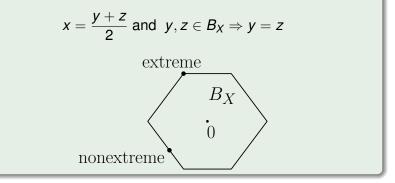
Existence of unpreserved extreme points in the disc algebra $\mathbb A$

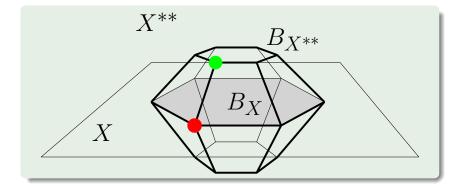
A. J. Guirao¹, V. Montesinos¹, V. Zizler²

¹Instituto de Matemática Pura y Aplicada, UPV, Spain. ²University of Alberta, Edmonton, Alberta, Canada


XIII Encuentro de Análisis Funcional Murcia-Valencia Burjasot, 11-13 diciembre 2014 Homenaje a Richard Aron en su 70 cumpleaños

• □ ▶ • □ ▶ • □ ▶ • □ ▶

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A


Extreme Points

X Banach. B_X closed unit ball, S_X unit sphere $x \in S_X$ is extreme if

(日) (圖) (E) (E) (E)

Looking at the bidual

Reason for the green point: compactness and Krein–Milman.

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

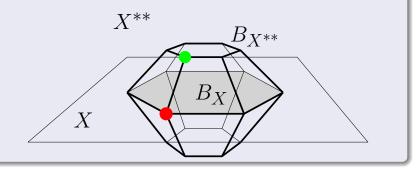
(日)

Looking at the bidual

Reflexive

If X is reflexive $\Rightarrow B_X = B_{X^{**}}$, so $Ext(B_X) = Ext(B_{X^{**}})$.

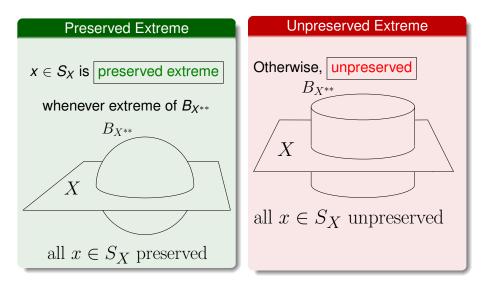
A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A


◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

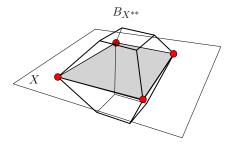
Reflexive

If X is reflexive $\Rightarrow B_X = B_{X^{**}}$, so $Ext(B_X) = Ext(B_{X^{**}})$.

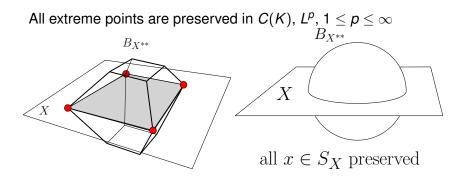
NonReflexive


If X nonreflexive then $B_{X^{**}}$ has extreme points not in X.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・


크

Preserved extreme points

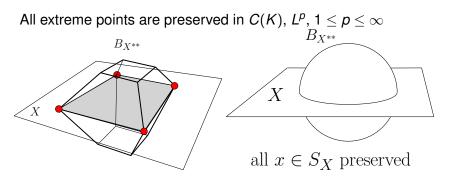

・ロト ・四ト ・ヨト ・ヨト

All extreme points are preserved in C(K),

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



Question (Phelps'61)

Does there exist any unpreserved extreme point?

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

・ロト ・四ト ・ヨト ・ヨト

Question (Phelps'61)

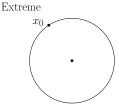
Does there exist any unpreserved extreme point?

Answer (Katznelson'61)

Disk algebra A.

