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Summary

Fire alters ecosystems by changing the composition

and community structure of soil microbes. The phylo-

genetic structure of a community provides clues

about its main assembling mechanisms. While envi-

ronmental filtering tends to reduce the community

phylogenetic diversity by selecting for functionally

(and hence phylogenetically) similar species, pro-

cesses like competitive exclusion by limiting

similarity tend to increase it by preventing the coexis-

tence of functionally (and phylogenetically) similar

species. We used co-occurrence networks to detect

co-presence (bacteria that co-occur) or exclusion

(bacteria that do not co-occur) links indicative of the

ecological interactions structuring the community.

We propose that inspecting the phylogenetic struc-

ture of co-presence or exclusion links allows to

detect the main processes simultaneously assem-

bling the community. We monitored a soil bacterial

community after an experimental fire and found that

fire altered its composition, richness and

phylogenetic diversity. Both co-presence and exclu-

sion links were more phylogenetically related than

expected by chance. We interpret such a phylogenet-

ic clustering in co-presence links as a result of

environmental filtering, while that in exclusion links

reflects competitive exclusion by limiting similarity.

This suggests that environmental filtering and limit-

ing similarity operate simultaneously to assemble

soil bacterial communities, widening the traditional

view that only environmental filtering structures bac-

terial communities.

Introduction

Fires are important disturbances that affect forest ecosys-

tems through the combination of effects that are initially

triggered by heat (Certini, 2005; B�arcenas-Moreno and

Bååth, 2009). The consequences of fire on the soil envi-

ronment are complex, including the removal of plant cover

and changes in physical and chemical parameters (Certini,

2005; Smith et al., 2008; Goberna et al., 2012; Xiang

et al., 2014). Fire affects soil microbial communities both

directly by high temperatures inducing mortality or cell

damage (Daniel and Cowan, 2000) and indirectly through

the combustion of organic matter, increase in available

nutrients, destruction of the soil physical structure and

shifts in soil pH, humidity or electrical conductivity, among

others (Certini, 2005), although the magnitude of these

effects depends on fire intensity (B�arcenas-Moreno and

Bååth, 2009). In turn, the composition and community

structure of soil microbial communities is highly dependent

on the environmental parameters that are altered by fire

(Fierer and Jackson, 2006; Smith et al., 2008; Goberna

et al., 2012; Xiang et al., 2014). Some microbial groups

can benefit from fire-altered conditions, while others are

harmed. For example, fire increases the abundance of

both endospore-forming Firmicutes in low to moderate

fires following the peak temperature that triggers germina-

tion (Smith et al., 2008; Ferrenberg et al., 2013) and

clades like Betaproteobacteria in response to changed

environmental conditions (Ferrenberg et al., 2013; Xiang

et al., 2014). Conversely, other taxa such as Nitrobacter

seem to be more heat-sensitive and thus less abundant

after a fire (Janzen and Tobin-Janzen, 2008). Fluctuations
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in community composition induced by fire concomitantly

change the phylogenetic structure of the community (e.g.,

Xiang et al., 2014). This observation agrees with empirical

and conceptual models of temporal changes in microbial

community structure, which postulate that niche-based

assembling processes like environmental filtering and

competition increase its relative importance after a pertur-

bation (Ferrenberg et al., 2013; Dini-Andreote et al., 2015).

The way a community is phylogenetically structured pro-

vides clues about its main assembling mechanisms (Webb

et al., 2002; HilleRisLambers et al., 2012). Environmental

filtering decreases functional and phylogenetic diversity,

both through the existence of: (i) abiotic filters, which can

be only surpassed by species sharing certain traits (Webb

et al., 2002), and (ii) biotic filters, by which one (or a few)

clade of strong competitors outcompete distantly-related

lineages (Mayfield and Levine, 2010). In contrast, process-

es like competitive exclusion by limiting similarity increase

the phylogenetic diversity of the communities by preventing

the coexistence of species that are too functionally (and

phylogenetically) similar (Pausas and Verd�u, 2010; May-

field and Levine, 2010). This community phylogenetics

framework relies on two assumptions. First, traits are phy-

logenetically conserved, that is, evolutionarily related

species tend to be functionally similar, which has been

recently demonstrated for microbes (Martiny et al., 2013;

2015; Goberna and Verd�u, 2016). Second, community pat-

terns unequivocally reflect ecological processes, which is

not straightforward in the traditional framework (Mayfield

and Levine, 2010; Narwani et al., 2015). Here, we try to

overcome this limitation by (i) incorporating to the tradition-

al framework the ideas by Mayfield and Levine (2010), that

is, expanding the concept of environmental filtering to

include biotic filters, and (ii) suggesting a new approach

that incorporates network analysis to detect the contribu-

tion of assembly processes operating simultaneously.

Specifically, we propose to evaluate the phylogenetic com-

munity structure in co-occurrence microbial networks,

which allow separately investigating the patterns of co-

presence (microbes that co-occur) and exclusion

(microbes that do not co-occur).

