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Abstract After two decades of meta-analyses on plant traits, we can now look for global

emergent patterns in plant evolutionary ecology. Hundreds of meta-analyses have focused on

the effects of specific selection pressures on plant fitness, and the buildup of such results

allows us to ask general questions regarding selection pressures and plant responses, a major

focus of evolutionary ecology. Plant traits are affected by both abiotic and biotic factors. For

example, biotic pressures like herbivory may affect physiological (i.e. secondary defences)

and reproductive (i.e. seed predation) traits. Similarly, abiotic pressures such as increased

CO2 may affect both plant physiology and reproduction. We tested whether biotic or abiotic

selective pressures are more important for plant traits, and if the strength of the response to

those pressures depends on the plant trait studied by meta-analyzing published meta-analyses

on plant responses. We classify meta-analyses according to the type of response variable

studied (fitness and non-fitness traits) and the type of selective pressure examined (biotic or

abiotic). Our database showed biases in the meta-analysis literature, for example that the

majority of studies are focused on non-fitness traits, i.e. on traits that are not directly related

to reproduction or survival, and furthermore, on non-fitness traits under abiotic selection

pressures. The meta-meta-analysis showed that the strength of responses to selection

depends on the nature of selection (stronger for biotic than for abiotic factors) but, unex-

pectedly, not on the type of trait under study as previously found. The stronger responses to

biotic factors can be explained if biotic selection is more variable in space and time, driven by

interactions with other organisms. The relative importance of biotic versus abiotic factors on

plant traits has been little studied in the past, and would benefit from more studies and

reviews that fill the under-represented combinations of selective pressures and plant traits

(i.e. abiotic factors on fitness traits).
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Introduction

After two decades of meta-analyses on plant traits, beginning with the introduction of the

technique in the field of ecology in the early 1990s (see Gurevitch et al. 2001), it is timely

to look for global emerging patterns in the literature. In the field of plant evolutionary

ecology specifically, hundreds of meta-analytical studies have focused on the effects of

specific selection pressures on a single or a few plant fitness components. As a result,

generalizations can be made, for example on how increased N availability or increased

herbivore activity can affect plant growth or reproductive output and how such effects hold

across experiments and plant species. The buildup of meta-analytic results, however,

allows us to go further and ask more general questions regarding selection pressures and

plant responses, i.e. the types of questions on patterns of selection that are a major focus of

modern evolutionary ecology. Key questions that can be explored are whether biotic or

abiotic selective pressures are more important for plants, and if the strength of the response

to those pressures depends on the plant trait studied.

Natural selection is an important force behind phenotypic differentiation across a wide

range of plant traits (Kingsolver et al. 2001; Rieseberg et al. 2002). However, not all traits

are expected to be targeted by selection in the same way. For example, traits closely related

to fitness, such as life history traits, are expected to experience stronger selection than other

types of traits (Merilä and Sheldon 1999). Tests of this idea have come to different

conclusions, depending on the methodological approach. Kingsolver et al. (2001) com-

pared selection gradients and differentials measured in wild populations across different

types of traits, and found that morphological traits were subject to stronger selection than

life history traits. Rieseberg et al. (2002) on the other hand, compared the signature of

selection with a more ‘‘historical’’ approach, using the direction of effects of quantitative

trait loci (the QTL sign test), and found evidence of stronger and more consistent selection

on life history than on morphological characters.

Contrasting results are not necessarily surprising because selective pressures are

expected to affect plant performance in complex ways (Bell 2010). For example, the

strength, form and direction of selection can vary in time (Grant and Grant 2002; Siepielski

et al. 2009; Kingsolver and Diamond 2011) and space (Linhart and Grant 1996; Schluter

2000; Herrera et al. 2006; but see also Morrisey and Hadfield 2012). In addition, the type of

selection pressure, whether biotic or abiotic, could also exert different responses from plant

traits. Biotic selective pressures depend on the interactions with other organisms, such as

predators or mutualists, whose distributions and densities can vary rapidly and unpre-

dictably and can therefore be expected to be less consistent in strength, space and time

(Linhart and Grant 1996; Thompson 2005). Plant responses to biotic pressures could be

then expected to be weaker and less consistent across species and populations than to

abiotic pressures. However, a recent study suggests that biotically-selected traits are

governed by fewer genes with a large effect, which could allow populations to move faster

among variable peaks in an adaptive landscape (Louthan and Kay 2011). Although pre-

vious studies have tested for differences between measures of selection on fitness traits

compared to other types of traits, to our knowledge no studies have specifically explored

the potential differences in selection when the pressures are biotic or abiotic.
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We assembled here a database of diverse meta-analyses that allows us to simultaneously

test for the strength of the effects of biotic and abiotic selection pressures and the responses

of different types of traits (fitness vs. non-fitness). We also tested for the interaction

between them, which could reveal differential effects of biotic or abiotic factors on dif-

ferent types of traits. We address these questions quantitatively by performing a meta-

analysis of published meta-analyses, or a second-order meta-analysis, an approach that has

been little used in ecology so far, but is already common practice in the medical sciences

