
MULTILINEAR STABILITY OF CLASSES OF
VECTOR-VALUED SEQUENCES

Geraldo Botelho
Faculdade de Matemática
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Motivation

Important classes of linear and nonlinear operators between
Banach spaces are defined, or characterized, by the transformation
of vector-valued sequences:

• Absolutely p-summing linear operators send weakly p-summable
sequences to absolutely p-summable sequences.

• Completely continuous linear operators send weakly null
sequences to norm null sequences.

• p-dominated n-linear operators (or n-homogeneous polynomials)
send weakly p-summable sequences to absolutely p

n -summable
sequences.

• Almost summing linear or multilinear operators send
unconditionally summable sequences to almost unconditionally
summable sequences.
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Motivation

• Weakly sequentially continuous multilinear operators or
homogeneous polynomials send weakly convergent sequences to
norm convergent sequences.

• Cohen strongly summing linear or multilinear operators send
absolutely summable sequences to Cohen strongly summable
sequences.
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Linear stability

It just so happens that all these classes of vector-valued sequences
are preserved by linear operators, that is,

if u : E −→ F is a bounded linear operator between Banach spaces
and (xj)

∞
j=1 is a E -valued sequence belonging to one of those

classes of sequences, then the F -valued sequence (u(xj))∞j=1

belongs to the same class.

Usually the linearity of the operator plays an important role in the
proof the linear stability.
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Multilinear stability

Once multilinear operators are part of the game, the question of
whether or not these classes of sequences are preserved by
multilinear operators is natural.

Consider a rule that assigns to each Banach space E a Banach
space X (E ) of E -valued sequences, that is X (E ) is a vector
subspace of EN with the coordinatewise operations, such that:

c00(E ) ⊆ X (E ) ⊆ `∞(E ).

We call X (·) a sequence class.
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Multilinear stability

We say that X (·) is multilinearly stable if, regardless of the positive
integer n and the continuous n-linear operator
A : E1 × · · · × En −→ F ,

(A(x1j , . . . , x
n
j ))∞j=1 ∈ X (F )

whenever
(xmj )∞j=1 ∈ X (Em),m = 1, . . . , n,

and the induced map

Â : X (E1)× · · · × X (En) −→ X (F ),

Â
(
(x1j )∞j=1, . . . , (x

n
j )∞j=1

)
= (A(x1j , . . . , x

n
j ))∞j=1,

is a well-defined continuous n-linear operator and ‖Â‖ = ‖A‖.
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Geraldo Botelho Multilinear stability of vector-valued sequences



Multilinear stability

We say that X (·) is multilinearly stable if, regardless of the positive
integer n and the continuous n-linear operator
A : E1 × · · · × En −→ F ,

(A(x1j , . . . , x
n
j ))∞j=1 ∈ X (F )

whenever
(xmj )∞j=1 ∈ X (Em),m = 1, . . . , n,

and the induced map
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Easy examples

It is easy to check that the following sequence classes are
multilinear stable:

• `∞(E ) = bounded E -valued sequences with the sup norm.

• c0(E ) = norm null E -valued sequences with the sup norm.

• `p(E ) = absolutely p-summable E -valued sequences with the
usual norm ‖ · ‖p, 1 ≤ p < +∞ (Hölder’s inequality).
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Linear stability 6=⇒ multilinear stability

Consider the bilinear operator

A : `2 × `2 −→ `1 , A
(
(xj)

∞
j=1, (yj)

∞
j=1

)
= (xjyj)

∞
j=1.

Since (ek)∞k=1 is weakly null in `2 but not in `1, the sequence class

cw0 (E ) = weakly null E -valued sequences with the sup norm,

is not multilinearly stable.

So, multilinear stability does not follow from linear stability (cw0 (·)
is linearly stable but not multilinearly stable).

This makes the multilinear stability of a given sequence class a
typical multilinear problem.
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Weakly and unconditionally summable sequences

Let 1 ≤ p < +∞.

• `wp (E ) = weakly p-summable E -valued sequences with the norm

‖(xj)∞j=1‖w ,p = sup
ϕ∈BE ′

‖(ϕ(xj))∞j=1‖p.

• `up(E ) =

{
(xj)

∞
j=1 ∈ `wp (E ) : lim

k
‖(xj)∞j=k‖w ,p = 0

}
with the norm inherited from `wp (E )(unconditionally p-summable
sequences.

It is easy to check that `wp (·) and `up(·) are linearly stable. On the
other hand:
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Weakly and unconditionally summable sequences

Theorem. The sequence classes `wp (·) and `up(·) are multilinearly
stable if and only if p = 1.

Sketch of the proof. Let A ∈ L(E1, . . . ,En;F ) and
(xmj )∞m=1 ∈ `w1 (Em), m = 1, . . . , n, be given.

Using the trick: for every k ∈ N,
k∑

j=1

A(x1j , . . . , x
n
j ) =

∫ 1

0
· · ·
∫ 1

0
A

 k∑
j=1

rj(t1)x1j , . . . ,
k∑

j=1

rj(tn−1)xn−1j ,

k∑
j=1

n−1∏
l=1

rj(tl)x
n
j

 dt1 · · · dtn−1,

it is not difficult to prove that, for |λij | ≤ 1, j = 1, . . . , k,
i = 1, . . . , n,
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n
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it is not difficult to prove that, for |λij | ≤ 1, j = 1, . . . , k,
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n
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Weakly and unconditionally summable sequences

Given 1 < p < +∞,

choose n ≥ p∗, 1
p + 1

p∗ = 1, and consider the
continuous n-linear operator

A : (`p∗)
n −→ `1 , A

(
(λ1j )∞j=1, . . . , (λ

n
j )∞j=1

)
= (λ1j · · ·λnj )∞j=1.

