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Abstract

Question: In order to identify the factors and assembly rules which potentially

shape natural lichen communities we asked whether these communities are

phylogenetically and functionally structured along an environmental gradient

in beech forests in the Iberian Peninsula.

Location: A climatic gradient in the Iberian Peninsula.

Methods: We used species inventories, trait data and a molecular dated phy-

logeny to calculate phylogenetic and functional community metrics. We exam-

ined the phylogenetic and functional diversity of epiphytic lichen assemblages

in nine beech forests along an environmental gradient.

Results: We found a significant pattern in the average phylogenetic and func-

tional diversity across sites. Species at northern sites were less closely related

than expected by chance (phylogenetic and functional overdispersion), suggest-

ing that these communities could be structured by species interactions limiting

the similarity among them (e.g. by competition and facilitation). In contrast,

species occurring in the southern distributional limit of the host tree were phylo-

genetically and functionally clustered, implying that these communities could

be primarily structured by environmental filtering, driven by the reduction of

summer rainfall. Lower precipitation areas favoured fruticulose and squamulose

species and a larger proportion of species with green algal photobionts and asex-

ual reproduction.

Conclusions:Our results suggest that environmental filtering and species inter-

actions regulate lichen communities differently under contrasting environmen-

tal conditions in beech forests in the Iberian Peninsula. These processes are

reflected by the presence of key lichen traits that are phylogenetically conserved

and can provide advantages for competition or adaptation to the environment.

Introduction

One of the oldest challenges in ecology is to understand

the co-existence of species and the search for mechanisms

and rules which explain the composition of communities

(Gleason 1926; Gee & Giller 1987; Pavoine & Bonsall

2011). The co-occurrence of species is a product of chance,

speciation and migration processes, dispersal, and abiotic

and biotic factors (G€otzenberger et al. 2012), which can be

reflected in the phylogeny and functional structure of

communities. Thus, the phylogenetic and functional pat-

terns of communities may help to understand the

processes controlling the assemblage of their species

(Petchey & Gaston 2002; Hardy & Senterre 2007).

The action of the ecological processes depends on the

phenotypes of organisms, and thus patterns of evolved

functional similarity (phylogenetically conserved or con-

vergent traits) will influence the resulting phylogenetic

community structure. In lichens, traits can play a para-

mount role in the assemblage of communities since these

organisms are very sensitive to environmental changes.

Thus it is reasonable to test whether variation in both traits

and evolutionary origins of co-existing species is different

from that expected by chance and depending on
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phylogenetic signal of traits considered (Kraft et al. 2007).

When traits are conserved, communities of closely related

species (phylogenetically clustered) and with similar func-

tional traits (functionally clustered) may represent the

effects of environmental filtering (Weiher & Keddy 1999;

Cornwell et al. 2006; Kraft et al. 2007) and communities

of distantly related species (phylogenetically overdis-

persed) and functionally different (functional overdisper-

sion) may represent the effects of competition and biotic

interactions in a broad sense (Kraft et al. 2007; Mayfield &

Levine 2010; Pausas & Verd�u 2010).

Although phylogenetic and functional methods have

allowed us to understand the structure of communities

of organisms from different kingdoms and of different

trophic levels (Pausas & Verd�u 2010), there are few

studies on symbiotic organisms or lichenized fungi (Peay

et al. 2010; Rinc�on et al. 2014; Liu et al. 2015; Mon-

tesinos-Navarro et al. 2015; Geedicke et al. 2016). So far

in lichens, community ecology has relied on “tradi-

tional” measures of diversity, i.e. community traits such

as richness and diversity, and how these metrics are

affected by forest disturbance, latitudinal or altitudinal

gradients, phorophyte species identity, land use, pollu-

tion or tree age (e.g. McCune et al. 2000; Belinch�on

et al. 2007; Johansson et al. 2007; Arag�on et al. 2010a,

b, 2012; Gjerde et al. 2012; Lamit et al. 2015; Suija &

Liira 2017).

