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Abstract

We introduce a new wavelet-based tool called windowed scalogram difference (WSD),
which has been designed to compare time series. This tool allows quantifying if two time
series follow a similar pattern over time, comparing their scalograms and determining if
they give the same weight to the different scales. The WSD can be seen as an alternative
to another tool widely used in wavelet analysis called wavelet squared coherence (WSC)
and, in some cases, it detects features that the WSC is not able to identify. As an
application, the WSD is used to examine the dynamics of the integration of government
bond markets in the euro area since the inception of the euro as a European single
currency in January 1999.

1 Introduction

Quantifying relationships between time series has been historically one of the most frequently
addressed issues by most scientific disciplines. A large number of mathematical and statis-
tical methods have been developed and applied for measuring the strength and direction of
relationships between time series. The great majority of these techniques have focused on the
time domain. Correlation and regression analysis constitute the first and most popular tools
to quantify the association between time series. Subsequently, a number of more sophisticated
time series methods, including cointegration analysis [1], Granger causality tests [2], vector
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autoregressive (VAR) models [3] or generalized autoregressive conditional heteroscedastic-
ity (GARCH) models [4, 5] have been also used for the same purpose. In addition, several
newly introduced techniques, such as the combined cointegration approach [6], the quantile-
on-quantile method [7], the quantile correlation approach [8], the nonlinear autoregressive
distributed lag (NARDL) model [9], or the quantile autoregressive distributed lag (QADL)
method [10] are also very useful to assess the linkages among time series. An obvious limi-
tation of these approaches is that they are restricted to one or at most two time scales, i.e.
the short run and the long run. In some fields, such as economics and finance, traditional
time domain models are insufficient to describe precisely the linkage between variables. For
example, financial markets are complex systems consisting of thousands of heterogeneous
agents making decisions over a different time frame (from minutes to years), so that the re-
lationships between economic and financial variables may vary across time scales associated
to different investment horizons of market participants (see [11]). To remedy this situation,
a body of literature seeking to characterize the connection between time series at different
frequencies has been also developed. The Fourier analysis represents the best exponent of this
line of research focused on the frequency domain, although it has serious shortcomings. In
particular, under the Fourier transform the time information is completely lost, so it is hard
to distinguish transient relations or to identify structural changes. Therefore, this approach
is not suitable for non-stationary processes (see [12]).

In this context, the wavelet theory is a very versatile methodology that allows to study a
wide range of different signal properties. Due to this great flexibility, wavelet methods have
been applied to many disciplines such as geophysics [13,14], meteorology [15,16], engineering
[17,18], medicine [19,20], image analysis [21,22], economics [11,23], or, for instance, recently
they have been used for measuring the degree of non-periodicity of a signal [24]. Hence,
the wavelet analysis emerges as an appealing alternative to the Fourier transform that takes
into account both time and frequency domains simultaneously, whose primary advantage
is its ability to decompose any signal into time scale components. This property offers a
unique opportunity to study relationships between time series in both, time and frequency
domains, at the same time. In fact, wavelet techniques can reveal interactions which would
be, otherwise, hard to detect by using any other statistical procedure.

The aim of this paper is to propose a novel wavelet-based tool, called windowed scalogram
difference (WSD), which has been designed to compare time series. As its name suggests,
this new measure is based on the concept of wavelet scalogram, restricted, however, to a finite
window in time and scale. The main feature of the WSD is that it allows to assess whether
two time series, measured preferably in the same units, follow a similar pattern over time
and/or across scales (or frequencies) through the comparison of their respective scalograms
for different windows in time and scale. The WSD can be regarded as an alternative tool to
the widely applied wavelet squared coherence (WSC) [14,16], in the sense that both measures
serve to evaluate the level of association between two time series, although from slightly
different perspectives. As a matter of fact, in some cases (see Figure 1), the WSD detects
certain features that the WSC is not able to identify.

The paper is organized as follows. Section 2 introduces the concept of WSD, including
some practical aspects and simulation results on the validity of this tool. In Section 3, the
WSD is applied to real data to test its validity, examining the dynamics of the integration of
government bond markets in the euro area since the inception of the euro in January 1999.
Finally, Section 4 concludes the paper.

