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A B S T R A C T   

Soil ecology is witnessing exponential growth in the number of studies using co-occurrence network analysis. 
Researchers reconstruct networks based on the co-occurrence of taxa or genes across soil samples at a wide range 
of geographic scales - from single aggregates to the whole planet - and taxonomic scopes, some studies targeting 
specific taxa or guilds to others surveying the whole microbiome as well as micro- and mesofauna. Co-occurrence 
networks can be very useful to extract simple patterns from complex datasets. Applications include the detection 
of abiotic and biotic factors that determine community structure, the identification of keystone taxa and their 
relationship to specific soil functions, and the inference of mechanisms of community assembly. However, 
networks are more and more often misused and serve as mere graphic tools with no attempt at hypothesis testing. 
In this perspectives article, we first review the main usage of co-occurrence network analysis in soil ecology 
during the last decade. We then discuss the applications and caveats of network analysis in soil ecology, leaving 
apart strictly methodological aspects of network reconstruction, which is beyond the focus of this article. Finally, 
we include recommendation guidelines – such as the possibility of informing networks with geographic, envi
ronmental and/or phylogenetic information – with the hope that this will facilitate network analysis to become a 
useful tool that helps elucidate meaningful patterns in soil ecology.   

1. Where does the use of co-occurrence networks in soil ecology 
come from? 

Co-occurrence is the simultaneous presence of two units in the same 
place. Co-occurrence matrices have long been a fundamental unit of 
analysis in community ecology and biogeography to describe the dis
tribution of units (taxa) across multiple locations. The analysis of co- 
occurrence patterns in ecological communities originally focused on 
negative co-occurrences, i.e. the so-called checkerboard patterns 
describing mutually excluding pairs of taxa, and naively assumed that 
they were indicative of competitive exclusion (Diamond, 1975). 
Applying appropriate null models to these analyses proved that many 
co-occurrences did not differ from the random expectation, generating a 
debate about their validity to reflect community assembly rules (Gotelli, 
2000). Later refinements discarding random associations and incorpo
rating abiotic and biotic information improved their predictive capacity 
(Ulrich et al., 2017). In parallel, network thinking was generalized 
across many disciplines, including social sciences, computer science, 
physics, mathematics and biology (Proulx et al., 2005). Graph theory 
allowed the modelling of all pairwise connections between the units that 

co-occur to generate a network, that is, a collection of units potentially 
interacting as a system (Proulx et al., 2005). Networks are usually 
depicted as a set of nodes, which are the vertices or points representing 
the units, and edges or links representing pairwise connections between 
units. Connections represent any type of potential interaction, including 
gene regulation, disease transmission, metabolic or neural interactions. 
In ecology, the use of complex networks increased since the 1990′s as a 
tool to represent the ecological interactions occurring between the 
species within a community (Ings and Hawes, 2018), leading to an in
crease in the number of publications of, for instance, plant-pollinator or 
plant-seed disperser networks (Fig. S1). Ecological interaction networks 
are based on direct observations of organisms with a well-known 
ecological role, nodes depicting observed individuals (e.g. bee of spe
cies x and plant of species y) and links reflecting interactions often 
containing information on the directionality of the interaction (e.g. 
pollination of species y by species x). Underlining ‘direct observations’ 
and ‘organisms with a well-known ecological role’ is essential as both 
are key features of this approach, which are typically not met by soil 
co-occurrence networks. 

Soil ecology has emerged both conceptually and methodologically 
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from sister disciplines, and the use of network analysis is no exception. 
As in plant or animal ecology, the taxonomic description of soil fauna, 
and the cultivation or sequencing of microorganisms across multiple 
samples is translated into co-occurrence matrices, which are more and 
more frequently analysed based on co-occurrence networks. These net
works result from correlations between pairs of taxa (or genes) across 
multiple soil samples to identify those pairs that are significantly 
aggregated (i.e. co-present or co-absent) or segregated (i.e. mutually 
excluding each other). Despite being based on correlative patterns, with 
all their statistical assumptions and lack of scientific evidence for the 
real existence or directionality of most potential interactions, co- 
occurrence networks tend to be interpreted as if they were interaction 
networks. That is to say, species aggregation is assigned to positive 
ecological interactions (e.g. cooperation for resource exchange or 
acquisition) and segregation to negative interactions (e.g. competition 
for space or resources). This is a flawed approach since several processes 
can produce the same patterns. For instance, two species may be co- 
present (or co-absent) across several sites not only because they 
benefit from (or require) each other’s presence, but also if they have 
similar limitations for dispersal (e.g. neither species has means to reach 
distant areas), common niche requirements (e.g. both thrive under 
acidic conditions or are sensitive to saline conditions), or are determined 
by higher-order interactions (e.g. both are attacked by the same path
ogen or predator, or are involved in rock-scissors-paper like competition 
in which three species can co-exist based on their differential ability to 
produce or tolerate toxins; Hibbing et al., 2010). For this reason, several 
authors have called for caution when using co-occurrence networks to 
describe interactions or community assembly processes (Barner et al., 
2018; Blanchet et al., 2020). To prevent soil ecology repeating the same 
mistakes as other disciplines, we advocate for a reflection on the use of 
co-occurrence networks. We start by delineating a historical perspective 
based on a literature review to understand how co-occurrence networks 
are being used and why they are currently so widespread in soil ecology. 
We also review the most common applications, as well as the pitfalls that 
lead to the misuse or misinterpretation of network data. Finally, we 
provide recommendation guidelines that we hope will help to extract 
ecologically meaningful patterns from network analysis. 