(usually referred to as ‘‘umbrella reviews’’ when various reviews are compared in narrative

form, or ‘‘multiple treatment meta-analysis’’ when multiple meta-analytic results are

compared under specific models; Caldwell et al. 2010; Ioannidis 2009). Specifically, we

compare, with meta-analytical techniques, (1) the global effect sizes of meta-analyses of

biotic versus abiotic selection pressures, (2) the global effect sizes of fitness versus non-

fitness response traits, and (3) the interaction between them. Note that we are not dealing

with data on selection gradients or differentials (as defined by Lande and Arnold 1983), but

with studies that control or measure the selective factors and record their effect on plant

traits. In addition, we use our database to describe patterns in the published meta-analysis

literature on plant evolutionary ecology and detect potential biases towards certain types of

reviews.

Materials and methods

Clarification of the terminology used in the remaining of the article follows. The data base

used in our qualitative and quantitative analyses is composed of meta-analyses mean effect

sizes extracted from publications that may or may not include more than one meta-

analysis. Each meta-analysis in turn included original case studies. Data points in our

second-order meta-analysis are meta-analyses mean effect sizes and not the original case

studies. Methods are detailed below.

We compiled the data set of published meta-analyses on plant traits by performing a

literature search in the Web of Science with topic keywords ‘‘meta-analysis and plant’’ (as

of September 2011). We purged down the initial list of around 440 publications to include

meta-analyses that met the following requisites. (a) Studies had to perform a formal meta-

analysis, that is, a comparison of weighted effect sizes across data sets. (b) Meta-analyses

were revisions of the published literature designed to extract general patterns. This

excludes studies that used formal meta-analytical techniques to compare various sets of

original data. (c) We excluded meta-analyses performed exclusively on crop species under

agricultural conditions, because a long history of artificial selection might affect current

response to selective pressures. (d) We included only meta-analyses focused on plant traits

that can be measured in individuals. Community level (e.g. species richness) or ecosystem

level traits (e.g. litter decomposition) were not considered. (e) We also excluded allometric

meta-analyses that were purely morphological (e.g. trunk diameter vs. leaf area), when

they had no clear evolutionary implications.

We classified the remaining meta-analyses according to the type of response variable

studied (growth, physiology, reproduction or survival) and the type of selective pressure

examined (biotic or abiotic). Response variables were in turn grouped as fitness variables

(reproduction and survival) or non-fitness (physiological and growth traits). This division

might not seem straightforward, as it can be argued that growth or development are fitness

components as well. Our rationale follows that of Merilä and Sheldon (1999), which

Evol Ecol (2012) 26:1187–1196 1189

123



assumes that reproductive traits and survival are more closely related to fitness itself than

other traits.

From each meta-analysis we extracted global effect sizes and their associated sample

sizes and sampling error variances to use them as weights. Sampling error variance is the

square of the standard error, but these estimates are seldom reported in the literature.

Instead, 95% confidence interval of the effect size is usually provided and half the width of

the 95% CI divided by 1.96 is a good approximation to the standard error. We did not

include partial effect sizes (predictor factors) that subdivide data sets already used to

calculate a global effect (e.g. subdividing data sets to test the effect of ant mutualisms on

herbivory in shrubs vs. herbs, Chamberlain and Holland 2009), to avoid pseudoreplication.

When several global effect sizes were provided by the same publication to test separate

response variable types (e.g. physiological, reproduction, etc.), we included all of them.

For example, mutualism effects on growth and reproduction of target plants were studied

independently by Trager et al. (2010) and therefore we included two global effects from

this publication. Furthermore, if the original meta-analysis mixed the types of response

variables we were interested in, we recalculated a global effect size for each variable type

if the original data set was available. For example, Bailey et al. (2009) reported effects of

introgression on a mixture of physiological, morphological, and reproductive response

variables in Populus. We recalculated global effect sizes for growth and physiological

response variables separately from their supplementary data set.