2 The windowed scalogram difference (WSD)

This section starts presenting some basic notions of wavelet theory and recalling the concept
of wavelet scalogram. Subsequently, the concept of WSD is formally introduced as a tool for
measuring the degree of similarity between two time series. Finally, some important practical
aspects for the application of the WSD are discussed.
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2.1 Basic concepts of Wavelets

A wavelet is a function ψ ∈ L2 (R) with zero average (i.e.
∫
R ψ = 0), normalized (‖ψ‖ = 1)

and “centered” in the neighborhood of t = 0 ( [25]). Scaling ψ by s > 0 and translating it by
u ∈ R, we can create a family of time–frequency atoms (also called daughter wavelets), ψu,s,
as follows

ψu,s(t) :=
1√
s
ψ

(
t− u
s

)
. (1)

Given a time series f ∈ L2 (R), the continuous wavelet transform (CWT) of f at time u
and scale s with respect to the wavelet ψ is defined as

Wf (u, s) := 〈f, ψu,s〉 =

∫ +∞

−∞
f(t)ψ∗u,s(t) dt, (2)

where ∗ denotes the complex conjugate. The CWT allows us to obtain the frequency com-
ponents (or details) of f corresponding to scale s and time location u, thus providing a
time-frequency decomposition of f .

On the other hand, the dyadic version of (1) is given by

ψj,k(t) :=
1√
2k
ψ

(
t− 2kj

2k

)
, (3)

where j, k ∈ Z (note that there is an abuse of notation between (1) and (3), nevertheless
the context makes it clear if we refer to (1) or (3)). It is important to construct wavelets so
that the family of dyadic wavelets {ψj,k}j,k∈Z is an orthonormal basis of L2 (R). Thus, any
function f ∈ L2 (R) can be written as

f =
∑
j,k∈Z

dj,kψj,k, (4)

where dj,k := 〈f, ψj,k〉 is the discrete wavelet transform (DWT) of f at time 2kj and scale
2k. In fact, the DWT is the particular dyadic version of the CWT given by (2).

The scalogram of a time series f at a given scale s > 0 can be defined as

S(s) :=

(∫ +∞

−∞
|Wf (u, s) |2 du

)1/2

. (5)

The scalogram of f at s is the L2-norm of Wf (u, s) (with respect to the time variable u)
and captures the “energy” of the CWT of the time series f at this particular scale. It allows
for the identification of the most representative scales of a time series, that is, the scales that
contribute most to its total energy. The rationale behind the use of this measure is that if
two time series show a similar pattern, then their scalograms should be very similar. In this
regard, it is important to point out certain requirements for two time series have the same
scalogram. The next proposition can be easily proved by considering appropriate changes of
variables.

Proposition 2.1. Let f ∈ L2 (R) be a time series and c ∈ R. Then, −f(t), f(t) + c
and f(t + c) have the same scalogram as f(t). Moreover, if the wavelet ψ is symmetric or
antisymmetric, i.e. ψ(−t) = ±ψ(t) (e.g. Haar, Mexican Hat, Morlet, etc.), then f(−t) has
also the same scalogram.

It is worth highlighting that most wavelets are “almost” symmetric or antisymmetric (e.g.
Daubechies). In this case,

± f (±t+ c1) + c2 (6)

has approximately the same scalogram as f(t), where c1, c2 ∈ R. So, we will say that (6)
follows the same pattern as f(t).
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2.2 The scalogram difference

The scalogram of a time series can be redefined by making a change of variable. Taking into
account the decomposition of a function by means of the DWT (see (4)), it is convenient to
use base 2 power scales, and thus

S(k) :=

(∫ +∞

−∞
|Wf

(
u, 2k

)
|2 du

)1/2

, (7)

where k ∈ R is the binary logarithm of the scale (again, there is an abuse of notation that
will be clarified by the context, this time between (5) and (7)), which is called log-scale. Note
that in (7) we use the CWT and k ∈ R, while in the framework of the DWT k ∈ Z (e.g. in
(3)).