2. Why have co-occurrence networks become so popular in soil 
ecology? 

Reconstruction of co-occurrence networks needs to be based on 
robust datasets and very large numbers of replicates, frequently result
ing in a time-consuming process that requires computational power. 
Relevant decisions need to be made on how to pre-process abundance 
data or filter rare taxa, and to select an appropriate tool for network 
inference, null model, level of resolution of taxonomic assignments or 
threshold of statistical significance, all of which can have a strong 
impact on the outcome (Connor et al., 2017; Faust, 2021; Röttjers and 
Faust, 2018; Weiss et al., 2016). Theoretical background is also needed 
to interpret the components and emerging patterns of network structure 
(Cogoul et al., 2019; Kurtz et al., 2015; Li et al., 2016). These consid
erations have not precluded network analysis to become a popular 
exploratory tool for the study of soil biological communities. To better 
understand the elements that spurred network thinking in soil ecology 
and quantify its spread through time we performed a literature search. 
We specifically searched for scientific literature containing the terms 
‘soil’, ‘co-occurrence’ and ‘network’ in the core collection of the Web of 
Science in April 2021 and obtained 485 research articles and reviews 
(Table S1). This exercise confirmed that the number of articles and ci
tations, as well as the proportion of articles using networks with respect 
to the total number of articles published in the same journals and time 
period, has increased exponentially during the last decade (Fig. 1). The 
distribution of these articles across 114 journals, mostly categorized 
within Microbiology (29%), Environmental sciences (28%), Soil Science 
(22%) and Ecology (13%), is given in Table S2. 

The two earliest manuscripts in our collection that indeed used 
network analysis to explore co-occurrence patterns of soil communities 
appeared almost simultaneously: Boutsis et al. (2011) working with 
nematodes and Barberán et al. (2012) with microorganisms. Both 
acknowledged inspiration by Proulx et al. (2005), who wrote a 
comprehensive review on the study of gene, protein and metabolic 
networks, and the stability and dynamics of biological communities. 
This point raises the first fundamental question that needs a cautionary 
note. While the idea of using networks to explore co-occurrence patterns 
of soil organisms is very attractive, it implies the extension of network 
analysis from the inspection of interactions at the individual level, based 
upon extensive data and experimental evidence (e.g. Kanehisa and Goto, 
2000), to the analysis of gene-gene (or taxon-taxon) associations at the 
community level in a highly heterogeneous habitat where most organ
isms and the interactions among them and with their environment are 
virtually unknown. The transference of this technique to soil ecology 
would seem in principle less problematic for organisms such as nema
todes whose functional role is well defined, since genera have coherent 
ecological strategies (e.g. bacterivorous, fungivorous, phytophagous, 
nematode predators; Yeates et al., 1993). However, simply by looking at 
the number of citations that Boutsis et al. (2011) and Barberán et al. 
(2012) have received (5 vs. 822 as of 6 April 2021), one can expect that 
the use of network analysis is nowadays radically less widespread in soil 
animal ecology than in soil microbial ecology. To formally analyse this 
expectation and the main usage of co-occurrence networks in soil ecol
ogy during the last decade, we screened ca. 65% of all records found 
(313 out of 485 records). Due to the uneven temporal distribution of the 
publications, we checked all articles published in years with less than 50 
records (2011–2017), and randomly sampled approximately 60% of the 
studies published from 2018 onwards. We excluded 54 studies from 
further analysis based on four criteria: the studied environment (other 
than soil; 37 records), the method used (other than co-occurrence 
network analysis; 10), the article type (reviews without experimental 
data; 2) and the target of network analysis (not biological or exclusively 
targeting plants; 5). We categorized the remaining 259 articles based on 
the dominant land use, the spatial scale of study and the biological target 
(Fig. 2). 

Target biological groups included microorganisms (archaea, bacte
ria, oomycetes, fungi), microfauna (protists, nematodes) and mesofauna 
(enchytraeids, oribatids, collembola) (Target in Fig. 2). As expected, the 
most remarkable trend was that a vast majority of all studies focused on 
the soil microbiome based on high-throughput DNA sequencing data, 
mainly using phylogenetic (archaeal and/or bacterial 16S rRNA gene or 

Fig. 1. The number of published articles including the terms ‘soil’, ‘co-occur
rence’ and ‘network’ detected in the Web of Science Core Collection has 
increased exponentially during the last decade (purple bubbles). Bubble size is 
proportional to the number of citations (detected on 6 April 2021). The pro
portion of articles researching soil co-occurrence networks with respect to the 
total number of articles published in the same journals and time period has 
increased following a similar trend (green line). 
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the fungal internal transcribed spacer) but also functional molecular 
markers associated with nutrient cycling (e.g. Jones and Hallin, 2019; 
Liu and Conrad, 2017; Tu et al., 2016), and metal or antibiotic resistance 
(e.g. Hu et al., 2016). Among soil microorganisms, bacteria were by far 
the main group of interest that we detected in our review (Fig. 2). 
Bacteria were studied either exclusively (51% of all studies) or along 
with other biological groups (86%). Even if one third of all studies 
focused on more than one biological group simultaneously, this was 
predominantly (84 out of 93 papers) to study several microbial groups 
and seldom to jointly analyse the microbiota, micro- and mesofauna. A 
specific search of the term “food web” within our collection yielded a 
single study that combined observations of several groups of soil mi
croorganisms and animals (Creamer et al., 2016). This shows that the 
inspection of multi-trophic food webs, as has been done in other eco
systems (e.g. Montoya et al., 2015), does not explain the increase in the 
use of network analysis in soils. 