As (ek)∞k=1 belongs to `wp (`p∗) but not to `wp (`1), the sequence
class `wp (·) fails to be multilinearly stable.

The case of `up(·) follows from the case of `wp (·).
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Almost unconditionally summable sequences

Let (rj)
∞
j=1 be the Rademacher functions.

• Rad(E ) = almost unconditionally summable E -valued sequences,
that is, the series

∑
j
rjxj converges almost surely, with the norm

‖(xj)∞j=1‖Rad(E) =

∫ 1

0

∥∥∥∥∥∥
∞∑
j=1

rj(t)xj

∥∥∥∥∥∥
2

dt

1/2

.

• RAD(E ) ={
(xj)

∞
j=1 ∈ EN : ‖(xj)∞j=1‖RAD(E) := sup

k
‖(xj)kj=1‖Rad(E) < +∞

}
.

It is well known that Rad(E )
1
⊆ RAD(E ), and

Rad(E ) = RAD(E )⇐⇒ c0 6↪→ E .
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Almost unconditionally summable sequences

Theorem. The sequence classes Rad(·) and RAD(·) are
multilinearly stable.

Sketch of the proof. Given B ∈ L(E1, . . . ,En;F ),

by BL we
denote the linearization of B from E1⊗̂π · · · ⊗̂πEn to F . Given
sequences (xmj )∞m=1 ∈ RAD(Em), m = 1, . . . , n, for any natural
number k we have∥∥∥(B(x1j , . . . , x

n
j ))kj=1

∥∥∥
Rad(F )

=

∫ 1

0

∥∥∥∥∥∥BL

 k∑
j=1

rj(t)x
(1)
j ⊗ · · · ⊗ x

(n)
j

∥∥∥∥∥∥
2

dt

1/2

≤ ‖B‖ ·

∫ 1

0

∥∥∥∥∥∥
k∑

j=1

rj(t)x
(1)
j ⊗ · · · ⊗ x

(n)
j

∥∥∥∥∥∥
2

π

dt

1/2
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Almost unconditionally summable sequences

≤ ‖B‖ · sup
t∈[0,1]

∥∥∥∥∥∥
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Almost unconditionally summable sequences

= ‖B‖ ·
n∏

m=1

∥∥∥(xmj )kj=1

∥∥∥
Rad(Ei )

.

(∗) = Blasco, B., Pellegrino and Rueda (2011).

Taking the supremum over k we get

(A(x1j , . . . , x
n
j ))∞j=1 ∈ RAD(F ).

The case of Rad(·) follows from the case of RAD(·).
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Cohen strongly summable sequences

Let 1 ≤ p < +∞ and 1
p + 1

p∗ = 1.

• `p〈E 〉 =(xj)
∞
j=1 ∈ EN : ‖(xj)∞j=1‖`p〈E〉 := sup

(ϕj )
∞
j=1∈B`w

p∗ (E
′)

∞∑
j=1

|ϕj(xj)| < +∞

.

(Cohen strongly p-summable sequences)

Theorem. The sequence class `p〈 · 〉 is multilinearly stable.

Very short sketch of the proof. We use that

`p〈E 〉 = `p⊗̂πE isometrically

(Aywa and Fourie (2001), Bu and Diestel (2011)).
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Cohen strongly summable sequences

We start with the incomplete tensor product `p ⊗π E .

Given A ∈ L(E1, . . . ,En;F ) and zj = (z ij )∞i=1 ∈ `p ⊗π Ej ,
j = 1, . . . , n, we prove that(

A(z i1, . . . , z
i
n)
)∞
i=1
∈ `p ⊗π F ⊆ `p⊗̂πF ,

and that the induced map

A : `p ⊗π E1 × · · · × `p ⊗π En −→ `p⊗̂πF

is n-linear, continuous and ‖A‖ = ‖A‖.

Although not uniformly continuous, continuous multilinear
operators can be extended to the completions keeping the
norm, so let us call
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Cohen strongly summable sequences

Ã : `p⊗̂πE1 × · · · × `p⊗̂πEn −→ `p⊗̂πF

the unique extension of A

with

‖A‖ = ‖Ã‖ = ‖A‖.

Calling on the identification `p〈E 〉 = `p⊗̂πE , we prove that the

map corresponding to Ã is the desired induce map

Â : `p〈E1〉 × · · · × `p〈En〉 −→ `p〈F 〉.
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map corresponding to Ã is the desired induce map

Â : `p〈E1〉 × · · · × `p〈En〉 −→ `p〈F 〉.

Geraldo Botelho Multilinear stability of vector-valued sequences



Cohen strongly summable sequences
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Application

Given an operator ideal I, we say that an n-linear operator A
belongs to

• I ◦ L if A = u ◦ B with u ∈ I:

E1 × · · ·

B
��

× En
A // F

G
u ∈ I

;;

• L ◦ I if A = B ◦ (u1, . . . , un) with uj ∈ I:

E1

u1 ∈ I
��

× · · · × En

un ∈ I
��

A // F

G1 × · · · × Gn
B

CC
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��

× · · · × En

un ∈ I
��

A // F

G1 × · · · × Gn
B
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Application

By πdualp we denote the ideal of all linear operators having
p-summing adjoints (Cohen, 1973).

The class of Cohen almost summing multilinear operators was
introduced by Bu and Zhi (2013).

According to Campos (2014), A is Cohen almost summing if it
sends sequences in Rad(·) to sequences in `2〈 · 〉.

Corollary. Any multilinear operator belonging to either πdualp ◦ L
or L ◦ πdualp for some p ≥ 1 is Cohen almost summing.
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