For our final second-order meta-analysis, we needed to transform individual meta-

analyses’ effect sizes to a common metric. However, the most common effect metric used

in ecological studies, the log of the response ratio (lnRR) cannot be transformed into other

metrics in a straightforward way (M. Lejaunesse, personal communication.). We therefore

limited our quantitative analysis to meta-analyses reporting lnRR and closely related

metrics (e.g. percentage of change) and excluded those reporting metrics based on stan-

dardized mean differences (i.e. Hedges d) or correlation coefficients. Because the

lnRR = ln(XE) - ln(XC), i.e. the ratio of the outcome of an experimental group to that of

a control group, our database for the quantitative analysis is composed mostly of meta-

analyses of controlled experimental studies, but not exclusively, because some also include

original case studies using natural variation (e.g. Chamberlain and Holland 2009; Trager

et al. 2010).

There was no significant correlation between effect size and sample size (r = 0.02,

df = 137, P = 0.81), suggesting against the biased publication of high effect sizes.

Statistical analyses

Because we were only interested in the strength of plant trait responses to selective

pressures, the sign of the effect sizes was not informative in our analysis. We therefore

used the absolute values of effect sizes (lnRR) to run Bayesian meta-analyses as explained

below. Using the absolute values could introduce an upward bias when estimated effect

sizes are non-significantly different from zero (Hereford et al. 2004). However, we do not

expect this to affect our comparisons, because around 80% of the reported meta-analyses

were significant. In addition, we are not testing for significance in effect sizes, but rather

for differences in their strength.

We first calculated an index of heterogeneity among meta-analyses (I2; Higgins and

Thompson 2002) using the MCMCglmm R package as suggested by Nakagawa and Santos

(2012). Values of I2 around 25, 50 and 75% reflect small, medium and large heterogeneity

(Higgins et al. 2003). For the second-order meta-analysis, we fitted generalized linear
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mixed models using Markov chain Monte Carlo techniques with the help of the

MCMCglmm package for R (Hadfield 2010). The effect size was the dependent variable in

the model, and two types of weights were used: (1) sample size and (2) inverse of the

sampling error variance. Both weighting strategies have been used in social sciences

(Hunter and Schmidt 2004 and references therein) as well as in ecology (e.g., van

Groenigen et al. 2011). Comparisons of the performance of both methods can be found in

Marı́n-Martı́nez and Sánchez-Meca (2010) and in Lajeunesse and Forbes (2003).Weights

were passed to the mev argument of MCMCglmm (Hadfield and Nakagawa 2010). We ran

13,000 MCMC iterations with a burn-in period of 3,000 iterations and convergence of the

chain was tested by means of an autocorrelation statistic. The priors used were nu = 0 and

V = I 9 1e ? 10, where I is an identity matrix of appropriate dimension. The type of

selective variable (biotic and abiotic) and the type of response variable (fitness and non-

fitness) were included as predictors in the MCMCglmm model, including an interaction.

Although separate global effect sizes could come from the same publications, we decided

against using the publication as a random grouping factor in the model. This is because (1)

separate meta-analyses reported in the same publications are not necessarily non-inde-

pendent, because they are derived from different sets of original study cases, and (2)

publications deal with only one of the selective variable types (biotic or abiotic), so that

including it as a random factor would remove important variance from the main predictors

unintentionally. The effect of predictors was estimated by calculating the 95% credible

interval of their posterior distribution (Nakagawa and Cuthill 2007).

Results

General patterns in the literature

Our final data set included 196 meta-analyses based on more than 17,800 original study

cases, reported in 51 publications (Table 1 and Appendix in ESM). This sample reflects a

bias in the literature towards meta-analyses of non-fitness traits (154 vs. 42 involving

fitness responses), and particularly towards those of non-fitness traits under abiotic

selection (102 studies). In contrast, only 9 meta-analyses in our data base dealt with biotic

characters under abiotic selective pressures.

Most abiotic selective pressures were climatic variables (111 vs. only 3 related to

disturbance). Among the climatic variables, there is a majority of meta-analyses dealing

with responses to elevated CO2 (50 meta-analyses) and exposure to UV-B radiation (25).

Biotic pressures are all related to interactions, spanning from ant-plant mutualisms (10

meta-analyses), to herbivory (19), interactions with plant neighbors (11), and less often

with plant-microbial interactions, pollinators, etc.

Finally, fitness responses are most often some measurement of reproductive output (37

of 42 studies), while survival is the response variable in only 5 studies. In contrast, within

non-fitness variables there is a balance between growth and physiological responses (77

each).

Quantitative analysis

As explained above, we limit our quantitative analysis to the subset of meta-analyses in our

database reporting lnRR as the effect size (N = 139 meta-analyses in 30 publications.