Concerning functional traits, several studies have anal-

ysed their relation with colonization, land use, forest struc-

ture, tree age, succession or climate in epiphytic lichens

(Ellis & Coppins 2006; Stofer et al. 2006; Johansson et al.

2007, 2012; Marini et al. 2011; Giordani et al. 2012; Koch

et al. 2013; Matos et al. 2015; Nelson et al. 2015; B€assler

et al. 2016; Rubio-Salcedo et al. 2017). Further studies

have focused on terricolous and saxicolous communities

and the influence of micro- and macro- environmental

variables on lichen traits (Giordani et al. 2013; Con-

costrina-Zubiri et al. 2014). Based on these studies, we can

highlight several traits (e.g. growth form, type of photo-

biont and the reproductive strategy) having functional

attributes as they have been related to climate, human dis-

turbance and stand structure (e.g. Giordani et al. 2012).

In this study, we examine the phylogenetic and func-

tional structure of lichen communities along an environ-

mental gradient in beech forests in the Iberian Peninsula

in order to study the assembly rules shaping these commu-

nities. Our hypotheses are that (1) epiphytic communities

under adverse conditions may be phylogenetically and

functionally clustered, as would be expected if traits are

conserved and only closely related species of a subset of

lineages possess the traits that allow them to survive; and

(2) communities under favourable conditions may be phy-

logenetically and functionally overdispersed, as would be

expected if competitive exclusion is shaping the composi-

tion of local communities.

Methods

To study the phylogenetic and functional structure of

lichen communities under different environments, we sur-

veyed the species composition in Iberian beech forests,

measured micro- and macro-environmental variables, col-

lected trait data of lichens and built its phylogenetic tree, as

explained below.

Data collection

The study was carried out in beech forests along an envi-

ronmental gradient in the Iberian Peninsula covering two

contrasting biogeographic regions. Three areas were sam-

pled from south to north (Appendix S1): (1) Central Sys-

tem (area 1), situated in the southern distributional limit

of Fagus sylvatica in the Iberian Peninsula; (2) Iberian Sys-

tem (area 2), being an intermediate area between 1 and 3,

representing the transition zone between Mediterranean

and Atlantic regions; and (3) Cantabrian Mountains (area

3), the northernmost area. Areas 1 and 2 belong to the

Mediterranean region (with a mediterranean climate char-

acterized by a summer dry season), while area 3 belongs to

the Atlantic region (with an oceanic climate characterized

by the absence of a summer drought period). Area 3 is con-

sidered to offer the most favourable environmental condi-

tions for the host tree and the associated lichens, while

area 1 presents harsh environmental conditions. Area 2 is

a transitional zone with less harsh conditions than those in

area 1.

Field sampling followed Arag�on et al. (2012). Three for-

ests per area and five plots within each forest were

selected. Within each plot, 12 trees were randomly

selected and four 20 cm 9 30 cm grids per tree were sam-

pled (see Appendix S2 for further details).

Environmental data

Tree DBH of all trees was measured. A neighbourhood

index at tree level was used as an indirect measurement of

forest density. Climatic variables at forest level (mean

annual temperature, annual, winter and summer rainfall),

tree diameter and neighbourhood index are available in

Arag�on et al. (2012).

Phylogenetic analyses

In order to calculate the phylogenetic diversity indices, we

constructed a phylogenetic tree with four molecular

markers and all taxa found in the communities. The
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phylogenetic tree was calibrated based on dates previously

obtained by Prieto & Wedin (2013) in order to construct a

chronogram (Appendices S3 and S4). Details of the genetic

markers used and the phylogenetic analysis are explained

in Appendix S3.

Trait data

Based on previous studies we selected three lichen traits

that could mediate the response to environmental factors,

thus playing a functional role. Growth form (crustose, fru-

ticulose, foliose, squamulose or mixed forms) has been

previously related to water uptake and loss (Larson & Ker-

shaw 1976; Lange et al. 1986; B€udel & Scheidegger 2008),

temperature (Nascimbene & Marini 2015) and to light

availability (Giordani et al. 2012). Type of photobiont

(cyanobacteria, green algae and Trentepohlia) is also related

to water uptake (Lange et al. 1986; Giordani et al. 2013;

Merinero et al. 2014) and climate (Marini et al. 2011;

Nascimbene & Marini 2015). Furthermore, reproductive

strategy (sexual or asexual) may represent an ecological

trade-off between long-distance colonization and success-

ful local establishment and could be related to environ-

mental gradients (Ellis & Coppins 2006; Ellis 2012; Rapai

et al. 2012; Nelson et al. 2015).