Hence, the scalogram difference of two time series f, g at log-scale k and log-scale radius
r can be defined as

SDr(k) :=

(∫ k+r

k−r

(
S(κ)− S ′(κ)

S(κ)

)2

dκ

)1/2

, (8)

where S,S ′ represent the scalogram of f, g, respectively. It is expected that for two time
series with similar behavior, their scalogram difference takes very small values.

Remark 2.1. Obviously, equation (8) has sense only when the two series considered are
expressed in the same unit of measure. Otherwise, it will be necessary to somehow normalize
the scalograms, but depending on the normalization method, some artificial results could be
added. Due to this, it is recommended to consider only series with the same measurement
unit. Nevertheless, there are some normalization alternatives for series with different units of
measure. For example, if we are interested only in a finite interval of log-scales [kmin, kmax]
(e.g. if data are only available in this interval), we can normalize the scalograms so that their
L2-norms are the same (e.g. 1) in that interval

S(k) =

(∫ kmax

kmin

|S(κ)|2 dκ

)−1/2
S(k). (9)

In this way, the total energy of the CWT of both series will be the same and so, we
can compare the relative contributions of each scale∗. Note that for a proportionality
constant α > 0, the scalogram of αf is equal to αS(k) and, therefore, by taking α :=(∫ kmax

kmin
|S(κ)|2 dκ

)−1/2
> 0 the scalogram of αf coincides with S(k). Hence, multiplying the

original time series by this proportionality constant α implies a scalogram normalization†.
Finally, we can apply (8) (using (9) instead of (7)) for obtaining a normalized scalogram

difference. We can arrive at the same definition if we previously normalize the time series,
i.e. by considering αf, α′g instead of f, g, where α, α′ are the appropriate proportionality
constants. Thus, from now on we assume that the time series are normalized or they use the
same unit of measure.

Remark 2.2. Note that (8) computes the difference relative to the scalogram of the first
time series and, therefore, it is not commutative. Hence, instead of (8), it is preferable to
consider the following commutative scalogram difference

1

2

(∫ k+r

k−r

(
S(κ)− S ′(κ)

S(κ)
+
S(κ)− S ′(κ)

S ′(κ)

)2

dκ

)1/2

. (10)

∗It is worth mentioning that the interval considered [kmin, kmax] must contain all the relevant log-scales
because we are computing the total energy by means of the scalogram in this interval
†There are other possibilities that work well even if the interval of log-scales is not finite or the scalogram

is not in L2, such as to normalize the scale of maximum amplitude (called peak scale) if it exists. In this
case, the proportionality constant α must be the quotient between these amplitudes.
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Remark 2.3. Some problems can arise in (8) or (10) when a scalogram is zero or close to
zero for a given log-scale because the scalogram difference can take extremely high values
or produce numerical errors. An easy solution is to multiply both scalograms by the same
constant in order to make that their means (if they exist) are large in comparison with 1
(e.g. 100), and then to add 1 to both scalograms. So, in (8) and (10), it is recommended to
consider

βS(k) + 1, βS ′(k) + 1 (11)

instead of the original scalograms S(k), S ′(k), respectively, where β is a parameter given by
100/min {mean(S(k)),mean(S ′(k))}. These new scalograms given by (11) will be practically
proportional to the original ones and so, the results will be practically the same except,
obviously, for the log-scales in which a scalogram takes values close to zero.

Remark 2.4 (Discrete and finite time series). In practice, time series are sampled with a
finite frequency producing a finite sequence of values, which can be considered a sampling of a
realization of the infinite ensemble of the real time series. When dealing with multiresolution
analysis of a finite length time series, border or edge effects inevitably appear (see [25, Section
3.3]).

Let us consider a discrete set of times t0, . . . , tN with stepsize 4t, i.e. ti = t0 + i4t
for i = 0, . . . , N , and a finite time series of N data f0, . . . , fN−1 defined over t0, . . . , tN−1.
We can still use the CWT and apply the definition (7) by considering, for example, the
corresponding step function defined from the original time series. We could also consider
a piecewise linearization instead of the step function, but the results are very similar for
not too short series. Moreover, there are some alternatives to make f vanish outside the
interval [t0, tN [, such as using periodic wavelets, folded wavelets or boundary wavelets (see
[25]). However, these methods either produce large amplitude coefficients at the boundary
or seriously complicate the calculations.

