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Summary

� Wildfire is a major ecological driver of plant evolution. Understanding the genetic basis of

plant adaptation to wildfire is crucial, because impending climate change will involve fire

regime changes worldwide. We studied the molecular genetic basis of serotiny, a fire-related

trait, in Mediterranean maritime pine using association genetics.
� A single nucleotide polymorphism (SNP) set was used to identify genotype : phenotype

associations in situ in an unstructured natural population of maritime pine (eastern Iberian

Peninsula) under a mixed-effects model framework. RR-BLUP was used to build predictive

models for serotiny in this region. Model prediction power outside the focal region was tested

using independent range-wide serotiny data.
� Seventeen SNPs were potentially associated with serotiny, explaining approximately 29%

of the trait phenotypic variation in the eastern Iberian Peninsula. Similar prediction power was

found for nearby geographical regions from the same maternal lineage, but not for other

genetic lineages.
� Association genetics for ecologically relevant traits evaluated in situ is an attractive

approach for forest trees provided that traits are under strong genetic control and populations

are unstructured, with large phenotypic variability. This will help to extend the research focus

to ecological keystone non-model species in their natural environments, where polymor-

phisms acquired their adaptive value.

Introduction

Wildfires have a long history in shaping natural ecosystems
(Pausas & Keeley, 2009), and are a characteristic feature in many
regions of the Mediterranean Basin (as reviewed by Pausas et al.,
2008). Understanding the genetic basis of plant adaptation to
wildfire is especially important, because impending climate
change will involve fire regime changes world-wide (Mouillot &
Field, 2005; Krawchuk et al., 2009). In the Mediterranean Basin,
forest fire frequency and size increased significantly during the
last century (Pi~nol et al., 1998; Pausas, 2004; Pausas &
Fern�andez-Mu~noz, 2012), and are expected to increase further in
the near future (Mouillot et al., 2002). These new fire regimes
may fall outside of the historic variability, creating new selective
pressures on plant populations.

Plant populations confronted with new environments, includ-
ing new fire regimes, will migrate, adapt locally or go extinct
(Aitken et al., 2008). As migration rates for most plant species
appear to be insufficient to track the rapid environmental shifts
predicted from climate change models (Malcolm et al., 2002;
McLachlan et al., 2005), long-term persistence will mostly rely
on in situ adaptation (Hoffmann & Sgr�o, 2011). Typically, tree

populations harbor high genetic diversity on which selection can
act. They also have, generally, little genetic structure because of
outcrossed mating systems, high gene flow and large population
sizes (Petit & Hampe, 2006). High fecundity and strong selec-
tion in early life stages (Le Corre & Kremer, 2003) enable pro-
nounced local adaptation despite strong gene flow (Kawecki &
Ebert, 2004). This process can result in divergent natural pheno-
types within populations (e.g. Pausas et al., 2012 for flammabil-
ity). Genetic differentiation at loci underlying these traits is also
expected (Howe et al., 2003; Kremer & Le Corre, 2012), which
can be explored using association genetic approaches (Neale &
Savolainen, 2004).

Fire is a strong selective driver, and there is an emerging view
that fire shapes the intraspecific variability of multiple traits (e.g.
bark thickness, mature height, self-pruning, age to maturity, sero-
tiny, longevity, flammability) and generates phenotypic variabil-
ity among plant populations (Keeley et al., 2011; Moreira et al.,
2012; Pausas & Schwilk, 2012; Pausas et al., 2012). In particular,
multiple phenotypic traits are selected for by stand-replacing
crown fire regimes in pines, such as thin bark, absence of self-
pruning, early maturity and the presence of serotinous cones
(Keeley & Zedler, 1998; Tapias et al., 2001; Keeley et al., 2011;
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Keeley, 2012), which results in correlated evolution of fire-related
life-history traits in these taxa (Schwilk & Ackerly, 2001; He
et al., 2012). In this study, we used serotiny, estimated as the pro-
portion of serotinous cones, as an indicator for multi-trait fire
phenotypes in maritime pine (Pinus pinaster Aiton), a species
living in Mediterranean fire-prone regions. Serotiny refers to the
persistence of closed mature cones in the tree canopy until seed
release is triggered by high temperatures, such as those that
accompany crown fires (Lamont et al., 1991). A simple genetic
control (one locus with two alleles) was proposed for serotiny
because a fast selection-driven response to fire was detected after
only one generation in different pine species (Teich, 1970; Perry
& Lotan, 1979). However, more recent evidence points towards
a polygenic quantitative trait (e.g. Pike et al., 2010; Parchman
et al., 2012). Serotiny is a highly heritable trait in pine species
(Perry & Lotan, 1979; Wymore et al., 2011), with narrow-sense
heritability (h2 ) of 0.20–0.67 (Pike et al., 2010; J. Climent, pers.
comm.). Serotiny also shows large phenotypic variation within
and among species and populations of Mediterranean pines (e.g.
Tapias et al., 2004; He et al., 2012).