Phylogenetic signal or trait conservatism is recognized

when closely related species tend to be more similar

between them than expected by chance. We tested the

phylogenetic conservatism of the growth form and type of

photobiont. Since the reproductive strategy studied here is

the state in which the species are present in the Iberian

Fagus forests, and not the biological capacity of the species,

the phylogenetic signal of this trait has not been studied.

To test the phylogenetic signal of these multi-state traits

we used Pagel0s lambda approach with the help of the

function ‘fitDiscrete’ in the Geiger package for R (Harmon

et al. 2008; R Foundation for Statistical Computing,

Vienna, AT). A lambda of 1 is indicative of phylogenetic

signal in the trait under a Brownian motion model, while

lambda of 0 indicates no signal. This method compares the

likelihood of an evolutionary model with the observed

lambda against that of a model where lambda is fixed to

zero.

Diversity indices

The maximum clade credibility tree (i.e. final chronogram;

Appendix S4) was used to calculate the mean phylogenetic

distance of taxa (MPD) and the mean distance to the near-

est taxon (MNTD) at tree level (Webb et al. 2002; Hardy

2008). The phylogenetic distance between species pairs

was computed with the function cophenetic in the picante

R package (Kembel et al. 2010). Functional dissimilarity

between species was computed with the Gower distance

(Lep�s et al. 2006). Calculation of MNTD and its standard-

ized index NTI (known as Nearest Taxon Index) was per-

formed in the picante R package (Kembel et al. 2010), and

MPD and its standardized index NRI (known as Net Relat-

edness Index) using the melodic function (de Bello et al.

2016). NRI and NTI were calculated based on the phy-

logeny (phylogenetic NRI and NTI, NRI-P and NTI-P) and

on the functional traits (functional NRI and NTI, NRI-F

and NTI-F).

When species abundance is not phylogenetically struc-

tured, both MPD and MNTD combined with a null model

randomizing species abundances within samples and

maintaining richness have very good statistical power to

detect community structure patterns (Hardy 2008; G€otzen-

berger et al. 2016). In our case, species abundance was not

phylogenetically structured according to Blomberg et al.

(2003) (non-significant phylogenetic signal Blomberg0s
K = 0.0007, P = 0.66) and therefore we calculated the

standardized MPD and standardized MNTD, with such a

null model. Other randomization procedures to calculate

NRI and NTI including taxon labels, frequency and inde-

pendent swapwere also tested.

We have used the average NRI and NTI over a set of sites

(Areas), as proposed by Hardy (2008), and not the NRI and

NTI within a site. This author also provides simulations on

the statistical performance of these metrics under different

null models. The combination of the metrics and null

model we selected has a very good type I error rate when

species abundances are not phylogenetically structured, as

in our case. Values significantly higher than zero of NRI

and NTI averaged across Areas indicate phylogenetic/func-

tional overdispersion, while those lower than zero indicate

phylogenetic/functional clustering.

To check the sensitivity of our results to the topological

uncertainty of the phylogenetic tree, we used 100 ran-

domly selected trees obtained with Beast (Drummond

et al. 2012) and calculated one NRI and NTI for each tree

(see Goberna et al. 2014 for a similar procedure). In all the

analyses the conclusions were the same and therefore they

are not shown.

Variations in functional trait composition have often

been described quantitatively by trait averages over a com-

munity (de Bello et al. 2007), providing an indication of

the most common traits in a community (Lep�s et al.

2006). Thus, CWM, considering a continuous trait, repre-

sents the sum of each species trait value weighted by its rel-

ative abundance in the community (Lavorel et al. 2008).