On the other hand, we also have a finite interval of scales to be studied: usually the
minimum scale is assumed to be smin = 24t and the maximum scale is given by smax =
N4t/l, where l is the size of the original wavelet function that we use. For instance, the
size of the Daubechies n wavelet is 2n − 1, and the size of the Morlet wavelet is considered
to be 8. In this case, the limits of the log-scales are kmin = log2(smin) = 1 + log2(4t) and
kmax = log2 (smax). Thus, we can adapt the expression (8) to this situation, so that the
scalogram difference can be written as

SDr(k) :=

(
2r

kright − kleft

∫ kright

kleft

(
S(κ)− S ′(κ)

S(κ)

)2

dκ

)1/2

, (12)

where kleft := max (k − r, kmin) and kright := min (k + r, kmax). The factor 2r
kright−kleft

is

optional to counteract the border effects in the log-scale interval. Its commutative version
derived from (10) can be also considered.

2.3 The windowed scalogram difference (WSD)

The windowed scalogram of a time series f centered at time t with time radius τ can be
defined as

WSτ (t, k) :=

(∫ t+τ

t−τ
|Wf

(
u, 2k

)
|2 du

)1/2

. (13)

The windowed scalogram is simply the scalogram presented in (7) restricted to a given finite
time interval [t− τ, t+ τ ]. Its principal feature is that it allows determining the relative
importance of the different scales around a given time point.
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Based on the above concept, the windowed scalogram difference (WSD) of two time series
f, g centered at (t, k) with time radius τ and log-scale radius r is given by

WSDτ,r(t, k) :=

(∫ k+r

k−r

(
WSτ (t, κ)−WS ′τ (t, κ)

WSτ (t, κ)

)2

dκ

)1/2

, (14)

where WSτ ,WS ′τ denote the windowed scalogram of f, g, respectively. The commutative
version of the WSD (adapted from (10)) is recommended. Moreover, the reasoning given in
Remark 2.3 can be easily adapted in order to avoid problems when the windowed scalograms
take values close to zero.

As can be seen in (14), the WSD measures the difference between the windowed scalograms
of two time series. It enables us to quantify the level of similarity between two time series
for different finite time and scale intervals.

Remark 2.5 (Discrete and finite time series). By considering finite time series defined over a
discrete set of times (as in Remark 2.4) and the corresponding step function, there also arise
the aforementioned border effects in the windowed scalogram when t− τ < t0 or t+ τ > tN .
In this case, the expression (13) can be also adapted, writing the windowed scalogram as

WSτ (t, k) :=

(
2τ

tright − tleft

∫ tright

tleft

|Wf
(
u, 2k

)
|2 du

)1/2

, (15)

where tleft := max (t− τ, t0) and tright := min (t+ τ, tN ). The factor 2τ
tright−tleft

is optional

to counteract border effects in the time interval.
Analogously, the WSD in (14) can also be modified to reduce border effects. So, it can

be rewritten as

WSDτ,r(t, k) :=

(
2r

kright − kleft

∫ kright

kleft

(
WSτ (t, κ)−WS ′τ (t, κ)

WSτ (t, κ)

)2

dκ

)1/2

, (16)

where kleft := max (k − r, kmin), kright := min (k + r, kmax), and kmin, kmax are those con-
sidered in Remark 2.4.

2.4 Wavelet squared coherence

The WSD can serve as an alternative or complement to the wavelet squared coherence (WSC)
(see [14, 16]), which represents a widely employed measure in the wavelet framework. Both
tools are very helpful to assess the degree of association between two time series, but they
concentrate on slightly different aspects of the relationship. According to [16], the WSC
between two time series f(t) and g(t) is defined by

WSC(u, s) =
|S
(
s−1Wfg(u, s)

)
|2

S (s−1|Wf(u, s)|2)S (s−1|Wg(u, s)|2)
, (17)

where Wfg(u, s) = Wf(u, s)Wg∗(u, s) is the cross-wavelet spectrum and S is a smoothing
operator in both time and frequency. This smoothing operator is the only parameter that
can be changed and, in this paper, we will always use a gaussian filter (following [16]).
The WSC (17) ranges from 0 (no correlation) to 1 (perfect correlation) and is analogous to
the squared correlation coefficient in linear regression. This concept is particularly useful for
determining the regions in the time-frequency domain where two time series have a significant
co-movement or interdependence, reflecting the local linear correlation between the series.