Beyond the historical reasons mentioned above, practical reasons 
underlie the growing trend in the use of network analysis in soil mi
crobial ecology and environmental microbiology. The most obvious 
reason is that it is increasingly easy and cheap to sequence soil micro
biota utilizing metabarcoding techniques based on well-established 
molecular markers. The easiness to obtain microbial sequences has 
presented the opportunity to delve into microbial diversity patterns in 
soils, helping to understand the decomposer system and incorporating 
microbial ecology into the general ecological theory (Prosser et al., 
2007). Analysing the extremely diverse soil microbial communities, 
with their multifaceted interactions, requires tools that allow extracting 
easy-to-analyse patterns from complex datasets. Network analysis not 
only allows modelling and simplifying the complexity of microbial 
datasets (Layeghifard et al., 2017), but also provides attractive graphical 
representations. However, these positive aspects of networks as an 
analysis tool are somehow turning against the epistemological advance 
of the discipline. Rather than aiming at hypothesis testing, networks are 
frequently part of a long list of descriptive analyses of microbiome 
datasets, and are used more and more often as a mere pictorial tool that 
adds little information to the scientific discourse. Technical de
velopments have popularized the survey of soil microbiomes using 
co-occurrence networks among a broad scientific community beyond 

microbial ecologists or network specialists. This is creating an avalanche 
of microbial datasets, whose peculiar nature is often neglected, posing 
the second major cautionary note (Leite and Kuramae, 2020). 
High-throughput sequencing microbial data are compositional and 
sparse: They describe proportions with an irrelevant total since 
sequencing instruments have a fixed-size capacity (Gloor et al., 2017) 
and have an excess zeros due to the absence of a wealth of taxa across 
many samples (Kaul et al., 2017). In addition, soil microbial commu
nities are dominated by a few taxa and have a long tail of low-abundance 
or rare species (Delgado-Baquerizo et al., 2018). Inherent composi
tionality, sparsity and rarity of microbiome datasets can lead to the 
detection of false correlations (Layeghifard et al., 2017; Weiss et al., 
2016, 2017). Strategies to transform and analyse this type of data have 
been extensively reviewed (Gloor et al., 2017; Kaul et al., 2017; Leite 
and Kuramae, 2020), and need to be taken into account to construct 
robust microbial networks (Cogoul et al., 2019; Kurtz et al., 2015; Li 
et al., 2016; Röttjers and Faust, 2018). Beyond data management and 
network reconstruction, several cautionary notes are needed related to 
the interpretation of network results. 

3. How networks can be useful for soil ecologists, if not misused 
or misinterpreted 

The most frequent applications of co-occurrence network analysis in 
soil ecology that we detected in our review are schematised in Fig. 3. 
Most articles base the construction of co-occurrence networks on taxon 
co-occurrence matrices reflecting the abundance (or presence) of taxa 
across plots (Fig. 3). As an alternative, some studies construct functional 
gene co-occurrence networks or combine both taxonomic and functional 
molecular markers (Chen et al., 2016; Hu et al., 2016). Even if the 
methodological aspects of network reconstruction are beyond the focus 
of this manuscript, it is worth mentioning that methodology is often 
poorly described so it is not possible to evaluate the goodness of (or 
reproduce) network analysis. Just to name some key aspects that caught 
our attention, many studies base their analyses on a single correlation 
metrics (e.g. Pearson correlation), which cannot properly deal with 
biases inherent to microbial datasets and are outperformed by inference 
tools (Kurtz et al., 2015; Layeghifard et al., 2017). Also, null models are 

Fig. 2. Land-use, spatial scale and biological target addressed in articles analysing soil co-occurrence networks from 2011 to 2020 (Year). Soil: Half of all surveys 
were performed in Agricultural soils (48%) and half in Non-agricultural soils (48%), mostly including forest soils and grasslands but also wetlands, floodplains, 
ornithogenic soils, abandoned mining sites, contaminated soils in refineries, soils in urban greenspaces or cave soils. The remaining 4% analysed Agricultural and 
Non-agricultural soils simultaneously. Scale: Most studies (48%) were performed at the Plot scale (i.e. single sites, plantations, field experiments, and common 
gardens), followed by studies at the Ecosystem scale (i.e. landscape, country, continent, or global studies). Only 13% of studies were performed at the Laboratory 
scale, using Petri dishes or pots in incubation or growth chambers and greenhouses. Target: A vast majority of studies (98.8%) focused on the soil microbiome using 
high-throughput sequencing, either alone or together with soil micro- or mesofauna. The alluvial diagram was performed with RAWGraphs (Mauri et al., 2017). 

M. Goberna and M. Verdú                                                                                                                                                                                                                    



Soil Biology and Biochemistry 166 (2022) 108534

4

not employed systematically to test whether observed patterns differ 
from the random expectation (Röttjers et al., 2021), taking us back to the 
same debate ignited forty years ago for macro-organisms (Connor and 
Simberloff, 1979; Gotelli, 2000). Other authors do not mention false 
discovery rate corrections due to multiple testing, posing the question of 
whether statistically significant associations are meaningful. And, what 
is probably the most common pitfall, networks are usually performed 
using too few replicates (as few as three), ignoring that the precision of 
network inference is highly dependent on sample size (Kurtz et al., 
2015). Finally, irrespective of the application, we did not detect any 
study checking the replicability of soil networks, which is likely not a 
minor issue considering recent results from other biological systems 
(Barroso-Bergadà et al., 2021). 

The basic descriptive analysis of network results involves the 
detection of non-random co-occurrence patterns between microbial 
community members (Barberán et al., 2012; Purahong et al., 2016). 
These analyses originally served to refute the long-standing view that 
terrestrial microorganisms tend to be ubiquitous and stochastically 
distributed based on their high dispersal rates (Horner-Devine et al., 
2007; O’Malley, 2008). Regardless of downstream applications, using 
null network models is essential to discard spurious associations that 
may confound ecological interpretations of the soil community (Connor 
et al., 2017). In the next step, co-occurrence networks are typically 
explored in three ways (Fig. 3), as follows.  