For multinomial traits, we calculated CWM at tree level as

the sum of the cover of all species sharing a trait divided by

the total species cover, representing the proportion of each

individual trait category per community (i.e. mean trait

values weighted with the abundance). Using species
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abundancewill give more importance to dominant species,

while a measure that considers only species occurrence

(presence/absence data only) will give the same weight to

all species (Kafer &Witte 2004).

Additionally, diversity (richness and Simpson index)

and co-existence metrics (C-score) were calculated

(Appendix S5).

Data analysis

To test the effect of the gradient on the phylogenetic (NRI-

P, NTI-P) and functional diversity (NRI-F and NTI-F) and

on the CWM of communities we used a LMM for testing

linear contrast using area as an ordered factor from north

to south, with plots nested within forests and forests nested

within areas as random factors. Significant linear contrasts

with positive or negative t-values indicate, respectively, an

increase or decrease of the dependent variable in response

to the factor.

The effect of the climatic and the tree scale variables on

the phylogenetic and functional structure (NRI-P, NRI-F,

NTI-P, NTI-F) and on the CWM of communities was mod-

elled using LMM. Elevation, mean annual temperature

and summer rainfall were analysed with forests nested

within areas in a first model at plot level. Tree diameter

and neighbourhood index were added with forests nested

within areas and plots nested within forests as random fac-

tors in a second model at tree level. Total and winter rain-

fall and elevation were not included in the models because

they were highly correlated (setting the collinearity

threshold to 0.7; Dormann et al. 2013) with summer rain-

fall (Pearson0s correlation r = 0.99, P < 0.001; r = 0.96,

P < 0.001; r = �0.91, P < 0.001). We carried out a selec-

tion of the best model explaining our data based on the

AIC.We further calculated amarginal R2 value for all mod-

els selected, providing an estimate of the variance

explained by the fixed effects (Nakagawa & Schielzeth

2013). All statistical analyses were performed in R v 3.1.1,

LMMwere performed using lme function with nlme pack-

age, R2 was calculated with MuMIn package, and post-hoc

analyses of CWMwere carried using Tukey’s test.

Further, correlations between diversity and co-existence

metrics, including richness, Simpson index, C-score and

NRI were carried (see Appendix S5).

Results

A total of 70 lichen species were found in the nine forests

(Appendix S6). Richness and C-score increased with lati-

tude but Simpson index did not (Appendix S5). The maxi-

mum clade credibility tree used to calculate the

phylogenetic community structure metrics is depicted in

Appendix S4. The results obtained for different

randomization procedures used to calculate NRI and NTI,

for both phylogenetic and functional diversity, were highly

correlated (Pearson0s correlation r > 0.85); thus we only

present here results obtained with the first model (rich-

ness). We found strong evidence for phylogenetic conser-

vatism for the two traits studied: growth form and

photobiont type. The growth form was evolutionarily con-

served as shown by the significant phylogenetic signal

(k = 1.00, P < 0.0001; likelihood ratio test), and similar

results were found for the type of photobiont (k = 0.97,

P < 0.0001; likelihood ratio test).

Phylogenetic and functional community structure

Phylogenetic and functional net related index (NRI and

NTI) increased with latitude (Fig. 1), as the significant

results obtained in the linear contrast show

(t-values = 5.79 (NRI-P) and 6.71 (NTI-P), P < 0.001;

t-values = 2.45 (NRI-F) and 3.08 (NTI-F), P < 0.05). These

results indicate that taxa in area 1 (Central System) were

phylogenetically more clustered (negative NRI and NTI

values; Fig. 1) showing that the species in these communi-

ties are more similar than expected by chance

(t-value = �5.97 (NRI-P), �6.71 (NTI-P), P < 0.001),

while areas 2 and 3 (Iberian System and Cantabrian

Mountains) showed positive NRI and NTI values, mean-

ing that taxa were phylogenetically overdispersed

(t-values = 4.84 (NRI-P), 5.47 (NTI-P), P < 0.001 in area

2; t-values = 5.79 (NRI-P), 6.71 (NTI-P), P < 0.001 in area

3). On the other hand, communities had a clustered func-

tional structure in areas 1 and 2, showing that the species

in these communities are functionally more similar in the

studied traits than expected by chance (t-value = �2.71

(NRI-F), �1.9 (NTI-F), P < 0.05 in area 1; t-value = �1.16

(NRI-F), �1.19 (NTI-F), P < 0.05 in area 2), while species

were functionally overdispersed in the northernmost area

3 (t-value = 2.45 (NRI-F), 3.08 (NTI-F), P < 0.05).