Fire-related traits, such as bark thickness, self-pruning and
serotiny, are difficult to evaluate in common gardens because they
are expressed late in long-lived species. Moreover, natural selec-
tion is relaxed when germinating and growing seedlings in opti-
mal glasshouse conditions before trial establishment. An
alternative approach, given the high heritability of traits such as
serotiny, is to phenotype directly in unstructured natural popula-
tions for association studies (e.g. Parchman et al., 2012). Allelic
effects are then assessed in exactly the same environment in which
they give a selective advantage, without any bias caused by plant
manipulation.

Association genetics has been successful in detecting allele
effects for adaptive traits in plants (Atwell et al., 2010; Strange
et al., 2011), including in some conifers (e.g. Gonz�alez-Mart�ınez
et al., 2007; Eckert et al., 2009; Holliday et al., 2010; Cumbie
et al., 2011; Westbrook et al., 2013). Recent reports of strong
linkage disequilibrium (LD) in non-coding regions of conifer
genomes (e.g. in Cryptomeria japonica; Moritsuka et al., 2012)
have improved previous expectations (see Neale & Savolainen,
2004) of identifying regions of the genome associated with traits
of ecological interest using candidate gene approaches in this
group of species, despite their large genome sizes (25 227Mbp in
pine; Plant DNA C-values Database, release 5.0, March 2012,
http://data.kew.org/cvalues). As a drawback, higher LD could
make it more difficult to identify the actual causal polymor-
phisms within these regions. The use of candidate genes for adap-
tive traits should also allow the construction of predictive models
for adaptive phenotypes with lower genotyping effort. Indeed,
marker densities from 2–3 to 10–20 markers/cM, depending on
training population size, are considered to be necessary to achieve
reasonable accuracy in phenotypic predictive models based solely
on random genome sampling and background LD with pheno-
typic traits (Grattapaglia & Resende, 2011; Resende et al., 2012).
However, models based on candidate genes were able to achieve
similar prediction power with a much smaller number of molecu-
lar markers. For instance, Holliday et al. (2012) were able to

explain c. 28–34% of the phenotypic variance in predictive
models for bud set and cold injury based on a set of only 20 loci,
albeit carefully selected from expressional candidate genes
(Holliday et al., 2010).

Maritime pine (P. pinaster) is an iconic Mediterranean conifer
that forms large forests in the western Mediterranean Basin. For-
est fires appear to be one of the main drivers that have shaped its
life history (see Tapias et al., 2004; Keeley, 2012; and references
therein) and large differences in fire-related traits are found
among populations, such as for serotiny (from zero in Portugal to
73% in Algeria; Tapias et al., 2004; see also Fig. 1). Molecular
marker studies have found three completely isolated maternal lin-
eages (based on mitochondrial DNA, mtDNA) in this species: a
western lineage (most of the Iberian Peninsula, Atlantic France
and Punta Cires in northern Morocco), an eastern lineage
(Catalonia in the northeastern Iberian Peninsula, southeastern
France, Corsica, Italy, Tunisia and Algeria) and one endemic to
Morocco (Burban & Petit, 2003; see also Bucci et al., 2007), as
well as several distinct gene pools (based on nuclear markers)
within these broad geographical regions (Salvador et al., 2000;
Eveno et al., 2008; Santos-del-Blanco et al., 2012). A long history
of population isolation, in particular among populations from
the different (non-overlapping) maternal lineages, could have
resulted in both parallel and lineage-specific adaptations in
fire-related traits, as has been shown for other main drivers of tree
adaptation (e.g. Prunier et al., 2012 for climate adaptation in
Picea mariana).

In this study, we used a 384-plex single nucleotide polymor-
phism (SNP) array (251 successfully scored and polymorphic
SNPs) enriched for well-known candidate genes for adaptive
traits in forest trees to identify markers potentially associated with
serotiny in maritime pine. The study was conducted in an
unstructured natural population (Supporting Information
Fig. S1; see also Bucci et al., 2007; Santos-del-Blanco et al.,
2012) with high phenotypic variability for serotiny (0–100%
serotinous cones per tree, average proportion of serotinous cones
of 36.29% and standard deviation of 23.36%; Fig. S2; see also
Tapias et al., 2004), which is representative of the eastern Iberian
maritime pine range. We then used the subset of SNPs poten-
tially associated with serotiny to build a predictive model for fire
phenotypes in the sampled region and tested the model accuracy
by cross-validation. Finally, to evaluate the utility of the model
outside of the geographical range for which it was constructed,
we genotyped the same SNPs and tested the model prediction
power across range-wide populations, including the three distinct
maternal (mtDNA) lineages recognized in maritime pine.