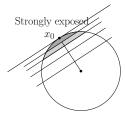
A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

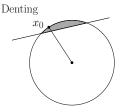

크

MLUR	β -Extreme	\Rightarrow	ω - β -Extreme	\Rightarrow	Extreme	R
	↑					
	Denting	\Rightarrow	Continuity		\uparrow	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	

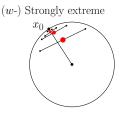
・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・


크

MLUR	β -Extreme	\Rightarrow	ω - β -Extreme	\Rightarrow	Extreme	R
	↑					
	Denting	\Rightarrow	Continuity		\uparrow	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	


▲御▶ ▲理▶ ▲理▶

MLUR	β -Extreme	\Rightarrow	ω - β -Extreme	\Rightarrow	Extreme	R
	↑					
	Denting	\Rightarrow	Continuity		\uparrow	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	


▲□ → ▲ □ → ▲ □ → □

MLUR	β -Extreme	\Rightarrow	ω - β -Extreme	\Rightarrow	Extreme	R
	↑					
	Denting	\Rightarrow	Continuity		\uparrow	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	

< □ > < □ > < □ > .

MLUR	β -Extreme	\Rightarrow	ω - β -Extreme	\Rightarrow	Extreme	R
	↑					
	Denting	\Rightarrow	Continuity		↑	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	

▲□ → ▲ □ → ▲ □ → □

MLUR	β -Extreme	\Rightarrow		\Rightarrow	Extreme	R
	↑		≡ _{GLT'92} Preserved			
	Denting	\Rightarrow	Continuity		\uparrow	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

MLUR	β -Extreme	\Rightarrow	ω - β -Extreme	\Rightarrow	Extreme	R
	↑		≡ _{GLT'92} Preserved			
	Denting	\Rightarrow	Continuity		\uparrow	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	

There exits no point of continuity.

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

(日本) (日本) (日本)

크

MLUR	β -Extreme	\Rightarrow	ω - β -Extreme	\Rightarrow	Extreme	R
	↑		≡ _{GLT'92} Preserved			
	Denting	\Rightarrow	Continuity		介	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	

There exits no point of continuity.

There exits unpreserved points that are exposed.

(4月) (1日) (日)

MLUR	β -Extreme	\Rightarrow	ω - β -Extreme	\Rightarrow	Extreme	R
	↑		≡ _{GLT'92} Preserved			
	Denting	\Rightarrow	Continuity		↑	
	↑					
LUR	β -Exposed	\Rightarrow	$\omega\text{-}\beta\text{-}Exposed$	\Rightarrow	Exposed	

There exits no point of continuity.

There exits unpreserved points that are exposed.

There exits unpreserved points that are not exposed.

▲ □ ▶ ▲ □ ▶

Extreme points in \mathbb{A}

 $\mathbb{A} = (\{f \in \mathcal{C}(\overline{\mathbb{D}}, \mathbb{C}) \colon f \upharpoonright_{\mathbb{D}} \in \mathcal{H}(\mathbb{D})\}, \|\cdot\|_{\infty}) \subset (\mathcal{C}(\mathbb{T}, \mathbb{C}), \|\cdot\|_{\infty})$

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

(日) (圖) (E) (E) (E)

Extreme points in \mathbb{A}

$$\mathbb{A}=(\{f\in {\it C}(\overline{\mathbb{D}},\mathbb{C})\colon f{
vert}_{\mathbb{D}}\in {\it H}(\mathbb{D})\},\|\cdot\|_{\infty})\subset ({\it C}(\mathbb{T},\mathbb{C}),\|\cdot\|_{\infty})$$

Lemma (Phelps-61)

 $f \in S_{\mathbb{A}}$ is extreme point of $B_{\mathbb{A}}$ iff $g \in \mathbb{A}$ is null whenever

 $|f(z)|+|g(z)|\leq 1$ for all $z\in\mathbb{T}$

・ロト ・四ト ・ヨト ・ヨト

르


Extreme points in A

$$\mathbb{A}=(\{f\in {\it C}(\overline{\mathbb{D}},\mathbb{C})\colon f{\upharpoonright}_{\mathbb{D}}\in {\it H}(\mathbb{D})\},\|\cdot\|_{\infty})\subset ({\it C}(\mathbb{T},\mathbb{C}),\|\cdot\|_{\infty})$$