The study of communities from a network-based

approach has been dealt with for a long time, comprising

numerous studies in food-webs, plant–animal interactions

or host–parasite systems (e.g., Sol�e and Montoya, 2001;

Bascompte et al., 2003; G�omez et al., 2013). Ecological

networks show complex relationships between nodes

(species) connected by links (interactions), which inform

about the composition and ecological interactions taking

place in biological communities. Improvements of

sequencing techniques in environmental samples have

made also possible the inference of microbial co-

occurrence networks from sequence data (Faust and

Raes, 2012). Co-occurrence networks may detect pairs of

microbes that co-occur more (co-presence links) or less

often (exclusion links) than expected by chance. Co-

presence links may be reflecting shared niches while

exclusion links suggest niche segregation (Barber�an et al.,

2012; Faust and Raes, 2012). Applying the community

phylogenetics framework described above to co-presence

and exclusion links, we can test whether environmental fil-

tering alone (scenario A in Fig. 1), competitive exclusion

by limiting similarity alone (scenario B in Fig. 1) or both

mechanisms simultaneously (scenario C in Fig. 1) are

assembling the soil bacterial communities. Environmental

filtering, by favouring the coexistence of functional (and

phylogenetically) similar species, will reduce the phyloge-

netic diversity of co-presence links (dark grey boxes in

scenarios A and C, Fig. 1 and Supporting Information

Appendix S1). Following the same rationale, environmental

filtering, by excluding distantly related species, will

increase phylogenetic diversity of exclusion links (light grey

box in scenario A, Fig. 1 and Supporting Information

Appendix S1). The other main assembling mechanism –

competition by limiting similarity – will prevent the coexis-

tence of closely related species, resulting thus in high

phylogenetic diversity of co-presence links (the dark grey

box in scenario B, Fig. 1 and Supporting Information

Appendix S1). For the same reason, non-coexisting spe-

cies under limiting similarity will be those that are

functional (and phylogenetically) similar and therefore,

exclusion links will have low phylogenetic diversity (light

grey boxes in scenarios B and C, Fig. 1 and Supporting

Information Appendix S1). Simulations to validate this the-

oretical framework are provided in Supporting Information

Appendix S1 (Figs. A1 and A2).

Here, we analyse the temporal changes of soil bacterial

communities before and after (from 1 day to 1 year) an

experimental fire by focusing on the phylogenetic structure

of co-presence and exclusion links. Because fire may

impose filters to some microbial lineages unable to survive

high temperatures and, at the same time, favour other line-

ages that are able to take advantage of nutrient release,

we hypothesise that both environmental filtering and com-

petitive exclusion by limiting similarity are simultaneously

assembling post-fire soil bacterial communities.

Results

Fire effects on the soil bacterial community

Fire altered most soil physical and chemical properties

(Supporting Information Fig. S1). Some variables showed

a significant increase as soon as 1 day after fire, for exam-

ple, the inorganic forms of nitrogen (NO2
3 -N and NH1

4 -N)

and electrical conductivity (EC). Others exhibited a delayed

response to fire, such as soil humidity, which started

decreasing after 1 week. Total organic carbon (TOC) dou-

bled its levels after 1 month with the associated decrease

318 E. P�erez-Valera et al.

VC 2016 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 19, 317–327



in pH and increase in the C:N ratio. Total nitrogen (TN)

tended to increase in response to fire, but differences were

not significant due to a high inter-plot variation (Supporting

Information Fig. S1). Generally, soil parameters differed

the most from the pre-fire levels after 1 and 4.5 months

(Supporting Information Fig. S1). Pre-fire soil properties

were recovered after 12 months except for soil humidity,

TOC and the C:N ratio (Supporting Information Fig. S1).

PCoA showed that bacterial community structure differed

the most from pre-fire conditions after 1 and 4.5 months

based on the separation of these plots along axis 1 (Sup-

porting Information Fig. S2A). TOC, NH1
4 -N and EC were

positively correlated with axis 1, while soil humidity and pH

had a negative correlation with the same axis (Supporting

Information Fig. S2A, Supporting Information Table S1). A

similar temporal trajectory in the community composition

space was observed across plots (Supporting Information

Fig. S2B).

Bacterial richness before fire was 602 6 13 OTUs

(mean 6 SE) and significantly decreased 1 month after fire

but recovered 1 year later (Fig. 2). Fire reduction of

bacterial richness was significant even when seasonal cli-

matic variation was taken into account (Table 1). Fire also

produced a high turnover of species (Table 2). Indeed, a

substantial proportion of species at different time points

after fire had not been present at the previous time point

(Table 2). Fire also shifted the relative abundance of rele-

vant taxonomic groups (Supporting Information Fig. S3).

Specifically, fire immediately (1 day after burning)

increased the relative abundances of candidate division

KSB1 and Bacilli while decreasing those of Alphaproteo-

bacteria and candidate division NC10 (Supporting

Information Fig. S3). The relative abundance of Bacilli,

whose initial increase was mainly due to that of the genus

Bacillus, decreased along the year, while Alphaproteobac-

teria recovered its pre-fire levels after 9 months.