The focus on well-known candidate genes for adaptive traits in
pine, the high phenotypic variability in fire phenotypes (includ-
ing serotiny) in eastern Iberian maritime pine stands, the fact that
serotiny is heritable and gauges a multi-trait fire syndrome and
the complete lack of population structure in the study region
enabled us to successfully assess in situ phenotype : genotype asso-
ciations. These potentially associated SNPs provide insights into
a variety of candidate genes that could underlie fire phenotypes in
Mediterranean pines and constitute the basis to construct predic-
tive models for fire-related traits of major ecological importance.
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Materials and Methods

Plant material

The sampling included a total of 509 maritime pine trees
(Fig. 1): (1) 199 individuals collected from three stands in eastern
Spain (coordinates: Calderona, 39.75, �0.50; Sinarcas, 39.79,
�1.20; Eslida, 39.88, �0.30; each represented by 66–67 trees)
which show high within-stand variability for fire phenotypes
(0–100% serotinous cones per tree, average proportion of seroti-
nous cones of 36.29% and standard deviation of 23.36%;
Fig. S2); this dataset was used to identify loci potentially associated
with serotiny and to construct SNP-based predictive models for
fire phenotypes in this region; (2) 310 individuals from 15 range-
wide populations (average of c. 21 trees per population) including
the three distinct maternal (mtDNA) lineages known in maritime
pine (see Table S1); this dataset was used to test for model predic-
tion power outside the focal region. Needles were collected from
the 509 (199 + 310) individuals and desiccated using silica gel.
Genomic DNA was isolated using the Invisorb®DNA Plant HTS
96 Kit/C kit (Invitek GmbH, Berlin, Germany).

Nuclear microsatellites (simple sequence repeats, SSRs)

Eleven nuclear microsatellites (SSRs) were used to test for popu-
lation genetic structure (which may bias genetic association
approaches) within the sampling region in eastern Spain
(n = 199; see also Bucci et al., 2007; Santos-del-Blanco et al.,
2012; microsatellite data were deposited in the Dryad repository
with doi: 10.5061/dryad.1p2s5/3). Primer sequences were
obtained from Mariette et al. (2001) (ITPH4516 and FRPP94),
Chagn�e et al. (2004) (rpTest11, Ctg4363, NZPR1078 and
NZPR413), Guevara et al. (2005) (A6F03), Steinitz et al. (2011)
(pEST2669) and F. Sebastiani and G. G. Vendramin (pers.
comm., June 2011) (epi3, epi5 and gPp14). Forward primers
were 5′ end-labeled with fluorochromes (HEX, FAM, VIC or
PET) and amplified using the Qiagen Multiplex PCR Kit
(Qiagen, Venlo, the Netherlands) following the manufacturer’s
instructions. Amplified allele fragments were separated using an
ABI 3730 genetic analyzer (Applied Biosystems, Carlsbad, CA,
USA) and their sizes were determined with reference to the Gene-
Scan –500 LIZ® Size Standard (Applied Biosystems) using
GeneMapper software version 4.0 (Applied Biosystems).

(a)

(b)

Fig. 1 (a) Focal region in eastern Spain (black
box) and range-wide sampling, showing the
distribution of the three maternal
(mitochondrial DNA, mtDNA) lineages (black
lines) known in Pinus pinaster (Burban &
Petit, 2003). (b) Serotiny estimates for
populations within the western maternal
lineage (data retrieved from Tapias et al.,
2004) superimposed on provincial data of
burned area by large fires (> 500 ha, from
1985 to 2010; European Commission, 2010).
Maritime pine range is shown in green in the
two maps.
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384-plex SNP assay and genotyping

Genotyping (n = 509) was performed with Illumina VeraCode®

technology for a 384-plex SNP Oligo Pool Assay (OPA) (design
file provided as Table S2; SNP data deposited in the Dryad
repository with doi: 10.5061/dryad.1p2s5/2). This OPA is based
on a subsample of the 1536-plex SNP assay developed for
P. pinaster by Chancerel et al. (2011), including polymorphisms
from drought stress response candidate genes associated with cli-
mate variables in Mediterranean (P. pinaster and P. halepensis)
and American (P. taeda) pines, as reported in Grivet et al. (2011)
and Eckert et al. (2010a,b), respectively. The OPA also included
50 and 68 expressional candidate genes for stress response in mar-
itime pine (Perdiguero et al., 2013) and loblolly pine (Lorenz
et al., 2011), as well as a wide representation of functional candi-
date genes for biotic and abiotic stress responses, physical and
chemical wood properties, phenology and growth in maritime
pine (e.g. Pot et al., 2005; Eveno et al., 2008; Grivet et al., 2011;
Lepoittevin et al., 2012; J. P. Jaramillo-Correa, pers. comm.) and
other conifers (e.g. Gonz�alez-Mart�ınez et al., 2007, 2008; Eckert
et al., 2010a,b; Mosca et al., 2012a,b). For example, Lepoittevin
et al. (2012) found that SNPs hdz31-2268 and m1027 in this
OPA were strongly associated with variation in growth and wood
cellulose content, respectively, and Grivet et al. (2011) and J. P.
Jaramillo-Correa (pers. comm.) found the allele frequency of
several SNPs in this OPA (including m705, m1196 and m1211,
see the Results and Discussion sections) to be significantly associ-
ated with climatic variables (particularly with temperature
variables) at regional and range-wide spatial scales.

Phenotypic measurements

Serotiny was estimated for 199 individuals in three natural stands
in eastern Spain (as described previously; phenotypic data depos-
ited in the Dryad repository with doi: 10.5061/dryad.1p2s5/1).
Dominated trees and trees with a diameter of < 10 cm were
avoided. For each sampled tree, serotinous (closed) and non-
serotinous (open or partially open) cones were counted using bin-
oculars on two pairs of opposite branches belonging to the upper
and second third of the canopy, respectively. Cones in the main
trunk were also counted, as they are abundant in this species. The
serotiny level for each tree was then estimated as the number of
closed cones (those remaining closed after maturation) with
respect to the total number of cones (open and closed). Because
changes in humidity can close open cones, serotiny was assessed
during hot spring and summer days (i.e. the dry season).

