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Extreme points

Extreme Points
X Banach. BX closed unit ball, SX unit sphere
x ∈ SX is extreme if

x =
y + z

2
and y , z ∈ BX ⇒ y = z

extreme

nonextreme

BX

0

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A



Looking at the bidual

BX

X

X∗∗
BX∗∗

Reason for the green point: compactness and Krein–Milman.
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Looking at the bidual

Reflexive
If X is reflexive⇒ BX = BX∗∗ , so Ext(BX ) =Ext(BX∗∗).

NonReflexive
If X nonreflexive

then BX∗∗ has extreme points not in X .

BX

X

X∗∗
BX∗∗
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Preserved extreme points

Preserved Extreme

x ∈ SX is preserved extreme

whenever extreme of BX∗∗

X

BX∗∗

all x ∈ SX preserved

Unpreserved Extreme

Otherwise, unpreserved

X

BX∗∗

all x ∈ SX unpreserved
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All extreme points are preserved in C(K ),

Lp, 1 ≤ p ≤ ∞

X

BX∗∗

X

BX∗∗

all x ∈ SX preserved

Question (Phelps’61)
Does there exist any unpreserved extreme point?

Answer (Katznelson’61)
Disk algebra A.
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Some distinguished points of the unit sphere

Extreme R

Exposed

⇑

β-Exposed ω-β-Exposed⇒ ⇒LUR

Denting

⇑

⇒ Continuity

β-Extreme

⇑
MLUR ω-β-Extreme⇒ ⇒

ω-β-Extreme

Preserved
≡ GLT’92

There exits no point of continuity.

There exits unpreserved points that are exposed.

There exits unpreserved points that are not exposed.
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Extreme points in A

A = ({f ∈ C(D,C) : f �D ∈ H(D)}, ‖ · ‖∞) ⊂ (C(T,C), ‖ · ‖∞)

Lemma (Phelps-61)
f ∈ SA is extreme point of BA iff g ∈ A is null whenever

|f (z)|+ |g(z)| ≤ 1 for all z ∈ T
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1.0

-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1.0There exists a neat characterization of the extreme points of A.

Theorem (Hoffman-62, pp. 138–139)
f ∈ SA is extreme point of BA iff∫ π

−π
log(1− |f (eiθ)|)dθ = −∞.
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Exposed and preserved points in A

Theorem (Phelps 65)

f ∈ SA is exposed point iff λ({z ∈ T : |f (z)| = 1}) 6= 0.

Theorem (GMZ 14)
f ∈ SA. Then, following conditions are equivalent

1 f is β-extreme point.
2 f is w-β-extreme point—i.e., a preserved extreme point.
3 f is inner function of A.

Inner function
f ∈ SA is an inner function whenever f (z) ∈ T for all z ∈ T.
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The basic tool in A

Question
Given a continuous function on T, can it be regarded as an
element of A?

Theorem (Rudin, Theorem 17.16 and Hoffman, pag. 79)

f positive real-valued in L1(T) such that log(f ) ∈ L1(T). Then,
the following function belongs to H1,

G(f )(z) := exp
(

1
2π

∫ π

−π

eiθ + z
eiθ − z

log(f (eiθ))dθ
)
, for z ∈ D,

Moreover, if f is piecewise continuously differentiable in T, then
h(z) := limr→1− G(f )(r z) exists and is uniform on T.
|h(z)| = f (z) and h ∈ C(T,C). (So, G(f ) ∈ A)
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The examples

Unpreserved and exposed

ω(t)
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1.0

Exposed and extreme, not preserved (is not inner function)

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A



The examples

Unpreserved and exposed

ω(t)

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

G(ω) ∈ A

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Exposed and extreme, not preserved (is not inner function)

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A



The examples

Unpreserved and exposed

ω(t)

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

G(ω) ∈ A

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Exposed and extreme, not preserved (is not inner function)

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A



The examples

Unpreserved and exposed

ω(t)

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

G(ω) ∈ A

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Exposed and extreme, not preserved (is not inner function)

A. J. Guirao, V. Montesinos, and V. Zizler Unpreserved extreme points in A



The examples

Unpreserved and not exposed

ω(t) = 1− exp(1− (π/t))
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