Interestingly, Betaproteobacteria almost tripled its pre-fire

values between 1 and 4.5 months since fire due to the

increased abundance of the genus Massilia (Supporting

Information Fig. S3). The analysis of bacterial community

composition through OTU-based distance metrics revealed

that soils harboured significantly different bacterial
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3 4
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Fig. 1. Schematic representation of the phylogenetic structure of co-occurring species as a result of two assembly mechanisms operating
simultaneously in the community. Species co-occurrence is represented as an incidence matrix (i.e., presence–absence) of six species in five
plots, where • is drawn when a species is present in a sample. The species whose abundance patterns are positively-correlated (e.g., species
1 and 2 in scenario A) form co-presence links (shaded by a dark grey background) whereas those species whose abundance patterns are
negatively-correlated (e.g., species 3 and 6 in scenario A) form exclusion links (shaded by a light grey background). Species with uncorrelated-
abundance patterns are not shaded. Assuming trait conservatism (Goberna and Verd�u, 2016), three different scenarios are possible (A–C),
depending on how members of the co-presence and exclusion links are phylogenetically related: A and C correspond to scenarios in which
two phylogenetically close species (species 1 and 2) in a co-presence link co-occur as the result of an environmental filter, while B
corresponds to a scenario in which competitive exclusion by limiting similarity causes the coexistence of phylogenetically distant species
(species 1 and 5). Simultaneously, not co-occurring species in exclusion links would be phylogenetically related (species 3 and 4, scenarios B
and C) as the result of competitive exclusion by limiting similarity whereas they would be distantly related (species 3 and 6, scenario A) as a
consequence of environmental filtering.
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communities immediately after the fire (PERMANOVA:

F6,61 5 2.1, P< 0.001, R2 5 0.17). Furthermore, pairwise

comparisons showed that pre-fire composition had not

been recovered at any time point after the fire (all P<0.01,

data not shown).

Changes in the composition of the bacterial community

were translated into changes in the phylogenetic diversity

of the bacterial community (Fig. 2). The high phylogenetic

clustering showed by the pre-fire bacterial community was

relaxed with time after fire, reaching values close to ran-

domness at 1 and 4.5 months and fluctuating later (Fig. 2).

Fire effects on phylogenetic diversity were significant after

controlling for climatic conditions (Table 1).

Fire effects on the soil bacterial co-occurrence networks

The main topological parameters describing our study net-

works, including the number of nodes and the number and

ratio of co-presence and exclusion links, were similar

before and after the fire (Table 3). Networks were domi-

nated by co-presence links, which accounted for

approximately 60% of the links (Table 3; Supporting Infor-

mation Table S2, Supporting Information Fig. S4).

OTUs belonging to the same link, either co-presence or

exclusion, tended to be more evolutionarily related than

expected by chance, as indicated by a phylogenetic diver-

sity significantly lower than zero (Fig. 3). A significant

interaction between time since fire and interaction type

occurred (F6,7636 5 2.5, P 5 0.021, Fig. 3) because the

phylogenetic diversity of co-presence links was initially

higher than that of exclusion links but the opposite trend

occurred 1 month later, and both link types had similar val-

ues after 4.5 months.

Discussion

Our results show that fire did not alter general network

parameters describing the soil bacterial co-occurrence pat-

terns but changed the richness, composition and

consequently the phylogenetic diversity of the community.

Delving into the phylogenetic signature left in the network

by species that co-occur and by those that do not co-occur
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Fig. 2. Post-mean estimates and credible
intervals (95%) of the OTU richness and
phylogenetic diversity of the soil bacterial
community regarding time since fire.
Negative values of phylogenetic diversity
indicate phylogenetic clustering.

Table 1. Post-mean estimates and their expected credible intervals (95%) for the fire-driven effect on the part of richness and phylogenetic
structure (residues) that were not explained when climatic variables (temperature) were taken into account.

Richness residuals Phylogenetic diversity (2NRI) residuals

Pre-fire (Intercept) 14.95 [23.46, 34.61] 20.68 [21.19, 20.14]

1 d 216.18 [243.73, 9.90] 0.43 [20.30, 1.17]

1 w 213.83 [239.76, 14.21] 0.67 [20.05, 1.40]

1 m 244.57 [275.02, 220.93] 0.78 [0.02, 1.48]

4.5 m 210.08 [234.23, 22.08] 0.77 [1 3 1023, 1.50]

9 m 237.91 [263.37, 26.91] 1.05 [0.02, 1.82]

12 m 13.60 [212.60, 40.57] 1.05 [0.28, 1.89]

Significant differences (P< 0.05, Bayesian GLM) with the pre-fire level are in bold.
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helps us to discern the mechanisms assembling soil bacte-

rial communities after fire.