Range-wide serotiny data (population means for the 15 SNP-
genotyped populations; as described previously) were retrieved
from Tapias et al. (2004). The serotiny level was estimated here
by counting all closed and open cones. Population means were
based on 32 individuals per population (480 observations).

Population genetic structure and kinship

Population genetic structure within the sampling region in east-
ern Spain (n = 199) was assessed using 11 nuclear microsatellites

and the Bayesian clustering method implemented in STRUC-
TURE 2.2 (Pritchard et al., 2000). Ten runs were performed for
each number of clusters, K = 1 to K = 5, with a burn-in length of
50 000 and a run length of 500 000 iterations, and using an
admixture model with correlated allele frequencies.

Pairwise kinship was estimated using all available markers (i.e.
11 SSRs and 251 successfully genotyped and polymorphic SNPs)
to approximate the covariance matrix among the individuals used
in mixed-effects linear models (MLMs, to be described), following
Yu et al. (2006). The kinship estimator of Loiselle et al. (1995), as
implemented in SPAGeDi 1.3 (Hardy & Vekemans, 2002), and
the skewness of the pairwise kinship distribution were computed.
Deviation of this distribution from normal expectations centered
on mean zero, as evaluated by D’Agostino’s skewness test, implies
significant family structure within the population.

Identification of marker loci potentially associated with fire
phenotypes

Single-locus approach The identification of SNPs with signifi-
cant single-locus allelic effects on fire phenotypes followed a two-
step approach. First, a preliminary selection of SNPs was based
on MLMs (see Yu et al., 2006), fitted independently for each
SNP marker, as implemented in Tassel 3.0 (Bradbury et al.,
2007). The covariance matrix among individuals for the MLMs
was approximated using all available markers (SSRs and SNPs),
as explained previously. Negative kinship values were set to zero
following Yu et al. (2006). We considered three alternative
genetic models accounting for additive allele effects, over-domi-
nance and allele dominance. A false discovery rate (FDR)
approach (Storey, 2002; Storey & Tibshirani, 2003) was used to
estimate the proportion of true null hypotheses, p0 (i.e. 1 – p0
indicates the expected proportion of significant associations),
among all tests for each genetic model. Second, for marker loci
potentially associated with fire phenotypes and minor allele fre-
quency (MAF) > 0.10, a Bayesian mixed-effect association
approach (Bayesian Association with Missing Data, BAMD;
Gopal et al., 2009; Quesada et al., 2010; Li et al., 2012) in
R v.2.13.1 (R Development Core Team, 2008) was used to esti-
mate single-locus allelic effects under the three genetic models.
Mean allelic effects (c) and 95% confidence intervals were obtained
from the distribution of the last 20 000 iterations (50 000 in total).
Only those SNPs with confidence intervals not overlapping zero
were considered to be potentially associated with the trait.

Multi-locus approach A stepwise mixed model strategy was
used to further identify SNPs potentially associated with fire phe-
notypes. This multi-locus approach combined a multiple regres-
sion selection strategy, together with the mixed model, following
Segura et al. (2012). Briefly, the most significant SNPs, based on
genetic variance estimates from a mixed model using restricted
maximum likelihood (REML), were included, one by one, as co-
factor in the mixed model at each step. Then, the Bayesian Infor-
mation Criterion (BIC) was used to select the best model. Only
common SNPs (i.e. with MAF > 0.10) were considered in these
analyses.
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SNP-based predictive model for serotiny at a local scale

Common (MAF > 0.10) SNPs potentially associated (either alone
or in combination with other SNPs, see the Results section) with
fire phenotypes in the eastern Iberian range of maritime pine (17
loci) were employed to construct predictive models for serotiny in
this region using ridge regression in a mixed-effects modeling
framework (RR-BLUP). SNP-based breeding values for serotiny
(i.e. numerical predictions of the relative genetic merit of each tree
based exclusively on its genotype) were obtained using the rrBLUP
R-software package (Endelman, 2011; Endelman & Jannink,
2012). This ‘penalized’ regression technique is commonly used to
circumvent the classical ‘large p, small n problem’ (Johnstone &
Titterington, 2009), although it was originally designed to deal
with predictors’ collinearity (Hoerl & Kennard, 1970). Despite
the typically high effective population size in conifers, RR-BLUP
has been shown to produce models that have moderate to high
accuracy (0.17–0.51, as estimated by the Pearson correlation
between de-regressed breeding values from quantitative genetic
analyses and SNP-based breeding values) for a wide range of
phenotypic traits (h2 of 0.07–0.45) in loblolly pine (Resende
et al., 2012). In our study case, the use of preselected SNPs poten-
tially linked to the trait (or to causal SNPs, if they are not the
causal SNPs themselves) is expected to improve the predictive
value of the models (see Westbrook et al., 2013). Six-fold cross-
validation was used to evaluate model accuracy in the sampled
region (eastern Spain). Model accuracy was estimated by the Pear-
son’s correlation coefficient r between observed serotiny and
SNP-based breeding values, and the corresponding adjusted R2.