Sampling error variance could only be obtained from 134 meta-analyses, see Appendix in
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ESM). We detected a large value of heterogeneity among meta-analyses (I2 = 99.6%; [99.5,

99.7]), which justified using predictors. Results were very similar for both weighting—

sample size and variance-procedures. We found no significant interaction between the type of

selective variable (biotic and abiotic) and the type of response variable (fitness and non-

fitness) in their effect on effect sizes (posterior mean estimate = -0.010, 95% CI [-0.251 to

0.208] for sample size weighted and -0.043 [-0.197, 0.079] for variance weighted models).

We therefore tested for the main effects of the two variables in a model without interaction. It

showed no significant differences in effect sizes between fitness and non-fitness response

variables (-0.059, [-0.172, 0.044] for sample size weighted and -0.014 [-0.086, 0.051] for

variance weighted models). However, there was a significant effect of the type of selective

variable analyzed, because biotic variables elicit higher responses than abiotic ones (0.188

[0.104, 0.273] for sample size weighted and 0.177 [0.120, 0.234] for variance weighted

models). Raw mean effect sizes and their standard errors are shown in Fig. 1. These results are

Table 1 Number of meta-anal-
yses in each category of selective
pressures and trait response types
included in this revision

Details and references are in
Appendix 1 in ESM

Selective pressure Response
trait type

Meta-analyses
in this study

Biotic Fitness

Reproduction 28

Survival 5

Non-fitness

Physiology 14

Growth 38

Abiotic Fitness

Reproduction 9

Survival 0

Non-fitness

Physiology 63

Growth 39

N=26

N=83

N=19

N=6

abiotic
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Fig. 1 Raw mean and 1 standard error of effect sizes (lnRR) for meta-analyses classified according to the
type of selective variable (biotic and abiotic) and the type of response variable (fitness and non-fitness).
Sample sizes for each group are included
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unchanged if we include response variables as physiology, growth, or reproduction traits

instead of grouping them as fitness or non-fitness.

Discussion

Our review of the meta-analytical literature of selection pressures on plants showed, on the

one hand, that the majority of meta-analyses are studies of non-fitness traits and mostly on

a few abiotic selection pressures such as increased CO2 concentrations. On the other hand,

these biases did not prevent a quantitative comparison of the effects of different selective

pressures, which showed that the strength of responses to selection depends on the nature

of selection (biotic versus abiotic factors) but, unexpectedly, not on the type of trait under

selection. We discuss these results below.

Trends in the meta-analysis literature

Biases in our data base allowed us to detect biases in the meta-analysis literature. The

majority of review studies are focused on non-fitness traits, i.e. on traits that are not

directly related to reproduction or survival, and furthermore, on non-fitness traits under

abiotic selection pressures. Certainly measuring a plant’s reproductive output might be

more difficult than measuring a morphological or physiological character and this can be

one of the reasons for the unbalanced number of reviews. We suspect there is also a

tradition of studying plant reproductive responses in a biotic context, and physiological and

growth traits as influenced by abiotic environments (see Geber and Griffen 2003). These

trends are reinforced by the recent boom of climate change studies, as reflected by the high

number of CO2 and UV radiation papers. The differential number of meta-analyses might

then reflect a general bias in the plant literature. Louthan and Kay (2011), for example, also

detected a bias towards abiotic-selected traits in a review of plant QTL mapping studies.

Strength of biotic and abiotic selection on fitness and non-fitness traits

Our approach to comparing the strength of selection on different types of traits differs from

other review papers (Kingsolver et al. 2001; Rieseberg et al. 2002; Geber and Griffen

2003) in that we compare the results of multiple meta-analyses in a global, second order

meta-analysis that includes thousands of results published in the literature. In addition, we

do not focus on phenotypic selection as those articles, but on studies that control biotic or

abiotic environmental variation and measure the resulting fitness and non-fitness responses.

Because phenotypic selection studies do not formally measure environmental variation,

such studies would not be appropriate to test our hypothesis. Still, we can compare our

results on response variables to theirs. As opposed to those previous findings, we did not

detect differences in the strength of responses to selection among different types of traits,

either fitness or non-fitness. In contrast, when we looked for differences in the responses to

selection elicited by biotic versus abiotic traits, we found a clear signal. Biotic-driven

selection leads to stronger selection on traits in general when compared to abiotic selection

pressures, at least for plants. It is possible that the biotic-abiotic comparison absorbs the

differences between fitness and non-fitness traits detected in previous studies, as both

variables are collinear in our database because of the biases described above.