In contrast, the WSD compares the behavior of two time series through their respective
scalograms for different windows in time and scale, thus allowing to ascertain the particular
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scales and time intervals in which both time series exhibit a similar pattern, comparing
their scalograms and determining if they give the same weight to the different scales. Thus,
the WSD is able to detect features that go unnoticed by the WSC (see Figure 1). It is
worth highlighting that the great flexibility of the WSD arises from the possibility of shifting
the length of time and scale windows. Nevertheless, as it is stated in Remark 2.1, it is
recommended that the two series have the same unit of measurement to avoid spurious
results due to normalization.

2.5 Practical aspects of the WSD

Despite the modifications made in the definition of the WSD in order to mitigate border
effects in time and log-scale intervals, these effects do not disappear completely and, therefore,
large scales and times close to the boundaries are still affected. An effective method for further
minimizing border effects is to perform a Monte Carlo simulation, computing the WSDs of
a large number of pairs of random time series with the same length as the original signals
f, g. Next, at each (t, k) the original WSD is divided by the mean at (t, k) of these WSDs,
thus obtaining a modified WSD in which values greater than 1 denote significant differences
between the patterns of f and g.

To facilitate comparison with the WSC, for which high values indicate a high degree of
similarity, it is worthy to plot the log2

(
WSD−1

)
rather than WSD. In this way, on the

one hand, we have a direct relationship between the value of log2

(
WSD−1

)
and the level of

similarity between the patterns of the two time series. On the other hand, the logarithmic
scale enhances the plot clarity. Moreover, if, as stated above, the original WSD is divided by
the mean of a Monte Carlo simulation, then negative values of log2

(
WSD−1

)
stand for low

similarity and positive values stand for high similarity.
Additionally, it is worth mentioning that the WSD is defined in relative terms, i.e. we can

not compare the scalogram differences of two distinct pairs of time series that use different
units of measure or are not normalized as discussed in Remark 2.1. So, it is important
to conduct a statistical significance analysis, e.g. by using Monte Carlo techniques (taking
advantage of the previous simulation).

For example, Figure 1 shows a comparison between the graphs corresponding to the WSC‡

and the logarithm of the inverse of the commutative WSD for the same pair of time series
by employing the Morlet wavelet§. These time series have 1 500 values and are generated
according to the following processes

f(t) := N(0, 1) + sin (t/10)

g(t) := N(0, 1) + sin (t/10) + χ[500,1000](t) sin (t/2) ,
(18)

for t = 1, . . . , 1 500, where χ[500,1000] is the characteristic function of the interval [500, 1000].
The time series f is the sum of two components. The first component, N(0, 1), represents a
random number generated from a normal distribution with a mean of 0 and a variance of 1,
while the second component, sin (t/10), is a sine with a period of 20π ≈ 62.83. In turn, the
time series g has an additional component, sin (t/2), a sine with a period of 4π ≈ 12.57, which
only applies if t ∈ [500, 1 000]. For computation of the WSD we have employed a window
with time radius 50 and log-scale radius 5/12. The WSC and the logarithm of the inverse of
the WSD are displayed by using contour plots as they involve three dimensions: scale, time
and level of association between the two time series considered. Instead of the scale, we have

‡The computations of the WSC in this study have been performed by using a MatLab program written
by C. Torrence and G. P. Compo available at http://paos.colorado.edu/research/wavelets/.
§The Morlet wavelet has become one of the most popular wavelet families because of its optimal joint

frequency concentration (see [14]). Moreover, the Morlet wavelet simplifies the interpretation of the wavelet
analysis as it implies a very simple inverse relationship between scale and frequency (see [12, 19]).