Fire changed the soil abiotic environment as has been

previously described (Certini, 2005). The combustion of

organic matter provoked an immediate increase in the inor-

ganic compounds of nitrogen and electrical conductivity

whereas the complete depletion of the plant cover reduced

the soil humidity. The massive input of burned debris into

the soil, which doubled the TOC contents, cannot be attrib-

uted to plant recovery that was very slight 1 month after

fire. Seasonality might have also altered the levels of sev-

eral parameters, such as TOC, humidity or pH, but the

magnitude of seasonal effects is lower than that detected

here as we previously described in nearby Mediterranean

ecosystems (Goberna et al., 2007). Even if the use of an

unburned control in an adjacent area could have helped us

to partly account for the influence of seasonal effects dur-

ing this study, it would have not been without the presence

of other confounding factors such as the environmental

heterogeneity (e.g., presence of a natural plant cover, dif-

ferences in soil properties) or the spatial distance which

are a remarkable source of variation in microbes (Ramette

and Tiedje, 2007). Instead, we have directly controlled for

seasonal climatic variation in our statistical models to test

fire effects on microbial community parameters.

Fire dramatically altered the specific composition of the

soil bacterial community, showing particular shifts in some

groups with a range of potential strategies that respond dif-

ferentially to fire. In particular, it has been found that

Firmicutes, which contains species able to form spores

whose germination is triggered by high temperatures

(Dworkin, 2006), benefit from post-fire soil conditions in dif-

ferent environments (Yeager et al., 2005; Smith et al.,

2008). In contrast, other groups (e.g., Alphaproteobacteria)

decrease after fire (e.g., Smith et al., 2008; Xiang et al.,

2014), suggesting that they could either be more sensitive

to heating or harmed by the post-fire conditions. Temporal

fluctuations in the community composition were not

restricted to the immediate days following fire but continued

to occur several weeks later. Notably, Betaproteobacteria

experienced an important increase mainly caused by the

rise of Massilia, a root-colonizing copiotrophic genus which

is related to both early stages of microbial succession and

plant development (Ofek et al., 2012).

Changes in the bacterial composition should be

reflected in changes in the phylogenetic structure of the

community if the traits allowing survival or competitive

superiority are phylogenetically conserved (Pausas and

Verd�u, 2010). This seems to be the case of traits confer-

ring either environmental tolerance or competitive abilities

in soil bacterial communities (Goberna et al., 2014a). Our

results show that the community phylogenetic structure

was always clustered, which could indicate the prevalence

of environmental filtering in the community assembly

(Webb et al., 2002; Mayfield and Levine, 2010). However,

fire reduced the richness while increasing the phylogenetic

diversity at the community level as soon as 1 month after

fire. These concomitant changes in richness and phyloge-

netic diversity could indicate that missing species after fire

were phylogenetically related as a consequence of other

mechanisms like competition by limiting similarity. Alterna-

tively, it could also indicate that the communities are being

Table 3. Overall characteristics of the microbial networks regarding the fire event.

Co-presence nodes Exclusion nodes Co-presence links Exclusion links Co-presence links/total links

Pre-fire 566 474 606 456 0.57

1 d 543 439 727 499 0.59

1 w 584 450 630 438 0.59

1 m 545 426 617 402 0.61

4.5 m 592 423 637 431 0.60

9 m 479 385 677 436 0.61

12 m 563 427 656 438 0.60

Table 2. b-diversity analysis and number of shared and not shared (lost and new) species between pairs of samples at different time points.
Lost (new) species are those present (absent) in the first time point and absent (present) in the second time point.

Time points b-diversity Species

Initial Final Turnover Nestedness Total Shared Not shared (Lost) Not shared (New)

Pre-fire 1 d 0.62 6 0.03 0.02 6 0.02 0.64 6 0.02 213 6 32 396 6 28 349 6 39

1 d 1 w 0.60 6 0.03 0.02 6 0.01 0.62 6 0.02 221 6 30 341 6 39 383 6 29

1 w 1 m 0.62 6 0.03 0.02 6 0.01 0.64 6 0.02 211 6 19 397 6 39 344 6 38

1 m 4.5 m 0.60 6 0.02 0.03 6 0.02 0.62 6 0.03 217 6 27 338 6 35 376 6 61

4.5 m 9 m 0.60 6 0.02 0.04 6 0.02 0.64 6 0.03 192 6 25 400 6 73 296 6 35

9 m 12 m 0.60 6 0.05 0.06 6 0.03 0.66 6 0.03 182 6 26 306 6 52 403 6 82

Average values (6 SD) of 10 plots are provided.
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stochastically re-assembled through other mechanism like

dispersal. This could be the case if (1) the contribution of

turnover with respect to nestedness were high and (2) the

phylogenetic patterns in the community structure were

erased, as our simulations confirm (Supporting Information

Appendix S1, Fig. A3). While we found a strong role of the

species turnover after fire, this process did not erase the

phylogenetically clustered pattern across communities,

suggesting thus that dispersal was phylogenetically struc-

tured. This raises the possibility that other mechanisms

like competition by limiting similarity are also acting.