The differential responses to biotic versus abiotic is a question that had been basically

unexplored. The main exception is the recent study by Louthan and Kay (2011), who
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compiled mapping studies on plant traits and compared the direction and effect sizes of

QTLs controlling biotic and abiotic-selected traits. Because they were not dealing with

selection studies directly, but rather with the consequences of selection on the genetic

architecture of traits, they classified traits a priori as putatively abiotic- or biotic-selected.

Our study is the first that can confidently assign studies to the type of selection pressure.

Our reviewed studies report more immediate responses and the results are therefore less

historical than a QTL comparison, but in spite of the difference in approaches, the two

studies found consistent results. Louthan and Kay (2011) found QTL’s of larger effect

associated with biotic-selected traits, and we found stronger observed responses of traits

under biotic pressures. Both results are expected for traits that are under variable selective

pressures, as can be the case for biotic selective agents. Biotic agents and interactions can

vary strongly in space and time (Thompson 2005 and references therein), and consequently

produce complex selective landscapes with multiple peaks or peaks that in turn shift in

time and space. Such selective scenario can produce phenotypic responses that are stronger

than under more subtle abiotic changes, and in turn select for QTLs of major effects.

To further explore the relative importance of biotic versus abiotic factors on plant

character evolution it is clear that a higher diversity of studies would be very useful. In

particular, case studies and meta-analyses in the under-represented categories (fitness traits

under abiotic selection and non-fitness traits under biotic selection) would be very valu-

able. In addition, fully factorial case studies on the effects of biotic and abiotic pressures on

both fitness and non-fitness traits in individual species are scant but potentially very

informative.

Guide for future meta-analyses of meta-analysis

The broad use of formal meta-analytical techniques in plant ecology has undoubtedly

contributed to our capacity for summarizing and extracting general results, based on the

strength of combining many varied individual studies. We here take the next step of

combining effect sizes of meta-analyses on diverse plant systems and traits in a second

order meta-analysis. This approach is already frequently used in the health sciences,

particularly to answer clinical questions, where for example different treatments for the

same disease need to be compared but results are reported in independent reviews (Io-

annidis 2009; Becker and Oxman 2011). Multiple-treatment meta-analysis is used to

formally compare meta-analytic results in a network approach that incorporates direct and

indirect comparisons of clinical treatments (Hasselblad 1998; Caldwell et al. 2010). Our

analysis is a simplified version of such models.

One advantage of the approach of meta-analyzing meta-analyses is that it allows a high

level of generalization using a very large number of individual case results already sum-

marized in meta-analyses (in our case, more than 17,800) that would be very impractical to

attempt with the original studies. Most meta-analyses, except perhaps the most recent ones,

do not list each individual study case included and their associated effect size, sample size

and variance, all required for a new meta-analysis based on the original studies. In a recent

article that used published meta-analyses to find groups of papers on specific topics and

extract individual study information (Barto and Rillig 2011), the authors report that they

had to limit their analysis to a small fraction of the available publications, because few

report the necessary data for each case study. In our case, using the original data would

then imply going back to each case study and repeating the work done by meta-analytical

studies. Another advantage of the second-order approach of using published meta-analyses

compared to searching for original case studies is that meta-analyses are prepared by expert

1194 Evol Ecol (2012) 26:1187–1196

123



authors, who identify the relevant questions on each topic and the appropriate case studies

to answer them. In a broad second-order meta-analysis like ours, such level of expertise is

left to the original reviews.

Nonetheless, some aspects need to be considered carefully before combining review

studies in second-order meta-analysis. First, it is possible that the same individual original

studies are included in more than one of the meta-analytic publications available on a given

topic. Our questions here were so broad and the number of individual studies on different

topics so large, that it is unlikely that this form of pseudoreplication has affected our

conclusions. Smaller and more focused meta-meta-analyses should probably be more

concerned with excluding replicated results. Care should also be taken not to include meta-

analyses that were not careful about another possible form of pseudoreplication, i.e., using

the same case studies (and same experimental individuals) to conclude on different effects.

Second, there are statistical problems with the conversion of effect sizes to a single

common metric, as explained in the ‘‘Materials and methods’’ section. This can be a

problem in ecological studies particularly, because a variety of effect sizes are commonly

used and in particular response ratios, whose statistical properties have not been fully

studied yet. Because of this problem, we had to limit our quantitative analysis to a single

family of effect size metrics and exclude many potentially informative meta-analyses.

Finally, future second-order meta-analyses addressing evolutionary issues should ideally

include phylogenetic-informed effect sizes (Verdú and Traveset 2004), because of the

ubiquity of phylogenetic signal in ecological traits (Blomberg et al. 2003).
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