7



Figure 1: Contour plots of the wavelet squared coherence (WSC, left) and the logarithm
of the inverse of the commutative windowed scalogram difference (WSD, right) for the pair
of time series given by (18). The color scale on the right of the graphs shows the level of
comovement (WSC) or similarity (WSD). The lighter the color the higher the comovement
or similarity of the two time series considered. The black contour line designates areas in
which the WSC or WSD are significant at the 5% level, which have been estimated using
Monte Carlo simulation. The thin black line denotes the cone of influence. The rectangular
areas in the margins of the WSD where there are also border effects are shown by a thin gray
line. The WSD has been calculated by using a window with time radius 50 and log-scale
radius 5/12. Only the WSD detects the lack of connection between both time series at scale
4π in the interval t ∈ [500, 1 000] (white dashed line).

represented the corresponding Fourier period which, in the case of the Morlet wavelet used
here, is calculated by multiplying the scale by the Fourier factor 1.033044 aprox. (see [15]).
Fourier period and time are represented on the vertical and horizontal axes, respectively. The
association between the two time series is depicted in both wavelet tools by a gray scale. The
extent of linkage is interpreted in terms of the intensity of the gray color, so that the shades
of gray range from white (high level of similarity) to black (low level of similarity). The
thick black continuous line isolates regions where the association is statistically significant at
the 5% level. The statistical significance level of the WSC and WSD is estimated through
Monte Carlo simulation methods. Specifically, 1 000 pairs of time series of the same length as
the original time series and normally distributed with the same variance as the series under
examination have been generated. Then, the WSD and WSC for each pair of random time
series have been estimated and the corresponding results have been used for determining the
significance level. Moreover, in both tools the thin black line indicates the cone of influence,
below which edge effects become important. Hence, values outside the cone of influence
should be interpreted carefully (see [15]). In addition, the rectangular areas in the margins
of the WSD graph (thin gray lines) where there exist edge effects resulting from the use of
windows with a certain size are also displayed.

The comparison of estimated WSC and WSD in Figure 1 reveals that both tools identify a
similar pattern in the two time series under analysis at scale 20π (black dotted line) induced
by the common term sin (t/10) during the full sample. However, only the WSD detects
the lack of connection between both time series at scale 4π in the interval t ∈ [500, 1 000]
(white dashed line) due to the presence of the term sin (t/2) in the second time series but
not in the first one. Therefore, this figure clearly shows that the WSD enables one to detect
dissimilarities between two series that remain unnoticed by the WSC.

Figures 2, 3 and 4 illustrate how different choices of the window size affect to the estimated
WSD between the two time series considered. Visual inspection of these figures shows that
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Figure 2: Logarithm of the inverse of the commutative WSD of the two time series reported
in (18) for different choices of the window size (time radius × log-scale radius). In particular,
a time radius of 10, 25, 50 and 100 data points is used in each of the graphs, while a constant
log-scale radius of 2/12 is utilized in the different graphs.

Figure 3: Logarithm of the inverse of the commutative WSD of the two time series reported
in (18) for different choices of the window size (time radius × log-scale radius). In particular,
a time radius of 10, 25, 50 and 100 data points is used in each of the graphs, while a constant
log-scale radius of 5/12 is utilized in the different graphs.
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Figure 4: Logarithm of the inverse of the commutative WSD of the two time series reported
in (18) for different choices of the window size (time radius × log-scale radius). In particular,
a time radius of 10, 25, 50 and 100 data points is used in each of the graphs, while a constant
log-scale radius of 10/12 is utilized in the different graphs.

there is a similar general pattern in all of then, with a white strip at scale 20π covering
the whole time range, and a black band at scale 4π through the time interval [500, 1000].
Obviously, for smaller windows more details but also more noise can be observed.

The optimum size of the window depends on the scales in which we are most interested
but, generally, for a time series with N data points, a time radius between N/50 and N/10,
and a log-scale radius between 0.2 log2 (N/6) and log2 (N/6) (using the Morlet wavelet) seems
to be a reasonable choice. However, a suitable parameters setting depends strongly on the
characteristics that we want to study in the series and the level of detail of that study.