Co-occurrence networks allow a deeper analysis of the

ecological processes structuring microbial communities,

identifying patterns that could be indicative of environmen-

tal filtering (e.g., Levy and Borenstein, 2013; Pascual-

Garc�ıa et al., 2014) but also other processes (e.g.,

competitive exclusion by limiting similarity) that would be

indistinguishable at the community level if environmental

filtering dominates (e.g., Horner-Devine and Silver, 2007;

Steele et al., 2011; Faust and Raes, 2012). Positively and

negatively correlated co-occurrence patterns indicated by

co-presence and exclusion links, respectively, could be

interpreted in terms of either niche preferences or

ecological interactions (Faust and Raes, 2012; Barber�an

et al., 2012; Pascual-Garc�ıa et al., 2014). For instance, co-

presence links could be the result of species sharing niche

(i.e., species that exhibit abiotic or biotic abilities allowing

its growth in similar environments) and/or interacting

through cross-feeding, co-aggregation or co-colonization

whereas exclusion links could arise because species have

different niche and/or are involved in interactions like

amensalism, competition or predation (Faust and Raes,

2012). By phylogenetically informing the co-presence and

exclusion links we have tried to shed light on the relative

contribution of two types of processes (niche preference

vs. competitive ecological interactions) after fire. The phy-

logenetic analysis of our network links supports the

hypothesis that both processes are acting because co-

presence and exclusion links were phylogenetically

clustered, which agrees with environmental filtering deter-

mining co-presence and competition by limiting similarity

favouring exclusion (see Fig. 1, scenario C).

Closely-related species co-occurring more often than

expected by chance is a common result that has been

mainly attributed to environmental filtering in bacterial com-

munities across a wide range of environments (Chaffron

et al., 2010; Faust et al., 2012; Stegen et al., 2012; Levy

and Borenstein, 2013; Pascual-Garc�ıa et al., 2014). Levy

and Borenstein (2013) found that metabolic competition

was positively correlated to microbial co-presence in the

human microbiome, suggesting that despite closely-

related species being more likely to share nutritional

profiles and therefore to compete more, they tended to co-

occur frequently probably because they also share other

traits allowing them to survive a strong environmental filter.

In agreement with the predominant evidence of environ-

mental filtering determining bacterial co-occurrence, our

co-presence links were populated with closely related spe-

cies suggesting environmental filtering once more. This is

not to say that ecological interactions like competition are

not operating in bacterial communities (Levy and Boren-

stein, 2013). In fact, our exclusion links also showed a

phylogenetically clustered structure. We interpret this as

the result of competitive exclusion by limiting similarity,
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where non-coexisting species belonging to an exclusion

link were closely related species competing and excluding

each other. In brief, both assembly processes occur at

the same time and do not necessarily involve the same

bacterial taxa. For example, immediately after fire, the co-

presence links involving the most closely related taxa

occurred between Bacilli species, suggesting that fire fil-

tered the sporulation character. However, the exclusion

links involving closely related taxa occurred between

Alphaproteobacteria, indicating their role in competitive

interactions (Goberna et al., 2014b). Other assembly pro-

cesses (e.g., priority effects) could be relevant to the

community after a disturbance (Nemergut et al., 2013).

However, the fact that temporal trajectories in community

composition after fire were similar across plots in addition

to the phylogenetic patterns not being erased after the fire

suggests that initial taxonomic composition, and therefore

priority effects, were not determinant.

Fire changed the relative importance of niche-based

assembling mechanisms over time, as postulated by

empirical and conceptual models of microbial community

succession (Ferrenberg et al., 2013; Dini-Andreote et al.,

2015). This was suggested by the temporal variation in

the phylogenetic diversity of both co-presence and exclu-

sion links after fire indicating that this perturbation alters

the contribution of environmental filtering and competition

by limiting similarity. Ferrenberg et al. (2013) showed that

soil bacterial community assembly in burned sites 1

month after fire was significantly more stochastic com-

pared with the control, the reverse trend appearing

several weeks later. We detected a very similar trend in

our community, with phylogenetic diversity values

approaching randomness 1 month after fire and the low

phylodiversity values indicative of environmental filtering

(sensu Mayfield and Levine, 2010) recovering later. By

carefully inspecting the phylogenetic diversity of co-

presence and exclusion links, we interpret this temporal

fluctuation at the community level as the result of the bal-

ance between environmental filtering and competition by

limiting similarity pushing toward low or high phylogenetic

diversities. Species sharing a link might represent com-

mon life strategies to cope with the environmental

conditions imposed by the great diversity of microhabitats

contained in the soil (Raynaud and Nunan, 2014; Koeppel

and Wu, 2014; Pascual-Garc�ıa et al., 2014). Examples of

these strategies could include the ability to sporulate, the

early colonization of the environment (e.g., by fast-

growing copiotrophic organisms), or the use of the newly

available forms of mineral nitrogen by denitrifiers, able to

thrive in low-oxygen microniches that can be found in any

aerobic soil. Those strategies, which involve traits related

to either environmental tolerance (e.g., endospore forma-

tion) or competitive abilities (e.g., denitrification), are

phylogenetically conserved with a varying strength

(Goberna et al., 2014a). Ultimately, the phylogenetic sig-

natures at the community level will be the result of both

the evolutionary conservatism and the importance of

these traits to survive post-fire conditions. Thus, combin-

ing phylogenetic and functional analyses will provide a

better understanding of the post-fire community assembly

mechanisms.