Model prediction power at wide geographical scales

The recent literature has shown that SNP loci can have either
local or wide-range adaptive value (e.g. Hancock et al., 2011;
Prunier et al., 2012). If the same polymorphisms underlie fire-
related traits in different regions, predictive models for serotiny
based on candidate genes could still be valid outside the focal
region. Conversely, different genetic lineages may have under-
gone independent (i.e. lineage-specific) adaptive processes,
restricting the predictive value of the model to the local scale.
Moreover, differences in LD, for example those caused by con-
trasted demographic history (e.g. Heuertz et al., 2006), or in the
strength of selection, could also affect predictive model accuracy
in distinct geographical regions. To test these alternative hypoth-
eses, the RR-BLUP model was used to predict fire phenotypes for
310 individuals from 15 range-wide populations representing the
three distinct maternal (mtDNA) lineages recognized in maritime
pine (western, eastern and Moroccan lineages; Burban & Petit,
2003). Serotiny phenotypes (averages by population) were
retrieved from Tapias et al. (2004) for the same populations. It
should be noted that this is a fully independent dataset to that
used for model construction. Significant correlations between
population means of estimated breeding values based on SNPs
and observed serotiny for distinct maritime pine gene pools were
tested using Kendall’s s non-parametric rank correlation coeffi-
cient.

Results

The 384-plex SNP OPA conversion rate was relatively high
(c. 66%; Gentrain, GC50 and GC10 scores of 0.822, 0.819 and
0.801, respectively), and we were able to obtain high-quality
genotypes for 251 polymorphic SNP loci in all 509 trees. Suc-
cessfully genotyped SNPs included numerous loci with suggested
adaptive value in previous pine studies (see the Materials and
Methods section).

Population genetic structure and kinship

No genetic structure was detected in any of the STRUCTURE
runs (Fig. S1). Average pairwise kinship in the sample was close
to zero (�2.858E-05), as expected. However, the pairwise kin-
ship distribution was skewed towards positive kinship values
(D’Agostino’s skewness test: skew = 0.208, z = 7.777, P =
7.387E-15; Fig. S3), thus indicating certain pairs of related trees
in the population, which supports the use of mixed-model
approaches for genetic association.

Identification of marker loci potentially associated with fire
phenotypes

Single-locus MLMs identified 26 SNPs under the additive and
allele dominance genetic models that were potentially associated
(P < 0.05) with serotiny (see Table S3; no significant SNPs were
found for the over-dominance model), including one locus with
Q < 0.10 (m692; see Fig. 2). The inflation factor k was 1.11–
1.29, depending on the genetic model, which indicates moderate
inflation of P values. Nevertheless, the FDR approach resulted in
p0 = 0.7568 (additive model) and p0 = 0.7532 (allele dominance
model), which suggests that at least some associations are not
false positives. Twelve SNPs with MAF > 0.10 had a significant
(at a = 0.05) allelic effect on serotiny phenotypes, as estimated by
BAMD, under the different genetic models tested (two-tailed
test; Table 1 and Fig. 2). Two of these loci, m15 and m816, best
fitted the over-dominance model, whereas the other ten (m594,
m692, m696, m698, m705, m912, m955, m974, m1194 and
m1196) best fitted the additive or allele dominance models, in
agreement with the MLM results. The best stepwise mixed model
combined the effects of 11 SNPs (Fig. 3). This set included six
SNPs (m594, m692, m698, m974, m1194 and m1196) of the 12
with significant single-locus allelic effects reported above, and five
additional SNPs (m289, m817, m959, m1211 and m1414; see
Table S4).

SNP-based predictive model for serotiny at a local scale

Seventeen common SNPs (MAF > 0.10) potentially associated
with fire phenotypes in the eastern Iberian Peninsula (12 SNPs
from single-locus MLM/BAMD analysis and five additional
SNPs detected in the stepwise mixed model) were used to con-
struct a phenotypic predictive model based on RR-BLUP. The
model explained 29.15% (Pearson’s product-moment correlation
coefficient r of 0.556) of the phenotypic variation in serotiny in
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Table 1 Significant marker effects of common single nucleotide polymorphisms (SNPs) (minor allele frequency (MAF) > 0.10) on serotiny in Pinus pinaster,
as identified by a two-step approach based on mixed-effects linear models (MLMs) and Bayesian genetic association (Bayesian Association with Missing
Data, BAMD)

SNP Annotation
SNP
motif

Site
annotationa LG MAF N

Genetic
model

Marker effects

Bayesian model
Mixed linear model

F P R2 Mean c (95% CIs)

m15 Defectively organized
tributaries 2 (DOT2)

T/C nc 0.3706 197 A 6.052 0.003 0.062 �0.2467 (�0.4653, �0.0282)

m594 Pyrophosphate-energized
vacuolar membrane
proton (AVP)