3 An application: integration of European government
bond markets

The data for this application consist of yields on 10-year government bonds of five euro
area peripheral countries, namely Greece, Ireland, Italy, Portugal and Spain, also called
GIIPS countries, and Germany. The sample ranges from January 1999 to April 2013, thus
covering the turbulent period which includes the recent global financial and Eurozone debt
crises. Following the usual practice in the literature, Germany is taken as the benchmark
country because German 10-year government bonds are typically seen as a safe haven. In line
with, among others, [26] and [27], weekly data (sampled on Wednesdays) are used. Weekly
changes in 10-year government bond yields are calculated as the first difference of 10-year
bond yields between two consecutive observations. Bond data have been collected from
Thomson Financial Datastream.

Figure 5 displays the graphs of the logarithm of the inverse of the commutative WSD
between changes in 10-year government bond yields of each of the five EMU peripheral
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Figure 5: Logarithm of the inverse of the commutative WSD between changes in yields on
10-year government bonds of each of GIIPS countries and Germany. The WSD has been
calculated by using a window of time radius 25 and log-scale radius 4/12. The color scale
on the right of the graphs shows the level of similarity. The lighter the color the higher the
similarity of changes in 10-year bond yields of the respective GIIPS country and Germany.
The thick black line designates areas in which the WSD is significant at the 5% level and the
thin black line represents the cone of influence.

countries and those of Germany by using a window of time radius 25 (approximately half
a year) and log-scale radius 4/12. The WSDs are visualized by contour plots, with Fourier
period and time being represented in the vertical and horizontal axes, respectively. In order
to facilitate the interpretation, the Fourier period is converted into time units (years) and
it ranges from the highest scale of 0.0625 years, that is, one week (top of the plot) to the
lowest scale of 4 years (bottom of the plot). The level of similarity between bond markets of
each GIIPS country and Germany is indicated by color coding, which ranges from black (low
similarity) to white (high similarity). The regions encircled by a thick black line represent
areas where the WSD is significant at the 5% level. Monte Carlo methods are used to assess
the statistical significance of the WSD. Specifically, the significance level is determined with
1000 pairs of random time series of the same length and with the same variance as the original
series. The cone of influence, below which edge effects might distort the results of the WSD,
is designated by a thin black line.

The WSDs show that the degree of bond market integration varies considerably over time
and across scales. In particular, a virtually identical pattern is observed for changes in 10-
year bond yields of GIIPS countries and Germany, mainly for scales of less than two years,
since the introduction of the euro until the intensification of the global financial crisis in the
autumn of 2008. This finding implies an almost perfect bond market integration in the years

11



Figure 6: WSC between changes in yields on 10-year government bonds of each of GIIPS
countries and Germany. The color scale on the right of the graphs shows the level of comove-
ment. The lighter the color the higher the comovement of changes in 10-year bond yields of
the respective GIIPS country and Germany. The thick black line designates areas in which
the WSC is significant at the 5% level and the thin black line represents the cone of influence.

following the launch of the euro as a result of the removal of exchange rate risk, the nominal
convergence of economic fundamentals and harmonization of fiscal and regulatory frameworks
within the European Monetary Union (EMU). In contrast, the time interval after the collapse
of the U.S. bank Lehman Brothers in September 2008 is characterized by the decoupling of
10-year government bond yields of GIIPS countries relative to those of Germany for virtually
all scales. This divergence may be explained by the pessimistic economic outlook in euro
area peripheral countries, the increased risk aversion of investors and the safe haven status
of German debt after September 2008. These factors have led to an unprecedented rise in
sovereign bond yields of European peripheral countries relative to German bond yields. The
breakdown in bond market integration is first detected at lower scales and then it is gradually
extended to all other scales, although there are small differences among countries. As can
be seen, the highest level of bond market integration of GIIPS countries and Germany is
consistently found at the scale of around one year, while for horizons of more than two years
the extent of linkage is substantially weaker.

