and C04 on the other). On the
contrary, barley crops do not show the same NDVI behavior. This
is explained by the fact that B01 field is pivot-irrigated, while B03
and B07 fields are not irrigated, and therefore these fields are more
subject to water stress, which results in a lesser development of the
plants. Wheat (W01, W02  and W03) and barley (B01) crops have
very similar plant structure and phenology, reinforced by the simi-
lar irrigation pattern applied to them. The same observation is valid
for sunflower and corn crops, which also present the peculiarity of
a flat summer LST profile, due to their high foliage density which
allow them to regulate their temperature by stomatal evapotran-
spiration.

We merged irrigated wheat and barley crops in the same class,
and carried out a maximum likelihood classification scheme as
described above. The kappa coefficient obtained with this classi-
fication is 0.79, with classification accuracy above 82%. If we  merge
all irrigated cereal crops (barley, wheat and oat) in a single class, the
resulting classification present a kappa coefficient of 0.85, and clas-
sification accuracy above 87%. This shows that the YLCD approach
is useful for classifying crops, although similar plants cannot be
differentiated by this method.

Due to Landsat sensor characteristics, NDVI and LST data are not
retrieved at the same resolution: channels 3 and 4 have a ground
resolution of 30 m,  which results (Eq. (1))  in an estimation of NDVI
at 30 m,  while LST is estimated at 120 m ground resolution. How-
ever, Goetz (1997) demonstrated that the NDVI/LST relationship is
stable over different spatial resolutions, so the difference in spa-
tial resolution between NDVI and LST should not affect the results
presented here.

As mentioned in the previous section, different phenologies
within the same crop (although in different fields, with possibly dif-
ferent irrigation schemes) may  decrease the separability between
classes, through a larger dispersion of the YLCD parameters within
a same class. For example, a delay in irrigation may  cause smaller
leaves than expected, resulting in lower NDVI value and higher LST
(due to a lesser evapotranspiration), which would lead to changes
in �, d, and R2 values. Additionally, inhomogeneities for Fruit Tree
fields increase the error in classification since part of this crop can
be described as bare soil.

In order to assess the validity of the YLCD-based classification, a
more conventional classification has been conducted directly on
Landsat data. To this end, Landsat image for 29 June 2009 was
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Fig. 6. Description of NDVI and LST trajectories for various crops and land uses. Description of NDVI and LST trajectories for various crops and land uses.
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Fig. 6. (Continued).

chosen, since this date corresponds to vegetation activity for most
crops (see NDVI curves in Fig. 6). A maximum likelihood classifi-
cation was conducted on all 7 bands, using the same training and
validation pixels as for the YLCD classification. This classification is
shown in Fig. 7. This classification presents a kappa value of 0.68,
with an overall accuracy of 71%. When merging all irrigated cereal
crops as done for YLCD classification, kappa value increases to
0.80, and overall accuracy to 82%. Therefore, the YLCD classification
performs slightly better than a traditional Landsat classification,
although when comparing Figs. 3 and 5, some bare field delimi-
tations are clearer for the traditional Landsat classification, due to

the confusion of the YLCD classification between bare soil and fruit
trees.

Ehrlich and Lambin (1996) obtained classification accuracies
between 75% and 85% with their BT/NDVI slope method depending
on the chosen validation dataset. Nemani and Running (1997) man-
aged to obtain classification accuracy above 90% when using broad
classes, which decreased to 73% when using more specific classes.
It should be mentioned that these works used broad classes for
regional classification, while the work presented here relies on crop
differentiation, which is obtained satisfactorily when differentiat-
ing between irrigated and non-irrigated crops, and when merging
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Fig. 7. Classification of the Barrax site based on all 7 Landsat bands for 29 June 2009.

all cereal crops in the same class. Therefore, when using the YLCD
method for vegetation classification, one has to keep in mind that
this method is based on annual LST and NDVI evolutions, and that
the differentiation between crops with similar LST and NDVI annual
behaviors may  be difficult. The results presented here show that
when the method is applied in agreement with this observation, it
yields good results in crop differentiation.

6. Conclusion

This paper has described a methodology to classify crop vege-
tation through the use of the Yearly Land Cover Dynamics (YLCD)
method, which is based on the annual behavior of NDVI and LST
parameters. When applied to an agricultural site, this approach
allows an accurate classification of the represented fields, although
cereal cultures had to be merged in a single class due to their sim-
ilarity. Additionally, irrigated and non-irrigated crops had to be
separated in different classes due to strong differences in NDVI and
LST annual behaviors.

These results show that the YLCD approach is suited for veg-
etation classification at local scale, and therefore could be used
to monitor and assess land cover change at local scale, through
a yearly classification of a given area such as the agricultural
site chosen in this study. As regards the ability of the YLCD
approach to monitor and assess land cover change at broader scale
(regional to global), it will be explored by the authors in a near
future.

Acknowledgements

The authors would like to thank the Laboratory for Earth
Observation (LEO) group of the University of Valencia for pro-
viding the Barrax field nomenclature image, Jordi Cristóbal
(CREAF-Autonomous University of Barcelona) for assistance
with Landsat radiometric calibration issues and the Instituto
Geográfico Nacional (IGN, Spain) for providing Landsat imagery.
The authors also wish to thank the European Union (CEOP-
AEGIS, Project FP7-ENV-2007-1, Proposal No. 212921; WATCH,
Project 036946) and the Ministerio de Ciencia y Tecnología
(EODIX, Project AYA2008-0595-C04-01) for their financial sup-
port.

References

Albert, P., Bennartz, R., Preusker, R., Leinweber, R., Fischer, J., 2005. Remote sensing
of atmospheric water vapor using the moderate resolution imaging spectrora-
diometer. Journal of Atmospheric and Oceanic Technology 22, 310–314.

Borak, J.S., Lambin, E.F., Strahler, A.H., 2000. The use of temporal metrics for land
cover change detection at coarse spatial scales. International Journal of Remote
Sensing 21 (6 & 7), 1415–1432.

Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric cal-
ibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors,. Remote
Sensing of Environment 113, 893–903.

Ehrlich, D., Lambin, E.F., 1996. Broad scale land-cover classification and interannual
climatic variability. International Journal of Remote Sensing 17 (5), 845–862.

ESA, 2010. Sentinel 3 Experimental campaign, Final Report, ESA, p. 294.
Evans, J.P., Geerken, R., 2006. Classifying rangeland vegetation type and coverage

using a Fourier component based similarity measure. Remote Sensing of Envi-
ronment 105, 1–8.

Goetz, S.J., 1997. Multi-sensor analysis of NDVI surface temperature and biophysical
variables at a mixed grassland site. International Journal of Remote Sensing 18
(1), 71–94.

Holben, B.N., 1986. Characteristics of maximum-value composite image from tem-
poral AVHRR data. International Journal of Remote Sensing 7, 1417–1434.

Horn, B.K.P., Woodham, R.J., 1979. Destriping LANDSAT MSS images by histogram
modification. Computer Graphics and Image Processing 10, 69–83.

IPCC, 2007. Climate change 2007: the physical science basis – Summary for policy-
makers, IPCC Fourth Assessment Report.
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