T/C syn 8b,c 0.1878 197 D 6.915 0.009 0.035 �0.3678 (�0.6264, �0.1105)

m692 Unknown A/G unk 3b 0.4133 196 D 12.932 4.0E-04 0.067 �0.4696 (�0.7964, �0.1426)
m696 Arabinogalactan-like

protein (AGP)
C/G nc 3b,c 0.4031 196 D 5.722 0.018 0.029 �0.3206 (�0.5773, �0.0658)

m698 Nascent polypeptide-
associated complex
subunit alpha-like protein
(NAC-alpha)

T/C syn 0.2864 199 A ns ns ns 0.2938 (0.1130, 0.4751)

m705 Carotenoid cleavage
dioxygenase (CCD)

A/G nc 0.1231 195 D 6.737 0.010 0.034 �0.3083 (�0.5993, �0.0197)

m816 Receptor protein kinase
clavata1 (CLV1)

C/G syn 1b,c 0.4924 197 O ns ns ns 0.3391 (0.1080, 0.5706)

m912 Peroxidase 72-like (PER72) A/T non-syn 0.3795 195 D 5.791 0.017 0.031 0.2601 (0.0205, 0.4992)
m955 Unknown A/G unk 3b,c 0.2475 198 A 3.049 0.050 0.031 0.2294 (0.0469, 0.4160)
m974 1-Aminocyclopropane-1-

carboxylate synthase
(ACC)

A/G syn 11c 0.1231 199 D 5.387 0.021 0.027 0.2946 (0.0137, 0.5731)

m1194 Cell division-related protein C/G syn 0.1439 198 A 3.714 0.026 0.038 0.2501 (0.0275, 0.4744)
m1196 Peptidyl-prolyl cis–trans

isomerase (PPI)
A/C syn 0.3266 199 A ns ns ns �0.1994 (�0.3871, �0.0086)

Bayesian mean allelic effects (c) and 95% confidence intervals (CIs) were obtained from the distribution of the last 20 000 iterations in BAMD (for details,
see Li et al., 2012). Allelic effects are provided for the genetic model (A, additive; O, over-dominance; D, allele dominance) with higher effect on fire phe-
notype. Marker names and linkage groups (LG) as reported in Chancerel et al. (2011) and De Miguel et al. (2012); ns, not significant for that particular
genetic model.
aSite annotation: nc, non-coding (untranslated regions or introns); non-syn, non-synonymous; syn, synonymous; unk, unknown.
bLG from Chancerel et al. (2011).
cLG from De Miguel et al. (2012).

Fig. 2 Genotypic effects (box plots) of eight
exemplary common single nucleotide
polymorphisms (SNPs) (minor allele
frequency (MAF) > 0.10) showing significant
association with observed serotiny in Pinus

pinaster, as identified by a two-step
approach based on mixed-effects linear
models (MLMs) and Bayesian association
analysis (Bayesian Association with Missing
Data, BAMD). Marker codes follow
Chancerel et al. (2011). For the box plots,
the box indicates the interquartile range and
the band inside it the median; the whiskers
extend to the furthest data point within 1.5
times the length of the box; outliers are
depicted with circles.
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this region (Fig. 4). Cross-validation showed a highly significant
correlation between the SNP-based breeding values obtained
from RR-BLUP and observed serotiny (Pearson’s r of 0.429–
0.632; P values of 0.00008–0.01270), with adjusted R2 of
0.158–0.378. SNPs were not in LD, and even those obtained
from the same gene (m816 and m817) showed low allelic correla-
tion values (r2 = 0.262; see also LD plot in Fig. S4). Ten mapped
SNPs belonged to five different linkage groups (four SNPs to
LG1, three SNPs to LG3 and one SNP each to LGs 5, 8 and 11;
Chancerel et al., 2011; De Miguel et al., 2012; see also Tables 1,
S4). Thus, most significant associations represent (or are linked
to) distinct causal SNPs.

Model prediction power at wide geographical scales

The predictive model for serotiny developed for the eastern Ibe-
rian Peninsula (as shown previously) had variable success outside
the focal population depending on the geographical region. At
range-wide scale, correlations between observed and predicted
serotiny at the population level were still significant within the
western maternal lineage of maritime pine (Kendall’s s = 0.44,
z = 1.9933, P = 0.046), but not when the eastern (Corsica and
Tunisia) and Moroccan lineages were also considered (Kendall’s
s = 0.13, z = 0.6937, P = 0.488). This result is not surprising,
considering that maternal lineages are completely isolated in mar-
itime pine (Burban & Petit, 2003), which would facilitate line-
age-specific adaptations, and that remarkable differences across
geographical regions have been described for phenotypic and
morphological traits in this species (Scott, 1962; Resch, 1974).
Within the western maternal lineage, correlation between pre-
dicted and observed serotiny was higher in geographical regions
closer to the focal population, from c. 30% in nearby populations
from eastern and southern Spain to c. 20% in further away cen-
tral Spain and Atlantic regions of maritime pine. In these models,
low levels of serotiny were associated with negative breeding val-
ues, with the Atlantic and central Spain regions having more neg-
ative values (average of �0.228 and �0.036, respectively), and

eastern and southern Spain (which are known for the higher
incidence of forest fires; see Fig. 1) having more positive ones
(average of 0.354 and 0.063, respectively).