1. Network properties. Researchers use simple statistics to describe 
network topological properties, predominantly (but not only) in 
terms of i. size or number of nodes, ii. connectivity of each node to 
others, iii. clustering of each node to its neighbours, iv. average or 

shortest path length between nodes, and v. network organization 
into modules, which are delimited areas of dense connections that 
have sparser connections with other areas. Researchers analyse the 
contribution of environmental factors (i.e. geographic, climatic and 
soil factors) to network structural properties, so as to reach conclu
sions on the abiotic determinants of community structure (e.g. Ma 
et al., 2016). In addition, the description of network structure allows 
a direct comparison between observed and random networks, or 
between networks resulting from different environmental conditions 
or experimental treatments. For instance, network stability can be 
evaluated through specific biological processes, e.g. litter decom
position (Purahong et al., 2016), or after ecological disturbance (de 
Vries et al., 2018). Network stability refers to the ability of network 
topological properties to remain unchanged over time. Changes in 
the structure of the network can be produced by altering the 
composition and abundance of taxa co-oscillating in a community 
and, depending on their functional redundancy, this might 
concomitantly alter the associated ecosystem functions. High 
modularity and low connectivity are interpreted as network stabil
ising properties (de Vries et al., 2018), since they may allow per
turbations to stay confined within specific modules preventing their 
spread through the whole network. Despite the argument is reason
able, we need to bear in mind that co-occurrence networks are based 
on correlative patterns, and biological conclusions cannot be directly 
drawn in cases where there is no biological evidence or background 
information (see Carr et al. (2019) and Weiss et al. (2016) for reviews 
of the strengths, limitations and recommendations of 
correlation-based methods in microbial ecology). Once again, 
network interpretation cannot be directly imported from networks 

Fig. 3. Overview of frequent applications of co-occurrence networks in soil ecology.  
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depicting interactions or flows. As an illustration, taxa shaping a 
module cannot be assumed to perform similar functions (e.g. Jiao 
et al., 2016) as in metabolic or computational networks (Newman, 
2006), since this assumption disregards that modularity in soils can 
strongly respond to sources of spatial or abiotic variation (e.g. Jones 
and Hallin, 2019). Similarly, the spread of a perturbation through a 
co-occurrence network cannot be thought of as the transmission of 
an agent of disease or a metabolic flow in interaction or metabolic 
networks. Such an interpretation would require informing 
co-occurrence networks with additional functional layers. In epide
miology, virus transmission (functional layer) can be explained 
based on the network of contacts (co-occurrence layer). A parallelism 
in soil ecology can be drawn, for instance, with the superimposition 
of the patterns of co-existence of antibiotic resistance genes (ARGs; 
functional layer) and 16S rRNA genes (co-occurrence layer) that 
some authors use to reach conclusions on potential ARG hosts and 
horizontal gene transfer events. Such an application can be useful as 
a tool to generate hypotheses that need further experimental testing 
(e.g. Chen et al., 2016; Hu et al., 2016).  

2. Keystone taxa. Another frequent way of exploring co-occurrence 
networks involves the classification of taxa (nodes) based on topo
logical properties, such as the degree of node connectivity with other 
nodes within its own module or in other modules. Such structural 
classifications are interpreted in terms of the ecological role of each 
taxon within the community, e.g. as having central or peripheral 
positions in the maintenance of community structure (Zhou et al., 
2011). The most frequent application in this context is the identifi
cation of keystone taxa, i.e. species with a supposedly crucial role in 
community structure and function irrespective of their abundance 
(Banerjee et al., 2018). Keystone taxa are frequently determined 
based on their centrality in the network, meaning that they are 
highly connected nodes whose disappearance compromises network 
structure and stability (Martín González et al., 2010; Berry and 
Widder, 2014). Other methods rather than centrality have been also 
used, but are similarly based on topological properties (Layeghifard 
et al., 2017). However, diagnosing a keystone species just on the 
basis of its topological role within the network is not useful unless we 
are able to identify its major ecological role in the ecosystem. Some 
authors explore how keystone taxa are affected by specific conditions 
or treatments, for instance, agricultural management (Li et al., 2017; 
Hartman et al., 2018) or soil contamination (Jiao et al., 2016). Given 
their theoretically key functional roles, researchers also address how 
the abundance of keystone taxa correlates to specific soil functions, 
such as the rates of organic matter decomposition (Banerjee et al., 
2016). The term "keystone species" was originally coined to desig
nate species whose influence on the associated assemblage were 
disproportionately greater than would be expected from its abun
dance. However, the term was later distorted to include an esoteric 
list of meanings that could make the term useless (Paine, 1995). The 
fact that a taxon is connected to many other taxa in the network 
could be just a consequence of its abundance and therefore, strictly 
speaking, should not be considered a keynote species. As for other 
applications, it should be noted that abundance-weighted estima
tions or targeted follow-up experiments should be necessary to 
identify keystone species, as has been done in food webs (see 
Libralato et al., 2006 and references herein).  