In conclusion, we suggest that despite the weak

changes showed in the general parameters of the co-

occurrence networks, fire altered community assembly

mechanisms by changing species richness and composi-

tion. By phylogenetically informing co-presence and

exclusion links of co-occurrence networks, we detected

that fire altered the relative importance of environmental

filtering and competitive exclusion by limiting similarity.

Experimental procedures

Study site and experimental fire

An experimental fire was ignited on 22 April 2009 in a 500 m2

area of a dense shrubland dominated by Rosmarinus officina-

lis L. in eastern Spain (Teresa de Cofrentes, Valencia). Fire

completely burned the plant cover that started slightly recover-

ing 4 months later (Supporting Information Fig. S1). Soils are

Haplic Leptosols (Calcaric, Humic) (FAO–ISRIC–IUSS, 2006)

developed on limestones. The mean annual rainfall in the

study site is 446 mm and mean annual temperature 13.78C

(Supporting Information Fig. S5). Surface soil samples (0–

2 cm) were taken from about, 1 3 1 m georeferenced plots

(n 5 10), which were randomly located at 1–3 m apart from

each other within a 150 m2 area. A total of 70 topsoil samples

(i.e., 10 plots 3 7 time points) were collected immediately

before fire, and 1 day, 1 week, 1 month, 4.5 months, 9 and

12 months after the fire. To reduce the spatial heterogeneity

that results from sampling an adjacent unburned area, the

pre-fire samples were considered as the unburned control.

Soils were transported to the laboratory on ice, immediately

sieved (<2 mm) and stored at 48C. Soil samples (�300 g)

were analysed for their physical and chemical properties,

including pH, gravimetric humidity, total organic carbon (TOC),

electrical conductivity (EC), total nitrogen (TN), nitrate-N

(NO2
3 -N) and ammonium-N (NH1

4 -N) using standard proce-

dures as described by Goberna et al. (2012).

Soil DNA extraction and pyrosequencing

Soil DNA was extracted within 24 h after sampling from about

0.25 g soil with the PowerSoilVR DNA isolation kit (MO BIO

Laboratories, Carlsbad, California), which directly extracts the

DNA after the physical and chemical lysis of cells. After a

quality check of DNA extracts, the bacterial 16S rRNA gene

was amplified using primer 8F (50-AGAGTTTGATCCTGGCT-

CAG-30; Turner et al., 1999) and 534R (50-ATTACCGCGGC

TGCTGGC-30; Muyzer et al., 1993), including each sample a

454 sequencing adaptor (50-CCATCTCATCCCTGCGTGTC

TCCGACTCAG-30) and a barcode in its 50-end randomly

selected from those published by Hamady et al. (2008). Pyro-

sequencing was performed by GATC Biotech (Konstanz,
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Germany) with the 454 GS-FLX platform (Roche). Further

details of PCR conditions and purification can be found in

P�erez-Valera et al. (2015).

Sequence analysis and phylogeny reconstruction

The initial sequence processing was performed by MR DNA

(Shallowater, TX, USA) where short sequences (<200 bp)

were removed, primers and barcodes trimmed, and chimeric

sequences excluded. After the initial processing, a total of

69,143 sequences were obtained, with 1,016.81 6 198

(Mean 6 SD) sequences per sample (Supporting Information

Table S3). Two samples (belonging to 1d and 9m time points)

were discarded because they failed to amplify. Operational

taxonomic units (OTUs) were defined at an identity level of

97% and, after removing singletons, 3,464 OTUs were aligned

with PyNAST 1.2.2 in QIIME 1.8.0 (Caporaso et al., 2010a,b).

After manually checking the alignments and removing the

hypervariable regions in QIIME, maximum likelihood phyloge-

netic trees were built with the GTRGAMMA substitution model

using RAxML 7.3.0 (Stamatakis, 2006). We constructed three

independent trees to account for the uncertainty of the phylo-

genetic reconstruction. The topology of the basal relationships

in the trees was constrained to match that of the megatree

built from the Silva database (Release 108; Quast et al.,

2013). Then, we constructed an OTU 3 plot abundance

matrix showing the abundance of the total 3,464 OTUs in

each of the 68 samples. In order to reduce the potential bias

caused by the differential sequencing depth between samples,

rarefied richness was calculated (at 1,023 sequences per

sample) through an individual-based multinomial model which

uses ten randomized samplings without replacement to esti-

mate richness as in Colwell et al. (2012). The relative

abundance of each OTU was corrected by the estimated num-

ber of 16S rRNA gene copies (Kembel et al., 2012). Further

details about the sequence analysis along with sequences

from the pre-fire conditions are available in P�erez-Valera et al.