Discussion

In this article, we have provided a case study for genetic associa-
tion of an ecologically relevant trait (serotiny) evaluated in situ in
natural forest tree populations. As demonstrated here, in situ
genetic association can be achieved when the trait under study:
(1) has large phenotypic variability within a region that lacks
population genetic structure; (2) is under strong genetic control
(i.e., heritability is high); and (3) can be accurately quantified in
a large number of individuals. This approach is especially suitable
for forest trees that generally form large random-mating unstruc-
tured natural populations with relatively high nucleotide diversity
(Neale & Savolainen, 2004; Neale & Ingvarsson, 2008) and for
which several heritable adaptive traits (e.g. female reproduction,
Santos-del-Blanco, 2013; wood density, Cornelius, 1994; cold
hardiness, Howe et al., 2003 and references therein) can be read-
ily evaluated in a large number of individuals.

Targeting traits that represent ‘ecological syndrome’ phenotypes
(i.e. involving several correlated traits) that have evolved as a
response to the same selective pressure (Reich et al., 2003), such as
serotiny for fire phenotypes, increases the chances of finding associ-
ated marker variation, even with relatively low genotyping effort.
The interpretation of genetic associations for these complex phe-
notypes, however, can be obscured by genetic correlations among
traits. In these cases, functional annotation of potentially associ-
ated loci can help to elucidate the specific traits involved and their
underlying genetic architecture (to be described for serotiny).
Genetic dissection of ‘ecological syndrome’ phenotypes, although
challenging, is a promising field, as many of the most relevant eco-
logical adaptations involve syndromes rather than single traits (e.g.
pollination syndromes, Fenster et al., 2004; plant defense

Fig. 3 Single nucleotide polymorphisms (SNPs) selected by the best
stepwise mixed model in Pinus pinaster (step 12), as evaluated by the
Bayesian Information Criterion (BIC);maxpval, P values for the best SNP
introduced in each step. SNPs with black bars were also identified by the
single-locus approach. Fig. 4 Correlation of predicted breeding values based on ridge regression

in a mixed-effects modeling framework (RR-BLUP) and observed levels of
serotiny (standardized) in the eastern Iberian Pinus pinaster range. A linear
trend is also shown.
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syndromes, Agrawal & Fishbein, 2006; Mediterranean plant
syndromes, Verd�u&Pausas, 2013).

In maritime pine, we identified 17 loci potentially associated
with serotiny which together explained c. 29% of the phenotypic
variation found in natural eastern Iberian populations of the spe-
cies. Similar levels of explained variance have been reported in
association studies (based on clonal banks or common gardens)
in other conifers (e.g. c. 20% for wood properties in Pinus taeda,
Gonz�alez-Mart�ınez et al., 2007; 17% for cold hardiness in
Pseudotsuga menziesii, Eckert et al. 2009; c. 34% for bud set and
c. 28% for cold hardiness in Picea sitchensis, Holliday et al.,
2010). Model accuracy within the target region (estimated using
Pearson’s correlation coefficient) was also similar to that found in
a predictive model for oleoresin flow in loblolly pine (0.51–0.62
vs 0.43–0.63 in our study). In addition, Parchman et al. (2012)
identified 11 SNPs that explained 50% of the variance for seroti-
ny using a genotyping-by-sequencing (GBS) approach in Pinus
contorta. One advantage of GBS approaches is the high marker
density covering the whole genome, albeit site annotations and
gene functions are normally unknown (in non-model species).
Genome-wide approaches, such as GBS, are also able to reveal
unexpected functional associations that would normally not have
been considered in more targeted candidate gene studies. Never-
theless, Westbrook et al. (2013) found that 20–30 significantly
associated SNPs had the same predictive value as the full dataset
altogether (4854 SNPs) for oleoresin flow in loblolly pine, sup-
porting the idea that a few, well-selected loci could have as much
predictive power as genome-wide datasets.

The ‘fire syndrome’ arose in pines at the same time as the
genus split into its two main lineages (i.e. subgenus Pinus and
subgenus Strobus; He et al., 2012). Species of the subgenus Pinus,
such as P. pinaster, are typical of fire-prone ecosystems, whereas
those in subgenus Strobus are mainly adapted to low productivity
sites with either low soil nutrient conditions or hot and cold cli-
matic extremes (Millar, 1998; Keeley, 2012). Interestingly, six of
the loci potentially associated with serotiny in P. pinaster (see
annotation in Table S4) are found in genes involved in the water
stress response (m289, m696, m698, m705, m912 and m974;
Schwanz et al., 1996; Zhu, 2002; Jenks & Wood, 2009), includ-
ing one non-synonymous mutation in a gene coding for a peroxi-
dase (m912). Another locus (m1211) is associated with winter
temperatures at range-wide scales (J. P. Jaramillo-Correa, pers.
comm.). Together, they may reflect a correlation of drought with
fire phenotypes (as gauged by serotiny), a finding that has also
been reported in the fire ecology literature (Pausas & Fern�andez-
Mu~noz, 2012). Three other loci (m15, m816 and m817) are
found in genes involved in cell differentiation and root, shoot
and flower development (�Avila et al., 2006; Casson et al., 2009),
and could be related to distinct growth habits and maturity age
in highly serotinous trees adapted to crown fires (e.g. short trees
without self-pruning and with early maturity age). Further loci
are found in genes involved in more general functions (e.g. cell
division, membrane transport or protein folding) or for which
the function is still unknown.