3. Co-occurrence patterns. Finally, many studies explore the spatial or 
temporal patterns of co-occurrence between pairs of taxa. These can 
be analysed in terms of taxa aggregation across samples, i.e. pairwise 
co-presences or co-absences based on positive correlations, and 
segregation, i.e. mutual exclusions based on negative correlations 
(Dini-Andreote et al., 2014). Co-occurrence patterns are typically 
explored based on taxonomic assignments in order to analyse 
whether organisms belonging to the same taxon (e.g. genus, phylum) 
tend to co-occur or exclude each other more often than expected by 
chance (e.g. Hartman et al., 2018; Nielsen et al., 2014). Other 

authors assign ecological or functional categories to the taxa, e.g. life 
strategies of generalists versus specialists based on their degree of 
site occupancy (Barberán et al., 2012), to reach further conclusions 
on the ecological mechanisms behind community structure. Finally, 
the patterns of co-occurrence are used to infer community assembly 
processes, i.e. the prevalence of stochastic or niche-based processes, 
such as abiotic filtering and (positive or negative) ecological in
teractions (e.g. Dini-Andreote et al., 2014; Nielsen et al., 2014). The 
inference of assembly mechanisms from diversity patterns is prone to 
pitfalls based on simplified (or false) assumptions in community 
ecology (Münkemüller et al., 2020) that also apply to the interpre
tation of soil networks. 

The most frequent mistake is to equate the patterns of co-presence 
and mutual exclusion to ecological interactions with no other 
consideration, despite the repeated reports against this practice 
(Barner et al., 2018; Freilich et al., 2018; Blanchet et al., 2020). In 
soils, authors interpret co-occurrences as interactions even when 
working at coarse spatial scales, which are dominant in the literature 
according to our review (Fig. 2, Scale): Half of all studies were per
formed at the plot scale (i.e. single sites, plantations, field experi
ments, and common gardens; 48% of all articles) or even coarser 
scales encompassing one or multiple ecosystems (i.e. landscape, 
country, continent, hemisphere or planet; 39%). We specifically 
searched for a temporal increase in the tendency to work at broad 
scales, which we expected but could not confirm. Instead, we found 
that the scale of analysis was associated to land use, broader scales 
prevailing for the survey of non-agricultural soils (Fig. 2, Soil). 

The interpretation of ecological interactions is meaningful when 
the spatial scale of analysis matches the scale of interactions (Blan
chet et al., 2020). Spatial scaling generally affects the interpretation 
of assembly mechanisms from diversity patterns (Münkemüller et al., 
2020), but this issue is particularly serious when considering 
microscopic organisms living in soils. Soils are composed of minerals 
and organics spanning a full spectrum of materials in terms of size 
and chemical nature that aggregate into a multi-dimensional matrix. 
This solid matrix configures a labyrinthine pore space, where re
sources are scattered and air and water in continuous competition. 
The highly heterogeneous nature and dynamism of soil structure 
strongly determines ecological interactions (Erktan et al., 2020). 
Under these conditions, microbial communities are spatially struc
tured at very fine scales, even within soil aggregates (Szoboszlay and 
Tebbe, 2021). In addition, interactions between microbial cells in 
soils are expected to occur at the range of micrometres as in synthetic 
communities (Co et al., 2020). However, we typically sample soils at 
the millimetre to centimetre scale, and then mix this complex habitat 
prior to DNA extraction necessarily obscuring real microbial patterns 
(Armitage and Jones, 2019). Thus, even when working at fine scales, 
interpretations need to be cautious. It should be noted that the scale 
of spatial resolution does not equally limit the detection of positive 
and negative interactions, as predicted by mathematical models 
(Araújo and Rozenfeld, 2014). It is generally easier to discern 
co-occurrences due to positive interactions regardless of the scale 
(Araújo and Rozenfeld, 2014), and indeed co-occurrence networks 
frequently reveal larger proportions of aggregated than segregated 
pairs (Freilich et al., 2018; Goberna et al., 2019). Freilich et al. 
(2018) suggested that positive interactions involving habitat engi
neers, which expand the niche for beneficiary species, might leave 
the most detectable signals. Serving to illustrate this idea, microor
ganisms involved in biofilm formation, such as Cyanobacteria, 
Planctomycetes or Chloroflexi show positive co-occurrences in soil 
networks (Goberna et al., 2019). On the opposite extreme, compet
itive interactions are very sensitive to spatial scales, and difficult to 
detect at coarser scales of analysis (Araújo and Rozenfeld, 2014). In 
silico simulations show that co-occurrence networks can detect 
competition (Pérez-Valera et al., 2017), with different success 
depending on the inference tool (Weiss et al., 2016). Still, there are 

M. Goberna and M. Verdú                                                                                                                                                                                                                    



Soil Biology and Biochemistry 166 (2022) 108534

6

both mathematical and biological limitations to detect the signature 
of competition (e.g. Dallas and Melbourne, 2019) and this should be 
kept in mind when assigning patterns to processes. Considering the 
most common pitfalls that we have detected in the literature we 
provide the following recommendation guidelines. 

4. Recommendation guidelines for the use of co-occurrence 
networks in soil ecology 

Main recommendations are listed in Box 1 and developed below. 

4.1. Work with robust datasets 

Compositionality, rarity and sparsity are idiosyncratic features of 
microbiome datasets. Strategies to transform and analyse this type of 
data have been reviewed and should be considered (Cogoul et al., 2019; 
Gloor et al., 2017; Kaul et al., 2017; Kurtz et al., 2015; Leite and Kur
amae, 2020; Weiss et al., 2017). Several authors have compared avail
able methods for network reconstruction to address how they deal with 
such biases (Cogoul et al., 2019; Layeghifard et al., 2017; Röttjers and 
Faust, 2018; Weiss et al., 2016). 