(2015). Post-fire sequences were deposited in the European

Nucleotide Archive (http://www.ebi.ac.uk/ena/data/view/

PRJEB9090).

Network analysis

OTUs co-occurring more (co-presence) or less (exclusion)

often than expected by chance were detected through co-

occurrence network analysis. Co-presence and exclusion

interactions were identified using an ensemble-based network

approach, which captures links from two measures of correla-

tion (Pearson and Spearman) and dissimilarity (Bray–Curtis

and Kullback–Leibler) to cover a wide range of relationships

(e.g., linear or non-linear), to deal with noise and outliers and

thus, to reduce the impact of choosing a single measure

(Faust and Raes, 2012). Links detected by several correlation/

dissimilarity measures in the same pair of OTUs were consid-

ered as a single link. The interaction sign was used to

distinguish between co-presence and exclusion links. The

analyses were run with the help of CoNet 1.0b6 (Faust et al.,

2012; Faust and Raes, 2012) and the script available at http://

psbweb05.psb.ugent.be/conet/cmdline.php. Seven networks,

one per time point, were constructed from the OTU 3 plot

relative abundance matrix. Before network construction, sam-

ples were filtered such that OTUs present in less than 1/3 of

the samples, that is, low-abundant OTUs which could cause

artefactual associations (Faust and Raes, 2012), were

removed. The sum of the filtered OTUs was kept to preserve

taxon proportions. Next, samples were normalized by calculat-

ing the relative abundance of each OTU. Then, networks were

computed with the 1,000 initial top- and bottom-scoring links

for each measure. Statistical significance was tested by

obtaining the link- and measure-specific P-value as the mean

of the permutation distribution under the bootstrap distribution,

using 1,000 iterations for each distribution. In order to deal

with the compositionality bias caused by the data normaliza-

tion, that is, an increase in the absolute abundance of an

organism implies a decrease in the relative abundance of all

other, we re-normalized the data in each permutation (Faust

et al., 2012). Thus, the null model captures the effect of data

normalization (Faust et al., 2012). Dissimilarity measures (i.e.,

Bray–Curtis and KullBack–Leibler) were not re-normalized

because they are not affected by this bias (Lovell et al., 2010;

Faust et al., 2012; Weiss et al., 2016,). Prior to computation,

each row was divided by its sum for Bray–Curtis calculations.

Unstable links with scores not within the 95% confidence inter-

val of the bootstrap distribution (e.g., outliers) or those with an

opposite interaction sign were removed. P-values of different

correlation/dissimilarity measures supporting the same link

were merged using Brown’s method and corrected for multiple

testing using Benjamini–Hochberg’s procedure (Brown, 1975;

Benjamini and Hochberg, 1995). Finally, networks were fil-

tered to keep only links with an adjusted merged P-value

below 0.05. In order to reduce the number of spurious and

artefactual relationships, only those links supported by at least

two correlation and/or dissimilarity measures were kept. We

run sensitivity analyses to different parameters involved in net-

work construction. Specifically, we modified data

normalization (yes/no), number of correlation/dissimilarity

measures (1/2), initial top- and bottom-scoring links (1,000/

2,000) and minimal species occurrence (2/6) and results were

not altered (data not shown).

Phylogenetic diversity

Phylogenetic diversity (PD) of the whole bacterial community

was calculated as the mean pairwise distances between

OTUs standardized by the expectation of a null model. This is

equivalent to 21 times the abundance-weighted Net Related-

ness Index (NRI):

PD 5 –NRI 5 MPDobs – MPDrandð Þ=sd MPDrand

where MPDobs is the mean pairwise phylogenetic distances

between the OTUs coexisting in a sampled plot, MPDrand is

the average of MPD calculated in n randomly constructed

communities after shuffling the distance matrix labels of all the

OTUs in the community, and sd_MPDrand is the standard devi-

ation of MPDrand (Webb et al., 2002). Phylogenetic diversity of

the links was calculated as the phylogenetic distance of each

species pair against the phylogenetic distance of two random-

ly selected species (999 iterations). This procedure allows

examining whether OTUs belonging to co-presence or exclu-

sion links are more (negative values) or less (positive values)
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closely related than expected by chance. Thus, negative val-

ues of phylogenetic diversity indicate phylogenetic clustering

while positive values indicate phylogenetic overdispersion.