The predictive value for serotiny of SNP-based models con-
structed in the eastern Iberian Peninsula (i.e. the linkage of the

marker loci with the trait) was higher, as expected, in regions geo-
graphically closer to the focal population, and lost any predictive
power outside the maternal genetic lineage within which the
models were constructed. This is in line with recent findings in
natural populations of Arabidopsis thaliana, the selfing model
plant species. For example, Fournier-Level et al. (2011) found
that alleles associated with higher survival in different sites were
locally more abundant than genomic controls, and that different
loci underlie the same trait in sites with contrasting environ-
ments. Our results are also in agreement with previous research
in conifers, which reported lineage-specific adaptations at the
molecular level (e.g. Prunier et al., 2012 for climate adaptation in
Picea mariana). Alternatively, reduction in model prediction
power could reflect different levels of LD across regions (for
instance, as a result of regional demographic events such as bot-
tlenecks) or variable strength of selection. However, we did not
find any evidence of lower LD in populations from the eastern
(average r2 of 0.034 vs. 0.018 in eastern Spain) or Moroccan
(average r2 of 0.052) maternal lineages of maritime pine (see also
Fig. S5). Moreover, fire regime (assumed to be related to the
strength of selection for serotiny; Gauthier et al., 1996; Keeley &
Zedler, 1998; Tapias et al., 2004), although variable, is similar in
regions with high and low model prediction power (see Tapias
et al., 2004 and Fig. 1). Finally, it is noteworthy to point out that
the predictive value of the serotiny model, although limited, still
extended to populations located hundreds of kilometers away
from the focal population for which it was constructed. West-
brook et al. (2013) showed that significantly associated SNPs can
be used to construct predictive models that are robust to environ-
mental variation. Thus, a few well-constructed models covering
the main gene pools of the species may be sufficient for accurate
phenotypic prediction of serotiny in maritime pine.

Comparative studies of closely related species can shed light on
adaptive evolutionary processes at higher phylogenetic scales than
can within-species population genetics studies. Within the genus
Pinus, serotiny evolved several times independently (Grotkopp
et al., 2004; He et al., 2012), which provides a rich source of com-
parative data. Although evidence across species is still scarce, the
only two available genetic association studies for serotiny in pines
were able to explain substantial amounts of the phenotypic vari-
ance for this trait, 50% in lodgepole pine, a North American spe-
cies, and c. 29% in the Mediterranean maritime pine (Parchman
et al., 2012 and this study, respectively), which makes compara-
tive approaches promising. Furthermore, these two studies pro-
vide strong support to reject the previously proposed simple
genetic control (one locus with two alleles) for serotiny in pines
(Teich, 1970; Perry & Lotan, 1979), as distinct unlinked SNPs
were potentially associated with serotiny in both species and, in
the case of maritime pine (no mapping data are available for
lodgepole pine), they mapped to five different linkage groups (see
linkage maps in Chancerel et al., 2011; De Miguel et al., 2012).

Newly available genomic tools and analytical methods, such as
association genetics, provide opportunities for a better under-
standing of the molecular basis of ecological adaptations in non-
model species (Stinchcombe & Hoekstra, 2008; Stapley et al.,
2010), particularly with regard to climate change (Feder &
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Mitchell-Olds, 2003; Gonz�alez-Mart�ınez et al., 2006; Hoffmann
& Sgr�o, 2011). Fire and climate are closely linked, and adaptive
responses to forest fires will acquire increasing importance as cli-
mate changes (Pausas, 2004). Thus, current predictive models of
range shifts under climate change would benefit from genetic
knowledge, such as the spatial distribution of genetic variation
for fire-related traits, including serotiny. In addition, predictive
models for serotiny, such as that developed here, can help to
identify populations and individuals with an expected good
response to increased fire recurrence and intensity. Ideally,
genetic effects should be studied in the natural environment
where they confer adaptive value. So far, genetic association stud-
ies have been mostly focused on model organisms and species
with economic value, such as major crops and some forest trees,
and under controlled environments (e.g. Gonz�alez-Mart�ınez
et al., 2007; Holliday et al., 2010). However, it is important to
extent this field of research to natural environments and to other
ecological keystone species with distinct life-history traits and
evolutionary history (Feder & Mitchell-Olds, 2003; Gonz�alez-
Mart�ınez et al., 2006; Stinchcombe & Hoekstra, 2008; Stapley
et al., 2010). The probability of the detection of ecologically rele-
vant functional markers increases with the strength of the selec-
tion drivers. Therefore, populations adapted to extreme
environments (Feder & Mitchell-Olds, 2003) or that have under-
gone rapid environmental change (e.g. during invasion of new
areas; Hoffmann & Sgr�o, 2011) are ideal for the in situ identifica-
tion of ecologically relevant genetic variation.
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