4.2. Perform good network reconstructions 

There are excellent reviews available on the various specialized 
methods for network inference, their strengths and limitations, as well 
as best practices (Berry and Widder, 2014; Faust, 2021; Faust and Raes, 
2012; Layeghifard et al., 2017; Röttjers and Faust, 2018; Weiss et al., 
2016). Network specialists keep on developing new tools (e.g. Röttjers 
et al., 2021; Tackmann et al., 2019), so end-users need to stay updated 
on technical advances. Regardless of the method of choice, the perfor
mance of network inference increases with sample size (Kurtz et al., 
2015). Thus, it is key to avoid low sample sizes to construct robust 
networks. Using in silico microbial datasets, Kurtz et al. (2015) calcu
lated that over 1300 samples are needed to achieve an almost perfect 
performance, which is unrealistic for most soil studies but helps un
derstanding the magnitude of the problem of using low sample sizes. 
Network analyses may correctly detect (true positives, TP) or fail to 

detect (false positives, FP) correlations that actually occur. Similarly, the 
absence of correlations may be correctly detected (true negatives, TN) or 
incorrectly predicted (false negatives, FN). Network specificity, calcu
lated as TN/(TN + FP) in simulated networks, is reasonably good using a 
minimum of 25 sites (Berry and Widder, 2014). Network performance in 
terms of the proportion of correctly detected correlations is also 
acceptable with a minimum of 30 sites (Brisson et al., 2019). Thus, a 
sample size of 25–30 sites can be considered reasonable. Still, network 
sensitivity, calculated as TP/(TP + FN), improves using up to 100 sites, 
and it is lost faster than other metrics of performance as environmental 
heterogeneity increases (Berry and Widder, 2014). Finally, the main 
methodological aspects of network reconstruction (data generation, 
normalization and filtering, network inference tool, null model, multiple 
test corrections, etc.) need to be systematically described, and raw data 
need to be findable and accessible, to ensure reproducibility. 

4.3. Check network replicability 

Community ecologists usually calculate metrics like richness or di
versity in replicated sampling units to test for a particular hypothesis. 
However, this is not a common procedure when co-occurrence network 
metrics are used. Co-occurrence networks should be replicated, i.e. 
multiple networks calculated based on real replicates, to take into ac
count the variability due to environmental heterogeneity and sampling 
biases. We conveniently ignore the replicability of soil co-occurrence 
networks, but it is expected to be low as in other networks like those 
of fungi in plant leaves (Barroso-Bergadà et al., 2021). Future studies 
need to incorporate this aspect. 

4.4. Beware of taxonomic delimitation 

Most soil co-occurrence networks are reconstructed with nodes 
representing operational taxonomic units (OTUs) arbitrarily defined on 
the basis of sequence similarity and, logically, network parameters and 
co-occurrence patterns are widely dependent on the threshold used to 
delimitate these OTUs (Cardinale et al., 2015; Hemprich-Bennett et al., 
2021). On the other side, collapsing OTUs at high taxonomic levels (i.e., 
orders) could lead to inconsistent conclusions. For example, Williams 

Box 1 
Recommendation guidelines for the use co-occurrence networks in soil ecology.
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et al. (2014) have shown that the most connected nodes in a soil 
co-occurrence network were Bacillales, Actinomycetales, and Clos
tridiales when the network was constructed with correlations >0.75 but 
Thermoleophilales, Desulfovibrionales, and Sphingobacteriales when 
the correlation cut-off was relaxed to 0.5. This issue can be especially 
problematic when a network containing taxa form different ecosystems 
are constructed (Williams et al., 2014). Assigning amplicon sequence 
variants (ASVs), which represent actual sequences and are not collapsed 
into OTUs, may be a way to circumvent this issue. 

4.5. Recall that data interpretation is linked to the scale of the study 

Networks constructed at coarse scales could be informative of the 
abiotic processes determining the geographical distribution of taxa, but 
not of ecological interactions. While abiotic filtering can result from 
processes occurring at broad spatial scales, biotic interactions neces
sarily occur at the scales where individuals coexist (Weiher and Keddy, 
1995). Supporting this assertion, mathematical models have demon
strated that checkerboard patterns of co-occurrence generated by 
negative interactions can only be discerned at fine spatial scales (Araújo 
and Rozenfeld, 2014). Furthermore, microbial community composition 
can change at the scale of single soil aggregates (Szoboszlay and Tebbe, 
2021). Therefore, even at fine spatial scales, co-occurrence cannot be 
uncritically assigned to interactions. The following recommendations 
try to build in that direction. 

4.6. Do not interpret co-occurrence networks as ecological interaction 
networks 

Interpretation of soil ecological networks has been inherited to a 
significant extent from sister disciplines, which frequently use interac
tion networks (i.e. direct recording of ecological interactions) rather 
than co-occurrence networks (i.e. correlation patterns across multiple 
assemblages). However, as stated above, co-occurrence patterns cannot 
be directly equated to ecological interactions (Barner et al., 2018; 
Blanchet et al., 2020). Co-occurrence metrics are based on symmetric 
correlation coefficients whereas most of the ecological interactions are 
asymmetric. Interaction asymmetry in ecological networks is a result of 
abundance differences, with rare taxa tending to be asymmetrically 
affected by abundant partners (Vázquez et al., 2007). Strong abundance 
differences across taxa exist in soil microbial communities (Delgado-
Baquerizo et al., 2018) and therefore, interaction asymmetries are also 
expected. There is also experimental evidence in intertidal ecosystems 
supporting that co-occurrence networks, even when they are extremely 
well resolved with a spatially intensive sampling, have a poor corre
spondence with the known interaction network (Freilich et al., 2018). 
Additional information beyond the sign of the correlation is required to 
identify ecological interactions from network links (Carr et al., 2019). 
We recompile some options below. 