Based on AIC we obtained a model in which only sum-

mer precipitation was included. Thus, area was not signifi-

cant per se and summer precipitation was the most

relevant predictor for the phylogenetic and functional

diversity of the communities at regional scale by decreas-

ing NRI and NTI values (lower phylogenetic and functional

diversity) with lower summer rainfall (Table 1). The fixed

factors of this model explained between 40–43% of the

observed variance for NRI (NRI-P, R2 = 0.41; NRI-F,

R2 = 0.43) and between 17–29% for NTI (NTI-P,

R2 = 0.175; NRI-F, R2 = 0.29). Richness and C-score was

positively correlated with NRI values but Simpson index

did not (Appendix S5).

Regarding traits individually, significant differences

were found in the three areas in growth form for all

categories, except for mixed forms (crustose: t = 3.98,
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P < 0.001; foliose: t = �3.25, P < 0.05; fruticulose:

t = �4.06, P < 0.001; squamulose: t = 2.71, P < 0.05) in

Trentepohlia and green photobiont except in cyanobacte-

ria (Trentepohlia: t = 7.66, P < 0.001; green: t = �2.67,

P < 0.05) and in the reproductive strategy (t = �3.64,

P < 0.05; Fig. 2). We found a negative correlation of

fruticulose species with summer rainfall and a positive

relation between squamulose forms and summer rain-

fall (Table 1). For the type of photobiont, differences in

species with Trentepohlia were positively related to sum-

mer rainfall, while those with green algae were inver-

sely related to this latter factor (Table 1). Sexual

reproduction strategy increased with higher values of

summer rainfall and the asexual forms decreased

(Table 1).

Discussion

Our results show phylogenetically and functionally struc-

tured epiphytic communities along an environmental gra-

dient including two distinct and contrasting biogeographic

regions (i.e. Atlantic and Mediterranean) in the Iberian

Peninsula. We found clustered communities in the distri-

butional southern limit of the phorophyte species (F. syl-

vatica) and overdispersed communities in northern forests

under more suitable environmental conditions (Table 2).

Central communities are phylogenetically overdispersed

but functionally clustered. This trend is related to an envi-

ronmental gradient, and specifically with summer drought

in the southern region, which is critical for these organisms

(Pintado et al. 1997).
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Fig. 1. Phylogenetic (a, c) and functional (b, d) community structure (mean NRI-P, NTI-P, NRI-F, NTI-F and SE (bars), y-axis) of each study area along a

latitudinal gradient (Areas 1, 2 and 3). Negative values indicate phylogenetic or functional clustering, and positive values indicate phylogenetic or functional

overdispersion.
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Based on both phylogenetic and functional structure,

and taking into account that the studied traits are phyloge-

netically conserved (see Kraft et al. 2007), our results sug-

gest that epiphytic lichen communities are subjected to

environmental filtering on trait selection under harsh

environmental conditions (i.e. drought), promoting co-

existence among species with successful strategies and

favouring co-occurrence of closely related species at its Ibe-

rian southern limit. On the other hand, under less stressful

conditions, in the northern communities (area 3), distantly

related lichens tend to co-exist, suggesting that these com-

munities are probably structured by processes such limit-

ing similarity, possibly caused by the effect of biotic

interactions like competition and facilitation.

However, convergence of traits may also reflect compet-

itive interactions (Mayfield & Levine 2010). Biotic filtering

is the process throughwhich large clades are out-competed

when competitive superiority is phylogenetically con-

served, resulting in a phylogenetically and functionally

clustered community structure (Mayfield & Levine 2010).