The estimated WSC are reported in Figure 6 for comparative purposes and their results
are broadly consistent with those of the WSD. Indeed, a statistically significant coherence
between changes in yields on 10-year government bonds of GIIPS countries and those of
Germany is detected since the euro’s introduction in 1999 until the worsening of the global
financial crisis in autumn of 2008. Just as the WSD, the highest level of coherence is observed
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Figure 7: Up: Logarithm of the inverse of the commutative WSD between changes in yields
on 10-year government bonds of two European core countries (Finland and the Netherlands)
and Germany. The WSD has been calculated by using a window of time radius 25 and log-
scale radius 4/12. Down: WSC between changes in yields on 10-year government bonds of
the same two European core countries and Germany. The thick black line designates areas
in which the WSD or WSC is significant at the 5% level and the thin black line represents
the cone of influence.

at the scale of around one year. Furthermore, the WSC also shows an abrupt rupture of the
nearly-perfect integration between sovereign bond yields from late 2008.

In order to check whether the above findings on integration of bond markets of GIIPS
countries and Germany hold for other European countries, the WSD is also calculated for
some euro area core countries. Thus, Figure 7 reports the logarithm of the inverse of the
commutative WSD between changes in 10-year sovereign bond yields of Finland and the
Netherlands relative Germany. It is worth noting that the sharp decline in bond market
integration since the aggravation of the financial crisis in late 2008 above documented for
peripheral countries is not found for these two European core countries. Specifically, a certain
reduction in the level of bond market integration is observed for these economies during the
hardest stage of the European debt crisis. However, the values of the log2

(
WSD−1

)
are not

only positive but greater than 1, suggesting a high level of comovement along all the sample.
Therefore, this evidence seems to indicate that the fragmentation of government bond markets
during the recent financial crisis period has primarily affected European peripheral countries.

Finally, we compare the results of the WSD and WSC analysis regarding the integration of
sovereign debt markets of several European countries with those of a reference approach in the
financial economics literature such as the DCC (Dynamic Conditional Correlation)-GARCH
model developed by [28]. The DCC-GARCH model has become the most popular GARCH-
type model due to its parsimony and flexibility in modelling the conditional correlation
dynamics between asset returns. Figures 8 and 9 display the dynamic conditional correlation
estimates between changes in 10-year government bond yields of each of the EMU countries
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Figure 8: Dynamic Conditional Correlation between changes in yields on 10-year government
bonds of each of GIIPS countries and Germany estimated with the DCC-GARCH model.

under consideration and those of Germany. The findings of the DCC-GARCH approach are
largely consistent with those of the WSD and WSC. Thus, a significant decoupling of 10-year
government bond yields of GIIPS countries relative to those of Germany is observed from
the bankruptcy of Lehman Brothers in September 2008 and a reduction in the degree of
integration of sovereign debt markets of Finland and the Netherlands and that of Germany
is also found during the most acute phase of the European debt crisis. However, the main
disadvantage of the DCC-GARCH analysis compared with the WSD and WSC is that the
DCC-GARCH approach is not capable of distinguishing between different scales.

4 Concluding remarks

The main contribution of this paper is the introduction of the windowed scalogram difference
(WSD), a new wavelet-based tool which is especially useful to assess if two time series follow
a similar pattern over time and across scales. The WSD shares with the widely accepted
wavelet squared coherence (WSC) the common objective of providing a measure of the level
of association between two time series in the time-frequency domain. However, the WSD has
two major advantages over the WSC. First, the WSD shows a greater flexibility as it allows
one to change the size of the window considered depending on which time intervals and scales
are more interesting. Second, the WSD can reveal certain aspects of the relationship between
the time series that the WSC is not able to capture (see Figure 1). The only limitation of
the WSD is the recommendation that the two series under analysis should use the same unit
of measure or are normalized such as discussed in Remark 2.1.
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Figure 9: Dynamic Conditional Correlation between changes in yields on 10-year government
bonds of two European core countries (Finland and the Netherlands) and Germany estimated
with the DCC-GARCH model.

Even though the primary purpose of this study is to introduce the concept of WSD,
the practical applicability of this tool is demonstrated in the context of the integration of
sovereign debt markets in a number of countries in the euro area. For both tools, WSC and
WSD, the results show that the extent of bond market integration of eurozone peripheral
countries and Germany has undergone a dramatic reversal during the latest financial and
debt crises.

To sum up, it can be concluded that the WSD appears as an interesting alternative tool
to the WSC, and hence it can be used to compare different time series in future research.
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