4.7. Add environmental information to network analysis 

Several approaches are available to take into account abiotic factors 
when interpreting networks, including options to incorporate them in 
network inference (e.g. Faust et al., 2015; Duarte Ritter et al., 2021), 
among others (Faust, 2021). In addition, geostatistical modelling can be 
combined with co-occurrence networks, as Jones and Hallin (2019) did 
to find the (geographic and edaphic) sources of variation of network 
topological properties. We also find useful the conceptual framework 
that Blois et al. (2014) proposed to discern the influence of geographic 
and environmental factors in co-occurrence patterns. We applied this 
framework to soil microbiota and provide a customary R code in 
Goberna et al. (2019). Using that framework to understand the assembly 
of soil bacterial communities in drylands, we detected that a majority of 
co-presence and mutual exclusion patterns can be explained based on 
abiotic niche preferences. It is important to underline that not only 

co-presences can be the result of niche overlap, but also mutual exclu
sions mostly result from niche segregation (Goberna et al., 2019). Thus, 
having a good knowledge of the study system and gathering a large 
collection of geographic, climatic and soil physical and chemical pa
rameters is essential to interpret network results. In addition, technical 
limitations to quantify this type of parameters at the micrometre scale 
need to be overridden to adequately characterise the microbial habitat. 
Theoretically, the variation that cannot be explained by the environ
ment could be due to ecological interactions, and there are algorithms 
available to specifically subtract the habitat effects (Brisson et al., 2019). 
On the other hand, simulation exercises show that networks are able to 
capture the co-occurrence patterns generated by interactions 
(Pérez-Valera et al., 2017; Weiss et al., 2016). Still, detecting the 
signature of interactions can be challenging, particularly under signifi
cant abiotic filtering (Berry and Widder, 2014). 

4.8. Inform your networks with biological background knowledge 

Performing ad-hoc experiments is the most convenient option to 
validate network results. For instance, Cardinale et al. (2015) used 
FISH-CLSM (Fluorescence in situ hybridization− confocal laser scanning 
microscopy) to validate the interactions detected with co-occurrence 
networks in lettuce roots. Kaupper et al. (2021) coupled SIP (stable 
isotope probing) using 13C–CH4 to co-occurrence analysis based on the 
13C-enriched 16S rRNA gene fraction to evaluate the impact of meth
anotrophic activity on network structure during desiccation-rewetting. 
These approaches can be used to address specific questions or confirm 
certain interactions. But we need to admit that, currently, there is no 
straightforward option to validate the array of co-occurrences detected 
through networks when analysing soil microbiomes. Is then time to stop 
constructing soil microbial networks? We sincerely believe that there 
are intermediate options between uncritically assuming the results of a 
statistical exercise and abandoning the approach. Gathering data that 
facilitate the interoperability and integration of datasets and developing 
more accurate statistical methods will help to predict the structure of 
species interaction networks (Strydom et al., 2021). 

In addition, while new techniques are devised, we propose that more 
information can be obtained from the phylogenetic and functional 
markers used for network reconstruction. Phylogenetic information, 
such as the evolutionary distance between co-occurring or mutually 
excluding pairs, can help confirm whether network results fit theoretical 
assumptions (Goberna et al., 2019). This option is highly dependent on 
phylogenetic reconstructions, which should be technically robust (i.e. 
replicated, matching well-resolved phylogenies, etc.), particularly if 
based on a single phylogenetic marker. In addition, background 
ecological knowledge on the organisms that bear specific functional 
markers can be used to pose conceptual frameworks, as e.g. to infer the 
community assembly mechanisms of denitrifiers carrying either nirS or 
nirK genes (Goberna et al., 2021). Other branches of ecology, in an 
attempt to identify the biological mechanisms underlying interaction 
networks have moved, after a hectic period of algorithmic craziness, 
towards trait-based approaches (Blüthgen, 2010; Dormann et al., 2009; 
Rafferty and Ives, 2013). In the meantime, classical taxonomic studies in 
microbiology are being drastically reduced, producing a concomitant 
loss of phenotypic information (i.e. diagnostic traits) that would be 
needed to explain microbial network patterns (Chan et al., 2012). 
Generating ad-hoc information for microbial traits that confer tolerance 
to abiotic conditions or competitive abilities (Goberna et al., 2014) 
could be key to assign community assembly processes in future studies 
using co-occurrence networks. 

Most, if not all, studies depicting soil co-occurrence networks include 
organisms involved in multiple interaction types which are currently 
explored as unipartite networks. This means that organisms belonging to 
different biological and/or trophic groups are combined in a single 
community matrix which is used to compute a single network. This 
approach may be valid to generate hypotheses (if all technical demands 
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are met), but soil ecology needs to move a step forward to build real 
interaction networks and start disentangling the soil food webs 
(Morriën, 2016). Attempts in this direction will require tracking the 
fluxes of matter as has been done for instance with fine-scale SIP ex
periments targeting decomposers (López-Mondéjar et al., 2018). In 
other ecosystems, combining such experiments with direct observations 
(e.g. predation) and gut content analysis have allowed building inter
action networks including several trophic levels (Montoya et al., 2015). 
Such a complexity can be captured in the future using multilayer net
works, each layer representing different interaction types, sampling 
patches or times (Pilosof et al., 2017). 

5. Concluding perspectives 

The tendency to work with co-occurrence networks will likely keep 
on growing in the coming years, since the detection of patterns in 
complex soil networks in the era of big (genomic) data could be sub
stantially improved with the development of machine learning algo
rithms (Pichler et al., 2020; Xun et al., 2021). However, this trend might 
be disconnected from the ecology of communities if biological in
terpretations are unclear and incautious, as has happened before with 
ecological interaction networks (Blüthgen, 2010). Soil networks need to 
be properly reconstructed, based on robust datasets, null models and 
inference tools, and their replicability addressed. Collective efforts to 
provide soil networks with a biological context and experimentally 
validate interactions at appropriate scales are needed to truly under
stand and portray the complex architecture of soil biodiversity. 
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Fernández, A., Donat, S., Navarro-Cano, J.A., Verdú, M., 2019. Incorporating 
phylogenetic metrics to microbial co-occurrence networks based on amplicon 
sequences to discern community assembly processes. Molecular Ecology Resources 
19, 1552–1564. https://doi.org/10.1111/1755-0998.13079. 