Calculations were run with the picante package for R (Kembel

et al., 2010; R Core Team, 2014). Significance was tested by

an across-sample (link) analysis (Hardy, 2008). That is, we

tested if the sets of communities (links) within a time point (link

type) were significantly different from zero by calculating a

Bayesian mean over sites with the help of the MCMMglmm

package for R (Hadfield, 2010). Phylogenetic (i.e., patristic)

distances were computed using the cophenetic function for R.

b-diversity analyses

Nestedness and turnover components of temporal b-diversity

(i.e., through time) were computed in order to test whether

species after fire were a subset of the previously present spe-

cies or, conversely, the loss and gain of species were more

relevant after fire. The b-diversity analysis was performed

between pairs of samples of adjacent time points using inci-

dence matrices and the beta.temp function (with the Sorensen

dissimilarity index) of the betapart package for R (Baselga

et al., 2013). We also calculated the number of shared and not

shared (lost and new) species between such samples using

the betapart.core function of betapart.

Statistical analyses

Changes in the OTU composition of the bacterial communities

after the fire were tested by permutational multivariate analy-

sis of variance (PERMANOVA) using Bray Curtis dissimilarity

matrices. This analysis was carried out with the adonis func-

tion using pairwise orthogonal contrasts comparing the pre-

fire OTU 3 plot abundance matrix with all the post-fire matri-

ces in the vegan package for R (Oksanen et al., 2015).

Principal coordinates analysis (PCoA) of the Bray Curtis dis-

similarity matrix was used to analyse and visualize the spatial

differences in the community structure among plots over time

in R. Physical and chemical parameters were fitted onto the

ordination with the envfit function in the vegan package for R,

showing only the variables that were significantly (P<0.05)

correlated to either axis.

Post-fire changes in OTU richness and phylogenetic diversi-

ty were calculated through a Bayesian generalized linear

model using time since fire as a categorical independent fac-

tor. To account for temporal variation in diversity parameters

due to seasonal climatic conditions (i.e., air temperature and

precipitation, Supporting Information Fig. S5), we used as the

dependent variable of the model the residuals of a previous

model including climatic conditions as independent factors.

Both OTU richness and phylogenetic diversity were signifi-

cantly correlated with air temperature (Richness post-mean

estimate [95% credible interval]: 25.34 [28.14, 22.89]; PD:

0.12 [0.06, 0.19]) but not with precipitation (Richness post-

mean estimate: 20.08 [20.33, 0.19]; PD: 3 3 1023 [23 3

1023, 1 3 1022]). Thus, temperature was the only climatic var-

iable taken into account to obtain the statistical residuals. To

accommodate the topological and chronological uncertainty of

the trees in the phylogenetic diversity model, we ran three

models with three independent trees and integrated over the

posterior samples by drawing 1,000 random samples across

models.

Post-fire changes in the phylogenetic diversity of co-

presence and exclusion links were analysed following the

same steps described above. In this case, the GLM had phylo-

genetic diversity as dependent variable and time since fire and

link type (i.e., co-presence vs. exclusion links) as crossed

independent factors. Neither temperature nor precipitation

explained the phylogenetic diversity of co-presence links (tem-

perature post-mean estimate [95% credible interval]: 5 3

1023 [25 3 1023, 0.01]; precipitation: 5 3 1024 [26 3 1024,

2 3 1023]). The phylogenetic diversity of exclusion links was

correlated with air temperature (post-mean estimate: 0.01 [1

3 1023, 0.02]) but not with precipitation (post-mean estimate:

4 3 1024 [28 3 1024, 0.01]). Therefore, in this case we used

the residuals from the climatic model.
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Fig. S1. Post-mean estimates and credible intervals (95%)

of several soil physical and chemical properties regarding

time since fire. Significant differences (P< 0.05, Bayesian

GLM) with the pre-fire level are indicated with *.
Fig. S2. PCoA based on Bray Curtis distances of the bacte-

rial community showing differences in the OTU composition

among samples and time since fire. Soil environmental

parameters that were significantly correlated with changes

in the community composition (Axis 1 and/or Axis 2) are

shown in A). Individual trajectories of each plot over time

after fire are linked by solid lines in B), where arrows indi-

cate the final time point. Dashed lines indicate an indirect

trajectory due to a missing intermediate sampling point.

Abbreviations: TOC total organic C, EC electrical conductiv-

ity, NH1
4-N ammonium-N.

Fig. S3. Relative abundance (post-mean and credible inter-

vals [95%]) of the ten most abundant classes before and

after the experimental fire. Significant differences (P<0.05,

Bayesian GLM) with the pre-fire level are indicated with *.
Fig. S4. Co-occurrence networks supported by positively

(A) and negatively (B) correlated abundance patterns at the

OTU level for the pre-fire time point. Each node belongs to

a phylum following the colour code shown in the phyloge-

netic tree in such a way that phylogenetically related OTUs

share similar colours.
Fig. S5. Monthly accumulated precipitation (expressed in

mm), mean monthly temperature (in �C) and plant cover (in

%) over the study period (CEAM-UMH, 2009; 2010). The

arrows indicate the experimental fire and time since fire.

Table S1. Soil variables and their correlations with the axis

1 of the PCoA.
Table S2. Edge lists of the pre- and post-fire networks.

Table S3. Number of sequences and OTUs per sample and

time since fire.
Appendix S1. Simulations to validate scenarios from Fig. 1.

It includes Figs. A1, A2 and A3.
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