Lemma (Phelps-61)

 $f \in S_{\mathbb{A}}$ is extreme point of $B_{\mathbb{A}}$ iff $g \in \mathbb{A}$ is null whenever

 $|f(z)|+|g(z)|\leq 1$ for all $z\in\mathbb{T}$

Extreme points in \mathbb{A}

$$\mathbb{A}=(\{f\in {m C}(\overline{\mathbb{D}},\mathbb{C})\colon f\!\!\upharpoonright_{\mathbb{D}}\in {m H}(\mathbb{D})\},\|\cdot\|_{\infty})\subset ({m C}(\mathbb{T},\mathbb{C}),\|\cdot\|_{\infty})$$

Lemma (Phelps-61)

 $f \in S_{\mathbb{A}}$ is extreme point of $B_{\mathbb{A}}$ iff $g \in \mathbb{A}$ is null whenever

 $|f(z)|+|g(z)|\leq 1$ for all $z\in\mathbb{T}$

There exists a neat characterization of the extreme points of A.

2

Extreme points in \mathbb{A}

$$\mathbb{A}=(\{f\in {\it C}(\overline{\mathbb{D}},\mathbb{C})\colon f{
vert}_{\mathbb{D}}\in {\it H}(\mathbb{D})\},\|\cdot\|_{\infty})\subset ({\it C}(\mathbb{T},\mathbb{C}),\|\cdot\|_{\infty})$$

Lemma (Phelps-61)

 $f \in S_{\mathbb{A}}$ is extreme point of $B_{\mathbb{A}}$ iff $g \in \mathbb{A}$ is null whenever

 $|f(z)|+|g(z)|\leq 1$ for all $z\in\mathbb{T}$

There exists a neat characterization of the extreme points of A.

Theorem (Hoffman-62, pp. 138–139)

 $f \in S_{\mathbb{A}}$ is extreme point of $B_{\mathbb{A}}$ iff

$$\int_{-\pi}^{\pi} \log(1 - |f(oldsymbol{e}^{i heta})|) \, d heta = -\infty.$$

Image: A matrix

Exposed and preserved points in \mathbb{A}

Theorem (Phelps 65)

 $f \in S_{\mathbb{A}}$ is exposed point iff $\lambda(\{z \in \mathbb{T} : |f(z)| = 1\}) \neq 0$.

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

・ロト ・四ト ・ヨト ・ヨト

르

Theorem (Phelps 65)

 $f \in S_{\mathbb{A}}$ is exposed point iff $\lambda(\{z \in \mathbb{T} : |f(z)| = 1\}) \neq 0$.

Theorem (GMZ 14)

- $f \in S_{\mathbb{A}}$. Then, following conditions are equivalent
 - f is β -extreme point.
 - I is w-β-extreme point—i.e., a preserved extreme point.
 - 3 f is inner function of A.

(日)

Theorem (Phelps 65)

 $f \in S_{\mathbb{A}}$ is exposed point iff $\lambda(\{z \in \mathbb{T} : |f(z)| = 1\}) \neq 0$.

Theorem (GMZ 14)

- $f \in S_{\mathbb{A}}$. Then, following conditions are equivalent
 - f is β -extreme point.
 - I is w-β-extreme point—i.e., a preserved extreme point.
 - **③** f is inner function of A.

Inner function

 $f \in S_{\mathbb{A}}$ is an inner function whenever $f(z) \in \mathbb{T}$ for all $z \in \mathbb{T}$.