Goberna, M., Navarro-Cano, J.A., Valiente-Banuet, A., García, C., Verdú, M., 2014. 
Abiotic stress tolerance and competition-related traits underlie phylogenetic 
clustering in soil bacterial communities. Ecology Letters 17, 1191–1201. https://doi. 
org/10.1111/ele.12341. 

Gotelli, N.J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81, 
2606–2621. https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO; 
2. 

Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.-C., 
Schlaeppi, K., 2018. Cropping practices manipulate abundance patterns of root and 
soil microbiome members paving the way to smart farming. Microbiome 6, 14. 
https://doi.org/10.1186/s40168-017-0389-9. 

Hemprich-Bennett, D.R., Oliveira, H.F.M., Le Comber, S.C., Rossiter, S.J., Clare, E.L., 
2021. Assessing the impact of taxon resolution on network structure. Ecology 102. 
https://doi.org/10.1002/ecy.3256. 

Hibbing, M.E., Fuqua, C., Parsek, M.R., Peterson, S.B., 2010. Bacterial competition: 
surviving and thriving in the microbial jungle. Nature Reviews Microbiology 8, 
15–25. https://doi.org/10.1038/nrmicro2259.Bacterial. 

Horner-Devine, M.C., Silver, J.M., Leibold, M.A., Bohannan, B.J.M., Colwell, R.K., 
Fuhrman, J.A., Green, J.L., Kuske, C.R., Martiny, J.B.H., Muyzer, G., Øvreås, L., 
Reysenbach, A.L., Smith, V.H., 2007. A comparison of taxon co-occurrence patterns 
for macro- and microorganisms. Ecology 88, 1345–1353. https://doi.org/10.1890/ 
06-0286. 

Hu, H.-W., Wang, J.-T., Li, J., Li, J.-J., Ma, Y.-B., Chen, D., He, J.-Z., 2016. Field-based 
evidence for copper contamination induced changes of antibiotic resistance in 
agricultural soils. Environmental Microbiology 18, 3896–3909. https://doi.org/ 
10.1111/1462-2920.13370. 

Ings, T.C., Hawes, J., 2018. The history of ecological networks. In: Dáttilo, W., Rico- 
Gray, V. (Eds.), Ecological Networks in the Tropics. Springer, pp. 15–28. 

Jiao, S., Liu, Z., Lin, Y., Yang, J., Chen, W., Wei, G., 2016. Bacterial communities in oil 
contaminated soils: biogeography and co-occurrence patterns. Soil Biology and 
Biochemistry 98, 64–73. https://doi.org/10.1016/j.soilbio.2016.04.005. 

Jones, C.M., Hallin, S., 2019. Geospatial variation in co-occurrence networks of nitrifying 
microbial guilds. Molecular Ecology 28, 293–306. https://doi.org/10.1111/ 
mec.14893. 

Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Research 28, 17–30. https://doi.org/10.1093/nar/28.1.27. 

Kaul, A., Mandal, S., Davidov, O., Peddada, S.D., 2017. Analysis of microbiome data in 
the presence of excess zeros. Frontiers in Microbiology 8, 1–10. https://doi.org/ 
10.3389/fmicb.2017.02114. 

Kaupper, T., Mendes, L.W., Lee, H.J., Mo, Y., Poehlein, A., Jia, Z., Horn, M.A., Ho, A., 
2021. When the going gets tough: emergence of a complex methane-driven 
interaction network during recovery from desiccation-rewetting. Soil Biology and 
Biochemistry 153, 108109. https://doi.org/10.1016/j.soilbio.2020.108109. 

Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., 2015. 
Sparse and compositionally robust inference of microbial ecological networks. PLoS 
Computational Biology 11, 1–25. https://doi.org/10.1371/journal.pcbi.1004226. 

Layeghifard, M., Hwang, D.M., Guttman, D.S., 2017. Disentangling interactions in the 
microbiome: a network perspective. Trends in Microbiology 25, 217–228. https:// 
doi.org/10.1016/j.tim.2016.11.008. 

Leite, F.A., Kuramae, E.E., 2020. You must choose , but choose wisely : model-based 
approaches for microbial community analysis. Soil Biology and Biochemistry 151, 
108042. https://doi.org/10.1016/j.soilbio.2020.108042. 

Li, C., Lim, K.M.K., Chng, K.R., Nagarajan, N., 2016. Predicting microbial interactions 
through computational approaches. Methods 102, 12–19. https://doi.org/10.1016/ 
j.ymeth.2016.02.019. 

Li, F., Chen, L., Zhang, J., Yin, J., Huang, S., 2017. Bacterial community structure after 
long-term organic and inorganic fertilization reveals important associations between 
soil nutrients and specific taxa involved in nutrient transformations. Frontiers in 
Microbiology 8. https://doi.org/10.3389/fmicb.2017.00187. 

Libralato, S., Christensen, V., Pauly, D., 2006. A method for identifying keystone species 
in food web models. Ecological Modelling 195, 153–171. 

Liu, P., Conrad, R., 2017. Syntrophobacteraceae-affiliated species are major propionate- 
degrading sulfate reducers in paddy soil. Environmental Microbiology 19, 
1669–1686. https://doi.org/10.1111/1462-2920.13698. 
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