These authors, among others, proposed including this bio-

tic filtering together with the classical abiotic (habitat) fil-

tering under the wider term “environmental filtering”.

The relative role of abiotic and biotic filtering in the organi-

zation of communities should depend on the role of the

traits in the community and their relation with niche dif-

ferentiation or competitive ability of shared resources

(Herben & Goldberg 2014). Thus the traits studied here

(growth form, type of photobiont and reproductive strat-

egy) may be linked to acquisition of resources, being

indicative of competitive exclusion, or may be related to

physiological tolerances to local environmental conditions,

being more indicative of an abiotic filter (Garnier et al.

2016).

In this context, thallus morphology is optimized for

water uptake and loss and photosynthetic capacity (Larson

& Kershaw 1976; Lange et al. 1986; B€udel & Scheidegger

2008). In the southern forests of the gradient, foliose and

fruticulose forms were dominant while crustose forms

dominated in the intermediate and northern forests. Sev-

eral studies (e.g. Ellis & Coppins 2006; Ravera et al. 2006;

Giordani et al. 2012; Matos et al. 2015; Nascimbene &

Marini 2015) have found a similar pattern in different type

of forests, with foliose and fruticulose lichens being more

common in drier situations and crustose forms more abun-

dant in humid situations. Fruticulose and foliose lichens

have a high surface area to mass ratio (Larson & Kershaw

1976), so they can rehydrate very rapidly, providing an

advantage to these growth forms to live in drier areas.

However, this would result in supra-saturation in humid

areas limiting the ecological success of these forms under

higher precipitation (Green et al. 2008). In this respect,

crustose lichens repel water by creating a hydrophobic

layer in the medulla (Lakatos et al. 2006). Additionally,

photobiont type interacts with growth form in controlling

water relation strategies and photosynthetic capacity. The

observed dominance of lichens with green photobionts in

southern forests is congruent with the fact that under drier

conditions maximum photosynthesis and re-activation

may be achieved by green algal lichens at lower thallus

water content (Lange 1988) and from water vapour alone

(Lange et al. 1986). This supports better performance of

green algal lichens in drier conditions, and even better

when combined with foliose and fruticulose growth forms

(also suggested by Nelson et al. 2015).

Lichens with Trentepohlia increased in northern forests,

enhanced by rainy and warm climates, due to their photo-

synthetic optimum in shaded–warm and humid situations

and their sensitivity to freezing (Kappen 1993; Nimis &

Tetriach 1995). Marini et al. (2011) and Matos et al.

(2015) found these results in Italy and along a gradient of

aridity in the Iberian Peninsula, respectively, where

lichens with Trentepohlia were more abundant in rainy

regions or in areas exposed to a maritime influence, while

they decreased in continental areas. Finally, the absence of

differences in cyanobacterial lichens in the three areas

could be related to different performance of these lichens,

i.e. requirement for liquid water (Lange et al. 1986) for

photosynthesis but a higher water-holding capacity than

green algal species (Gauslaa & Coxson 2011). Further-

more, cyanolichens belong to different lineages of

Ascomycota comprising a variety of growth forms and cya-

nobionts and thus inhabiting different environments rang-

ing from humid and old growth forests to drylands (Jovan

&McCune 2004; Zedda et al. 2011).

The pattern found in the reproductive strategy is some-

what confusing since it is related to dispersal ability and

Table 1. Results from the LMM on net relatedness index and nearest

taxon index (NRI-P, NTI-P, NRI-F and NTI-F) and CWM values. The data com-

prise the coefficient of variation in the model (Coef), SE of the estimator,

t-statistic (t-value) and significance (P-value <0.05 in bold).