(日) (圖) (目) (目) (目)

Question

Given a continuous function on $\mathbb{T},$ can it be regarded as an element of $\mathbb{A}?$

< 日 > < 回 > < 回 > < 回 > < 回 > <

2

Question

Given a continuous function on $\mathbb{T},$ can it be regarded as an element of $\mathbb{A}?$

Theorem (Rudin, Theorem 17.16 and Hoffman, pag. 79)

f positive real-valued in $L^1(\mathbb{T})$ such that $\log(f) \in L^1(\mathbb{T})$. Then, the following function belongs to H^1 ,

$$\mathcal{G}(f)(z) := \exp\left(rac{1}{2\pi}\int_{-\pi}^{\pi}rac{e^{i heta}+z}{e^{i heta}-z}\log(f(e^{i heta}))\,d heta
ight),\,\, ext{for}\,z\in\mathbb{D},$$

< 17 > <

Question

Given a continuous function on $\mathbb{T},$ can it be regarded as an element of $\mathbb{A}?$

Theorem (Rudin, Theorem 17.16 and Hoffman, pag. 79)

f positive real-valued in $L^1(\mathbb{T})$ such that $\log(f) \in L^1(\mathbb{T})$. Then, the following function belongs to H^1 ,

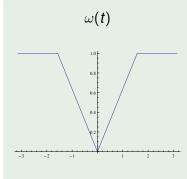
$$\mathcal{G}(f)(z):=\exp\left(rac{1}{2\pi}\int_{-\pi}^{\pi}rac{e^{i heta}+z}{e^{i heta}-z}\log(f(e^{i heta}))\,d heta
ight),\,\, ext{for}\,z\in\mathbb{D},$$

Moreover, if f is piecewise continuously differentiable in \mathbb{T} , then

・ロット (母) ・ ヨ) ・ ・ ヨ)

- $h(z) := \lim_{r \to 1^-} \mathcal{G}(f)(r z)$ exists and is uniform on \mathbb{T} .
- |h(z)| = f(z) and $h \in C(\mathbb{T}, \mathbb{C})$. (So, $\mathcal{G}(f) \in \mathbb{A}$)

Unpreserved and exposed


 $\omega(t)$

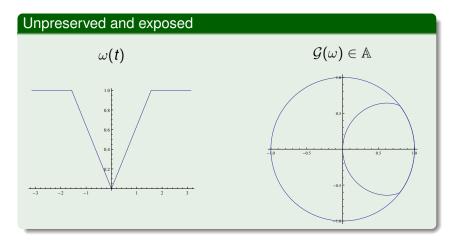
A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

イロト イヨト イヨト イヨト

3

Unpreserved and exposed

< 日 > < 回 > < 回 > < 回 > < 回 > <


3

Unpreserved and exposed

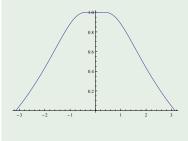
A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

・ロト ・四ト ・ヨト ・ヨト

Exposed and extreme, not preserved (is not inner function)

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

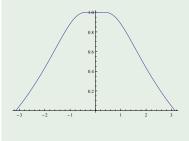
크


Unpreserved and not exposed

 $\omega(t) = 1 - \exp(1 - (\pi/t))$

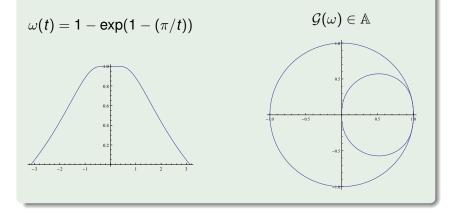
A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

Unpreserved and not exposed

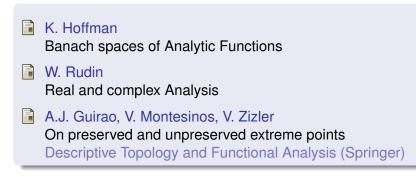

```
\omega(t) = 1 - \exp(1 - (\pi/t))
```


A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

Unpreserved and not exposed


$$\omega(t) = 1 - \exp(1 - (\pi/t))$$
 $\mathcal{G}(\omega) \in \mathbb{A}$

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A


(日)

Not exposed and extreme, not preserved (is not inner function)

(日)

< 回 > < 回 > < 回 >

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

(日本) (日本) (日本)

크

Thanks to the organizers!

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

(日)

크

Thanks to the organizers!

Thank you for your attention!

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A

A (10) A (10)

Thanks to the organizers!

Thank you for your attention!

Thanks and Congratulations to Richard!

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A