Summer Rainfall P-value

Coef. (SE) t-value

NRI-P 0.006 (0.001) 2.95 0.005

NRI-F 0.011 (0.003) 3.15 0.01

NTI-P 0.006 (0.001) 3.78 0.01

NTI-F 0.004 (0.001) 2.59 0.00

Crustose 0.001 (0.001) 1.10 0.27

Foliose �0.001 (0.000) �0.91 0.37

Fruticulose �0.0003 (0.000) �3.55 0.001

Squamulose 0.000 (0.000) 3.06 0.004

Green Photobiont �0.001 (0.000) �3.34 0.000

Trentepohlia 0.001 (0.0001) 9.94 0.000

Asexual Reproduction �0.003 (0.000) �3.90 0.000

Sexual Reproduction 0.003 (0.000) 3.90 0.000
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establishment and also to habitat filtering and facilitation.

Local dispersal limitation of individuals may be a mecha-

nism underlying the observation of co-existence of closely

related competitors rather than competitive exclusion (e.g.

Hurtt & Pacala 1995; Tofts & Silvertown 2002). However,

limited dispersal is unlikely because propagules of lichen-

forming fungi are widely and effectively dispersed at both

small and large spatial scales and populations are not struc-

tured at and below the landscape level (Mu~noz et al. 2004;

Buschbom 2007; L€attman et al. 2009; Ot�alora et al. 2010).

In relation to environmental conditions, we found domi-

nance of lichens with an asexual reproductive strategy in

southern forests and related to lower summer rainfall (i.e.

in more stressful situations). Some studies have found a

direct relationship between vegetative reproduction and

stress conditions and inverse in relationship with sexual

reproduction (Monte 1993; Mart�ınez et al. 2012; Matos
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Fig. 2. Relative abundance of each trait category per area (CWM values with SE bars in the y-axis) for: (a) Growth form, (b) Type of photobiont and (c)

Reproduction. Different letters above bars indicate significant differences between areas at P < 0.05 based on Tukey0s test.

Table 2. Summary of main results found in the three areas.

Area 1 Area 2 Area 3

Phylogenetic Structure Clustered Overdispersed Overdispersed

Functional Structure Clustered Clustered Overdispersed
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et al. 2015). The presence of isidia could be related to the

function of water storage and conduction developed by isi-

dia and between isidia (Rikkinen 1997). Moreover, under

more stressful conditions the dispersal of both symbionts

together (in asexual reproduction) may represent an

advantage to avoid the risk of reproductive failure.

Although the traits studied here are related to a limiting

abiotic factor (i.e. summer precipitation), they are also

related to both acquisition of resources and physiological

tolerances of lichens. Moreover, it is possible that the

effects of biotic and abiotic filters on the functional struc-

ture of communities can occur concomitantly (Goberna

et al. 2014), thus being difficult to separate. However, phy-

logenetic and functional clustering found in in the south-

ern Iberian communities suggests that environmental

filtering is stronger than competitive exclusion in deter-

mining co-existence (Webb et al. 2002; Mayfield & Levine

2010). The pattern found in the species co-existence also

supports this idea, with higher species co-occurrence (ag-

gregation) in clustered southern communities, and lower

species co-occurrence in overdispersed northern areas

(segregation), where competition is more important than

environmental filtering. The opposite pattern found

between the functional and phylogenetic structure in cen-

tral forests could be related to the low number of traits con-

sidered, and the possibility that the phylogenetic analysis is

capturing a signal that is not observed in the studied phe-

notypes.

Conclusion

The results of this study show that different drivers of com-

munity assembly could be acting at the same time along an

environmental gradient. The phylogenetic and functional

clustered pattern found indicate that environmental filter-

ing is an important assembly process structuring lichen

communities in extreme habitats. On the other hand,

overdispersed communities are consistent with the notion

that biotic interaction, including competition or facilitation

processes, cause divergence among co-existing species in

more favourable environments. Thus trait selection, pro-

moting co-existence among species with successful strate-

gies, is shaping these communities.
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We examined the phylogenetic and functional diversity of epiphytic lichen communities along an environmental gradient

in beech forests in the Iberian Peninsula. Our results show phylogenetic and functional overdispersion at northern sites

but phylogenetically and functionally clustered communities in the southern distributional limit of the host tree.

Environmental filtering and species interactions regulate lichen communities differently under contrasting environmental

conditions.




